]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/interpret/intrinsics.rs
Change const eval to return `ConstValue`, instead of `Const` as the type inside it...
[rust.git] / src / librustc_mir / interpret / intrinsics.rs
1 //! Intrinsics and other functions that the miri engine executes without
2 //! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
3 //! and miri.
4
5 use rustc::mir::{
6     self,
7     interpret::{ConstValue, GlobalId, InterpResult, Scalar},
8     BinOp,
9 };
10 use rustc::ty;
11 use rustc::ty::layout::{LayoutOf, Primitive, Size};
12 use rustc::ty::subst::SubstsRef;
13 use rustc::ty::TyCtxt;
14 use rustc_hir::def_id::DefId;
15 use rustc_span::symbol::{sym, Symbol};
16 use rustc_span::Span;
17
18 use super::{ImmTy, InterpCx, Machine, OpTy, PlaceTy};
19
20 mod caller_location;
21 mod type_name;
22
23 fn numeric_intrinsic<'tcx, Tag>(
24     name: Symbol,
25     bits: u128,
26     kind: Primitive,
27 ) -> InterpResult<'tcx, Scalar<Tag>> {
28     let size = match kind {
29         Primitive::Int(integer, _) => integer.size(),
30         _ => bug!("invalid `{}` argument: {:?}", name, bits),
31     };
32     let extra = 128 - size.bits() as u128;
33     let bits_out = match name {
34         sym::ctpop => bits.count_ones() as u128,
35         sym::ctlz => bits.leading_zeros() as u128 - extra,
36         sym::cttz => (bits << extra).trailing_zeros() as u128 - extra,
37         sym::bswap => (bits << extra).swap_bytes(),
38         sym::bitreverse => (bits << extra).reverse_bits(),
39         _ => bug!("not a numeric intrinsic: {}", name),
40     };
41     Ok(Scalar::from_uint(bits_out, size))
42 }
43
44 /// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
45 /// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
46 crate fn eval_nullary_intrinsic<'tcx>(
47     tcx: TyCtxt<'tcx>,
48     param_env: ty::ParamEnv<'tcx>,
49     def_id: DefId,
50     substs: SubstsRef<'tcx>,
51 ) -> InterpResult<'tcx, ConstValue<'tcx>> {
52     let tp_ty = substs.type_at(0);
53     let name = tcx.item_name(def_id);
54     Ok(match name {
55         sym::type_name => {
56             let alloc = type_name::alloc_type_name(tcx, tp_ty);
57             ConstValue::Slice { data: alloc, start: 0, end: alloc.len() }
58         }
59         sym::needs_drop => ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env)),
60         sym::size_of | sym::min_align_of | sym::pref_align_of => {
61             let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?;
62             let n = match name {
63                 sym::pref_align_of => layout.align.pref.bytes(),
64                 sym::min_align_of => layout.align.abi.bytes(),
65                 sym::size_of => layout.size.bytes(),
66                 _ => bug!(),
67             };
68             ConstValue::from_machine_usize(&tcx, n)
69         }
70         sym::type_id => ConstValue::from_u64(tcx.type_id_hash(tp_ty).into()),
71         other => bug!("`{}` is not a zero arg intrinsic", other),
72     })
73 }
74
75 impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
76     /// Returns `true` if emulation happened.
77     pub fn emulate_intrinsic(
78         &mut self,
79         span: Span,
80         instance: ty::Instance<'tcx>,
81         args: &[OpTy<'tcx, M::PointerTag>],
82         ret: Option<(PlaceTy<'tcx, M::PointerTag>, mir::BasicBlock)>,
83     ) -> InterpResult<'tcx, bool> {
84         let substs = instance.substs;
85         let intrinsic_name = self.tcx.item_name(instance.def_id());
86
87         // We currently do not handle any intrinsics that are *allowed* to diverge,
88         // but `transmute` could lack a return place in case of UB.
89         let (dest, ret) = match ret {
90             Some(p) => p,
91             None => match intrinsic_name {
92                 sym::transmute => throw_ub!(Unreachable),
93                 _ => return Ok(false),
94             },
95         };
96
97         // Keep the patterns in this match ordered the same as the list in
98         // `src/librustc/ty/constness.rs`
99         match intrinsic_name {
100             sym::caller_location => {
101                 let span = self.find_closest_untracked_caller_location().unwrap_or(span);
102                 let location = self.alloc_caller_location_for_span(span);
103                 self.write_scalar(location.ptr, dest)?;
104             }
105
106             sym::min_align_of
107             | sym::pref_align_of
108             | sym::needs_drop
109             | sym::size_of
110             | sym::type_id
111             | sym::type_name => {
112                 let gid = GlobalId { instance, promoted: None };
113                 let ty = instance.ty_env(*self.tcx, self.param_env);
114                 let val = self.const_eval(gid, ty)?;
115                 self.copy_op(val, dest)?;
116             }
117
118             sym::ctpop
119             | sym::cttz
120             | sym::cttz_nonzero
121             | sym::ctlz
122             | sym::ctlz_nonzero
123             | sym::bswap
124             | sym::bitreverse => {
125                 let ty = substs.type_at(0);
126                 let layout_of = self.layout_of(ty)?;
127                 let val = self.read_scalar(args[0])?.not_undef()?;
128                 let bits = self.force_bits(val, layout_of.size)?;
129                 let kind = match layout_of.abi {
130                     ty::layout::Abi::Scalar(ref scalar) => scalar.value,
131                     _ => throw_unsup!(TypeNotPrimitive(ty)),
132                 };
133                 let (nonzero, intrinsic_name) = match intrinsic_name {
134                     sym::cttz_nonzero => (true, sym::cttz),
135                     sym::ctlz_nonzero => (true, sym::ctlz),
136                     other => (false, other),
137                 };
138                 if nonzero && bits == 0 {
139                     throw_ub_format!("`{}_nonzero` called on 0", intrinsic_name);
140                 }
141                 let out_val = numeric_intrinsic(intrinsic_name, bits, kind)?;
142                 self.write_scalar(out_val, dest)?;
143             }
144             sym::wrapping_add
145             | sym::wrapping_sub
146             | sym::wrapping_mul
147             | sym::add_with_overflow
148             | sym::sub_with_overflow
149             | sym::mul_with_overflow => {
150                 let lhs = self.read_immediate(args[0])?;
151                 let rhs = self.read_immediate(args[1])?;
152                 let (bin_op, ignore_overflow) = match intrinsic_name {
153                     sym::wrapping_add => (BinOp::Add, true),
154                     sym::wrapping_sub => (BinOp::Sub, true),
155                     sym::wrapping_mul => (BinOp::Mul, true),
156                     sym::add_with_overflow => (BinOp::Add, false),
157                     sym::sub_with_overflow => (BinOp::Sub, false),
158                     sym::mul_with_overflow => (BinOp::Mul, false),
159                     _ => bug!("Already checked for int ops"),
160                 };
161                 if ignore_overflow {
162                     self.binop_ignore_overflow(bin_op, lhs, rhs, dest)?;
163                 } else {
164                     self.binop_with_overflow(bin_op, lhs, rhs, dest)?;
165                 }
166             }
167             sym::saturating_add | sym::saturating_sub => {
168                 let l = self.read_immediate(args[0])?;
169                 let r = self.read_immediate(args[1])?;
170                 let is_add = intrinsic_name == sym::saturating_add;
171                 let (val, overflowed, _ty) =
172                     self.overflowing_binary_op(if is_add { BinOp::Add } else { BinOp::Sub }, l, r)?;
173                 let val = if overflowed {
174                     let num_bits = l.layout.size.bits();
175                     if l.layout.abi.is_signed() {
176                         // For signed ints the saturated value depends on the sign of the first
177                         // term since the sign of the second term can be inferred from this and
178                         // the fact that the operation has overflowed (if either is 0 no
179                         // overflow can occur)
180                         let first_term: u128 = self.force_bits(l.to_scalar()?, l.layout.size)?;
181                         let first_term_positive = first_term & (1 << (num_bits - 1)) == 0;
182                         if first_term_positive {
183                             // Negative overflow not possible since the positive first term
184                             // can only increase an (in range) negative term for addition
185                             // or corresponding negated positive term for subtraction
186                             Scalar::from_uint(
187                                 (1u128 << (num_bits - 1)) - 1, // max positive
188                                 Size::from_bits(num_bits),
189                             )
190                         } else {
191                             // Positive overflow not possible for similar reason
192                             // max negative
193                             Scalar::from_uint(1u128 << (num_bits - 1), Size::from_bits(num_bits))
194                         }
195                     } else {
196                         // unsigned
197                         if is_add {
198                             // max unsigned
199                             Scalar::from_uint(
200                                 u128::max_value() >> (128 - num_bits),
201                                 Size::from_bits(num_bits),
202                             )
203                         } else {
204                             // underflow to 0
205                             Scalar::from_uint(0u128, Size::from_bits(num_bits))
206                         }
207                     }
208                 } else {
209                     val
210                 };
211                 self.write_scalar(val, dest)?;
212             }
213             sym::unchecked_shl
214             | sym::unchecked_shr
215             | sym::unchecked_add
216             | sym::unchecked_sub
217             | sym::unchecked_mul
218             | sym::unchecked_div
219             | sym::unchecked_rem => {
220                 let l = self.read_immediate(args[0])?;
221                 let r = self.read_immediate(args[1])?;
222                 let bin_op = match intrinsic_name {
223                     sym::unchecked_shl => BinOp::Shl,
224                     sym::unchecked_shr => BinOp::Shr,
225                     sym::unchecked_add => BinOp::Add,
226                     sym::unchecked_sub => BinOp::Sub,
227                     sym::unchecked_mul => BinOp::Mul,
228                     sym::unchecked_div => BinOp::Div,
229                     sym::unchecked_rem => BinOp::Rem,
230                     _ => bug!("Already checked for int ops"),
231                 };
232                 let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, l, r)?;
233                 if overflowed {
234                     let layout = self.layout_of(substs.type_at(0))?;
235                     let r_val = self.force_bits(r.to_scalar()?, layout.size)?;
236                     if let sym::unchecked_shl | sym::unchecked_shr = intrinsic_name {
237                         throw_ub_format!("Overflowing shift by {} in `{}`", r_val, intrinsic_name);
238                     } else {
239                         throw_ub_format!("Overflow executing `{}`", intrinsic_name);
240                     }
241                 }
242                 self.write_scalar(val, dest)?;
243             }
244             sym::rotate_left | sym::rotate_right => {
245                 // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
246                 // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
247                 let layout = self.layout_of(substs.type_at(0))?;
248                 let val = self.read_scalar(args[0])?.not_undef()?;
249                 let val_bits = self.force_bits(val, layout.size)?;
250                 let raw_shift = self.read_scalar(args[1])?.not_undef()?;
251                 let raw_shift_bits = self.force_bits(raw_shift, layout.size)?;
252                 let width_bits = layout.size.bits() as u128;
253                 let shift_bits = raw_shift_bits % width_bits;
254                 let inv_shift_bits = (width_bits - shift_bits) % width_bits;
255                 let result_bits = if intrinsic_name == sym::rotate_left {
256                     (val_bits << shift_bits) | (val_bits >> inv_shift_bits)
257                 } else {
258                     (val_bits >> shift_bits) | (val_bits << inv_shift_bits)
259                 };
260                 let truncated_bits = self.truncate(result_bits, layout);
261                 let result = Scalar::from_uint(truncated_bits, layout.size);
262                 self.write_scalar(result, dest)?;
263             }
264
265             sym::ptr_offset_from => {
266                 let isize_layout = self.layout_of(self.tcx.types.isize)?;
267                 let a = self.read_immediate(args[0])?.to_scalar()?;
268                 let b = self.read_immediate(args[1])?.to_scalar()?;
269
270                 // Special case: if both scalars are *equal integers*
271                 // and not NULL, we pretend there is an allocation of size 0 right there,
272                 // and their offset is 0. (There's never a valid object at NULL, making it an
273                 // exception from the exception.)
274                 // This is the dual to the special exception for offset-by-0
275                 // in the inbounds pointer offset operation (see the Miri code, `src/operator.rs`).
276                 //
277                 // Control flow is weird because we cannot early-return (to reach the
278                 // `go_to_block` at the end).
279                 let done = if a.is_bits() && b.is_bits() {
280                     let a = a.to_machine_usize(self)?;
281                     let b = b.to_machine_usize(self)?;
282                     if a == b && a != 0 {
283                         self.write_scalar(Scalar::from_int(0, isize_layout.size), dest)?;
284                         true
285                     } else {
286                         false
287                     }
288                 } else {
289                     false
290                 };
291
292                 if !done {
293                     // General case: we need two pointers.
294                     let a = self.force_ptr(a)?;
295                     let b = self.force_ptr(b)?;
296                     if a.alloc_id != b.alloc_id {
297                         throw_ub_format!(
298                             "ptr_offset_from cannot compute offset of pointers into different \
299                             allocations.",
300                         );
301                     }
302                     let usize_layout = self.layout_of(self.tcx.types.usize)?;
303                     let a_offset = ImmTy::from_uint(a.offset.bytes(), usize_layout);
304                     let b_offset = ImmTy::from_uint(b.offset.bytes(), usize_layout);
305                     let (val, _overflowed, _ty) =
306                         self.overflowing_binary_op(BinOp::Sub, a_offset, b_offset)?;
307                     let pointee_layout = self.layout_of(substs.type_at(0))?;
308                     let val = ImmTy::from_scalar(val, isize_layout);
309                     let size = ImmTy::from_int(pointee_layout.size.bytes(), isize_layout);
310                     self.exact_div(val, size, dest)?;
311                 }
312             }
313
314             sym::transmute => {
315                 self.copy_op_transmute(args[0], dest)?;
316             }
317             sym::simd_insert => {
318                 let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
319                 let elem = args[2];
320                 let input = args[0];
321                 let (len, e_ty) = input.layout.ty.simd_size_and_type(self.tcx.tcx);
322                 assert!(
323                     index < len,
324                     "Index `{}` must be in bounds of vector type `{}`: `[0, {})`",
325                     index,
326                     e_ty,
327                     len
328                 );
329                 assert_eq!(
330                     input.layout, dest.layout,
331                     "Return type `{}` must match vector type `{}`",
332                     dest.layout.ty, input.layout.ty
333                 );
334                 assert_eq!(
335                     elem.layout.ty, e_ty,
336                     "Scalar element type `{}` must match vector element type `{}`",
337                     elem.layout.ty, e_ty
338                 );
339
340                 for i in 0..len {
341                     let place = self.place_field(dest, i)?;
342                     let value = if i == index { elem } else { self.operand_field(input, i)? };
343                     self.copy_op(value, place)?;
344                 }
345             }
346             sym::simd_extract => {
347                 let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
348                 let (len, e_ty) = args[0].layout.ty.simd_size_and_type(self.tcx.tcx);
349                 assert!(
350                     index < len,
351                     "index `{}` is out-of-bounds of vector type `{}` with length `{}`",
352                     index,
353                     e_ty,
354                     len
355                 );
356                 assert_eq!(
357                     e_ty, dest.layout.ty,
358                     "Return type `{}` must match vector element type `{}`",
359                     dest.layout.ty, e_ty
360                 );
361                 self.copy_op(self.operand_field(args[0], index)?, dest)?;
362             }
363             _ => return Ok(false),
364         }
365
366         self.dump_place(*dest);
367         self.go_to_block(ret);
368         Ok(true)
369     }
370
371     pub fn exact_div(
372         &mut self,
373         a: ImmTy<'tcx, M::PointerTag>,
374         b: ImmTy<'tcx, M::PointerTag>,
375         dest: PlaceTy<'tcx, M::PointerTag>,
376     ) -> InterpResult<'tcx> {
377         // Performs an exact division, resulting in undefined behavior where
378         // `x % y != 0` or `y == 0` or `x == T::min_value() && y == -1`.
379         // First, check x % y != 0 (or if that computation overflows).
380         let (res, overflow, _ty) = self.overflowing_binary_op(BinOp::Rem, a, b)?;
381         if overflow || res.to_bits(a.layout.size)? != 0 {
382             // Then, check if `b` is -1, which is the "min_value / -1" case.
383             let minus1 = Scalar::from_int(-1, dest.layout.size);
384             let b_scalar = b.to_scalar().unwrap();
385             if b_scalar == minus1 {
386                 throw_ub_format!("exact_div: result of dividing MIN by -1 cannot be represented")
387             } else {
388                 throw_ub_format!("exact_div: {} cannot be divided by {} without remainder", a, b,)
389             }
390         }
391         // `Rem` says this is all right, so we can let `Div` do its job.
392         self.binop_ignore_overflow(BinOp::Div, a, b, dest)
393     }
394 }