]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/monomorphize/item.rs
Rollup merge of #57369 - petrhosek:llvm-libcxx, r=alexcrichton
[rust.git] / src / librustc_mir / monomorphize / item.rs
1 use monomorphize::Instance;
2 use rustc::hir;
3 use rustc::hir::def_id::DefId;
4 use rustc::session::config::OptLevel;
5 use rustc::ty::{self, Ty, TyCtxt, ClosureSubsts, GeneratorSubsts};
6 use rustc::ty::subst::Substs;
7 use syntax::ast;
8 use syntax::attr::InlineAttr;
9 use std::fmt::{self, Write};
10 use std::iter;
11 use rustc::mir::mono::Linkage;
12 use syntax_pos::symbol::Symbol;
13 use syntax::source_map::Span;
14 pub use rustc::mir::mono::MonoItem;
15
16 /// Describes how a monomorphization will be instantiated in object files.
17 #[derive(PartialEq, Eq, Clone, Copy, Debug, Hash)]
18 pub enum InstantiationMode {
19     /// There will be exactly one instance of the given MonoItem. It will have
20     /// external linkage so that it can be linked to from other codegen units.
21     GloballyShared {
22         /// In some compilation scenarios we may decide to take functions that
23         /// are typically `LocalCopy` and instead move them to `GloballyShared`
24         /// to avoid codegenning them a bunch of times. In this situation,
25         /// however, our local copy may conflict with other crates also
26         /// inlining the same function.
27         ///
28         /// This flag indicates that this situation is occurring, and informs
29         /// symbol name calculation that some extra mangling is needed to
30         /// avoid conflicts. Note that this may eventually go away entirely if
31         /// ThinLTO enables us to *always* have a globally shared instance of a
32         /// function within one crate's compilation.
33         may_conflict: bool,
34     },
35
36     /// Each codegen unit containing a reference to the given MonoItem will
37     /// have its own private copy of the function (with internal linkage).
38     LocalCopy,
39 }
40
41 pub trait MonoItemExt<'a, 'tcx>: fmt::Debug {
42     fn as_mono_item(&self) -> &MonoItem<'tcx>;
43
44     fn is_generic_fn(&self) -> bool {
45         match *self.as_mono_item() {
46             MonoItem::Fn(ref instance) => {
47                 instance.substs.types().next().is_some()
48             }
49             MonoItem::Static(..) |
50             MonoItem::GlobalAsm(..) => false,
51         }
52     }
53
54     fn symbol_name(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> ty::SymbolName {
55         match *self.as_mono_item() {
56             MonoItem::Fn(instance) => tcx.symbol_name(instance),
57             MonoItem::Static(def_id) => {
58                 tcx.symbol_name(Instance::mono(tcx, def_id))
59             }
60             MonoItem::GlobalAsm(node_id) => {
61                 let def_id = tcx.hir().local_def_id(node_id);
62                 ty::SymbolName {
63                     name: Symbol::intern(&format!("global_asm_{:?}", def_id)).as_interned_str()
64                 }
65             }
66         }
67     }
68     fn instantiation_mode(&self,
69                           tcx: TyCtxt<'a, 'tcx, 'tcx>)
70                           -> InstantiationMode {
71         let inline_in_all_cgus =
72             tcx.sess.opts.debugging_opts.inline_in_all_cgus.unwrap_or_else(|| {
73                 tcx.sess.opts.optimize != OptLevel::No
74             }) && !tcx.sess.opts.cg.link_dead_code;
75
76         match *self.as_mono_item() {
77             MonoItem::Fn(ref instance) => {
78                 let entry_def_id =
79                     tcx.sess.entry_fn.borrow().map(|(id, _, _)| tcx.hir().local_def_id(id));
80                 // If this function isn't inlined or otherwise has explicit
81                 // linkage, then we'll be creating a globally shared version.
82                 if self.explicit_linkage(tcx).is_some() ||
83                     !instance.def.requires_local(tcx) ||
84                     Some(instance.def_id()) == entry_def_id
85                 {
86                     return InstantiationMode::GloballyShared  { may_conflict: false }
87                 }
88
89                 // At this point we don't have explicit linkage and we're an
90                 // inlined function. If we're inlining into all CGUs then we'll
91                 // be creating a local copy per CGU
92                 if inline_in_all_cgus {
93                     return InstantiationMode::LocalCopy
94                 }
95
96                 // Finally, if this is `#[inline(always)]` we're sure to respect
97                 // that with an inline copy per CGU, but otherwise we'll be
98                 // creating one copy of this `#[inline]` function which may
99                 // conflict with upstream crates as it could be an exported
100                 // symbol.
101                 match tcx.codegen_fn_attrs(instance.def_id()).inline {
102                     InlineAttr::Always => InstantiationMode::LocalCopy,
103                     _ => {
104                         InstantiationMode::GloballyShared  { may_conflict: true }
105                     }
106                 }
107             }
108             MonoItem::Static(..) |
109             MonoItem::GlobalAsm(..) => {
110                 InstantiationMode::GloballyShared { may_conflict: false }
111             }
112         }
113     }
114
115     fn explicit_linkage(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Option<Linkage> {
116         let def_id = match *self.as_mono_item() {
117             MonoItem::Fn(ref instance) => instance.def_id(),
118             MonoItem::Static(def_id) => def_id,
119             MonoItem::GlobalAsm(..) => return None,
120         };
121
122         let codegen_fn_attrs = tcx.codegen_fn_attrs(def_id);
123         codegen_fn_attrs.linkage
124     }
125
126     /// Returns whether this instance is instantiable - whether it has no unsatisfied
127     /// predicates.
128     ///
129     /// In order to codegen an item, all of its predicates must hold, because
130     /// otherwise the item does not make sense. Type-checking ensures that
131     /// the predicates of every item that is *used by* a valid item *do*
132     /// hold, so we can rely on that.
133     ///
134     /// However, we codegen collector roots (reachable items) and functions
135     /// in vtables when they are seen, even if they are not used, and so they
136     /// might not be instantiable. For example, a programmer can define this
137     /// public function:
138     ///
139     ///     pub fn foo<'a>(s: &'a mut ()) where &'a mut (): Clone {
140     ///         <&mut () as Clone>::clone(&s);
141     ///     }
142     ///
143     /// That function can't be codegened, because the method `<&mut () as Clone>::clone`
144     /// does not exist. Luckily for us, that function can't ever be used,
145     /// because that would require for `&'a mut (): Clone` to hold, so we
146     /// can just not emit any code, or even a linker reference for it.
147     ///
148     /// Similarly, if a vtable method has such a signature, and therefore can't
149     /// be used, we can just not emit it and have a placeholder (a null pointer,
150     /// which will never be accessed) in its place.
151     fn is_instantiable(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> bool {
152         debug!("is_instantiable({:?})", self);
153         let (def_id, substs) = match *self.as_mono_item() {
154             MonoItem::Fn(ref instance) => (instance.def_id(), instance.substs),
155             MonoItem::Static(def_id) => (def_id, Substs::empty()),
156             // global asm never has predicates
157             MonoItem::GlobalAsm(..) => return true
158         };
159
160         tcx.substitute_normalize_and_test_predicates((def_id, &substs))
161     }
162
163     fn to_string(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> String {
164         return match *self.as_mono_item() {
165             MonoItem::Fn(instance) => {
166                 to_string_internal(tcx, "fn ", instance)
167             },
168             MonoItem::Static(def_id) => {
169                 let instance = Instance::new(def_id, tcx.intern_substs(&[]));
170                 to_string_internal(tcx, "static ", instance)
171             },
172             MonoItem::GlobalAsm(..) => {
173                 "global_asm".to_string()
174             }
175         };
176
177         fn to_string_internal<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
178                                         prefix: &str,
179                                         instance: Instance<'tcx>)
180                                         -> String {
181             let mut result = String::with_capacity(32);
182             result.push_str(prefix);
183             let printer = DefPathBasedNames::new(tcx, false, false);
184             printer.push_instance_as_string(instance, &mut result);
185             result
186         }
187     }
188
189     fn local_span(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Option<Span> {
190         match *self.as_mono_item() {
191             MonoItem::Fn(Instance { def, .. }) => {
192                 tcx.hir().as_local_node_id(def.def_id())
193             }
194             MonoItem::Static(def_id) => {
195                 tcx.hir().as_local_node_id(def_id)
196             }
197             MonoItem::GlobalAsm(node_id) => {
198                 Some(node_id)
199             }
200         }.map(|node_id| tcx.hir().span(node_id))
201     }
202 }
203
204 impl<'a, 'tcx> MonoItemExt<'a, 'tcx> for MonoItem<'tcx> {
205     fn as_mono_item(&self) -> &MonoItem<'tcx> {
206         self
207     }
208 }
209
210 //=-----------------------------------------------------------------------------
211 // MonoItem String Keys
212 //=-----------------------------------------------------------------------------
213
214 // The code below allows for producing a unique string key for a mono item.
215 // These keys are used by the handwritten auto-tests, so they need to be
216 // predictable and human-readable.
217 //
218 // Note: A lot of this could looks very similar to what's already in the
219 //       ppaux module. It would be good to refactor things so we only have one
220 //       parameterizable implementation for printing types.
221
222 /// Same as `unique_type_name()` but with the result pushed onto the given
223 /// `output` parameter.
224 pub struct DefPathBasedNames<'a, 'tcx: 'a> {
225     tcx: TyCtxt<'a, 'tcx, 'tcx>,
226     omit_disambiguators: bool,
227     omit_local_crate_name: bool,
228 }
229
230 impl<'a, 'tcx> DefPathBasedNames<'a, 'tcx> {
231     pub fn new(tcx: TyCtxt<'a, 'tcx, 'tcx>,
232                omit_disambiguators: bool,
233                omit_local_crate_name: bool)
234                -> Self {
235         DefPathBasedNames {
236             tcx,
237             omit_disambiguators,
238             omit_local_crate_name,
239         }
240     }
241
242     pub fn push_type_name(&self, t: Ty<'tcx>, output: &mut String) {
243         match t.sty {
244             ty::Bool              => output.push_str("bool"),
245             ty::Char              => output.push_str("char"),
246             ty::Str               => output.push_str("str"),
247             ty::Never             => output.push_str("!"),
248             ty::Int(ast::IntTy::Isize)    => output.push_str("isize"),
249             ty::Int(ast::IntTy::I8)    => output.push_str("i8"),
250             ty::Int(ast::IntTy::I16)   => output.push_str("i16"),
251             ty::Int(ast::IntTy::I32)   => output.push_str("i32"),
252             ty::Int(ast::IntTy::I64)   => output.push_str("i64"),
253             ty::Int(ast::IntTy::I128)   => output.push_str("i128"),
254             ty::Uint(ast::UintTy::Usize)   => output.push_str("usize"),
255             ty::Uint(ast::UintTy::U8)   => output.push_str("u8"),
256             ty::Uint(ast::UintTy::U16)  => output.push_str("u16"),
257             ty::Uint(ast::UintTy::U32)  => output.push_str("u32"),
258             ty::Uint(ast::UintTy::U64)  => output.push_str("u64"),
259             ty::Uint(ast::UintTy::U128)  => output.push_str("u128"),
260             ty::Float(ast::FloatTy::F32) => output.push_str("f32"),
261             ty::Float(ast::FloatTy::F64) => output.push_str("f64"),
262             ty::Adt(adt_def, substs) => {
263                 self.push_def_path(adt_def.did, output);
264                 self.push_type_params(substs, iter::empty(), output);
265             },
266             ty::Tuple(component_types) => {
267                 output.push('(');
268                 for &component_type in component_types {
269                     self.push_type_name(component_type, output);
270                     output.push_str(", ");
271                 }
272                 if !component_types.is_empty() {
273                     output.pop();
274                     output.pop();
275                 }
276                 output.push(')');
277             },
278             ty::RawPtr(ty::TypeAndMut { ty: inner_type, mutbl } ) => {
279                 output.push('*');
280                 match mutbl {
281                     hir::MutImmutable => output.push_str("const "),
282                     hir::MutMutable => output.push_str("mut "),
283                 }
284
285                 self.push_type_name(inner_type, output);
286             },
287             ty::Ref(_, inner_type, mutbl) => {
288                 output.push('&');
289                 if mutbl == hir::MutMutable {
290                     output.push_str("mut ");
291                 }
292
293                 self.push_type_name(inner_type, output);
294             },
295             ty::Array(inner_type, len) => {
296                 output.push('[');
297                 self.push_type_name(inner_type, output);
298                 write!(output, "; {}", len.unwrap_usize(self.tcx)).unwrap();
299                 output.push(']');
300             },
301             ty::Slice(inner_type) => {
302                 output.push('[');
303                 self.push_type_name(inner_type, output);
304                 output.push(']');
305             },
306             ty::Dynamic(ref trait_data, ..) => {
307                 if let Some(principal) = trait_data.principal() {
308                     self.push_def_path(principal.def_id(), output);
309                     self.push_type_params(
310                         principal.skip_binder().substs,
311                         trait_data.projection_bounds(),
312                         output,
313                     );
314                 } else {
315                     output.push_str("dyn '_");
316                 }
317             },
318             ty::Foreign(did) => self.push_def_path(did, output),
319             ty::FnDef(..) |
320             ty::FnPtr(_) => {
321                 let sig = t.fn_sig(self.tcx);
322                 if sig.unsafety() == hir::Unsafety::Unsafe {
323                     output.push_str("unsafe ");
324                 }
325
326                 let abi = sig.abi();
327                 if abi != ::rustc_target::spec::abi::Abi::Rust {
328                     output.push_str("extern \"");
329                     output.push_str(abi.name());
330                     output.push_str("\" ");
331                 }
332
333                 output.push_str("fn(");
334
335                 let sig = self.tcx.normalize_erasing_late_bound_regions(
336                     ty::ParamEnv::reveal_all(),
337                     &sig,
338                 );
339
340                 if !sig.inputs().is_empty() {
341                     for &parameter_type in sig.inputs() {
342                         self.push_type_name(parameter_type, output);
343                         output.push_str(", ");
344                     }
345                     output.pop();
346                     output.pop();
347                 }
348
349                 if sig.variadic {
350                     if !sig.inputs().is_empty() {
351                         output.push_str(", ...");
352                     } else {
353                         output.push_str("...");
354                     }
355                 }
356
357                 output.push(')');
358
359                 if !sig.output().is_unit() {
360                     output.push_str(" -> ");
361                     self.push_type_name(sig.output(), output);
362                 }
363             },
364             ty::Generator(def_id, GeneratorSubsts { ref substs }, _) |
365             ty::Closure(def_id, ClosureSubsts { ref substs }) => {
366                 self.push_def_path(def_id, output);
367                 let generics = self.tcx.generics_of(self.tcx.closure_base_def_id(def_id));
368                 let substs = substs.truncate_to(self.tcx, generics);
369                 self.push_type_params(substs, iter::empty(), output);
370             }
371             ty::Error |
372             ty::Bound(..) |
373             ty::Infer(_) |
374             ty::Placeholder(..) |
375             ty::UnnormalizedProjection(..) |
376             ty::Projection(..) |
377             ty::Param(_) |
378             ty::GeneratorWitness(_) |
379             ty::Opaque(..) => {
380                 bug!("DefPathBasedNames: Trying to create type name for \
381                                          unexpected type: {:?}", t);
382             }
383         }
384     }
385
386     pub fn push_def_path(&self,
387                          def_id: DefId,
388                          output: &mut String) {
389         let def_path = self.tcx.def_path(def_id);
390
391         // some_crate::
392         if !(self.omit_local_crate_name && def_id.is_local()) {
393             output.push_str(&self.tcx.crate_name(def_path.krate).as_str());
394             output.push_str("::");
395         }
396
397         // foo::bar::ItemName::
398         for part in self.tcx.def_path(def_id).data {
399             if self.omit_disambiguators {
400                 write!(output, "{}::", part.data.as_interned_str()).unwrap();
401             } else {
402                 write!(output, "{}[{}]::",
403                        part.data.as_interned_str(),
404                        part.disambiguator).unwrap();
405             }
406         }
407
408         // remove final "::"
409         output.pop();
410         output.pop();
411     }
412
413     fn push_type_params<I>(&self,
414                             substs: &Substs<'tcx>,
415                             projections: I,
416                             output: &mut String)
417         where I: Iterator<Item=ty::PolyExistentialProjection<'tcx>>
418     {
419         let mut projections = projections.peekable();
420         if substs.types().next().is_none() && projections.peek().is_none() {
421             return;
422         }
423
424         output.push('<');
425
426         for type_parameter in substs.types() {
427             self.push_type_name(type_parameter, output);
428             output.push_str(", ");
429         }
430
431         for projection in projections {
432             let projection = projection.skip_binder();
433             let name = &self.tcx.associated_item(projection.item_def_id).ident.as_str();
434             output.push_str(name);
435             output.push_str("=");
436             self.push_type_name(projection.ty, output);
437             output.push_str(", ");
438         }
439
440         output.pop();
441         output.pop();
442
443         output.push('>');
444     }
445
446     pub fn push_instance_as_string(&self,
447                                    instance: Instance<'tcx>,
448                                    output: &mut String) {
449         self.push_def_path(instance.def_id(), output);
450         self.push_type_params(instance.substs, iter::empty(), output);
451     }
452 }