]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/interpret/intrinsics.rs
Code review changes.
[rust.git] / src / librustc_mir / interpret / intrinsics.rs
1 //! Intrinsics and other functions that the miri engine executes without
2 //! looking at their MIR. Intrinsics/functions supported here are shared by CTFE
3 //! and miri.
4
5 use rustc::mir::{
6     self,
7     interpret::{ConstValue, GlobalId, InterpResult, Scalar},
8     BinOp,
9 };
10 use rustc::ty;
11 use rustc::ty::layout::{LayoutOf, Primitive, Size};
12 use rustc::ty::subst::SubstsRef;
13 use rustc::ty::TyCtxt;
14 use rustc_hir::def_id::DefId;
15 use rustc_span::symbol::{sym, Symbol};
16 use rustc_span::Span;
17
18 use super::{ImmTy, InterpCx, Machine, OpTy, PlaceTy};
19
20 mod caller_location;
21 mod type_name;
22
23 fn numeric_intrinsic<'tcx, Tag>(
24     name: Symbol,
25     bits: u128,
26     kind: Primitive,
27 ) -> InterpResult<'tcx, Scalar<Tag>> {
28     let size = match kind {
29         Primitive::Int(integer, _) => integer.size(),
30         _ => bug!("invalid `{}` argument: {:?}", name, bits),
31     };
32     let extra = 128 - size.bits() as u128;
33     let bits_out = match name {
34         sym::ctpop => bits.count_ones() as u128,
35         sym::ctlz => bits.leading_zeros() as u128 - extra,
36         sym::cttz => (bits << extra).trailing_zeros() as u128 - extra,
37         sym::bswap => (bits << extra).swap_bytes(),
38         sym::bitreverse => (bits << extra).reverse_bits(),
39         _ => bug!("not a numeric intrinsic: {}", name),
40     };
41     Ok(Scalar::from_uint(bits_out, size))
42 }
43
44 /// The logic for all nullary intrinsics is implemented here. These intrinsics don't get evaluated
45 /// inside an `InterpCx` and instead have their value computed directly from rustc internal info.
46 crate fn eval_nullary_intrinsic<'tcx>(
47     tcx: TyCtxt<'tcx>,
48     param_env: ty::ParamEnv<'tcx>,
49     def_id: DefId,
50     substs: SubstsRef<'tcx>,
51 ) -> InterpResult<'tcx, ConstValue<'tcx>> {
52     let tp_ty = substs.type_at(0);
53     let name = tcx.item_name(def_id);
54     Ok(match name {
55         sym::type_name => {
56             let alloc = type_name::alloc_type_name(tcx, tp_ty);
57             ConstValue::Slice { data: alloc, start: 0, end: alloc.len() }
58         }
59         sym::needs_drop => ConstValue::from_bool(tp_ty.needs_drop(tcx, param_env)),
60         sym::size_of | sym::min_align_of | sym::pref_align_of => {
61             let layout = tcx.layout_of(param_env.and(tp_ty)).map_err(|e| err_inval!(Layout(e)))?;
62             let n = match name {
63                 sym::pref_align_of => layout.align.pref.bytes(),
64                 sym::min_align_of => layout.align.abi.bytes(),
65                 sym::size_of => layout.size.bytes(),
66                 _ => bug!(),
67             };
68             ConstValue::from_machine_usize(n, &tcx)
69         }
70         sym::type_id => ConstValue::from_u64(tcx.type_id_hash(tp_ty).into()),
71         other => bug!("`{}` is not a zero arg intrinsic", other),
72     })
73 }
74
75 impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
76     /// Returns `true` if emulation happened.
77     pub fn emulate_intrinsic(
78         &mut self,
79         span: Span,
80         instance: ty::Instance<'tcx>,
81         args: &[OpTy<'tcx, M::PointerTag>],
82         ret: Option<(PlaceTy<'tcx, M::PointerTag>, mir::BasicBlock)>,
83     ) -> InterpResult<'tcx, bool> {
84         let substs = instance.substs;
85         let intrinsic_name = self.tcx.item_name(instance.def_id());
86
87         // We currently do not handle any intrinsics that are *allowed* to diverge,
88         // but `transmute` could lack a return place in case of UB.
89         let (dest, ret) = match ret {
90             Some(p) => p,
91             None => match intrinsic_name {
92                 sym::transmute => throw_ub!(Unreachable),
93                 _ => return Ok(false),
94             },
95         };
96
97         // Keep the patterns in this match ordered the same as the list in
98         // `src/librustc/ty/constness.rs`
99         match intrinsic_name {
100             sym::caller_location => {
101                 let span = self.find_closest_untracked_caller_location().unwrap_or(span);
102                 let location = self.alloc_caller_location_for_span(span);
103                 self.write_scalar(location.ptr, dest)?;
104             }
105
106             sym::min_align_of
107             | sym::pref_align_of
108             | sym::needs_drop
109             | sym::size_of
110             | sym::type_id
111             | sym::type_name => {
112                 let gid = GlobalId { instance, promoted: None };
113                 let val = self.const_eval(gid, dest.layout.ty)?;
114                 self.copy_op(val, dest)?;
115             }
116
117             sym::ctpop
118             | sym::cttz
119             | sym::cttz_nonzero
120             | sym::ctlz
121             | sym::ctlz_nonzero
122             | sym::bswap
123             | sym::bitreverse => {
124                 let ty = substs.type_at(0);
125                 let layout_of = self.layout_of(ty)?;
126                 let val = self.read_scalar(args[0])?.not_undef()?;
127                 let bits = self.force_bits(val, layout_of.size)?;
128                 let kind = match layout_of.abi {
129                     ty::layout::Abi::Scalar(ref scalar) => scalar.value,
130                     _ => throw_unsup!(TypeNotPrimitive(ty)),
131                 };
132                 let (nonzero, intrinsic_name) = match intrinsic_name {
133                     sym::cttz_nonzero => (true, sym::cttz),
134                     sym::ctlz_nonzero => (true, sym::ctlz),
135                     other => (false, other),
136                 };
137                 if nonzero && bits == 0 {
138                     throw_ub_format!("`{}_nonzero` called on 0", intrinsic_name);
139                 }
140                 let out_val = numeric_intrinsic(intrinsic_name, bits, kind)?;
141                 self.write_scalar(out_val, dest)?;
142             }
143             sym::wrapping_add
144             | sym::wrapping_sub
145             | sym::wrapping_mul
146             | sym::add_with_overflow
147             | sym::sub_with_overflow
148             | sym::mul_with_overflow => {
149                 let lhs = self.read_immediate(args[0])?;
150                 let rhs = self.read_immediate(args[1])?;
151                 let (bin_op, ignore_overflow) = match intrinsic_name {
152                     sym::wrapping_add => (BinOp::Add, true),
153                     sym::wrapping_sub => (BinOp::Sub, true),
154                     sym::wrapping_mul => (BinOp::Mul, true),
155                     sym::add_with_overflow => (BinOp::Add, false),
156                     sym::sub_with_overflow => (BinOp::Sub, false),
157                     sym::mul_with_overflow => (BinOp::Mul, false),
158                     _ => bug!("Already checked for int ops"),
159                 };
160                 if ignore_overflow {
161                     self.binop_ignore_overflow(bin_op, lhs, rhs, dest)?;
162                 } else {
163                     self.binop_with_overflow(bin_op, lhs, rhs, dest)?;
164                 }
165             }
166             sym::saturating_add | sym::saturating_sub => {
167                 let l = self.read_immediate(args[0])?;
168                 let r = self.read_immediate(args[1])?;
169                 let is_add = intrinsic_name == sym::saturating_add;
170                 let (val, overflowed, _ty) =
171                     self.overflowing_binary_op(if is_add { BinOp::Add } else { BinOp::Sub }, l, r)?;
172                 let val = if overflowed {
173                     let num_bits = l.layout.size.bits();
174                     if l.layout.abi.is_signed() {
175                         // For signed ints the saturated value depends on the sign of the first
176                         // term since the sign of the second term can be inferred from this and
177                         // the fact that the operation has overflowed (if either is 0 no
178                         // overflow can occur)
179                         let first_term: u128 = self.force_bits(l.to_scalar()?, l.layout.size)?;
180                         let first_term_positive = first_term & (1 << (num_bits - 1)) == 0;
181                         if first_term_positive {
182                             // Negative overflow not possible since the positive first term
183                             // can only increase an (in range) negative term for addition
184                             // or corresponding negated positive term for subtraction
185                             Scalar::from_uint(
186                                 (1u128 << (num_bits - 1)) - 1, // max positive
187                                 Size::from_bits(num_bits),
188                             )
189                         } else {
190                             // Positive overflow not possible for similar reason
191                             // max negative
192                             Scalar::from_uint(1u128 << (num_bits - 1), Size::from_bits(num_bits))
193                         }
194                     } else {
195                         // unsigned
196                         if is_add {
197                             // max unsigned
198                             Scalar::from_uint(
199                                 u128::max_value() >> (128 - num_bits),
200                                 Size::from_bits(num_bits),
201                             )
202                         } else {
203                             // underflow to 0
204                             Scalar::from_uint(0u128, Size::from_bits(num_bits))
205                         }
206                     }
207                 } else {
208                     val
209                 };
210                 self.write_scalar(val, dest)?;
211             }
212             sym::unchecked_shl
213             | sym::unchecked_shr
214             | sym::unchecked_add
215             | sym::unchecked_sub
216             | sym::unchecked_mul
217             | sym::unchecked_div
218             | sym::unchecked_rem => {
219                 let l = self.read_immediate(args[0])?;
220                 let r = self.read_immediate(args[1])?;
221                 let bin_op = match intrinsic_name {
222                     sym::unchecked_shl => BinOp::Shl,
223                     sym::unchecked_shr => BinOp::Shr,
224                     sym::unchecked_add => BinOp::Add,
225                     sym::unchecked_sub => BinOp::Sub,
226                     sym::unchecked_mul => BinOp::Mul,
227                     sym::unchecked_div => BinOp::Div,
228                     sym::unchecked_rem => BinOp::Rem,
229                     _ => bug!("Already checked for int ops"),
230                 };
231                 let (val, overflowed, _ty) = self.overflowing_binary_op(bin_op, l, r)?;
232                 if overflowed {
233                     let layout = self.layout_of(substs.type_at(0))?;
234                     let r_val = self.force_bits(r.to_scalar()?, layout.size)?;
235                     if let sym::unchecked_shl | sym::unchecked_shr = intrinsic_name {
236                         throw_ub_format!("Overflowing shift by {} in `{}`", r_val, intrinsic_name);
237                     } else {
238                         throw_ub_format!("Overflow executing `{}`", intrinsic_name);
239                     }
240                 }
241                 self.write_scalar(val, dest)?;
242             }
243             sym::rotate_left | sym::rotate_right => {
244                 // rotate_left: (X << (S % BW)) | (X >> ((BW - S) % BW))
245                 // rotate_right: (X << ((BW - S) % BW)) | (X >> (S % BW))
246                 let layout = self.layout_of(substs.type_at(0))?;
247                 let val = self.read_scalar(args[0])?.not_undef()?;
248                 let val_bits = self.force_bits(val, layout.size)?;
249                 let raw_shift = self.read_scalar(args[1])?.not_undef()?;
250                 let raw_shift_bits = self.force_bits(raw_shift, layout.size)?;
251                 let width_bits = layout.size.bits() as u128;
252                 let shift_bits = raw_shift_bits % width_bits;
253                 let inv_shift_bits = (width_bits - shift_bits) % width_bits;
254                 let result_bits = if intrinsic_name == sym::rotate_left {
255                     (val_bits << shift_bits) | (val_bits >> inv_shift_bits)
256                 } else {
257                     (val_bits >> shift_bits) | (val_bits << inv_shift_bits)
258                 };
259                 let truncated_bits = self.truncate(result_bits, layout);
260                 let result = Scalar::from_uint(truncated_bits, layout.size);
261                 self.write_scalar(result, dest)?;
262             }
263
264             sym::ptr_offset_from => {
265                 let isize_layout = self.layout_of(self.tcx.types.isize)?;
266                 let a = self.read_immediate(args[0])?.to_scalar()?;
267                 let b = self.read_immediate(args[1])?.to_scalar()?;
268
269                 // Special case: if both scalars are *equal integers*
270                 // and not NULL, we pretend there is an allocation of size 0 right there,
271                 // and their offset is 0. (There's never a valid object at NULL, making it an
272                 // exception from the exception.)
273                 // This is the dual to the special exception for offset-by-0
274                 // in the inbounds pointer offset operation (see the Miri code, `src/operator.rs`).
275                 //
276                 // Control flow is weird because we cannot early-return (to reach the
277                 // `go_to_block` at the end).
278                 let done = if a.is_bits() && b.is_bits() {
279                     let a = a.to_machine_usize(self)?;
280                     let b = b.to_machine_usize(self)?;
281                     if a == b && a != 0 {
282                         self.write_scalar(Scalar::from_int(0, isize_layout.size), dest)?;
283                         true
284                     } else {
285                         false
286                     }
287                 } else {
288                     false
289                 };
290
291                 if !done {
292                     // General case: we need two pointers.
293                     let a = self.force_ptr(a)?;
294                     let b = self.force_ptr(b)?;
295                     if a.alloc_id != b.alloc_id {
296                         throw_ub_format!(
297                             "ptr_offset_from cannot compute offset of pointers into different \
298                             allocations.",
299                         );
300                     }
301                     let usize_layout = self.layout_of(self.tcx.types.usize)?;
302                     let a_offset = ImmTy::from_uint(a.offset.bytes(), usize_layout);
303                     let b_offset = ImmTy::from_uint(b.offset.bytes(), usize_layout);
304                     let (val, _overflowed, _ty) =
305                         self.overflowing_binary_op(BinOp::Sub, a_offset, b_offset)?;
306                     let pointee_layout = self.layout_of(substs.type_at(0))?;
307                     let val = ImmTy::from_scalar(val, isize_layout);
308                     let size = ImmTy::from_int(pointee_layout.size.bytes(), isize_layout);
309                     self.exact_div(val, size, dest)?;
310                 }
311             }
312
313             sym::transmute => {
314                 self.copy_op_transmute(args[0], dest)?;
315             }
316             sym::simd_insert => {
317                 let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
318                 let elem = args[2];
319                 let input = args[0];
320                 let (len, e_ty) = input.layout.ty.simd_size_and_type(self.tcx.tcx);
321                 assert!(
322                     index < len,
323                     "Index `{}` must be in bounds of vector type `{}`: `[0, {})`",
324                     index,
325                     e_ty,
326                     len
327                 );
328                 assert_eq!(
329                     input.layout, dest.layout,
330                     "Return type `{}` must match vector type `{}`",
331                     dest.layout.ty, input.layout.ty
332                 );
333                 assert_eq!(
334                     elem.layout.ty, e_ty,
335                     "Scalar element type `{}` must match vector element type `{}`",
336                     elem.layout.ty, e_ty
337                 );
338
339                 for i in 0..len {
340                     let place = self.place_field(dest, i)?;
341                     let value = if i == index { elem } else { self.operand_field(input, i)? };
342                     self.copy_op(value, place)?;
343                 }
344             }
345             sym::simd_extract => {
346                 let index = u64::from(self.read_scalar(args[1])?.to_u32()?);
347                 let (len, e_ty) = args[0].layout.ty.simd_size_and_type(self.tcx.tcx);
348                 assert!(
349                     index < len,
350                     "index `{}` is out-of-bounds of vector type `{}` with length `{}`",
351                     index,
352                     e_ty,
353                     len
354                 );
355                 assert_eq!(
356                     e_ty, dest.layout.ty,
357                     "Return type `{}` must match vector element type `{}`",
358                     dest.layout.ty, e_ty
359                 );
360                 self.copy_op(self.operand_field(args[0], index)?, dest)?;
361             }
362             _ => return Ok(false),
363         }
364
365         self.dump_place(*dest);
366         self.go_to_block(ret);
367         Ok(true)
368     }
369
370     pub fn exact_div(
371         &mut self,
372         a: ImmTy<'tcx, M::PointerTag>,
373         b: ImmTy<'tcx, M::PointerTag>,
374         dest: PlaceTy<'tcx, M::PointerTag>,
375     ) -> InterpResult<'tcx> {
376         // Performs an exact division, resulting in undefined behavior where
377         // `x % y != 0` or `y == 0` or `x == T::min_value() && y == -1`.
378         // First, check x % y != 0 (or if that computation overflows).
379         let (res, overflow, _ty) = self.overflowing_binary_op(BinOp::Rem, a, b)?;
380         if overflow || res.to_bits(a.layout.size)? != 0 {
381             // Then, check if `b` is -1, which is the "min_value / -1" case.
382             let minus1 = Scalar::from_int(-1, dest.layout.size);
383             let b_scalar = b.to_scalar().unwrap();
384             if b_scalar == minus1 {
385                 throw_ub_format!("exact_div: result of dividing MIN by -1 cannot be represented")
386             } else {
387                 throw_ub_format!("exact_div: {} cannot be divided by {} without remainder", a, b,)
388             }
389         }
390         // `Rem` says this is all right, so we can let `Div` do its job.
391         self.binop_ignore_overflow(BinOp::Div, a, b, dest)
392     }
393 }