]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/hair/cx/expr.rs
Remove ExprKind::While from HIR.
[rust.git] / src / librustc_mir / hair / cx / expr.rs
1 use crate::hair::*;
2 use crate::hair::cx::Cx;
3 use crate::hair::cx::block;
4 use crate::hair::cx::to_ref::ToRef;
5 use crate::hair::util::UserAnnotatedTyHelpers;
6 use rustc_data_structures::indexed_vec::Idx;
7 use rustc::hir::def::{CtorOf, Res, DefKind, CtorKind};
8 use rustc::mir::interpret::{GlobalId, ErrorHandled, ConstValue};
9 use rustc::ty::{self, AdtKind, Ty};
10 use rustc::ty::adjustment::{Adjustment, Adjust, AutoBorrow, AutoBorrowMutability, PointerCast};
11 use rustc::ty::subst::{InternalSubsts, SubstsRef};
12 use rustc::hir;
13 use rustc::hir::def_id::LocalDefId;
14 use rustc::mir::BorrowKind;
15 use syntax_pos::Span;
16
17 impl<'tcx> Mirror<'tcx> for &'tcx hir::Expr {
18     type Output = Expr<'tcx>;
19
20     fn make_mirror(self, cx: &mut Cx<'_, 'tcx>) -> Expr<'tcx> {
21         let temp_lifetime = cx.region_scope_tree.temporary_scope(self.hir_id.local_id);
22         let expr_scope = region::Scope {
23             id: self.hir_id.local_id,
24             data: region::ScopeData::Node
25         };
26
27         debug!("Expr::make_mirror(): id={}, span={:?}", self.hir_id, self.span);
28
29         let mut expr = make_mirror_unadjusted(cx, self);
30
31         // Now apply adjustments, if any.
32         for adjustment in cx.tables().expr_adjustments(self) {
33             debug!("make_mirror: expr={:?} applying adjustment={:?}",
34                    expr,
35                    adjustment);
36             expr = apply_adjustment(cx, self, expr, adjustment);
37         }
38
39         // Next, wrap this up in the expr's scope.
40         expr = Expr {
41             temp_lifetime,
42             ty: expr.ty,
43             span: self.span,
44             kind: ExprKind::Scope {
45                 region_scope: expr_scope,
46                 value: expr.to_ref(),
47                 lint_level: LintLevel::Explicit(self.hir_id),
48             },
49         };
50
51         // Finally, create a destruction scope, if any.
52         if let Some(region_scope) =
53             cx.region_scope_tree.opt_destruction_scope(self.hir_id.local_id) {
54                 expr = Expr {
55                     temp_lifetime,
56                     ty: expr.ty,
57                     span: self.span,
58                     kind: ExprKind::Scope {
59                         region_scope,
60                         value: expr.to_ref(),
61                         lint_level: LintLevel::Inherited,
62                     },
63                 };
64             }
65
66         // OK, all done!
67         expr
68     }
69 }
70
71 fn apply_adjustment<'a, 'tcx>(
72     cx: &mut Cx<'a, 'tcx>,
73     hir_expr: &'tcx hir::Expr,
74     mut expr: Expr<'tcx>,
75     adjustment: &Adjustment<'tcx>
76 ) -> Expr<'tcx> {
77     let Expr { temp_lifetime, mut span, .. } = expr;
78
79     // Adjust the span from the block, to the last expression of the
80     // block. This is a better span when returning a mutable reference
81     // with too short a lifetime. The error message will use the span
82     // from the assignment to the return place, which should only point
83     // at the returned value, not the entire function body.
84     //
85     // fn return_short_lived<'a>(x: &'a mut i32) -> &'static mut i32 {
86     //      x
87     //   // ^ error message points at this expression.
88     // }
89     let mut adjust_span = |expr: &mut Expr<'tcx>| {
90         if let ExprKind::Block { body } = expr.kind {
91             if let Some(ref last_expr) = body.expr {
92                 span = last_expr.span;
93                 expr.span = span;
94             }
95         }
96     };
97
98     let kind = match adjustment.kind {
99         Adjust::Pointer(PointerCast::Unsize) => {
100             adjust_span(&mut expr);
101             ExprKind::Pointer { cast: PointerCast::Unsize, source: expr.to_ref() }
102         }
103         Adjust::Pointer(cast) => {
104             ExprKind::Pointer { cast, source: expr.to_ref() }
105         }
106         Adjust::NeverToAny => {
107             ExprKind::NeverToAny { source: expr.to_ref() }
108         }
109         Adjust::Deref(None) => {
110             adjust_span(&mut expr);
111             ExprKind::Deref { arg: expr.to_ref() }
112         }
113         Adjust::Deref(Some(deref)) => {
114             // We don't need to do call adjust_span here since
115             // deref coercions always start with a built-in deref.
116             let call = deref.method_call(cx.tcx(), expr.ty);
117
118             expr = Expr {
119                 temp_lifetime,
120                 ty: cx.tcx.mk_ref(deref.region,
121                                   ty::TypeAndMut {
122                                     ty: expr.ty,
123                                     mutbl: deref.mutbl,
124                                   }),
125                 span,
126                 kind: ExprKind::Borrow {
127                     borrow_kind: deref.mutbl.to_borrow_kind(),
128                     arg: expr.to_ref(),
129                 },
130             };
131
132             overloaded_place(cx, hir_expr, adjustment.target, Some(call), vec![expr.to_ref()])
133         }
134         Adjust::Borrow(AutoBorrow::Ref(_, m)) => {
135             ExprKind::Borrow {
136                 borrow_kind: m.to_borrow_kind(),
137                 arg: expr.to_ref(),
138             }
139         }
140         Adjust::Borrow(AutoBorrow::RawPtr(m)) => {
141             // Convert this to a suitable `&foo` and
142             // then an unsafe coercion.
143             expr = Expr {
144                 temp_lifetime,
145                 ty: cx.tcx.mk_ref(cx.tcx.lifetimes.re_erased,
146                                   ty::TypeAndMut {
147                                     ty: expr.ty,
148                                     mutbl: m,
149                                   }),
150                 span,
151                 kind: ExprKind::Borrow {
152                     borrow_kind: m.to_borrow_kind(),
153                     arg: expr.to_ref(),
154                 },
155             };
156             let cast_expr = Expr {
157                 temp_lifetime,
158                 ty: adjustment.target,
159                 span,
160                 kind: ExprKind::Cast { source: expr.to_ref() }
161             };
162
163             // To ensure that both implicit and explicit coercions are
164             // handled the same way, we insert an extra layer of indirection here.
165             // For explicit casts (e.g., 'foo as *const T'), the source of the 'Use'
166             // will be an ExprKind::Hair with the appropriate cast expression. Here,
167             // we make our Use source the generated Cast from the original coercion.
168             //
169             // In both cases, this outer 'Use' ensures that the inner 'Cast' is handled by
170             // as_operand, not by as_rvalue - causing the cast result to be stored in a temporary.
171             // Ordinary, this is identical to using the cast directly as an rvalue. However, if the
172             // source of the cast was previously borrowed as mutable, storing the cast in a
173             // temporary gives the source a chance to expire before the cast is used. For
174             // structs with a self-referential *mut ptr, this allows assignment to work as
175             // expected.
176             //
177             // For example, consider the type 'struct Foo { field: *mut Foo }',
178             // The method 'fn bar(&mut self) { self.field = self }'
179             // triggers a coercion from '&mut self' to '*mut self'. In order
180             // for the assignment to be valid, the implicit borrow
181             // of 'self' involved in the coercion needs to end before the local
182             // containing the '*mut T' is assigned to 'self.field' - otherwise,
183             // we end up trying to assign to 'self.field' while we have another mutable borrow
184             // active.
185             //
186             // We only need to worry about this kind of thing for coercions from refs to ptrs,
187             // since they get rid of a borrow implicitly.
188             ExprKind::Use { source: cast_expr.to_ref() }
189         }
190     };
191
192     Expr {
193         temp_lifetime,
194         ty: adjustment.target,
195         span,
196         kind,
197     }
198 }
199
200 fn make_mirror_unadjusted<'a, 'tcx>(
201     cx: &mut Cx<'a, 'tcx>,
202     expr: &'tcx hir::Expr,
203 ) -> Expr<'tcx> {
204     let expr_ty = cx.tables().expr_ty(expr);
205     let temp_lifetime = cx.region_scope_tree.temporary_scope(expr.hir_id.local_id);
206
207     let kind = match expr.node {
208         // Here comes the interesting stuff:
209         hir::ExprKind::MethodCall(_, method_span, ref args) => {
210             // Rewrite a.b(c) into UFCS form like Trait::b(a, c)
211             let expr = method_callee(cx, expr, method_span,None);
212             let args = args.iter()
213                 .map(|e| e.to_ref())
214                 .collect();
215             ExprKind::Call {
216                 ty: expr.ty,
217                 fun: expr.to_ref(),
218                 args,
219                 from_hir_call: true,
220             }
221         }
222
223         hir::ExprKind::Call(ref fun, ref args) => {
224             if cx.tables().is_method_call(expr) {
225                 // The callee is something implementing Fn, FnMut, or FnOnce.
226                 // Find the actual method implementation being called and
227                 // build the appropriate UFCS call expression with the
228                 // callee-object as expr parameter.
229
230                 // rewrite f(u, v) into FnOnce::call_once(f, (u, v))
231
232                 let method = method_callee(cx, expr, fun.span,None);
233
234                 let arg_tys = args.iter().map(|e| cx.tables().expr_ty_adjusted(e));
235                 let tupled_args = Expr {
236                     ty: cx.tcx.mk_tup(arg_tys),
237                     temp_lifetime,
238                     span: expr.span,
239                     kind: ExprKind::Tuple { fields: args.iter().map(ToRef::to_ref).collect() },
240                 };
241
242                 ExprKind::Call {
243                     ty: method.ty,
244                     fun: method.to_ref(),
245                     args: vec![fun.to_ref(), tupled_args.to_ref()],
246                     from_hir_call: true,
247                 }
248             } else {
249                 let adt_data = if let hir::ExprKind::Path(hir::QPath::Resolved(_, ref path)) =
250                     fun.node
251                 {
252                     // Tuple-like ADTs are represented as ExprKind::Call. We convert them here.
253                     expr_ty.ty_adt_def().and_then(|adt_def| {
254                         match path.res {
255                             Res::Def(DefKind::Ctor(_, CtorKind::Fn), ctor_id) =>
256                                 Some((adt_def, adt_def.variant_index_with_ctor_id(ctor_id))),
257                             Res::SelfCtor(..) => Some((adt_def, VariantIdx::new(0))),
258                             _ => None,
259                         }
260                     })
261                 } else {
262                     None
263                 };
264                 if let Some((adt_def, index)) = adt_data {
265                     let substs = cx.tables().node_substs(fun.hir_id);
266                     let user_provided_types = cx.tables().user_provided_types();
267                     let user_ty = user_provided_types.get(fun.hir_id)
268                         .map(|u_ty| *u_ty)
269                         .map(|mut u_ty| {
270                             if let UserType::TypeOf(ref mut did, _) = &mut u_ty.value {
271                                 *did = adt_def.did;
272                             }
273                             u_ty
274                         });
275                     debug!("make_mirror_unadjusted: (call) user_ty={:?}", user_ty);
276
277                     let field_refs = args.iter()
278                         .enumerate()
279                         .map(|(idx, e)| {
280                             FieldExprRef {
281                                 name: Field::new(idx),
282                                 expr: e.to_ref(),
283                             }
284                         })
285                         .collect();
286                     ExprKind::Adt {
287                         adt_def,
288                         substs,
289                         variant_index: index,
290                         fields: field_refs,
291                         user_ty,
292                         base: None,
293                     }
294                 } else {
295                     ExprKind::Call {
296                         ty: cx.tables().node_type(fun.hir_id),
297                         fun: fun.to_ref(),
298                         args: args.to_ref(),
299                         from_hir_call: true,
300                     }
301                 }
302             }
303         }
304
305         hir::ExprKind::AddrOf(mutbl, ref expr) => {
306             ExprKind::Borrow {
307                 borrow_kind: mutbl.to_borrow_kind(),
308                 arg: expr.to_ref(),
309             }
310         }
311
312         hir::ExprKind::Block(ref blk, _) => ExprKind::Block { body: &blk },
313
314         hir::ExprKind::Assign(ref lhs, ref rhs) => {
315             ExprKind::Assign {
316                 lhs: lhs.to_ref(),
317                 rhs: rhs.to_ref(),
318             }
319         }
320
321         hir::ExprKind::AssignOp(op, ref lhs, ref rhs) => {
322             if cx.tables().is_method_call(expr) {
323                 overloaded_operator(cx, expr, vec![lhs.to_ref(), rhs.to_ref()])
324             } else {
325                 ExprKind::AssignOp {
326                     op: bin_op(op.node),
327                     lhs: lhs.to_ref(),
328                     rhs: rhs.to_ref(),
329                 }
330             }
331         }
332
333         hir::ExprKind::Lit(ref lit) => ExprKind::Literal {
334             literal: cx.const_eval_literal(&lit.node, expr_ty, lit.span, false),
335             user_ty: None,
336         },
337
338         hir::ExprKind::Binary(op, ref lhs, ref rhs) => {
339             if cx.tables().is_method_call(expr) {
340                 overloaded_operator(cx, expr, vec![lhs.to_ref(), rhs.to_ref()])
341             } else {
342                 // FIXME overflow
343                 match (op.node, cx.constness) {
344                     // FIXME(eddyb) use logical ops in constants when
345                     // they can handle that kind of control-flow.
346                     (hir::BinOpKind::And, hir::Constness::Const) => {
347                         cx.control_flow_destroyed.push((
348                             op.span,
349                             "`&&` operator".into(),
350                         ));
351                         ExprKind::Binary {
352                             op: BinOp::BitAnd,
353                             lhs: lhs.to_ref(),
354                             rhs: rhs.to_ref(),
355                         }
356                     }
357                     (hir::BinOpKind::Or, hir::Constness::Const) => {
358                         cx.control_flow_destroyed.push((
359                             op.span,
360                             "`||` operator".into(),
361                         ));
362                         ExprKind::Binary {
363                             op: BinOp::BitOr,
364                             lhs: lhs.to_ref(),
365                             rhs: rhs.to_ref(),
366                         }
367                     }
368
369                     (hir::BinOpKind::And, hir::Constness::NotConst) => {
370                         ExprKind::LogicalOp {
371                             op: LogicalOp::And,
372                             lhs: lhs.to_ref(),
373                             rhs: rhs.to_ref(),
374                         }
375                     }
376                     (hir::BinOpKind::Or, hir::Constness::NotConst) => {
377                         ExprKind::LogicalOp {
378                             op: LogicalOp::Or,
379                             lhs: lhs.to_ref(),
380                             rhs: rhs.to_ref(),
381                         }
382                     }
383
384                     _ => {
385                         let op = bin_op(op.node);
386                         ExprKind::Binary {
387                             op,
388                             lhs: lhs.to_ref(),
389                             rhs: rhs.to_ref(),
390                         }
391                     }
392                 }
393             }
394         }
395
396         hir::ExprKind::Index(ref lhs, ref index) => {
397             if cx.tables().is_method_call(expr) {
398                 overloaded_place(cx, expr, expr_ty, None, vec![lhs.to_ref(), index.to_ref()])
399             } else {
400                 ExprKind::Index {
401                     lhs: lhs.to_ref(),
402                     index: index.to_ref(),
403                 }
404             }
405         }
406
407         hir::ExprKind::Unary(hir::UnOp::UnDeref, ref arg) => {
408             if cx.tables().is_method_call(expr) {
409                 overloaded_place(cx, expr, expr_ty, None, vec![arg.to_ref()])
410             } else {
411                 ExprKind::Deref { arg: arg.to_ref() }
412             }
413         }
414
415         hir::ExprKind::Unary(hir::UnOp::UnNot, ref arg) => {
416             if cx.tables().is_method_call(expr) {
417                 overloaded_operator(cx, expr, vec![arg.to_ref()])
418             } else {
419                 ExprKind::Unary {
420                     op: UnOp::Not,
421                     arg: arg.to_ref(),
422                 }
423             }
424         }
425
426         hir::ExprKind::Unary(hir::UnOp::UnNeg, ref arg) => {
427             if cx.tables().is_method_call(expr) {
428                 overloaded_operator(cx, expr, vec![arg.to_ref()])
429             } else {
430                 if let hir::ExprKind::Lit(ref lit) = arg.node {
431                     ExprKind::Literal {
432                         literal: cx.const_eval_literal(&lit.node, expr_ty, lit.span, true),
433                         user_ty: None,
434                     }
435                 } else {
436                     ExprKind::Unary {
437                         op: UnOp::Neg,
438                         arg: arg.to_ref(),
439                     }
440                 }
441             }
442         }
443
444         hir::ExprKind::Struct(ref qpath, ref fields, ref base) => {
445             match expr_ty.sty {
446                 ty::Adt(adt, substs) => {
447                     match adt.adt_kind() {
448                         AdtKind::Struct | AdtKind::Union => {
449                             let user_provided_types = cx.tables().user_provided_types();
450                             let user_ty = user_provided_types.get(expr.hir_id).map(|u_ty| *u_ty);
451                             debug!("make_mirror_unadjusted: (struct/union) user_ty={:?}", user_ty);
452                             ExprKind::Adt {
453                                 adt_def: adt,
454                                 variant_index: VariantIdx::new(0),
455                                 substs,
456                                 user_ty,
457                                 fields: field_refs(cx, fields),
458                                 base: base.as_ref().map(|base| {
459                                     FruInfo {
460                                         base: base.to_ref(),
461                                         field_types: cx.tables()
462                                                        .fru_field_types()[expr.hir_id]
463                                                        .clone(),
464                                     }
465                                 }),
466                             }
467                         }
468                         AdtKind::Enum => {
469                             let res = cx.tables().qpath_res(qpath, expr.hir_id);
470                             match res {
471                                 Res::Def(DefKind::Variant, variant_id) => {
472                                     assert!(base.is_none());
473
474                                     let index = adt.variant_index_with_id(variant_id);
475                                     let user_provided_types = cx.tables().user_provided_types();
476                                     let user_ty = user_provided_types.get(expr.hir_id)
477                                         .map(|u_ty| *u_ty);
478                                     debug!(
479                                         "make_mirror_unadjusted: (variant) user_ty={:?}",
480                                         user_ty
481                                     );
482                                     ExprKind::Adt {
483                                         adt_def: adt,
484                                         variant_index: index,
485                                         substs,
486                                         user_ty,
487                                         fields: field_refs(cx, fields),
488                                         base: None,
489                                     }
490                                 }
491                                 _ => {
492                                     span_bug!(expr.span, "unexpected res: {:?}", res);
493                                 }
494                             }
495                         }
496                     }
497                 }
498                 _ => {
499                     span_bug!(expr.span,
500                               "unexpected type for struct literal: {:?}",
501                               expr_ty);
502                 }
503             }
504         }
505
506         hir::ExprKind::Closure(..) => {
507             let closure_ty = cx.tables().expr_ty(expr);
508             let (def_id, substs, movability) = match closure_ty.sty {
509                 ty::Closure(def_id, substs) => (def_id, UpvarSubsts::Closure(substs), None),
510                 ty::Generator(def_id, substs, movability) => {
511                     (def_id, UpvarSubsts::Generator(substs), Some(movability))
512                 }
513                 _ => {
514                     span_bug!(expr.span, "closure expr w/o closure type: {:?}", closure_ty);
515                 }
516             };
517             let upvars = cx.tcx.upvars(def_id).iter()
518                 .flat_map(|upvars| upvars.iter())
519                 .zip(substs.upvar_tys(def_id, cx.tcx))
520                 .map(|((&var_hir_id, _), ty)| capture_upvar(cx, expr, var_hir_id, ty))
521                 .collect();
522             ExprKind::Closure {
523                 closure_id: def_id,
524                 substs,
525                 upvars,
526                 movability,
527             }
528         }
529
530         hir::ExprKind::Path(ref qpath) => {
531             let res = cx.tables().qpath_res(qpath, expr.hir_id);
532             convert_path_expr(cx, expr, res)
533         }
534
535         hir::ExprKind::InlineAsm(ref asm, ref outputs, ref inputs) => {
536             ExprKind::InlineAsm {
537                 asm,
538                 outputs: outputs.to_ref(),
539                 inputs: inputs.to_ref(),
540             }
541         }
542
543         // Now comes the rote stuff:
544         hir::ExprKind::Repeat(ref v, ref count) => {
545             let def_id = cx.tcx.hir().local_def_id(count.hir_id);
546             let substs = InternalSubsts::identity_for_item(cx.tcx.global_tcx(), def_id);
547             let instance = ty::Instance::resolve(
548                 cx.tcx.global_tcx(),
549                 cx.param_env,
550                 def_id,
551                 substs,
552             ).unwrap();
553             let global_id = GlobalId {
554                 instance,
555                 promoted: None
556             };
557             let span = cx.tcx.def_span(def_id);
558             let count = match cx.tcx.at(span).const_eval(cx.param_env.and(global_id)) {
559                 Ok(cv) => cv.unwrap_usize(cx.tcx),
560                 Err(ErrorHandled::Reported) => 0,
561                 Err(ErrorHandled::TooGeneric) => {
562                     cx.tcx.sess.span_err(span, "array lengths can't depend on generic parameters");
563                     0
564                 },
565             };
566
567             ExprKind::Repeat {
568                 value: v.to_ref(),
569                 count,
570             }
571         }
572         hir::ExprKind::Ret(ref v) => ExprKind::Return { value: v.to_ref() },
573         hir::ExprKind::Break(dest, ref value) => {
574             match dest.target_id {
575                 Ok(target_id) => ExprKind::Break {
576                     label: region::Scope {
577                         id: target_id.local_id,
578                         data: region::ScopeData::Node
579                     },
580                     value: value.to_ref(),
581                 },
582                 Err(err) => bug!("invalid loop id for break: {}", err)
583             }
584         }
585         hir::ExprKind::Continue(dest) => {
586             match dest.target_id {
587                 Ok(loop_id) => ExprKind::Continue {
588                     label: region::Scope {
589                         id: loop_id.local_id,
590                         data: region::ScopeData::Node
591                     },
592                 },
593                 Err(err) => bug!("invalid loop id for continue: {}", err)
594             }
595         }
596         hir::ExprKind::Match(ref discr, ref arms, _) => {
597             ExprKind::Match {
598                 scrutinee: discr.to_ref(),
599                 arms: arms.iter().map(|a| convert_arm(cx, a)).collect(),
600             }
601         }
602         hir::ExprKind::Loop(ref body, _, _) => {
603             ExprKind::Loop {
604                 body: block::to_expr_ref(cx, body),
605             }
606         }
607         hir::ExprKind::Field(ref source, ..) => {
608             ExprKind::Field {
609                 lhs: source.to_ref(),
610                 name: Field::new(cx.tcx.field_index(expr.hir_id, cx.tables)),
611             }
612         }
613         hir::ExprKind::Cast(ref source, ref cast_ty) => {
614             // Check for a user-given type annotation on this `cast`
615             let user_provided_types = cx.tables.user_provided_types();
616             let user_ty = user_provided_types.get(cast_ty.hir_id);
617
618             debug!(
619                 "cast({:?}) has ty w/ hir_id {:?} and user provided ty {:?}",
620                 expr,
621                 cast_ty.hir_id,
622                 user_ty,
623             );
624
625             // Check to see if this cast is a "coercion cast", where the cast is actually done
626             // using a coercion (or is a no-op).
627             let cast = if cx.tables().is_coercion_cast(source.hir_id) {
628                 // Convert the lexpr to a vexpr.
629                 ExprKind::Use { source: source.to_ref() }
630             } else {
631                 // check whether this is casting an enum variant discriminant
632                 // to prevent cycles, we refer to the discriminant initializer
633                 // which is always an integer and thus doesn't need to know the
634                 // enum's layout (or its tag type) to compute it during const eval
635                 // Example:
636                 // enum Foo {
637                 //     A,
638                 //     B = A as isize + 4,
639                 // }
640                 // The correct solution would be to add symbolic computations to miri,
641                 // so we wouldn't have to compute and store the actual value
642                 let var = if let hir::ExprKind::Path(ref qpath) = source.node {
643                     let res = cx.tables().qpath_res(qpath, source.hir_id);
644                     cx
645                         .tables()
646                         .node_type(source.hir_id)
647                         .ty_adt_def()
648                         .and_then(|adt_def| {
649                         match res {
650                             Res::Def(
651                                 DefKind::Ctor(CtorOf::Variant, CtorKind::Const),
652                                 variant_ctor_id,
653                             ) => {
654                                 let idx = adt_def.variant_index_with_ctor_id(variant_ctor_id);
655                                 let (d, o) = adt_def.discriminant_def_for_variant(idx);
656                                 use rustc::ty::util::IntTypeExt;
657                                 let ty = adt_def.repr.discr_type();
658                                 let ty = ty.to_ty(cx.tcx());
659                                 Some((d, o, ty))
660                             }
661                             _ => None,
662                         }
663                     })
664                 } else {
665                     None
666                 };
667
668                 let source = if let Some((did, offset, var_ty)) = var {
669                     let mk_const = |literal| Expr {
670                         temp_lifetime,
671                         ty: var_ty,
672                         span: expr.span,
673                         kind: ExprKind::Literal {
674                             literal,
675                             user_ty: None
676                         },
677                     }.to_ref();
678                     let offset = mk_const(ty::Const::from_bits(
679                         cx.tcx,
680                         offset as u128,
681                         cx.param_env.and(var_ty),
682                     ));
683                     match did {
684                         Some(did) => {
685                             // in case we are offsetting from a computed discriminant
686                             // and not the beginning of discriminants (which is always `0`)
687                             let substs = InternalSubsts::identity_for_item(cx.tcx(), did);
688                             let lhs = mk_const(cx.tcx().mk_const(ty::Const {
689                                 val: ConstValue::Unevaluated(did, substs),
690                                 ty: var_ty,
691                             }));
692                             let bin = ExprKind::Binary {
693                                 op: BinOp::Add,
694                                 lhs,
695                                 rhs: offset,
696                             };
697                             Expr {
698                                 temp_lifetime,
699                                 ty: var_ty,
700                                 span: expr.span,
701                                 kind: bin,
702                             }.to_ref()
703                         },
704                         None => offset,
705                     }
706                 } else {
707                     source.to_ref()
708                 };
709
710                 ExprKind::Cast { source }
711             };
712
713             if let Some(user_ty) = user_ty {
714                 // NOTE: Creating a new Expr and wrapping a Cast inside of it may be
715                 //       inefficient, revisit this when performance becomes an issue.
716                 let cast_expr = Expr {
717                     temp_lifetime,
718                     ty: expr_ty,
719                     span: expr.span,
720                     kind: cast,
721                 };
722                 debug!("make_mirror_unadjusted: (cast) user_ty={:?}", user_ty);
723
724                 ExprKind::ValueTypeAscription {
725                     source: cast_expr.to_ref(),
726                     user_ty: Some(*user_ty),
727                 }
728             } else {
729                 cast
730             }
731         }
732         hir::ExprKind::Type(ref source, ref ty) => {
733             let user_provided_types = cx.tables.user_provided_types();
734             let user_ty = user_provided_types.get(ty.hir_id).map(|u_ty| *u_ty);
735             debug!("make_mirror_unadjusted: (type) user_ty={:?}", user_ty);
736             if source.is_place_expr() {
737                 ExprKind::PlaceTypeAscription {
738                     source: source.to_ref(),
739                     user_ty,
740                 }
741             } else {
742                 ExprKind::ValueTypeAscription {
743                     source: source.to_ref(),
744                     user_ty,
745                 }
746             }
747         }
748         hir::ExprKind::DropTemps(ref source) => {
749             ExprKind::Use { source: source.to_ref() }
750         }
751         hir::ExprKind::Box(ref value) => {
752             ExprKind::Box {
753                 value: value.to_ref(),
754             }
755         }
756         hir::ExprKind::Array(ref fields) => ExprKind::Array { fields: fields.to_ref() },
757         hir::ExprKind::Tup(ref fields) => ExprKind::Tuple { fields: fields.to_ref() },
758
759         hir::ExprKind::Yield(ref v, _) => ExprKind::Yield { value: v.to_ref() },
760         hir::ExprKind::Err => unreachable!(),
761     };
762
763     Expr {
764         temp_lifetime,
765         ty: expr_ty,
766         span: expr.span,
767         kind,
768     }
769 }
770
771 fn user_substs_applied_to_res(
772     cx: &mut Cx<'a, 'tcx>,
773     hir_id: hir::HirId,
774     res: Res,
775 ) -> Option<ty::CanonicalUserType<'tcx>> {
776     debug!("user_substs_applied_to_res: res={:?}", res);
777     let user_provided_type = match res {
778         // A reference to something callable -- e.g., a fn, method, or
779         // a tuple-struct or tuple-variant. This has the type of a
780         // `Fn` but with the user-given substitutions.
781         Res::Def(DefKind::Fn, _) |
782         Res::Def(DefKind::Method, _) |
783         Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) |
784         Res::Def(DefKind::Const, _) |
785         Res::Def(DefKind::AssocConst, _) =>
786             cx.tables().user_provided_types().get(hir_id).map(|u_ty| *u_ty),
787
788         // A unit struct/variant which is used as a value (e.g.,
789         // `None`). This has the type of the enum/struct that defines
790         // this variant -- but with the substitutions given by the
791         // user.
792         Res::Def(DefKind::Ctor(_, CtorKind::Const), _) =>
793             cx.user_substs_applied_to_ty_of_hir_id(hir_id),
794
795         // `Self` is used in expression as a tuple struct constructor or an unit struct constructor
796         Res::SelfCtor(_) =>
797             cx.user_substs_applied_to_ty_of_hir_id(hir_id),
798
799         _ =>
800             bug!("user_substs_applied_to_res: unexpected res {:?} at {:?}", res, hir_id)
801     };
802     debug!("user_substs_applied_to_res: user_provided_type={:?}", user_provided_type);
803     user_provided_type
804 }
805
806 fn method_callee<'a, 'tcx>(
807     cx: &mut Cx<'a, 'tcx>,
808     expr: &hir::Expr,
809     span: Span,
810     overloaded_callee: Option<(DefId, SubstsRef<'tcx>)>,
811 ) -> Expr<'tcx> {
812     let temp_lifetime = cx.region_scope_tree.temporary_scope(expr.hir_id.local_id);
813     let (def_id, substs, user_ty) = match overloaded_callee {
814         Some((def_id, substs)) => (def_id, substs, None),
815         None => {
816             let (kind, def_id) = cx.tables().type_dependent_def(expr.hir_id)
817                 .unwrap_or_else(|| {
818                     span_bug!(expr.span, "no type-dependent def for method callee")
819                 });
820             let user_ty = user_substs_applied_to_res(cx, expr.hir_id, Res::Def(kind, def_id));
821             debug!("method_callee: user_ty={:?}", user_ty);
822             (def_id, cx.tables().node_substs(expr.hir_id), user_ty)
823         }
824     };
825     let ty = cx.tcx().mk_fn_def(def_id, substs);
826     Expr {
827         temp_lifetime,
828         ty,
829         span,
830         kind: ExprKind::Literal {
831             literal: ty::Const::zero_sized(cx.tcx(), ty),
832             user_ty,
833         },
834     }
835 }
836
837 trait ToBorrowKind { fn to_borrow_kind(&self) -> BorrowKind; }
838
839 impl ToBorrowKind for AutoBorrowMutability {
840     fn to_borrow_kind(&self) -> BorrowKind {
841         use rustc::ty::adjustment::AllowTwoPhase;
842         match *self {
843             AutoBorrowMutability::Mutable { allow_two_phase_borrow } =>
844                 BorrowKind::Mut { allow_two_phase_borrow: match allow_two_phase_borrow {
845                     AllowTwoPhase::Yes => true,
846                     AllowTwoPhase::No => false
847                 }},
848             AutoBorrowMutability::Immutable =>
849                 BorrowKind::Shared,
850         }
851     }
852 }
853
854 impl ToBorrowKind for hir::Mutability {
855     fn to_borrow_kind(&self) -> BorrowKind {
856         match *self {
857             hir::MutMutable => BorrowKind::Mut { allow_two_phase_borrow: false },
858             hir::MutImmutable => BorrowKind::Shared,
859         }
860     }
861 }
862
863 fn convert_arm<'a, 'tcx>(cx: &mut Cx<'a, 'tcx>, arm: &'tcx hir::Arm) -> Arm<'tcx> {
864     Arm {
865         patterns: arm.pats.iter().map(|p| cx.pattern_from_hir(p)).collect(),
866         guard: match arm.guard {
867                 Some(hir::Guard::If(ref e)) => Some(Guard::If(e.to_ref())),
868                 _ => None,
869             },
870         body: arm.body.to_ref(),
871         lint_level: LintLevel::Explicit(arm.hir_id),
872         scope: region::Scope {
873             id: arm.hir_id.local_id,
874             data: region::ScopeData::Node
875         },
876         span: arm.span,
877     }
878 }
879
880 fn convert_path_expr<'a, 'tcx>(
881     cx: &mut Cx<'a, 'tcx>,
882     expr: &'tcx hir::Expr,
883     res: Res,
884 ) -> ExprKind<'tcx> {
885     let substs = cx.tables().node_substs(expr.hir_id);
886     match res {
887         // A regular function, constructor function or a constant.
888         Res::Def(DefKind::Fn, _) |
889         Res::Def(DefKind::Method, _) |
890         Res::Def(DefKind::Ctor(_, CtorKind::Fn), _) |
891         Res::SelfCtor(..) => {
892             let user_ty = user_substs_applied_to_res(cx, expr.hir_id, res);
893             debug!("convert_path_expr: user_ty={:?}", user_ty);
894             ExprKind::Literal {
895                 literal: ty::Const::zero_sized(
896                     cx.tcx,
897                     cx.tables().node_type(expr.hir_id),
898                 ),
899                 user_ty,
900             }
901         }
902
903         Res::Def(DefKind::ConstParam, def_id) => {
904             let hir_id = cx.tcx.hir().as_local_hir_id(def_id).unwrap();
905             let item_id = cx.tcx.hir().get_parent_node(hir_id);
906             let item_def_id = cx.tcx.hir().local_def_id(item_id);
907             let generics = cx.tcx.generics_of(item_def_id);
908             let local_def_id = cx.tcx.hir().local_def_id(hir_id);
909             let index = generics.param_def_id_to_index[&local_def_id];
910             let name = cx.tcx.hir().name(hir_id).as_interned_str();
911             let val = ConstValue::Param(ty::ParamConst::new(index, name));
912             ExprKind::Literal {
913                 literal: cx.tcx.mk_const(
914                     ty::Const {
915                         val,
916                         ty: cx.tables().node_type(expr.hir_id),
917                     }
918                 ),
919                 user_ty: None,
920             }
921         }
922
923         Res::Def(DefKind::Const, def_id) |
924         Res::Def(DefKind::AssocConst, def_id) => {
925             let user_ty = user_substs_applied_to_res(cx, expr.hir_id, res);
926             debug!("convert_path_expr: (const) user_ty={:?}", user_ty);
927             ExprKind::Literal {
928                 literal: cx.tcx.mk_const(ty::Const {
929                     val: ConstValue::Unevaluated(def_id, substs),
930                     ty: cx.tcx.type_of(def_id),
931                 }),
932                 user_ty,
933             }
934         },
935
936         Res::Def(DefKind::Ctor(_, CtorKind::Const), def_id) => {
937             let user_provided_types = cx.tables.user_provided_types();
938             let user_provided_type = user_provided_types.get(expr.hir_id).map(|u_ty| *u_ty);
939             debug!("convert_path_expr: user_provided_type={:?}", user_provided_type);
940             let ty = cx.tables().node_type(expr.hir_id);
941             match ty.sty {
942                 // A unit struct/variant which is used as a value.
943                 // We return a completely different ExprKind here to account for this special case.
944                 ty::Adt(adt_def, substs) => {
945                     ExprKind::Adt {
946                         adt_def,
947                         variant_index: adt_def.variant_index_with_ctor_id(def_id),
948                         substs,
949                         user_ty: user_provided_type,
950                         fields: vec![],
951                         base: None,
952                     }
953                 }
954                 _ => bug!("unexpected ty: {:?}", ty),
955             }
956         }
957
958         Res::Def(DefKind::Static, id) => ExprKind::StaticRef { id },
959
960         Res::Local(var_hir_id) => convert_var(cx, expr, var_hir_id),
961
962         _ => span_bug!(expr.span, "res `{:?}` not yet implemented", res),
963     }
964 }
965
966 fn convert_var(
967     cx: &mut Cx<'_, 'tcx>,
968     expr: &'tcx hir::Expr,
969     var_hir_id: hir::HirId,
970 ) -> ExprKind<'tcx> {
971     let upvar_index = cx.tables().upvar_list.get(&cx.body_owner)
972         .and_then(|upvars| upvars.get_full(&var_hir_id).map(|(i, _, _)| i));
973
974     debug!("convert_var({:?}): upvar_index={:?}, body_owner={:?}",
975            var_hir_id, upvar_index, cx.body_owner);
976
977     let temp_lifetime = cx.region_scope_tree.temporary_scope(expr.hir_id.local_id);
978
979     match upvar_index {
980         None => ExprKind::VarRef { id: var_hir_id },
981
982         Some(upvar_index) => {
983             let closure_def_id = cx.body_owner;
984             let upvar_id = ty::UpvarId {
985                 var_path: ty::UpvarPath {hir_id: var_hir_id},
986                 closure_expr_id: LocalDefId::from_def_id(closure_def_id),
987             };
988             let var_ty = cx.tables().node_type(var_hir_id);
989
990             // FIXME free regions in closures are not right
991             let closure_ty = cx.tables().node_type(
992                 cx.tcx.hir().local_def_id_to_hir_id(upvar_id.closure_expr_id),
993             );
994
995             // FIXME we're just hard-coding the idea that the
996             // signature will be &self or &mut self and hence will
997             // have a bound region with number 0
998             let region = ty::ReFree(ty::FreeRegion {
999                 scope: closure_def_id,
1000                 bound_region: ty::BoundRegion::BrAnon(0),
1001             });
1002             let region = cx.tcx.mk_region(region);
1003
1004             let self_expr = if let ty::Closure(_, closure_substs) = closure_ty.sty {
1005                 match cx.infcx.closure_kind(closure_def_id, closure_substs).unwrap() {
1006                     ty::ClosureKind::Fn => {
1007                         let ref_closure_ty = cx.tcx.mk_ref(region,
1008                                                            ty::TypeAndMut {
1009                                                                ty: closure_ty,
1010                                                                mutbl: hir::MutImmutable,
1011                                                            });
1012                         Expr {
1013                             ty: closure_ty,
1014                             temp_lifetime: temp_lifetime,
1015                             span: expr.span,
1016                             kind: ExprKind::Deref {
1017                                 arg: Expr {
1018                                     ty: ref_closure_ty,
1019                                     temp_lifetime,
1020                                     span: expr.span,
1021                                     kind: ExprKind::SelfRef,
1022                                 }
1023                                 .to_ref(),
1024                             },
1025                         }
1026                     }
1027                     ty::ClosureKind::FnMut => {
1028                         let ref_closure_ty = cx.tcx.mk_ref(region,
1029                                                            ty::TypeAndMut {
1030                                                                ty: closure_ty,
1031                                                                mutbl: hir::MutMutable,
1032                                                            });
1033                         Expr {
1034                             ty: closure_ty,
1035                             temp_lifetime,
1036                             span: expr.span,
1037                             kind: ExprKind::Deref {
1038                                 arg: Expr {
1039                                     ty: ref_closure_ty,
1040                                     temp_lifetime,
1041                                     span: expr.span,
1042                                     kind: ExprKind::SelfRef,
1043                                 }.to_ref(),
1044                             },
1045                         }
1046                     }
1047                     ty::ClosureKind::FnOnce => {
1048                         Expr {
1049                             ty: closure_ty,
1050                             temp_lifetime,
1051                             span: expr.span,
1052                             kind: ExprKind::SelfRef,
1053                         }
1054                     }
1055                 }
1056             } else {
1057                 Expr {
1058                     ty: closure_ty,
1059                     temp_lifetime,
1060                     span: expr.span,
1061                     kind: ExprKind::SelfRef,
1062                 }
1063             };
1064
1065             // at this point we have `self.n`, which loads up the upvar
1066             let field_kind = ExprKind::Field {
1067                 lhs: self_expr.to_ref(),
1068                 name: Field::new(upvar_index),
1069             };
1070
1071             // ...but the upvar might be an `&T` or `&mut T` capture, at which
1072             // point we need an implicit deref
1073             match cx.tables().upvar_capture(upvar_id) {
1074                 ty::UpvarCapture::ByValue => field_kind,
1075                 ty::UpvarCapture::ByRef(borrow) => {
1076                     ExprKind::Deref {
1077                         arg: Expr {
1078                             temp_lifetime,
1079                             ty: cx.tcx.mk_ref(borrow.region,
1080                                               ty::TypeAndMut {
1081                                                   ty: var_ty,
1082                                                   mutbl: borrow.kind.to_mutbl_lossy(),
1083                                               }),
1084                             span: expr.span,
1085                             kind: field_kind,
1086                         }.to_ref(),
1087                     }
1088                 }
1089             }
1090         }
1091     }
1092 }
1093
1094
1095 fn bin_op(op: hir::BinOpKind) -> BinOp {
1096     match op {
1097         hir::BinOpKind::Add => BinOp::Add,
1098         hir::BinOpKind::Sub => BinOp::Sub,
1099         hir::BinOpKind::Mul => BinOp::Mul,
1100         hir::BinOpKind::Div => BinOp::Div,
1101         hir::BinOpKind::Rem => BinOp::Rem,
1102         hir::BinOpKind::BitXor => BinOp::BitXor,
1103         hir::BinOpKind::BitAnd => BinOp::BitAnd,
1104         hir::BinOpKind::BitOr => BinOp::BitOr,
1105         hir::BinOpKind::Shl => BinOp::Shl,
1106         hir::BinOpKind::Shr => BinOp::Shr,
1107         hir::BinOpKind::Eq => BinOp::Eq,
1108         hir::BinOpKind::Lt => BinOp::Lt,
1109         hir::BinOpKind::Le => BinOp::Le,
1110         hir::BinOpKind::Ne => BinOp::Ne,
1111         hir::BinOpKind::Ge => BinOp::Ge,
1112         hir::BinOpKind::Gt => BinOp::Gt,
1113         _ => bug!("no equivalent for ast binop {:?}", op),
1114     }
1115 }
1116
1117 fn overloaded_operator<'a, 'tcx>(
1118     cx: &mut Cx<'a, 'tcx>,
1119     expr: &'tcx hir::Expr,
1120     args: Vec<ExprRef<'tcx>>
1121 ) -> ExprKind<'tcx> {
1122     let fun = method_callee(cx, expr, expr.span, None);
1123     ExprKind::Call {
1124         ty: fun.ty,
1125         fun: fun.to_ref(),
1126         args,
1127         from_hir_call: false,
1128     }
1129 }
1130
1131 fn overloaded_place<'a, 'tcx>(
1132     cx: &mut Cx<'a, 'tcx>,
1133     expr: &'tcx hir::Expr,
1134     place_ty: Ty<'tcx>,
1135     overloaded_callee: Option<(DefId, SubstsRef<'tcx>)>,
1136     args: Vec<ExprRef<'tcx>>,
1137 ) -> ExprKind<'tcx> {
1138     // For an overloaded *x or x[y] expression of type T, the method
1139     // call returns an &T and we must add the deref so that the types
1140     // line up (this is because `*x` and `x[y]` represent places):
1141
1142     let recv_ty = match args[0] {
1143         ExprRef::Hair(e) => cx.tables().expr_ty_adjusted(e),
1144         ExprRef::Mirror(ref e) => e.ty
1145     };
1146
1147     // Reconstruct the output assuming it's a reference with the
1148     // same region and mutability as the receiver. This holds for
1149     // `Deref(Mut)::Deref(_mut)` and `Index(Mut)::index(_mut)`.
1150     let (region, mutbl) = match recv_ty.sty {
1151         ty::Ref(region, _, mutbl) => (region, mutbl),
1152         _ => span_bug!(expr.span, "overloaded_place: receiver is not a reference"),
1153     };
1154     let ref_ty = cx.tcx.mk_ref(region, ty::TypeAndMut {
1155         ty: place_ty,
1156         mutbl,
1157     });
1158
1159     // construct the complete expression `foo()` for the overloaded call,
1160     // which will yield the &T type
1161     let temp_lifetime = cx.region_scope_tree.temporary_scope(expr.hir_id.local_id);
1162     let fun = method_callee(cx, expr, expr.span, overloaded_callee);
1163     let ref_expr = Expr {
1164         temp_lifetime,
1165         ty: ref_ty,
1166         span: expr.span,
1167         kind: ExprKind::Call {
1168             ty: fun.ty,
1169             fun: fun.to_ref(),
1170             args,
1171             from_hir_call: false,
1172         },
1173     };
1174
1175     // construct and return a deref wrapper `*foo()`
1176     ExprKind::Deref { arg: ref_expr.to_ref() }
1177 }
1178
1179 fn capture_upvar<'tcx>(
1180     cx: &mut Cx<'_, 'tcx>,
1181     closure_expr: &'tcx hir::Expr,
1182     var_hir_id: hir::HirId,
1183     upvar_ty: Ty<'tcx>
1184 ) -> ExprRef<'tcx> {
1185     let upvar_id = ty::UpvarId {
1186         var_path: ty::UpvarPath { hir_id: var_hir_id },
1187         closure_expr_id: cx.tcx.hir().local_def_id(closure_expr.hir_id).to_local(),
1188     };
1189     let upvar_capture = cx.tables().upvar_capture(upvar_id);
1190     let temp_lifetime = cx.region_scope_tree.temporary_scope(closure_expr.hir_id.local_id);
1191     let var_ty = cx.tables().node_type(var_hir_id);
1192     let captured_var = Expr {
1193         temp_lifetime,
1194         ty: var_ty,
1195         span: closure_expr.span,
1196         kind: convert_var(cx, closure_expr, var_hir_id),
1197     };
1198     match upvar_capture {
1199         ty::UpvarCapture::ByValue => captured_var.to_ref(),
1200         ty::UpvarCapture::ByRef(upvar_borrow) => {
1201             let borrow_kind = match upvar_borrow.kind {
1202                 ty::BorrowKind::ImmBorrow => BorrowKind::Shared,
1203                 ty::BorrowKind::UniqueImmBorrow => BorrowKind::Unique,
1204                 ty::BorrowKind::MutBorrow => BorrowKind::Mut { allow_two_phase_borrow: false }
1205             };
1206             Expr {
1207                 temp_lifetime,
1208                 ty: upvar_ty,
1209                 span: closure_expr.span,
1210                 kind: ExprKind::Borrow {
1211                     borrow_kind,
1212                     arg: captured_var.to_ref(),
1213                 },
1214             }.to_ref()
1215         }
1216     }
1217 }
1218
1219 /// Converts a list of named fields (i.e., for struct-like struct/enum ADTs) into FieldExprRef.
1220 fn field_refs<'a, 'tcx>(
1221     cx: &mut Cx<'a, 'tcx>,
1222     fields: &'tcx [hir::Field]
1223 ) -> Vec<FieldExprRef<'tcx>> {
1224     fields.iter()
1225         .map(|field| {
1226             FieldExprRef {
1227                 name: Field::new(cx.tcx.field_index(field.hir_id, cx.tables)),
1228                 expr: field.expr.to_ref(),
1229             }
1230         })
1231         .collect()
1232 }