]> git.lizzy.rs Git - rust.git/blob - src/librustc_resolve/late.rs
Rollup merge of #67102 - Aaron1011:patch-3, r=Mark-Simulacrum
[rust.git] / src / librustc_resolve / late.rs
1 //! "Late resolution" is the pass that resolves most of names in a crate beside imports and macros.
2 //! It runs when the crate is fully expanded and its module structure is fully built.
3 //! So it just walks through the crate and resolves all the expressions, types, etc.
4 //!
5 //! If you wonder why there's no `early.rs`, that's because it's split into three files -
6 //! `build_reduced_graph.rs`, `macros.rs` and `resolve_imports.rs`.
7
8 use RibKind::*;
9
10 use crate::{path_names_to_string, BindingError, CrateLint, LexicalScopeBinding};
11 use crate::{Module, ModuleOrUniformRoot, NameBindingKind, ParentScope, PathResult};
12 use crate::{ResolutionError, Resolver, Segment, UseError};
13
14 use log::debug;
15 use rustc::{bug, lint, span_bug};
16 use rustc::hir::def::{self, PartialRes, DefKind, CtorKind, PerNS};
17 use rustc::hir::def::Namespace::{self, *};
18 use rustc::hir::def_id::{DefId, CRATE_DEF_INDEX};
19 use rustc::hir::TraitCandidate;
20 use rustc::util::nodemap::{FxHashMap, FxHashSet};
21 use smallvec::{smallvec, SmallVec};
22 use syntax::{unwrap_or, walk_list};
23 use syntax::ast::*;
24 use syntax::ptr::P;
25 use syntax::symbol::{kw, sym};
26 use syntax::util::lev_distance::find_best_match_for_name;
27 use syntax::visit::{self, Visitor, FnKind};
28 use syntax_pos::Span;
29
30 use std::collections::BTreeSet;
31 use std::mem::replace;
32
33 use rustc_error_codes::*;
34
35 mod diagnostics;
36
37 type Res = def::Res<NodeId>;
38
39 type IdentMap<T> = FxHashMap<Ident, T>;
40
41 /// Map from the name in a pattern to its binding mode.
42 type BindingMap = IdentMap<BindingInfo>;
43
44 #[derive(Copy, Clone, Debug)]
45 struct BindingInfo {
46     span: Span,
47     binding_mode: BindingMode,
48 }
49
50 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
51 enum PatternSource {
52     Match,
53     Let,
54     For,
55     FnParam,
56 }
57
58 impl PatternSource {
59     fn descr(self) -> &'static str {
60         match self {
61             PatternSource::Match => "match binding",
62             PatternSource::Let => "let binding",
63             PatternSource::For => "for binding",
64             PatternSource::FnParam => "function parameter",
65         }
66     }
67 }
68
69 /// Denotes whether the context for the set of already bound bindings is a `Product`
70 /// or `Or` context. This is used in e.g., `fresh_binding` and `resolve_pattern_inner`.
71 /// See those functions for more information.
72 #[derive(PartialEq)]
73 enum PatBoundCtx {
74     /// A product pattern context, e.g., `Variant(a, b)`.
75     Product,
76     /// An or-pattern context, e.g., `p_0 | ... | p_n`.
77     Or,
78 }
79
80 /// Does this the item (from the item rib scope) allow generic parameters?
81 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
82 crate enum HasGenericParams { Yes, No }
83
84 /// The rib kind restricts certain accesses,
85 /// e.g. to a `Res::Local` of an outer item.
86 #[derive(Copy, Clone, Debug)]
87 crate enum RibKind<'a> {
88     /// No restriction needs to be applied.
89     NormalRibKind,
90
91     /// We passed through an impl or trait and are now in one of its
92     /// methods or associated types. Allow references to ty params that impl or trait
93     /// binds. Disallow any other upvars (including other ty params that are
94     /// upvars).
95     AssocItemRibKind,
96
97     /// We passed through a function definition. Disallow upvars.
98     /// Permit only those const parameters that are specified in the function's generics.
99     FnItemRibKind,
100
101     /// We passed through an item scope. Disallow upvars.
102     ItemRibKind(HasGenericParams),
103
104     /// We're in a constant item. Can't refer to dynamic stuff.
105     ConstantItemRibKind,
106
107     /// We passed through a module.
108     ModuleRibKind(Module<'a>),
109
110     /// We passed through a `macro_rules!` statement
111     MacroDefinition(DefId),
112
113     /// All bindings in this rib are type parameters that can't be used
114     /// from the default of a type parameter because they're not declared
115     /// before said type parameter. Also see the `visit_generics` override.
116     ForwardTyParamBanRibKind,
117 }
118
119 impl RibKind<'_> {
120     // Whether this rib kind contains generic parameters, as opposed to local
121     // variables.
122     crate fn contains_params(&self) -> bool {
123         match self {
124             NormalRibKind
125             | FnItemRibKind
126             | ConstantItemRibKind
127             | ModuleRibKind(_)
128             | MacroDefinition(_) => false,
129             AssocItemRibKind
130             | ItemRibKind(_)
131             | ForwardTyParamBanRibKind => true,
132         }
133     }
134 }
135
136 /// A single local scope.
137 ///
138 /// A rib represents a scope names can live in. Note that these appear in many places, not just
139 /// around braces. At any place where the list of accessible names (of the given namespace)
140 /// changes or a new restrictions on the name accessibility are introduced, a new rib is put onto a
141 /// stack. This may be, for example, a `let` statement (because it introduces variables), a macro,
142 /// etc.
143 ///
144 /// Different [rib kinds](enum.RibKind) are transparent for different names.
145 ///
146 /// The resolution keeps a separate stack of ribs as it traverses the AST for each namespace. When
147 /// resolving, the name is looked up from inside out.
148 #[derive(Debug)]
149 crate struct Rib<'a, R = Res> {
150     pub bindings: IdentMap<R>,
151     pub kind: RibKind<'a>,
152 }
153
154 impl<'a, R> Rib<'a, R> {
155     fn new(kind: RibKind<'a>) -> Rib<'a, R> {
156         Rib {
157             bindings: Default::default(),
158             kind,
159         }
160     }
161 }
162
163 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
164 crate enum AliasPossibility {
165     No,
166     Maybe,
167 }
168
169 #[derive(Copy, Clone, Debug)]
170 crate enum PathSource<'a> {
171     // Type paths `Path`.
172     Type,
173     // Trait paths in bounds or impls.
174     Trait(AliasPossibility),
175     // Expression paths `path`, with optional parent context.
176     Expr(Option<&'a Expr>),
177     // Paths in path patterns `Path`.
178     Pat,
179     // Paths in struct expressions and patterns `Path { .. }`.
180     Struct,
181     // Paths in tuple struct patterns `Path(..)`.
182     TupleStruct,
183     // `m::A::B` in `<T as m::A>::B::C`.
184     TraitItem(Namespace),
185 }
186
187 impl<'a> PathSource<'a> {
188     fn namespace(self) -> Namespace {
189         match self {
190             PathSource::Type | PathSource::Trait(_) | PathSource::Struct => TypeNS,
191             PathSource::Expr(..) | PathSource::Pat | PathSource::TupleStruct => ValueNS,
192             PathSource::TraitItem(ns) => ns,
193         }
194     }
195
196     fn defer_to_typeck(self) -> bool {
197         match self {
198             PathSource::Type | PathSource::Expr(..) | PathSource::Pat |
199             PathSource::Struct | PathSource::TupleStruct => true,
200             PathSource::Trait(_) | PathSource::TraitItem(..) => false,
201         }
202     }
203
204     fn descr_expected(self) -> &'static str {
205         match &self {
206             PathSource::Type => "type",
207             PathSource::Trait(_) => "trait",
208             PathSource::Pat => "unit struct, unit variant or constant",
209             PathSource::Struct => "struct, variant or union type",
210             PathSource::TupleStruct => "tuple struct or tuple variant",
211             PathSource::TraitItem(ns) => match ns {
212                 TypeNS => "associated type",
213                 ValueNS => "method or associated constant",
214                 MacroNS => bug!("associated macro"),
215             },
216             PathSource::Expr(parent) => match &parent.as_ref().map(|p| &p.kind) {
217                 // "function" here means "anything callable" rather than `DefKind::Fn`,
218                 // this is not precise but usually more helpful than just "value".
219                 Some(ExprKind::Call(call_expr, _)) => {
220                     match &call_expr.kind {
221                         ExprKind::Path(_, path) => {
222                             let mut msg = "function";
223                             if let Some(segment) = path.segments.iter().last() {
224                                 if let Some(c) = segment.ident.to_string().chars().next() {
225                                     if c.is_uppercase() {
226                                         msg = "function, tuple struct or tuple variant";
227                                     }
228                                 }
229                             }
230                             msg
231                         }
232                         _ => "function"
233                     }
234                 }
235                 _ => "value",
236             },
237         }
238     }
239
240     crate fn is_expected(self, res: Res) -> bool {
241         match self {
242             PathSource::Type => match res {
243                 Res::Def(DefKind::Struct, _)
244                 | Res::Def(DefKind::Union, _)
245                 | Res::Def(DefKind::Enum, _)
246                 | Res::Def(DefKind::Trait, _)
247                 | Res::Def(DefKind::TraitAlias, _)
248                 | Res::Def(DefKind::TyAlias, _)
249                 | Res::Def(DefKind::AssocTy, _)
250                 | Res::PrimTy(..)
251                 | Res::Def(DefKind::TyParam, _)
252                 | Res::SelfTy(..)
253                 | Res::Def(DefKind::OpaqueTy, _)
254                 | Res::Def(DefKind::ForeignTy, _) => true,
255                 _ => false,
256             },
257             PathSource::Trait(AliasPossibility::No) => match res {
258                 Res::Def(DefKind::Trait, _) => true,
259                 _ => false,
260             },
261             PathSource::Trait(AliasPossibility::Maybe) => match res {
262                 Res::Def(DefKind::Trait, _) => true,
263                 Res::Def(DefKind::TraitAlias, _) => true,
264                 _ => false,
265             },
266             PathSource::Expr(..) => match res {
267                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _)
268                 | Res::Def(DefKind::Ctor(_, CtorKind::Fn), _)
269                 | Res::Def(DefKind::Const, _)
270                 | Res::Def(DefKind::Static, _)
271                 | Res::Local(..)
272                 | Res::Def(DefKind::Fn, _)
273                 | Res::Def(DefKind::Method, _)
274                 | Res::Def(DefKind::AssocConst, _)
275                 | Res::SelfCtor(..)
276                 | Res::Def(DefKind::ConstParam, _) => true,
277                 _ => false,
278             },
279             PathSource::Pat => match res {
280                 Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
281                 Res::Def(DefKind::Const, _) | Res::Def(DefKind::AssocConst, _) |
282                 Res::SelfCtor(..) => true,
283                 _ => false,
284             },
285             PathSource::TupleStruct => match res {
286                 Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) | Res::SelfCtor(..) => true,
287                 _ => false,
288             },
289             PathSource::Struct => match res {
290                 Res::Def(DefKind::Struct, _)
291                 | Res::Def(DefKind::Union, _)
292                 | Res::Def(DefKind::Variant, _)
293                 | Res::Def(DefKind::TyAlias, _)
294                 | Res::Def(DefKind::AssocTy, _)
295                 | Res::SelfTy(..) => true,
296                 _ => false,
297             },
298             PathSource::TraitItem(ns) => match res {
299                 Res::Def(DefKind::AssocConst, _)
300                 | Res::Def(DefKind::Method, _) if ns == ValueNS => true,
301                 Res::Def(DefKind::AssocTy, _) if ns == TypeNS => true,
302                 _ => false,
303             },
304         }
305     }
306
307     fn error_code(self, has_unexpected_resolution: bool) -> &'static str {
308         syntax::diagnostic_used!(E0404);
309         syntax::diagnostic_used!(E0405);
310         syntax::diagnostic_used!(E0412);
311         syntax::diagnostic_used!(E0422);
312         syntax::diagnostic_used!(E0423);
313         syntax::diagnostic_used!(E0425);
314         syntax::diagnostic_used!(E0531);
315         syntax::diagnostic_used!(E0532);
316         syntax::diagnostic_used!(E0573);
317         syntax::diagnostic_used!(E0574);
318         syntax::diagnostic_used!(E0575);
319         syntax::diagnostic_used!(E0576);
320         match (self, has_unexpected_resolution) {
321             (PathSource::Trait(_), true) => "E0404",
322             (PathSource::Trait(_), false) => "E0405",
323             (PathSource::Type, true) => "E0573",
324             (PathSource::Type, false) => "E0412",
325             (PathSource::Struct, true) => "E0574",
326             (PathSource::Struct, false) => "E0422",
327             (PathSource::Expr(..), true) => "E0423",
328             (PathSource::Expr(..), false) => "E0425",
329             (PathSource::Pat, true) | (PathSource::TupleStruct, true) => "E0532",
330             (PathSource::Pat, false) | (PathSource::TupleStruct, false) => "E0531",
331             (PathSource::TraitItem(..), true) => "E0575",
332             (PathSource::TraitItem(..), false) => "E0576",
333         }
334     }
335 }
336
337 #[derive(Default)]
338 struct DiagnosticMetadata {
339     /// The current trait's associated types' ident, used for diagnostic suggestions.
340     current_trait_assoc_types: Vec<Ident>,
341
342     /// The current self type if inside an impl (used for better errors).
343     current_self_type: Option<Ty>,
344
345     /// The current self item if inside an ADT (used for better errors).
346     current_self_item: Option<NodeId>,
347
348     /// The current enclosing funciton (used for better errors).
349     current_function: Option<Span>,
350
351     /// A list of labels as of yet unused. Labels will be removed from this map when
352     /// they are used (in a `break` or `continue` statement)
353     unused_labels: FxHashMap<NodeId, Span>,
354
355     /// Only used for better errors on `fn(): fn()`.
356     current_type_ascription: Vec<Span>,
357
358     /// Only used for better errors on `let <pat>: <expr, not type>;`.
359     current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
360 }
361
362 struct LateResolutionVisitor<'a, 'b> {
363     r: &'b mut Resolver<'a>,
364
365     /// The module that represents the current item scope.
366     parent_scope: ParentScope<'a>,
367
368     /// The current set of local scopes for types and values.
369     /// FIXME #4948: Reuse ribs to avoid allocation.
370     ribs: PerNS<Vec<Rib<'a>>>,
371
372     /// The current set of local scopes, for labels.
373     label_ribs: Vec<Rib<'a, NodeId>>,
374
375     /// The trait that the current context can refer to.
376     current_trait_ref: Option<(Module<'a>, TraitRef)>,
377
378     /// Fields used to add information to diagnostic errors.
379     diagnostic_metadata: DiagnosticMetadata,
380 }
381
382 /// Walks the whole crate in DFS order, visiting each item, resolving names as it goes.
383 impl<'a, 'tcx> Visitor<'tcx> for LateResolutionVisitor<'a, '_> {
384     fn visit_item(&mut self, item: &'tcx Item) {
385         self.resolve_item(item);
386     }
387     fn visit_arm(&mut self, arm: &'tcx Arm) {
388         self.resolve_arm(arm);
389     }
390     fn visit_block(&mut self, block: &'tcx Block) {
391         self.resolve_block(block);
392     }
393     fn visit_anon_const(&mut self, constant: &'tcx AnonConst) {
394         debug!("visit_anon_const {:?}", constant);
395         self.with_constant_rib(|this| {
396             visit::walk_anon_const(this, constant);
397         });
398     }
399     fn visit_expr(&mut self, expr: &'tcx Expr) {
400         self.resolve_expr(expr, None);
401     }
402     fn visit_local(&mut self, local: &'tcx Local) {
403         let local_spans = match local.pat.kind {
404             // We check for this to avoid tuple struct fields.
405             PatKind::Wild => None,
406             _ => Some((
407                 local.pat.span,
408                 local.ty.as_ref().map(|ty| ty.span),
409                 local.init.as_ref().map(|init| init.span),
410             )),
411         };
412         let original = replace(&mut self.diagnostic_metadata.current_let_binding, local_spans);
413         self.resolve_local(local);
414         self.diagnostic_metadata.current_let_binding = original;
415     }
416     fn visit_ty(&mut self, ty: &'tcx Ty) {
417         match ty.kind {
418             TyKind::Path(ref qself, ref path) => {
419                 self.smart_resolve_path(ty.id, qself.as_ref(), path, PathSource::Type);
420             }
421             TyKind::ImplicitSelf => {
422                 let self_ty = Ident::with_dummy_span(kw::SelfUpper);
423                 let res = self.resolve_ident_in_lexical_scope(self_ty, TypeNS, Some(ty.id), ty.span)
424                               .map_or(Res::Err, |d| d.res());
425                 self.r.record_partial_res(ty.id, PartialRes::new(res));
426             }
427             _ => (),
428         }
429         visit::walk_ty(self, ty);
430     }
431     fn visit_poly_trait_ref(&mut self,
432                             tref: &'tcx PolyTraitRef,
433                             m: &'tcx TraitBoundModifier) {
434         self.smart_resolve_path(tref.trait_ref.ref_id, None,
435                                 &tref.trait_ref.path, PathSource::Trait(AliasPossibility::Maybe));
436         visit::walk_poly_trait_ref(self, tref, m);
437     }
438     fn visit_foreign_item(&mut self, foreign_item: &'tcx ForeignItem) {
439         match foreign_item.kind {
440             ForeignItemKind::Fn(_, ref generics) => {
441                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
442                     visit::walk_foreign_item(this, foreign_item);
443                 });
444             }
445             ForeignItemKind::Static(..) => {
446                 self.with_item_rib(HasGenericParams::No, |this| {
447                     visit::walk_foreign_item(this, foreign_item);
448                 });
449             }
450             ForeignItemKind::Ty | ForeignItemKind::Macro(..) => {
451                 visit::walk_foreign_item(self, foreign_item);
452             }
453         }
454     }
455     fn visit_fn(&mut self, fn_kind: FnKind<'tcx>, declaration: &'tcx FnDecl, sp: Span, _: NodeId) {
456         let previous_value = replace(&mut self.diagnostic_metadata.current_function, Some(sp));
457         debug!("(resolving function) entering function");
458         let rib_kind = match fn_kind {
459             FnKind::ItemFn(..) => FnItemRibKind,
460             FnKind::Method(..) | FnKind::Closure(_) => NormalRibKind,
461         };
462
463         // Create a value rib for the function.
464         self.with_rib(ValueNS, rib_kind, |this| {
465             // Create a label rib for the function.
466             this.with_label_rib(rib_kind, |this| {
467                 // Add each argument to the rib.
468                 this.resolve_params(&declaration.inputs);
469
470                 visit::walk_fn_ret_ty(this, &declaration.output);
471
472                 // Resolve the function body, potentially inside the body of an async closure
473                 match fn_kind {
474                     FnKind::ItemFn(.., body) |
475                     FnKind::Method(.., body) => this.visit_block(body),
476                     FnKind::Closure(body) => this.visit_expr(body),
477                 };
478
479                 debug!("(resolving function) leaving function");
480             })
481         });
482         self.diagnostic_metadata.current_function = previous_value;
483     }
484
485     fn visit_generics(&mut self, generics: &'tcx Generics) {
486         // For type parameter defaults, we have to ban access
487         // to following type parameters, as the InternalSubsts can only
488         // provide previous type parameters as they're built. We
489         // put all the parameters on the ban list and then remove
490         // them one by one as they are processed and become available.
491         let mut default_ban_rib = Rib::new(ForwardTyParamBanRibKind);
492         let mut found_default = false;
493         default_ban_rib.bindings.extend(generics.params.iter()
494             .filter_map(|param| match param.kind {
495                 GenericParamKind::Const { .. } |
496                 GenericParamKind::Lifetime { .. } => None,
497                 GenericParamKind::Type { ref default, .. } => {
498                     found_default |= default.is_some();
499                     found_default.then_some((Ident::with_dummy_span(param.ident.name), Res::Err))
500                 }
501             }));
502
503         // rust-lang/rust#61631: The type `Self` is essentially
504         // another type parameter. For ADTs, we consider it
505         // well-defined only after all of the ADT type parameters have
506         // been provided. Therefore, we do not allow use of `Self`
507         // anywhere in ADT type parameter defaults.
508         //
509         // (We however cannot ban `Self` for defaults on *all* generic
510         // lists; e.g. trait generics can usefully refer to `Self`,
511         // such as in the case of `trait Add<Rhs = Self>`.)
512         if self.diagnostic_metadata.current_self_item.is_some() {
513             // (`Some` if + only if we are in ADT's generics.)
514             default_ban_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), Res::Err);
515         }
516
517         for param in &generics.params {
518             match param.kind {
519                 GenericParamKind::Lifetime { .. } => self.visit_generic_param(param),
520                 GenericParamKind::Type { ref default, .. } => {
521                     for bound in &param.bounds {
522                         self.visit_param_bound(bound);
523                     }
524
525                     if let Some(ref ty) = default {
526                         self.ribs[TypeNS].push(default_ban_rib);
527                         self.visit_ty(ty);
528                         default_ban_rib = self.ribs[TypeNS].pop().unwrap();
529                     }
530
531                     // Allow all following defaults to refer to this type parameter.
532                     default_ban_rib.bindings.remove(&Ident::with_dummy_span(param.ident.name));
533                 }
534                 GenericParamKind::Const { ref ty } => {
535                     for bound in &param.bounds {
536                         self.visit_param_bound(bound);
537                     }
538                     self.visit_ty(ty);
539                 }
540             }
541         }
542         for p in &generics.where_clause.predicates {
543             self.visit_where_predicate(p);
544         }
545     }
546
547     fn visit_generic_arg(&mut self, arg: &'tcx GenericArg) {
548         debug!("visit_generic_arg({:?})", arg);
549         match arg {
550             GenericArg::Type(ref ty) => {
551                 // We parse const arguments as path types as we cannot distiguish them durring
552                 // parsing. We try to resolve that ambiguity by attempting resolution the type
553                 // namespace first, and if that fails we try again in the value namespace. If
554                 // resolution in the value namespace succeeds, we have an generic const argument on
555                 // our hands.
556                 if let TyKind::Path(ref qself, ref path) = ty.kind {
557                     // We cannot disambiguate multi-segment paths right now as that requires type
558                     // checking.
559                     if path.segments.len() == 1 && path.segments[0].args.is_none() {
560                         let mut check_ns = |ns| self.resolve_ident_in_lexical_scope(
561                             path.segments[0].ident, ns, None, path.span
562                         ).is_some();
563
564                         if !check_ns(TypeNS) && check_ns(ValueNS) {
565                             // This must be equivalent to `visit_anon_const`, but we cannot call it
566                             // directly due to visitor lifetimes so we have to copy-paste some code.
567                             self.with_constant_rib(|this| {
568                                 this.smart_resolve_path(
569                                     ty.id,
570                                     qself.as_ref(),
571                                     path,
572                                     PathSource::Expr(None)
573                                 );
574
575                                 if let Some(ref qself) = *qself {
576                                     this.visit_ty(&qself.ty);
577                                 }
578                                 this.visit_path(path, ty.id);
579                             });
580
581                             return;
582                         }
583                     }
584                 }
585
586                 self.visit_ty(ty);
587             }
588             GenericArg::Lifetime(lt) => self.visit_lifetime(lt),
589             GenericArg::Const(ct) => self.visit_anon_const(ct),
590         }
591     }
592 }
593
594 impl<'a, 'b> LateResolutionVisitor<'a, '_> {
595     fn new(resolver: &'b mut Resolver<'a>) -> LateResolutionVisitor<'a, 'b> {
596         // During late resolution we only track the module component of the parent scope,
597         // although it may be useful to track other components as well for diagnostics.
598         let graph_root = resolver.graph_root;
599         let parent_scope = ParentScope::module(graph_root);
600         let start_rib_kind = ModuleRibKind(graph_root);
601         LateResolutionVisitor {
602             r: resolver,
603             parent_scope,
604             ribs: PerNS {
605                 value_ns: vec![Rib::new(start_rib_kind)],
606                 type_ns: vec![Rib::new(start_rib_kind)],
607                 macro_ns: vec![Rib::new(start_rib_kind)],
608             },
609             label_ribs: Vec::new(),
610             current_trait_ref: None,
611             diagnostic_metadata: DiagnosticMetadata::default(),
612         }
613     }
614
615     fn resolve_ident_in_lexical_scope(&mut self,
616                                       ident: Ident,
617                                       ns: Namespace,
618                                       record_used_id: Option<NodeId>,
619                                       path_span: Span)
620                                       -> Option<LexicalScopeBinding<'a>> {
621         self.r.resolve_ident_in_lexical_scope(
622             ident, ns, &self.parent_scope, record_used_id, path_span, &self.ribs[ns]
623         )
624     }
625
626     fn resolve_path(
627         &mut self,
628         path: &[Segment],
629         opt_ns: Option<Namespace>, // `None` indicates a module path in import
630         record_used: bool,
631         path_span: Span,
632         crate_lint: CrateLint,
633     ) -> PathResult<'a> {
634         self.r.resolve_path_with_ribs(
635             path, opt_ns, &self.parent_scope, record_used, path_span, crate_lint, Some(&self.ribs)
636         )
637     }
638
639     // AST resolution
640     //
641     // We maintain a list of value ribs and type ribs.
642     //
643     // Simultaneously, we keep track of the current position in the module
644     // graph in the `parent_scope.module` pointer. When we go to resolve a name in
645     // the value or type namespaces, we first look through all the ribs and
646     // then query the module graph. When we resolve a name in the module
647     // namespace, we can skip all the ribs (since nested modules are not
648     // allowed within blocks in Rust) and jump straight to the current module
649     // graph node.
650     //
651     // Named implementations are handled separately. When we find a method
652     // call, we consult the module node to find all of the implementations in
653     // scope. This information is lazily cached in the module node. We then
654     // generate a fake "implementation scope" containing all the
655     // implementations thus found, for compatibility with old resolve pass.
656
657     /// Do some `work` within a new innermost rib of the given `kind` in the given namespace (`ns`).
658     fn with_rib<T>(
659         &mut self,
660         ns: Namespace,
661         kind: RibKind<'a>,
662         work: impl FnOnce(&mut Self) -> T,
663     ) -> T {
664         self.ribs[ns].push(Rib::new(kind));
665         let ret = work(self);
666         self.ribs[ns].pop();
667         ret
668     }
669
670     fn with_scope<T>(&mut self, id: NodeId, f: impl FnOnce(&mut Self) -> T) -> T {
671         let id = self.r.definitions.local_def_id(id);
672         let module = self.r.module_map.get(&id).cloned(); // clones a reference
673         if let Some(module) = module {
674             // Move down in the graph.
675             let orig_module = replace(&mut self.parent_scope.module, module);
676             self.with_rib(ValueNS, ModuleRibKind(module), |this| {
677                 this.with_rib(TypeNS, ModuleRibKind(module), |this| {
678                     let ret = f(this);
679                     this.parent_scope.module = orig_module;
680                     ret
681                 })
682             })
683         } else {
684             f(self)
685         }
686     }
687
688     /// Searches the current set of local scopes for labels. Returns the first non-`None` label that
689     /// is returned by the given predicate function
690     ///
691     /// Stops after meeting a closure.
692     fn search_label<P, R>(&self, mut ident: Ident, pred: P) -> Option<R>
693         where P: Fn(&Rib<'_, NodeId>, Ident) -> Option<R>
694     {
695         for rib in self.label_ribs.iter().rev() {
696             match rib.kind {
697                 NormalRibKind => {}
698                 // If an invocation of this macro created `ident`, give up on `ident`
699                 // and switch to `ident`'s source from the macro definition.
700                 MacroDefinition(def) => {
701                     if def == self.r.macro_def(ident.span.ctxt()) {
702                         ident.span.remove_mark();
703                     }
704                 }
705                 _ => {
706                     // Do not resolve labels across function boundary
707                     return None;
708                 }
709             }
710             let r = pred(rib, ident);
711             if r.is_some() {
712                 return r;
713             }
714         }
715         None
716     }
717
718     fn resolve_adt(&mut self, item: &Item, generics: &Generics) {
719         debug!("resolve_adt");
720         self.with_current_self_item(item, |this| {
721             this.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
722                 let item_def_id = this.r.definitions.local_def_id(item.id);
723                 this.with_self_rib(Res::SelfTy(None, Some(item_def_id)), |this| {
724                     visit::walk_item(this, item);
725                 });
726             });
727         });
728     }
729
730     fn future_proof_import(&mut self, use_tree: &UseTree) {
731         let segments = &use_tree.prefix.segments;
732         if !segments.is_empty() {
733             let ident = segments[0].ident;
734             if ident.is_path_segment_keyword() || ident.span.rust_2015() {
735                 return;
736             }
737
738             let nss = match use_tree.kind {
739                 UseTreeKind::Simple(..) if segments.len() == 1 => &[TypeNS, ValueNS][..],
740                 _ => &[TypeNS],
741             };
742             let report_error = |this: &Self, ns| {
743                 let what = if ns == TypeNS { "type parameters" } else { "local variables" };
744                 this.r.session.span_err(ident.span, &format!("imports cannot refer to {}", what));
745             };
746
747             for &ns in nss {
748                 match self.resolve_ident_in_lexical_scope(ident, ns, None, use_tree.prefix.span) {
749                     Some(LexicalScopeBinding::Res(..)) => {
750                         report_error(self, ns);
751                     }
752                     Some(LexicalScopeBinding::Item(binding)) => {
753                         let orig_blacklisted_binding =
754                             replace(&mut self.r.blacklisted_binding, Some(binding));
755                         if let Some(LexicalScopeBinding::Res(..)) =
756                                 self.resolve_ident_in_lexical_scope(ident, ns, None,
757                                                                     use_tree.prefix.span) {
758                             report_error(self, ns);
759                         }
760                         self.r.blacklisted_binding = orig_blacklisted_binding;
761                     }
762                     None => {}
763                 }
764             }
765         } else if let UseTreeKind::Nested(use_trees) = &use_tree.kind {
766             for (use_tree, _) in use_trees {
767                 self.future_proof_import(use_tree);
768             }
769         }
770     }
771
772     fn resolve_item(&mut self, item: &Item) {
773         let name = item.ident.name;
774         debug!("(resolving item) resolving {} ({:?})", name, item.kind);
775
776         match item.kind {
777             ItemKind::TyAlias(_, ref generics) |
778             ItemKind::Fn(_, ref generics, _) => {
779                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes),
780                                             |this| visit::walk_item(this, item));
781             }
782
783             ItemKind::Enum(_, ref generics) |
784             ItemKind::Struct(_, ref generics) |
785             ItemKind::Union(_, ref generics) => {
786                 self.resolve_adt(item, generics);
787             }
788
789             ItemKind::Impl(.., ref generics, ref opt_trait_ref, ref self_type, ref impl_items) =>
790                 self.resolve_implementation(generics,
791                                             opt_trait_ref,
792                                             &self_type,
793                                             item.id,
794                                             impl_items),
795
796             ItemKind::Trait(.., ref generics, ref bounds, ref trait_items) => {
797                 // Create a new rib for the trait-wide type parameters.
798                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
799                     let local_def_id = this.r.definitions.local_def_id(item.id);
800                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
801                         this.visit_generics(generics);
802                         walk_list!(this, visit_param_bound, bounds);
803
804                         for trait_item in trait_items {
805                             this.with_trait_items(trait_items, |this| {
806                                 this.with_generic_param_rib(&trait_item.generics, AssocItemRibKind,
807                                     |this| {
808                                         match trait_item.kind {
809                                             TraitItemKind::Const(ref ty, ref default) => {
810                                                 this.visit_ty(ty);
811
812                                                 // Only impose the restrictions of
813                                                 // ConstRibKind for an actual constant
814                                                 // expression in a provided default.
815                                                 if let Some(ref expr) = *default{
816                                                     this.with_constant_rib(|this| {
817                                                         this.visit_expr(expr);
818                                                     });
819                                                 }
820                                             }
821                                             TraitItemKind::Method(_, _) => {
822                                                 visit::walk_trait_item(this, trait_item)
823                                             }
824                                             TraitItemKind::Type(..) => {
825                                                 visit::walk_trait_item(this, trait_item)
826                                             }
827                                             TraitItemKind::Macro(_) => {
828                                                 panic!("unexpanded macro in resolve!")
829                                             }
830                                         };
831                                     });
832                             });
833                         }
834                     });
835                 });
836             }
837
838             ItemKind::TraitAlias(ref generics, ref bounds) => {
839                 // Create a new rib for the trait-wide type parameters.
840                 self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
841                     let local_def_id = this.r.definitions.local_def_id(item.id);
842                     this.with_self_rib(Res::SelfTy(Some(local_def_id), None), |this| {
843                         this.visit_generics(generics);
844                         walk_list!(this, visit_param_bound, bounds);
845                     });
846                 });
847             }
848
849             ItemKind::Mod(_) | ItemKind::ForeignMod(_) => {
850                 self.with_scope(item.id, |this| {
851                     visit::walk_item(this, item);
852                 });
853             }
854
855             ItemKind::Static(ref ty, _, ref expr) |
856             ItemKind::Const(ref ty, ref expr) => {
857                 debug!("resolve_item ItemKind::Const");
858                 self.with_item_rib(HasGenericParams::No, |this| {
859                     this.visit_ty(ty);
860                     this.with_constant_rib(|this| {
861                         this.visit_expr(expr);
862                     });
863                 });
864             }
865
866             ItemKind::Use(ref use_tree) => {
867                 self.future_proof_import(use_tree);
868             }
869
870             ItemKind::ExternCrate(..) |
871             ItemKind::MacroDef(..) | ItemKind::GlobalAsm(..) => {
872                 // do nothing, these are just around to be encoded
873             }
874
875             ItemKind::Mac(_) => panic!("unexpanded macro in resolve!"),
876         }
877     }
878
879     fn with_generic_param_rib<'c, F>(&'c mut self, generics: &'c Generics, kind: RibKind<'a>, f: F)
880         where F: FnOnce(&mut Self)
881     {
882         debug!("with_generic_param_rib");
883         let mut function_type_rib = Rib::new(kind);
884         let mut function_value_rib = Rib::new(kind);
885         let mut seen_bindings = FxHashMap::default();
886
887         // We also can't shadow bindings from the parent item
888         if let AssocItemRibKind = kind {
889             let mut add_bindings_for_ns = |ns| {
890                 let parent_rib = self.ribs[ns].iter()
891                     .rfind(|r| if let ItemRibKind(_) = r.kind { true } else { false })
892                     .expect("associated item outside of an item");
893                 seen_bindings.extend(
894                     parent_rib.bindings.iter().map(|(ident, _)| (*ident, ident.span)),
895                 );
896             };
897             add_bindings_for_ns(ValueNS);
898             add_bindings_for_ns(TypeNS);
899         }
900
901         for param in &generics.params {
902             if let GenericParamKind::Lifetime { .. } = param.kind {
903                 continue;
904             }
905
906             let def_kind = match param.kind {
907                 GenericParamKind::Type { .. } => DefKind::TyParam,
908                 GenericParamKind::Const { .. } => DefKind::ConstParam,
909                 _ => unreachable!(),
910             };
911
912             let ident = param.ident.modern();
913             debug!("with_generic_param_rib: {}", param.id);
914
915             if seen_bindings.contains_key(&ident) {
916                 let span = seen_bindings.get(&ident).unwrap();
917                 let err = ResolutionError::NameAlreadyUsedInParameterList(
918                     ident.name,
919                     *span,
920                 );
921                 self.r.report_error(param.ident.span, err);
922             }
923             seen_bindings.entry(ident).or_insert(param.ident.span);
924
925             // Plain insert (no renaming).
926             let res = Res::Def(def_kind, self.r.definitions.local_def_id(param.id));
927
928             match param.kind {
929                 GenericParamKind::Type { .. } => {
930                     function_type_rib.bindings.insert(ident, res);
931                     self.r.record_partial_res(param.id, PartialRes::new(res));
932                 }
933                 GenericParamKind::Const { .. } => {
934                     function_value_rib.bindings.insert(ident, res);
935                     self.r.record_partial_res(param.id, PartialRes::new(res));
936                 }
937                 _ => unreachable!(),
938             }
939         }
940
941         self.ribs[ValueNS].push(function_value_rib);
942         self.ribs[TypeNS].push(function_type_rib);
943
944         f(self);
945
946         self.ribs[TypeNS].pop();
947         self.ribs[ValueNS].pop();
948     }
949
950     fn with_label_rib(&mut self, kind: RibKind<'a>, f: impl FnOnce(&mut Self)) {
951         self.label_ribs.push(Rib::new(kind));
952         f(self);
953         self.label_ribs.pop();
954     }
955
956     fn with_item_rib(&mut self, has_generic_params: HasGenericParams, f: impl FnOnce(&mut Self)) {
957         let kind = ItemRibKind(has_generic_params);
958         self.with_rib(ValueNS, kind, |this| this.with_rib(TypeNS, kind, f))
959     }
960
961     fn with_constant_rib(&mut self, f: impl FnOnce(&mut Self)) {
962         debug!("with_constant_rib");
963         self.with_rib(ValueNS, ConstantItemRibKind, |this| {
964             this.with_label_rib(ConstantItemRibKind, f);
965         });
966     }
967
968     fn with_current_self_type<T>(&mut self, self_type: &Ty, f: impl FnOnce(&mut Self) -> T) -> T {
969         // Handle nested impls (inside fn bodies)
970         let previous_value = replace(
971             &mut self.diagnostic_metadata.current_self_type,
972             Some(self_type.clone()),
973         );
974         let result = f(self);
975         self.diagnostic_metadata.current_self_type = previous_value;
976         result
977     }
978
979     fn with_current_self_item<T>(&mut self, self_item: &Item, f: impl FnOnce(&mut Self) -> T) -> T {
980         let previous_value = replace(
981             &mut self.diagnostic_metadata.current_self_item,
982             Some(self_item.id),
983         );
984         let result = f(self);
985         self.diagnostic_metadata.current_self_item = previous_value;
986         result
987     }
988
989     /// When evaluating a `trait` use its associated types' idents for suggestionsa in E0412.
990     fn with_trait_items<T>(
991         &mut self,
992         trait_items: &Vec<TraitItem>,
993         f: impl FnOnce(&mut Self) -> T,
994     ) -> T {
995         let trait_assoc_types = replace(
996             &mut self.diagnostic_metadata.current_trait_assoc_types,
997             trait_items.iter().filter_map(|item| match &item.kind {
998                 TraitItemKind::Type(bounds, _) if bounds.len() == 0 => Some(item.ident),
999                 _ => None,
1000             }).collect(),
1001         );
1002         let result = f(self);
1003         self.diagnostic_metadata.current_trait_assoc_types = trait_assoc_types;
1004         result
1005     }
1006
1007     /// This is called to resolve a trait reference from an `impl` (i.e., `impl Trait for Foo`).
1008     fn with_optional_trait_ref<T>(
1009         &mut self,
1010         opt_trait_ref: Option<&TraitRef>,
1011         f: impl FnOnce(&mut Self, Option<DefId>) -> T
1012     ) -> T {
1013         let mut new_val = None;
1014         let mut new_id = None;
1015         if let Some(trait_ref) = opt_trait_ref {
1016             let path: Vec<_> = Segment::from_path(&trait_ref.path);
1017             let res = self.smart_resolve_path_fragment(
1018                 trait_ref.ref_id,
1019                 None,
1020                 &path,
1021                 trait_ref.path.span,
1022                 PathSource::Trait(AliasPossibility::No),
1023                 CrateLint::SimplePath(trait_ref.ref_id),
1024             ).base_res();
1025             if res != Res::Err {
1026                 new_id = Some(res.def_id());
1027                 let span = trait_ref.path.span;
1028                 if let PathResult::Module(ModuleOrUniformRoot::Module(module)) =
1029                     self.resolve_path(
1030                         &path,
1031                         Some(TypeNS),
1032                         false,
1033                         span,
1034                         CrateLint::SimplePath(trait_ref.ref_id),
1035                     )
1036                 {
1037                     new_val = Some((module, trait_ref.clone()));
1038                 }
1039             }
1040         }
1041         let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
1042         let result = f(self, new_id);
1043         self.current_trait_ref = original_trait_ref;
1044         result
1045     }
1046
1047     fn with_self_rib_ns(&mut self, ns: Namespace, self_res: Res, f: impl FnOnce(&mut Self)) {
1048         let mut self_type_rib = Rib::new(NormalRibKind);
1049
1050         // Plain insert (no renaming, since types are not currently hygienic)
1051         self_type_rib.bindings.insert(Ident::with_dummy_span(kw::SelfUpper), self_res);
1052         self.ribs[ns].push(self_type_rib);
1053         f(self);
1054         self.ribs[ns].pop();
1055     }
1056
1057     fn with_self_rib(&mut self, self_res: Res, f: impl FnOnce(&mut Self)) {
1058         self.with_self_rib_ns(TypeNS, self_res, f)
1059     }
1060
1061     fn resolve_implementation(&mut self,
1062                               generics: &Generics,
1063                               opt_trait_reference: &Option<TraitRef>,
1064                               self_type: &Ty,
1065                               item_id: NodeId,
1066                               impl_items: &[ImplItem]) {
1067         debug!("resolve_implementation");
1068         // If applicable, create a rib for the type parameters.
1069         self.with_generic_param_rib(generics, ItemRibKind(HasGenericParams::Yes), |this| {
1070             // Dummy self type for better errors if `Self` is used in the trait path.
1071             this.with_self_rib(Res::SelfTy(None, None), |this| {
1072                 // Resolve the trait reference, if necessary.
1073                 this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
1074                     let item_def_id = this.r.definitions.local_def_id(item_id);
1075                     this.with_self_rib(Res::SelfTy(trait_id, Some(item_def_id)), |this| {
1076                         if let Some(trait_ref) = opt_trait_reference.as_ref() {
1077                             // Resolve type arguments in the trait path.
1078                             visit::walk_trait_ref(this, trait_ref);
1079                         }
1080                         // Resolve the self type.
1081                         this.visit_ty(self_type);
1082                         // Resolve the generic parameters.
1083                         this.visit_generics(generics);
1084                         // Resolve the items within the impl.
1085                         this.with_current_self_type(self_type, |this| {
1086                             this.with_self_rib_ns(ValueNS, Res::SelfCtor(item_def_id), |this| {
1087                                 debug!("resolve_implementation with_self_rib_ns(ValueNS, ...)");
1088                                 for impl_item in impl_items {
1089                                     // We also need a new scope for the impl item type parameters.
1090                                     this.with_generic_param_rib(&impl_item.generics,
1091                                                                 AssocItemRibKind,
1092                                                                 |this| {
1093                                         use crate::ResolutionError::*;
1094                                         match impl_item.kind {
1095                                             ImplItemKind::Const(..) => {
1096                                                 debug!(
1097                                                     "resolve_implementation ImplItemKind::Const",
1098                                                 );
1099                                                 // If this is a trait impl, ensure the const
1100                                                 // exists in trait
1101                                                 this.check_trait_item(
1102                                                     impl_item.ident,
1103                                                     ValueNS,
1104                                                     impl_item.span,
1105                                                     |n, s| ConstNotMemberOfTrait(n, s),
1106                                                 );
1107
1108                                                 this.with_constant_rib(|this| {
1109                                                     visit::walk_impl_item(this, impl_item)
1110                                                 });
1111                                             }
1112                                             ImplItemKind::Method(..) => {
1113                                                 // If this is a trait impl, ensure the method
1114                                                 // exists in trait
1115                                                 this.check_trait_item(impl_item.ident,
1116                                                                       ValueNS,
1117                                                                       impl_item.span,
1118                                                     |n, s| MethodNotMemberOfTrait(n, s));
1119
1120                                                 visit::walk_impl_item(this, impl_item);
1121                                             }
1122                                             ImplItemKind::TyAlias(ref ty) => {
1123                                                 // If this is a trait impl, ensure the type
1124                                                 // exists in trait
1125                                                 this.check_trait_item(impl_item.ident,
1126                                                                       TypeNS,
1127                                                                       impl_item.span,
1128                                                     |n, s| TypeNotMemberOfTrait(n, s));
1129
1130                                                 this.visit_ty(ty);
1131                                             }
1132                                             ImplItemKind::Macro(_) =>
1133                                                 panic!("unexpanded macro in resolve!"),
1134                                         }
1135                                     });
1136                                 }
1137                             });
1138                         });
1139                     });
1140                 });
1141             });
1142         });
1143     }
1144
1145     fn check_trait_item<F>(&mut self, ident: Ident, ns: Namespace, span: Span, err: F)
1146         where F: FnOnce(Name, &str) -> ResolutionError<'_>
1147     {
1148         // If there is a TraitRef in scope for an impl, then the method must be in the
1149         // trait.
1150         if let Some((module, _)) = self.current_trait_ref {
1151             if self.r.resolve_ident_in_module(
1152                 ModuleOrUniformRoot::Module(module),
1153                 ident,
1154                 ns,
1155                 &self.parent_scope,
1156                 false,
1157                 span,
1158             ).is_err() {
1159                 let path = &self.current_trait_ref.as_ref().unwrap().1.path;
1160                 self.r.report_error(span, err(ident.name, &path_names_to_string(path)));
1161             }
1162         }
1163     }
1164
1165     fn resolve_params(&mut self, params: &[Param]) {
1166         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1167         for Param { pat, ty, .. } in params {
1168             self.resolve_pattern(pat, PatternSource::FnParam, &mut bindings);
1169             self.visit_ty(ty);
1170             debug!("(resolving function / closure) recorded parameter");
1171         }
1172     }
1173
1174     fn resolve_local(&mut self, local: &Local) {
1175         // Resolve the type.
1176         walk_list!(self, visit_ty, &local.ty);
1177
1178         // Resolve the initializer.
1179         walk_list!(self, visit_expr, &local.init);
1180
1181         // Resolve the pattern.
1182         self.resolve_pattern_top(&local.pat, PatternSource::Let);
1183     }
1184
1185     /// build a map from pattern identifiers to binding-info's.
1186     /// this is done hygienically. This could arise for a macro
1187     /// that expands into an or-pattern where one 'x' was from the
1188     /// user and one 'x' came from the macro.
1189     fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
1190         let mut binding_map = FxHashMap::default();
1191
1192         pat.walk(&mut |pat| {
1193             match pat.kind {
1194                 PatKind::Ident(binding_mode, ident, ref sub_pat)
1195                     if sub_pat.is_some() || self.is_base_res_local(pat.id) =>
1196                 {
1197                     binding_map.insert(ident, BindingInfo { span: ident.span, binding_mode });
1198                 }
1199                 PatKind::Or(ref ps) => {
1200                     // Check the consistency of this or-pattern and
1201                     // then add all bindings to the larger map.
1202                     for bm in self.check_consistent_bindings(ps) {
1203                         binding_map.extend(bm);
1204                     }
1205                     return false;
1206                 }
1207                 _ => {}
1208             }
1209
1210             true
1211         });
1212
1213         binding_map
1214     }
1215
1216     fn is_base_res_local(&self, nid: NodeId) -> bool {
1217         match self.r.partial_res_map.get(&nid).map(|res| res.base_res()) {
1218             Some(Res::Local(..)) => true,
1219             _ => false,
1220         }
1221     }
1222
1223     /// Checks that all of the arms in an or-pattern have exactly the
1224     /// same set of bindings, with the same binding modes for each.
1225     fn check_consistent_bindings(&mut self, pats: &[P<Pat>]) -> Vec<BindingMap> {
1226         let mut missing_vars = FxHashMap::default();
1227         let mut inconsistent_vars = FxHashMap::default();
1228
1229         // 1) Compute the binding maps of all arms.
1230         let maps = pats.iter()
1231             .map(|pat| self.binding_mode_map(pat))
1232             .collect::<Vec<_>>();
1233
1234         // 2) Record any missing bindings or binding mode inconsistencies.
1235         for (map_outer, pat_outer) in pats.iter().enumerate().map(|(idx, pat)| (&maps[idx], pat)) {
1236             // Check against all arms except for the same pattern which is always self-consistent.
1237             let inners = pats.iter().enumerate()
1238                 .filter(|(_, pat)| pat.id != pat_outer.id)
1239                 .flat_map(|(idx, _)| maps[idx].iter())
1240                 .map(|(key, binding)| (key.name, map_outer.get(&key), binding));
1241
1242             for (name, info, &binding_inner) in inners {
1243                 match info {
1244                     None => { // The inner binding is missing in the outer.
1245                         let binding_error = missing_vars
1246                             .entry(name)
1247                             .or_insert_with(|| BindingError {
1248                                 name,
1249                                 origin: BTreeSet::new(),
1250                                 target: BTreeSet::new(),
1251                                 could_be_path: name.as_str().starts_with(char::is_uppercase),
1252                             });
1253                         binding_error.origin.insert(binding_inner.span);
1254                         binding_error.target.insert(pat_outer.span);
1255                     }
1256                     Some(binding_outer) => {
1257                         if binding_outer.binding_mode != binding_inner.binding_mode {
1258                             // The binding modes in the outer and inner bindings differ.
1259                             inconsistent_vars
1260                                 .entry(name)
1261                                 .or_insert((binding_inner.span, binding_outer.span));
1262                         }
1263                     }
1264                 }
1265             }
1266         }
1267
1268         // 3) Report all missing variables we found.
1269         let mut missing_vars = missing_vars.iter_mut().collect::<Vec<_>>();
1270         missing_vars.sort();
1271         for (name, mut v) in missing_vars {
1272             if inconsistent_vars.contains_key(name) {
1273                 v.could_be_path = false;
1274             }
1275             self.r.report_error(
1276                 *v.origin.iter().next().unwrap(),
1277                 ResolutionError::VariableNotBoundInPattern(v));
1278         }
1279
1280         // 4) Report all inconsistencies in binding modes we found.
1281         let mut inconsistent_vars = inconsistent_vars.iter().collect::<Vec<_>>();
1282         inconsistent_vars.sort();
1283         for (name, v) in inconsistent_vars {
1284             self.r.report_error(v.0, ResolutionError::VariableBoundWithDifferentMode(*name, v.1));
1285         }
1286
1287         // 5) Finally bubble up all the binding maps.
1288         maps
1289     }
1290
1291     /// Check the consistency of the outermost or-patterns.
1292     fn check_consistent_bindings_top(&mut self, pat: &Pat) {
1293         pat.walk(&mut |pat| match pat.kind {
1294             PatKind::Or(ref ps) => {
1295                 self.check_consistent_bindings(ps);
1296                 false
1297             },
1298             _ => true,
1299         })
1300     }
1301
1302     fn resolve_arm(&mut self, arm: &Arm) {
1303         self.with_rib(ValueNS, NormalRibKind, |this| {
1304             this.resolve_pattern_top(&arm.pat, PatternSource::Match);
1305             walk_list!(this, visit_expr, &arm.guard);
1306             this.visit_expr(&arm.body);
1307         });
1308     }
1309
1310     /// Arising from `source`, resolve a top level pattern.
1311     fn resolve_pattern_top(&mut self, pat: &Pat, pat_src: PatternSource) {
1312         let mut bindings = smallvec![(PatBoundCtx::Product, Default::default())];
1313         self.resolve_pattern(pat, pat_src, &mut bindings);
1314     }
1315
1316     fn resolve_pattern(
1317         &mut self,
1318         pat: &Pat,
1319         pat_src: PatternSource,
1320         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1321     ) {
1322         self.resolve_pattern_inner(pat, pat_src, bindings);
1323         // This has to happen *after* we determine which pat_idents are variants:
1324         self.check_consistent_bindings_top(pat);
1325         visit::walk_pat(self, pat);
1326     }
1327
1328     /// Resolve bindings in a pattern. This is a helper to `resolve_pattern`.
1329     ///
1330     /// ### `bindings`
1331     ///
1332     /// A stack of sets of bindings accumulated.
1333     ///
1334     /// In each set, `PatBoundCtx::Product` denotes that a found binding in it should
1335     /// be interpreted as re-binding an already bound binding. This results in an error.
1336     /// Meanwhile, `PatBound::Or` denotes that a found binding in the set should result
1337     /// in reusing this binding rather than creating a fresh one.
1338     ///
1339     /// When called at the top level, the stack must have a single element
1340     /// with `PatBound::Product`. Otherwise, pushing to the stack happens as
1341     /// or-patterns (`p_0 | ... | p_n`) are encountered and the context needs
1342     /// to be switched to `PatBoundCtx::Or` and then `PatBoundCtx::Product` for each `p_i`.
1343     /// When each `p_i` has been dealt with, the top set is merged with its parent.
1344     /// When a whole or-pattern has been dealt with, the thing happens.
1345     ///
1346     /// See the implementation and `fresh_binding` for more details.
1347     fn resolve_pattern_inner(
1348         &mut self,
1349         pat: &Pat,
1350         pat_src: PatternSource,
1351         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1352     ) {
1353         // Visit all direct subpatterns of this pattern.
1354         pat.walk(&mut |pat| {
1355             debug!("resolve_pattern pat={:?} node={:?}", pat, pat.kind);
1356             match pat.kind {
1357                 PatKind::Ident(bmode, ident, ref sub) => {
1358                     // First try to resolve the identifier as some existing entity,
1359                     // then fall back to a fresh binding.
1360                     let has_sub = sub.is_some();
1361                     let res = self.try_resolve_as_non_binding(pat_src, pat, bmode, ident, has_sub)
1362                         .unwrap_or_else(|| self.fresh_binding(ident, pat.id, pat_src, bindings));
1363                     self.r.record_partial_res(pat.id, PartialRes::new(res));
1364                 }
1365                 PatKind::TupleStruct(ref path, ..) => {
1366                     self.smart_resolve_path(pat.id, None, path, PathSource::TupleStruct);
1367                 }
1368                 PatKind::Path(ref qself, ref path) => {
1369                     self.smart_resolve_path(pat.id, qself.as_ref(), path, PathSource::Pat);
1370                 }
1371                 PatKind::Struct(ref path, ..) => {
1372                     self.smart_resolve_path(pat.id, None, path, PathSource::Struct);
1373                 }
1374                 PatKind::Or(ref ps) => {
1375                     // Add a new set of bindings to the stack. `Or` here records that when a
1376                     // binding already exists in this set, it should not result in an error because
1377                     // `V1(a) | V2(a)` must be allowed and are checked for consistency later.
1378                     bindings.push((PatBoundCtx::Or, Default::default()));
1379                     for p in ps {
1380                         // Now we need to switch back to a product context so that each
1381                         // part of the or-pattern internally rejects already bound names.
1382                         // For example, `V1(a) | V2(a, a)` and `V1(a, a) | V2(a)` are bad.
1383                         bindings.push((PatBoundCtx::Product, Default::default()));
1384                         self.resolve_pattern_inner(p, pat_src, bindings);
1385                         // Move up the non-overlapping bindings to the or-pattern.
1386                         // Existing bindings just get "merged".
1387                         let collected = bindings.pop().unwrap().1;
1388                         bindings.last_mut().unwrap().1.extend(collected);
1389                     }
1390                     // This or-pattern itself can itself be part of a product,
1391                     // e.g. `(V1(a) | V2(a), a)` or `(a, V1(a) | V2(a))`.
1392                     // Both cases bind `a` again in a product pattern and must be rejected.
1393                     let collected = bindings.pop().unwrap().1;
1394                     bindings.last_mut().unwrap().1.extend(collected);
1395
1396                     // Prevent visiting `ps` as we've already done so above.
1397                     return false;
1398                 }
1399                 _ => {}
1400             }
1401             true
1402         });
1403     }
1404
1405     fn fresh_binding(
1406         &mut self,
1407         ident: Ident,
1408         pat_id: NodeId,
1409         pat_src: PatternSource,
1410         bindings: &mut SmallVec<[(PatBoundCtx, FxHashSet<Ident>); 1]>,
1411     ) -> Res {
1412         // Add the binding to the local ribs, if it doesn't already exist in the bindings map.
1413         // (We must not add it if it's in the bindings map because that breaks the assumptions
1414         // later passes make about or-patterns.)
1415         let ident = ident.modern_and_legacy();
1416
1417         let mut bound_iter = bindings.iter().filter(|(_, set)| set.contains(&ident));
1418         // Already bound in a product pattern? e.g. `(a, a)` which is not allowed.
1419         let already_bound_and = bound_iter.clone().any(|(ctx, _)| *ctx == PatBoundCtx::Product);
1420         // Already bound in an or-pattern? e.g. `V1(a) | V2(a)`.
1421         // This is *required* for consistency which is checked later.
1422         let already_bound_or = bound_iter.any(|(ctx, _)| *ctx == PatBoundCtx::Or);
1423
1424         if already_bound_and {
1425             // Overlap in a product pattern somewhere; report an error.
1426             use ResolutionError::*;
1427             let error = match pat_src {
1428                 // `fn f(a: u8, a: u8)`:
1429                 PatternSource::FnParam => IdentifierBoundMoreThanOnceInParameterList,
1430                 // `Variant(a, a)`:
1431                 _ => IdentifierBoundMoreThanOnceInSamePattern,
1432             };
1433             self.r.report_error(ident.span, error(&ident.as_str()));
1434         }
1435
1436         // Record as bound if it's valid:
1437         let ident_valid = ident.name != kw::Invalid;
1438         if ident_valid {
1439             bindings.last_mut().unwrap().1.insert(ident);
1440         }
1441
1442         if already_bound_or {
1443             // `Variant1(a) | Variant2(a)`, ok
1444             // Reuse definition from the first `a`.
1445             self.innermost_rib_bindings(ValueNS)[&ident]
1446         } else {
1447             let res = Res::Local(pat_id);
1448             if ident_valid {
1449                 // A completely fresh binding add to the set if it's valid.
1450                 self.innermost_rib_bindings(ValueNS).insert(ident, res);
1451             }
1452             res
1453         }
1454     }
1455
1456     fn innermost_rib_bindings(&mut self, ns: Namespace) -> &mut IdentMap<Res> {
1457         &mut self.ribs[ns].last_mut().unwrap().bindings
1458     }
1459
1460     fn try_resolve_as_non_binding(
1461         &mut self,
1462         pat_src: PatternSource,
1463         pat: &Pat,
1464         bm: BindingMode,
1465         ident: Ident,
1466         has_sub: bool,
1467     ) -> Option<Res> {
1468         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, pat.span)?.item()?;
1469         let res = binding.res();
1470
1471         // An immutable (no `mut`) by-value (no `ref`) binding pattern without
1472         // a sub pattern (no `@ $pat`) is syntactically ambiguous as it could
1473         // also be interpreted as a path to e.g. a constant, variant, etc.
1474         let is_syntactic_ambiguity = !has_sub && bm == BindingMode::ByValue(Mutability::Immutable);
1475
1476         match res {
1477             Res::Def(DefKind::Ctor(_, CtorKind::Const), _) |
1478             Res::Def(DefKind::Const, _) if is_syntactic_ambiguity => {
1479                 // Disambiguate in favor of a unit struct/variant or constant pattern.
1480                 self.r.record_use(ident, ValueNS, binding, false);
1481                 Some(res)
1482             }
1483             Res::Def(DefKind::Ctor(..), _)
1484             | Res::Def(DefKind::Const, _)
1485             | Res::Def(DefKind::Static, _) => {
1486                 // This is unambiguously a fresh binding, either syntactically
1487                 // (e.g., `IDENT @ PAT` or `ref IDENT`) or because `IDENT` resolves
1488                 // to something unusable as a pattern (e.g., constructor function),
1489                 // but we still conservatively report an error, see
1490                 // issues/33118#issuecomment-233962221 for one reason why.
1491                 self.r.report_error(
1492                     ident.span,
1493                     ResolutionError::BindingShadowsSomethingUnacceptable(
1494                         pat_src.descr(),
1495                         ident.name,
1496                         binding,
1497                     ),
1498                 );
1499                 None
1500             }
1501             Res::Def(DefKind::Fn, _) | Res::Err => {
1502                 // These entities are explicitly allowed to be shadowed by fresh bindings.
1503                 None
1504             }
1505             res => {
1506                 span_bug!(ident.span, "unexpected resolution for an \
1507                                         identifier in pattern: {:?}", res);
1508             }
1509         }
1510     }
1511
1512     // High-level and context dependent path resolution routine.
1513     // Resolves the path and records the resolution into definition map.
1514     // If resolution fails tries several techniques to find likely
1515     // resolution candidates, suggest imports or other help, and report
1516     // errors in user friendly way.
1517     fn smart_resolve_path(&mut self,
1518                           id: NodeId,
1519                           qself: Option<&QSelf>,
1520                           path: &Path,
1521                           source: PathSource<'_>) {
1522         self.smart_resolve_path_fragment(
1523             id,
1524             qself,
1525             &Segment::from_path(path),
1526             path.span,
1527             source,
1528             CrateLint::SimplePath(id),
1529         );
1530     }
1531
1532     fn smart_resolve_path_fragment(&mut self,
1533                                    id: NodeId,
1534                                    qself: Option<&QSelf>,
1535                                    path: &[Segment],
1536                                    span: Span,
1537                                    source: PathSource<'_>,
1538                                    crate_lint: CrateLint)
1539                                    -> PartialRes {
1540         let ns = source.namespace();
1541         let is_expected = &|res| source.is_expected(res);
1542
1543         let report_errors = |this: &mut Self, res: Option<Res>| {
1544             let (err, candidates) = this.smart_resolve_report_errors(path, span, source, res);
1545             let def_id = this.parent_scope.module.normal_ancestor_id;
1546             let node_id = this.r.definitions.as_local_node_id(def_id).unwrap();
1547             let better = res.is_some();
1548             this.r.use_injections.push(UseError { err, candidates, node_id, better });
1549             PartialRes::new(Res::Err)
1550         };
1551
1552         let partial_res = match self.resolve_qpath_anywhere(
1553             id,
1554             qself,
1555             path,
1556             ns,
1557             span,
1558             source.defer_to_typeck(),
1559             crate_lint,
1560         ) {
1561             Some(partial_res) if partial_res.unresolved_segments() == 0 => {
1562                 if is_expected(partial_res.base_res()) || partial_res.base_res() == Res::Err {
1563                     partial_res
1564                 } else {
1565                     report_errors(self, Some(partial_res.base_res()))
1566                 }
1567             }
1568             Some(partial_res) if source.defer_to_typeck() => {
1569                 // Not fully resolved associated item `T::A::B` or `<T as Tr>::A::B`
1570                 // or `<T>::A::B`. If `B` should be resolved in value namespace then
1571                 // it needs to be added to the trait map.
1572                 if ns == ValueNS {
1573                     let item_name = path.last().unwrap().ident;
1574                     let traits = self.get_traits_containing_item(item_name, ns);
1575                     self.r.trait_map.insert(id, traits);
1576                 }
1577
1578                 let mut std_path = vec![Segment::from_ident(Ident::with_dummy_span(sym::std))];
1579                 std_path.extend(path);
1580                 if self.r.primitive_type_table.primitive_types.contains_key(&path[0].ident.name) {
1581                     let cl = CrateLint::No;
1582                     let ns = Some(ns);
1583                     if let PathResult::Module(_) | PathResult::NonModule(_) =
1584                             self.resolve_path(&std_path, ns, false, span, cl) {
1585                         // check if we wrote `str::from_utf8` instead of `std::str::from_utf8`
1586                         let item_span = path.iter().last().map(|segment| segment.ident.span)
1587                             .unwrap_or(span);
1588                         debug!("accessed item from `std` submodule as a bare type {:?}", std_path);
1589                         let mut hm = self.r.session.confused_type_with_std_module.borrow_mut();
1590                         hm.insert(item_span, span);
1591                         // In some places (E0223) we only have access to the full path
1592                         hm.insert(span, span);
1593                     }
1594                 }
1595                 partial_res
1596             }
1597             _ => report_errors(self, None)
1598         };
1599
1600         if let PathSource::TraitItem(..) = source {} else {
1601             // Avoid recording definition of `A::B` in `<T as A>::B::C`.
1602             self.r.record_partial_res(id, partial_res);
1603         }
1604         partial_res
1605     }
1606
1607     fn self_type_is_available(&mut self, span: Span) -> bool {
1608         let binding = self.resolve_ident_in_lexical_scope(
1609             Ident::with_dummy_span(kw::SelfUpper),
1610             TypeNS,
1611             None,
1612             span,
1613         );
1614         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1615     }
1616
1617     fn self_value_is_available(&mut self, self_span: Span, path_span: Span) -> bool {
1618         let ident = Ident::new(kw::SelfLower, self_span);
1619         let binding = self.resolve_ident_in_lexical_scope(ident, ValueNS, None, path_span);
1620         if let Some(LexicalScopeBinding::Res(res)) = binding { res != Res::Err } else { false }
1621     }
1622
1623     // Resolve in alternative namespaces if resolution in the primary namespace fails.
1624     fn resolve_qpath_anywhere(
1625         &mut self,
1626         id: NodeId,
1627         qself: Option<&QSelf>,
1628         path: &[Segment],
1629         primary_ns: Namespace,
1630         span: Span,
1631         defer_to_typeck: bool,
1632         crate_lint: CrateLint,
1633     ) -> Option<PartialRes> {
1634         let mut fin_res = None;
1635         for (i, ns) in [primary_ns, TypeNS, ValueNS].iter().cloned().enumerate() {
1636             if i == 0 || ns != primary_ns {
1637                 match self.resolve_qpath(id, qself, path, ns, span, crate_lint) {
1638                     // If defer_to_typeck, then resolution > no resolution,
1639                     // otherwise full resolution > partial resolution > no resolution.
1640                     Some(partial_res) if partial_res.unresolved_segments() == 0 ||
1641                                          defer_to_typeck =>
1642                         return Some(partial_res),
1643                     partial_res => if fin_res.is_none() { fin_res = partial_res },
1644                 }
1645             }
1646         }
1647
1648         // `MacroNS`
1649         assert!(primary_ns != MacroNS);
1650         if qself.is_none() {
1651             let path_seg = |seg: &Segment| PathSegment::from_ident(seg.ident);
1652             let path = Path { segments: path.iter().map(path_seg).collect(), span };
1653             if let Ok((_, res)) = self.r.resolve_macro_path(
1654                 &path, None, &self.parent_scope, false, false
1655             ) {
1656                 return Some(PartialRes::new(res));
1657             }
1658         }
1659
1660         fin_res
1661     }
1662
1663     /// Handles paths that may refer to associated items.
1664     fn resolve_qpath(
1665         &mut self,
1666         id: NodeId,
1667         qself: Option<&QSelf>,
1668         path: &[Segment],
1669         ns: Namespace,
1670         span: Span,
1671         crate_lint: CrateLint,
1672     ) -> Option<PartialRes> {
1673         debug!(
1674             "resolve_qpath(id={:?}, qself={:?}, path={:?}, ns={:?}, span={:?})",
1675             id,
1676             qself,
1677             path,
1678             ns,
1679             span,
1680         );
1681
1682         if let Some(qself) = qself {
1683             if qself.position == 0 {
1684                 // This is a case like `<T>::B`, where there is no
1685                 // trait to resolve.  In that case, we leave the `B`
1686                 // segment to be resolved by type-check.
1687                 return Some(PartialRes::with_unresolved_segments(
1688                     Res::Def(DefKind::Mod, DefId::local(CRATE_DEF_INDEX)), path.len()
1689                 ));
1690             }
1691
1692             // Make sure `A::B` in `<T as A::B>::C` is a trait item.
1693             //
1694             // Currently, `path` names the full item (`A::B::C`, in
1695             // our example).  so we extract the prefix of that that is
1696             // the trait (the slice upto and including
1697             // `qself.position`). And then we recursively resolve that,
1698             // but with `qself` set to `None`.
1699             //
1700             // However, setting `qself` to none (but not changing the
1701             // span) loses the information about where this path
1702             // *actually* appears, so for the purposes of the crate
1703             // lint we pass along information that this is the trait
1704             // name from a fully qualified path, and this also
1705             // contains the full span (the `CrateLint::QPathTrait`).
1706             let ns = if qself.position + 1 == path.len() { ns } else { TypeNS };
1707             let partial_res = self.smart_resolve_path_fragment(
1708                 id,
1709                 None,
1710                 &path[..=qself.position],
1711                 span,
1712                 PathSource::TraitItem(ns),
1713                 CrateLint::QPathTrait {
1714                     qpath_id: id,
1715                     qpath_span: qself.path_span,
1716                 },
1717             );
1718
1719             // The remaining segments (the `C` in our example) will
1720             // have to be resolved by type-check, since that requires doing
1721             // trait resolution.
1722             return Some(PartialRes::with_unresolved_segments(
1723                 partial_res.base_res(),
1724                 partial_res.unresolved_segments() + path.len() - qself.position - 1,
1725             ));
1726         }
1727
1728         let result = match self.resolve_path(&path, Some(ns), true, span, crate_lint) {
1729             PathResult::NonModule(path_res) => path_res,
1730             PathResult::Module(ModuleOrUniformRoot::Module(module)) if !module.is_normal() => {
1731                 PartialRes::new(module.res().unwrap())
1732             }
1733             // In `a(::assoc_item)*` `a` cannot be a module. If `a` does resolve to a module we
1734             // don't report an error right away, but try to fallback to a primitive type.
1735             // So, we are still able to successfully resolve something like
1736             //
1737             // use std::u8; // bring module u8 in scope
1738             // fn f() -> u8 { // OK, resolves to primitive u8, not to std::u8
1739             //     u8::max_value() // OK, resolves to associated function <u8>::max_value,
1740             //                     // not to non-existent std::u8::max_value
1741             // }
1742             //
1743             // Such behavior is required for backward compatibility.
1744             // The same fallback is used when `a` resolves to nothing.
1745             PathResult::Module(ModuleOrUniformRoot::Module(_)) |
1746             PathResult::Failed { .. }
1747                     if (ns == TypeNS || path.len() > 1) &&
1748                        self.r.primitive_type_table.primitive_types
1749                            .contains_key(&path[0].ident.name) => {
1750                 let prim = self.r.primitive_type_table.primitive_types[&path[0].ident.name];
1751                 PartialRes::with_unresolved_segments(Res::PrimTy(prim), path.len() - 1)
1752             }
1753             PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1754                 PartialRes::new(module.res().unwrap()),
1755             PathResult::Failed { is_error_from_last_segment: false, span, label, suggestion } => {
1756                 self.r.report_error(span, ResolutionError::FailedToResolve { label, suggestion });
1757                 PartialRes::new(Res::Err)
1758             }
1759             PathResult::Module(..) | PathResult::Failed { .. } => return None,
1760             PathResult::Indeterminate => bug!("indetermined path result in resolve_qpath"),
1761         };
1762
1763         if path.len() > 1 && result.base_res() != Res::Err &&
1764            path[0].ident.name != kw::PathRoot &&
1765            path[0].ident.name != kw::DollarCrate {
1766             let unqualified_result = {
1767                 match self.resolve_path(
1768                     &[*path.last().unwrap()],
1769                     Some(ns),
1770                     false,
1771                     span,
1772                     CrateLint::No,
1773                 ) {
1774                     PathResult::NonModule(path_res) => path_res.base_res(),
1775                     PathResult::Module(ModuleOrUniformRoot::Module(module)) =>
1776                         module.res().unwrap(),
1777                     _ => return Some(result),
1778                 }
1779             };
1780             if result.base_res() == unqualified_result {
1781                 let lint = lint::builtin::UNUSED_QUALIFICATIONS;
1782                 self.r.lint_buffer.buffer_lint(lint, id, span, "unnecessary qualification")
1783             }
1784         }
1785
1786         Some(result)
1787     }
1788
1789     fn with_resolved_label(&mut self, label: Option<Label>, id: NodeId, f: impl FnOnce(&mut Self)) {
1790         if let Some(label) = label {
1791             if label.ident.as_str().as_bytes()[1] != b'_' {
1792                 self.diagnostic_metadata.unused_labels.insert(id, label.ident.span);
1793             }
1794             self.with_label_rib(NormalRibKind, |this| {
1795                 let ident = label.ident.modern_and_legacy();
1796                 this.label_ribs.last_mut().unwrap().bindings.insert(ident, id);
1797                 f(this);
1798             });
1799         } else {
1800             f(self);
1801         }
1802     }
1803
1804     fn resolve_labeled_block(&mut self, label: Option<Label>, id: NodeId, block: &Block) {
1805         self.with_resolved_label(label, id, |this| this.visit_block(block));
1806     }
1807
1808     fn resolve_block(&mut self, block: &Block) {
1809         debug!("(resolving block) entering block");
1810         // Move down in the graph, if there's an anonymous module rooted here.
1811         let orig_module = self.parent_scope.module;
1812         let anonymous_module = self.r.block_map.get(&block.id).cloned(); // clones a reference
1813
1814         let mut num_macro_definition_ribs = 0;
1815         if let Some(anonymous_module) = anonymous_module {
1816             debug!("(resolving block) found anonymous module, moving down");
1817             self.ribs[ValueNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1818             self.ribs[TypeNS].push(Rib::new(ModuleRibKind(anonymous_module)));
1819             self.parent_scope.module = anonymous_module;
1820         } else {
1821             self.ribs[ValueNS].push(Rib::new(NormalRibKind));
1822         }
1823
1824         // Descend into the block.
1825         for stmt in &block.stmts {
1826             if let StmtKind::Item(ref item) = stmt.kind {
1827                 if let ItemKind::MacroDef(..) = item.kind {
1828                     num_macro_definition_ribs += 1;
1829                     let res = self.r.definitions.local_def_id(item.id);
1830                     self.ribs[ValueNS].push(Rib::new(MacroDefinition(res)));
1831                     self.label_ribs.push(Rib::new(MacroDefinition(res)));
1832                 }
1833             }
1834
1835             self.visit_stmt(stmt);
1836         }
1837
1838         // Move back up.
1839         self.parent_scope.module = orig_module;
1840         for _ in 0 .. num_macro_definition_ribs {
1841             self.ribs[ValueNS].pop();
1842             self.label_ribs.pop();
1843         }
1844         self.ribs[ValueNS].pop();
1845         if anonymous_module.is_some() {
1846             self.ribs[TypeNS].pop();
1847         }
1848         debug!("(resolving block) leaving block");
1849     }
1850
1851     fn resolve_expr(&mut self, expr: &Expr, parent: Option<&Expr>) {
1852         // First, record candidate traits for this expression if it could
1853         // result in the invocation of a method call.
1854
1855         self.record_candidate_traits_for_expr_if_necessary(expr);
1856
1857         // Next, resolve the node.
1858         match expr.kind {
1859             ExprKind::Path(ref qself, ref path) => {
1860                 self.smart_resolve_path(expr.id, qself.as_ref(), path, PathSource::Expr(parent));
1861                 visit::walk_expr(self, expr);
1862             }
1863
1864             ExprKind::Struct(ref path, ..) => {
1865                 self.smart_resolve_path(expr.id, None, path, PathSource::Struct);
1866                 visit::walk_expr(self, expr);
1867             }
1868
1869             ExprKind::Break(Some(label), _) | ExprKind::Continue(Some(label)) => {
1870                 let node_id = self.search_label(label.ident, |rib, ident| {
1871                     rib.bindings.get(&ident.modern_and_legacy()).cloned()
1872                 });
1873                 match node_id {
1874                     None => {
1875                         // Search again for close matches...
1876                         // Picks the first label that is "close enough", which is not necessarily
1877                         // the closest match
1878                         let close_match = self.search_label(label.ident, |rib, ident| {
1879                             let names = rib.bindings.iter().filter_map(|(id, _)| {
1880                                 if id.span.ctxt() == label.ident.span.ctxt() {
1881                                     Some(&id.name)
1882                                 } else {
1883                                     None
1884                                 }
1885                             });
1886                             find_best_match_for_name(names, &ident.as_str(), None)
1887                         });
1888                         self.r.record_partial_res(expr.id, PartialRes::new(Res::Err));
1889                         self.r.report_error(
1890                             label.ident.span,
1891                             ResolutionError::UndeclaredLabel(&label.ident.as_str(), close_match),
1892                         );
1893                     }
1894                     Some(node_id) => {
1895                         // Since this res is a label, it is never read.
1896                         self.r.label_res_map.insert(expr.id, node_id);
1897                         self.diagnostic_metadata.unused_labels.remove(&node_id);
1898                     }
1899                 }
1900
1901                 // visit `break` argument if any
1902                 visit::walk_expr(self, expr);
1903             }
1904
1905             ExprKind::Let(ref pat, ref scrutinee) => {
1906                 self.visit_expr(scrutinee);
1907                 self.resolve_pattern_top(pat, PatternSource::Let);
1908             }
1909
1910             ExprKind::If(ref cond, ref then, ref opt_else) => {
1911                 self.with_rib(ValueNS, NormalRibKind, |this| {
1912                     this.visit_expr(cond);
1913                     this.visit_block(then);
1914                 });
1915                 opt_else.as_ref().map(|expr| self.visit_expr(expr));
1916             }
1917
1918             ExprKind::Loop(ref block, label) => self.resolve_labeled_block(label, expr.id, &block),
1919
1920             ExprKind::While(ref cond, ref block, label) => {
1921                 self.with_resolved_label(label, expr.id, |this| {
1922                     this.with_rib(ValueNS, NormalRibKind, |this| {
1923                         this.visit_expr(cond);
1924                         this.visit_block(block);
1925                     })
1926                 });
1927             }
1928
1929             ExprKind::ForLoop(ref pat, ref iter_expr, ref block, label) => {
1930                 self.visit_expr(iter_expr);
1931                 self.with_rib(ValueNS, NormalRibKind, |this| {
1932                     this.resolve_pattern_top(pat, PatternSource::For);
1933                     this.resolve_labeled_block(label, expr.id, block);
1934                 });
1935             }
1936
1937             ExprKind::Block(ref block, label) => self.resolve_labeled_block(label, block.id, block),
1938
1939             // Equivalent to `visit::walk_expr` + passing some context to children.
1940             ExprKind::Field(ref subexpression, _) => {
1941                 self.resolve_expr(subexpression, Some(expr));
1942             }
1943             ExprKind::MethodCall(ref segment, ref arguments) => {
1944                 let mut arguments = arguments.iter();
1945                 self.resolve_expr(arguments.next().unwrap(), Some(expr));
1946                 for argument in arguments {
1947                     self.resolve_expr(argument, None);
1948                 }
1949                 self.visit_path_segment(expr.span, segment);
1950             }
1951
1952             ExprKind::Call(ref callee, ref arguments) => {
1953                 self.resolve_expr(callee, Some(expr));
1954                 for argument in arguments {
1955                     self.resolve_expr(argument, None);
1956                 }
1957             }
1958             ExprKind::Type(ref type_expr, _) => {
1959                 self.diagnostic_metadata.current_type_ascription.push(type_expr.span);
1960                 visit::walk_expr(self, expr);
1961                 self.diagnostic_metadata.current_type_ascription.pop();
1962             }
1963             // `async |x| ...` gets desugared to `|x| future_from_generator(|| ...)`, so we need to
1964             // resolve the arguments within the proper scopes so that usages of them inside the
1965             // closure are detected as upvars rather than normal closure arg usages.
1966             ExprKind::Closure(_, IsAsync::Async { .. }, _, ref fn_decl, ref body, _span) => {
1967                 self.with_rib(ValueNS, NormalRibKind, |this| {
1968                     // Resolve arguments:
1969                     this.resolve_params(&fn_decl.inputs);
1970                     // No need to resolve return type --
1971                     // the outer closure return type is `FunctionRetTy::Default`.
1972
1973                     // Now resolve the inner closure
1974                     {
1975                         // No need to resolve arguments: the inner closure has none.
1976                         // Resolve the return type:
1977                         visit::walk_fn_ret_ty(this, &fn_decl.output);
1978                         // Resolve the body
1979                         this.visit_expr(body);
1980                     }
1981                 });
1982             }
1983             _ => {
1984                 visit::walk_expr(self, expr);
1985             }
1986         }
1987     }
1988
1989     fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
1990         match expr.kind {
1991             ExprKind::Field(_, ident) => {
1992                 // FIXME(#6890): Even though you can't treat a method like a
1993                 // field, we need to add any trait methods we find that match
1994                 // the field name so that we can do some nice error reporting
1995                 // later on in typeck.
1996                 let traits = self.get_traits_containing_item(ident, ValueNS);
1997                 self.r.trait_map.insert(expr.id, traits);
1998             }
1999             ExprKind::MethodCall(ref segment, ..) => {
2000                 debug!("(recording candidate traits for expr) recording traits for {}",
2001                        expr.id);
2002                 let traits = self.get_traits_containing_item(segment.ident, ValueNS);
2003                 self.r.trait_map.insert(expr.id, traits);
2004             }
2005             _ => {
2006                 // Nothing to do.
2007             }
2008         }
2009     }
2010
2011     fn get_traits_containing_item(&mut self, mut ident: Ident, ns: Namespace)
2012                                   -> Vec<TraitCandidate> {
2013         debug!("(getting traits containing item) looking for '{}'", ident.name);
2014
2015         let mut found_traits = Vec::new();
2016         // Look for the current trait.
2017         if let Some((module, _)) = self.current_trait_ref {
2018             if self.r.resolve_ident_in_module(
2019                 ModuleOrUniformRoot::Module(module),
2020                 ident,
2021                 ns,
2022                 &self.parent_scope,
2023                 false,
2024                 module.span,
2025             ).is_ok() {
2026                 let def_id = module.def_id().unwrap();
2027                 found_traits.push(TraitCandidate { def_id: def_id, import_ids: smallvec![] });
2028             }
2029         }
2030
2031         ident.span = ident.span.modern();
2032         let mut search_module = self.parent_scope.module;
2033         loop {
2034             self.get_traits_in_module_containing_item(ident, ns, search_module, &mut found_traits);
2035             search_module = unwrap_or!(
2036                 self.r.hygienic_lexical_parent(search_module, &mut ident.span), break
2037             );
2038         }
2039
2040         if let Some(prelude) = self.r.prelude {
2041             if !search_module.no_implicit_prelude {
2042                 self.get_traits_in_module_containing_item(ident, ns, prelude, &mut found_traits);
2043             }
2044         }
2045
2046         found_traits
2047     }
2048
2049     fn get_traits_in_module_containing_item(&mut self,
2050                                             ident: Ident,
2051                                             ns: Namespace,
2052                                             module: Module<'a>,
2053                                             found_traits: &mut Vec<TraitCandidate>) {
2054         assert!(ns == TypeNS || ns == ValueNS);
2055         let mut traits = module.traits.borrow_mut();
2056         if traits.is_none() {
2057             let mut collected_traits = Vec::new();
2058             module.for_each_child(self.r, |_, name, ns, binding| {
2059                 if ns != TypeNS { return }
2060                 match binding.res() {
2061                     Res::Def(DefKind::Trait, _) |
2062                     Res::Def(DefKind::TraitAlias, _) => collected_traits.push((name, binding)),
2063                     _ => (),
2064                 }
2065             });
2066             *traits = Some(collected_traits.into_boxed_slice());
2067         }
2068
2069         for &(trait_name, binding) in traits.as_ref().unwrap().iter() {
2070             // Traits have pseudo-modules that can be used to search for the given ident.
2071             if let Some(module) = binding.module() {
2072                 let mut ident = ident;
2073                 if ident.span.glob_adjust(
2074                     module.expansion,
2075                     binding.span,
2076                 ).is_none() {
2077                     continue
2078                 }
2079                 if self.r.resolve_ident_in_module_unadjusted(
2080                     ModuleOrUniformRoot::Module(module),
2081                     ident,
2082                     ns,
2083                     &self.parent_scope,
2084                     false,
2085                     module.span,
2086                 ).is_ok() {
2087                     let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2088                     let trait_def_id = module.def_id().unwrap();
2089                     found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2090                 }
2091             } else if let Res::Def(DefKind::TraitAlias, _) = binding.res() {
2092                 // For now, just treat all trait aliases as possible candidates, since we don't
2093                 // know if the ident is somewhere in the transitive bounds.
2094                 let import_ids = self.find_transitive_imports(&binding.kind, trait_name);
2095                 let trait_def_id = binding.res().def_id();
2096                 found_traits.push(TraitCandidate { def_id: trait_def_id, import_ids });
2097             } else {
2098                 bug!("candidate is not trait or trait alias?")
2099             }
2100         }
2101     }
2102
2103     fn find_transitive_imports(&mut self, mut kind: &NameBindingKind<'_>,
2104                                trait_name: Ident) -> SmallVec<[NodeId; 1]> {
2105         let mut import_ids = smallvec![];
2106         while let NameBindingKind::Import { directive, binding, .. } = kind {
2107             self.r.maybe_unused_trait_imports.insert(directive.id);
2108             self.r.add_to_glob_map(&directive, trait_name);
2109             import_ids.push(directive.id);
2110             kind = &binding.kind;
2111         };
2112         import_ids
2113     }
2114 }
2115
2116 impl<'a> Resolver<'a> {
2117     pub(crate) fn late_resolve_crate(&mut self, krate: &Crate) {
2118         let mut late_resolution_visitor = LateResolutionVisitor::new(self);
2119         visit::walk_crate(&mut late_resolution_visitor, krate);
2120         for (id, span) in late_resolution_visitor.diagnostic_metadata.unused_labels.iter() {
2121             self.lint_buffer.buffer_lint(lint::builtin::UNUSED_LABELS, *id, *span, "unused label");
2122         }
2123     }
2124 }