]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/build/matches/test.rs
Add TerminatorKind::if_ convenience constructor
[rust.git] / src / librustc_mir / build / matches / test.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 // Testing candidates
12 //
13 // After candidates have been simplified, the only match pairs that
14 // remain are those that require some sort of test. The functions here
15 // identify what tests are needed, perform the tests, and then filter
16 // the candidates based on the result.
17
18 use build::Builder;
19 use build::matches::{Candidate, MatchPair, Test, TestKind};
20 use hair::*;
21 use rustc_data_structures::fx::FxHashMap;
22 use rustc_data_structures::bitvec::BitVector;
23 use rustc::middle::const_val::{ConstVal, ConstInt};
24 use rustc::ty::{self, Ty};
25 use rustc::ty::util::IntTypeExt;
26 use rustc::mir::*;
27 use rustc::hir::RangeEnd;
28 use syntax_pos::Span;
29 use std::cmp::Ordering;
30
31 impl<'a, 'gcx, 'tcx> Builder<'a, 'gcx, 'tcx> {
32     /// Identifies what test is needed to decide if `match_pair` is applicable.
33     ///
34     /// It is a bug to call this with a simplifyable pattern.
35     pub fn test<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> Test<'tcx> {
36         match *match_pair.pattern.kind {
37             PatternKind::Variant { ref adt_def, substs: _, variant_index: _, subpatterns: _ } => {
38                 Test {
39                     span: match_pair.pattern.span,
40                     kind: TestKind::Switch {
41                         adt_def: adt_def.clone(),
42                         variants: BitVector::new(self.hir.num_variants(adt_def)),
43                     },
44                 }
45             }
46
47             PatternKind::Constant { .. }
48             if is_switch_ty(match_pair.pattern.ty) => {
49                 // for integers, we use a SwitchInt match, which allows
50                 // us to handle more cases
51                 Test {
52                     span: match_pair.pattern.span,
53                     kind: TestKind::SwitchInt {
54                         switch_ty: match_pair.pattern.ty,
55
56                         // these maps are empty to start; cases are
57                         // added below in add_cases_to_switch
58                         options: vec![],
59                         indices: FxHashMap(),
60                     }
61                 }
62             }
63
64             PatternKind::Constant { ref value } => {
65                 Test {
66                     span: match_pair.pattern.span,
67                     kind: TestKind::Eq {
68                         value: value.clone(),
69                         ty: match_pair.pattern.ty.clone()
70                     }
71                 }
72             }
73
74             PatternKind::Range { ref lo, ref hi, ref end } => {
75                 Test {
76                     span: match_pair.pattern.span,
77                     kind: TestKind::Range {
78                         lo: Literal::Value { value: lo.clone() },
79                         hi: Literal::Value { value: hi.clone() },
80                         ty: match_pair.pattern.ty.clone(),
81                         end: end.clone(),
82                     },
83                 }
84             }
85
86             PatternKind::Slice { ref prefix, ref slice, ref suffix }
87                     if !match_pair.slice_len_checked => {
88                 let len = prefix.len() + suffix.len();
89                 let op = if slice.is_some() {
90                     BinOp::Ge
91                 } else {
92                     BinOp::Eq
93                 };
94                 Test {
95                     span: match_pair.pattern.span,
96                     kind: TestKind::Len { len: len as u64, op: op },
97                 }
98             }
99
100             PatternKind::Array { .. } |
101             PatternKind::Slice { .. } |
102             PatternKind::Wild |
103             PatternKind::Binding { .. } |
104             PatternKind::Leaf { .. } |
105             PatternKind::Deref { .. } => {
106                 self.error_simplifyable(match_pair)
107             }
108         }
109     }
110
111     pub fn add_cases_to_switch<'pat>(&mut self,
112                                      test_lvalue: &Lvalue<'tcx>,
113                                      candidate: &Candidate<'pat, 'tcx>,
114                                      switch_ty: Ty<'tcx>,
115                                      options: &mut Vec<ConstVal>,
116                                      indices: &mut FxHashMap<ConstVal, usize>)
117                                      -> bool
118     {
119         let match_pair = match candidate.match_pairs.iter().find(|mp| mp.lvalue == *test_lvalue) {
120             Some(match_pair) => match_pair,
121             _ => { return false; }
122         };
123
124         match *match_pair.pattern.kind {
125             PatternKind::Constant { ref value } => {
126                 // if the lvalues match, the type should match
127                 assert_eq!(match_pair.pattern.ty, switch_ty);
128
129                 indices.entry(value.clone())
130                        .or_insert_with(|| {
131                            options.push(value.clone());
132                            options.len() - 1
133                        });
134                 true
135             }
136             PatternKind::Variant { .. } => {
137                 panic!("you should have called add_variants_to_switch instead!");
138             }
139             PatternKind::Range { .. } |
140             PatternKind::Slice { .. } |
141             PatternKind::Array { .. } |
142             PatternKind::Wild |
143             PatternKind::Binding { .. } |
144             PatternKind::Leaf { .. } |
145             PatternKind::Deref { .. } => {
146                 // don't know how to add these patterns to a switch
147                 false
148             }
149         }
150     }
151
152     pub fn add_variants_to_switch<'pat>(&mut self,
153                                         test_lvalue: &Lvalue<'tcx>,
154                                         candidate: &Candidate<'pat, 'tcx>,
155                                         variants: &mut BitVector)
156                                         -> bool
157     {
158         let match_pair = match candidate.match_pairs.iter().find(|mp| mp.lvalue == *test_lvalue) {
159             Some(match_pair) => match_pair,
160             _ => { return false; }
161         };
162
163         match *match_pair.pattern.kind {
164             PatternKind::Variant { adt_def: _ , variant_index,  .. } => {
165                 // We have a pattern testing for variant `variant_index`
166                 // set the corresponding index to true
167                 variants.insert(variant_index);
168                 true
169             }
170             _ => {
171                 // don't know how to add these patterns to a switch
172                 false
173             }
174         }
175     }
176
177     /// Generates the code to perform a test.
178     pub fn perform_test(&mut self,
179                         block: BasicBlock,
180                         lvalue: &Lvalue<'tcx>,
181                         test: &Test<'tcx>)
182                         -> Vec<BasicBlock> {
183         let source_info = self.source_info(test.span);
184         match test.kind {
185             TestKind::Switch { adt_def, ref variants } => {
186                 // Variants is a BitVec of indexes into adt_def.variants.
187                 let num_enum_variants = self.hir.num_variants(adt_def);
188                 let used_variants = variants.count();
189                 let mut otherwise_block = None;
190                 let mut target_blocks = Vec::with_capacity(num_enum_variants);
191                 let mut targets = Vec::with_capacity(used_variants + 1);
192                 let mut values = Vec::with_capacity(used_variants);
193                 let tcx = self.hir.tcx();
194                 for (idx, variant) in adt_def.variants.iter().enumerate() {
195                     target_blocks.place_back() <- if variants.contains(idx) {
196                         let discr = ConstInt::new_inttype(variant.disr_val, adt_def.discr_ty,
197                                                           tcx.sess.target.uint_type,
198                                                           tcx.sess.target.int_type).unwrap();
199                         values.push(discr);
200                         *(targets.place_back() <- self.cfg.start_new_block())
201                     } else {
202                         if otherwise_block.is_none() {
203                             otherwise_block = Some(self.cfg.start_new_block());
204                         }
205                         otherwise_block.unwrap()
206                     };
207                 }
208                 if let Some(otherwise_block) = otherwise_block {
209                     targets.push(otherwise_block);
210                 } else {
211                     values.pop();
212                 }
213                 debug!("num_enum_variants: {}, tested variants: {:?}, variants: {:?}",
214                        num_enum_variants, values, variants);
215                 let discr_ty = adt_def.discr_ty.to_ty(tcx);
216                 let discr = self.temp(discr_ty);
217                 self.cfg.push_assign(block, source_info, &discr,
218                                      Rvalue::Discriminant(lvalue.clone()));
219                 assert_eq!(values.len() + 1, targets.len());
220                 self.cfg.terminate(block, source_info, TerminatorKind::SwitchInt {
221                     discr: Operand::Consume(discr),
222                     switch_ty: discr_ty,
223                     values: From::from(values),
224                     targets: targets
225                 });
226                 target_blocks
227             }
228
229             TestKind::SwitchInt { switch_ty, ref options, indices: _ } => {
230                 let (values, targets, ret) = if switch_ty.sty == ty::TyBool {
231                     static BOOL_SWITCH_FALSE: &'static [ConstInt] = &[ConstInt::Infer(0)];
232                     assert!(options.len() > 0 && options.len() <= 2);
233                     let (true_bb, false_bb) = (self.cfg.start_new_block(),
234                                                self.cfg.start_new_block());
235                     let ret = match &options[0] {
236                         &ConstVal::Bool(true) => vec![true_bb, false_bb],
237                         &ConstVal::Bool(false) => vec![false_bb, true_bb],
238                         v => span_bug!(test.span, "expected boolean value but got {:?}", v)
239                     };
240                     (From::from(BOOL_SWITCH_FALSE), vec![false_bb, true_bb], ret)
241                 } else {
242                     // The switch may be inexhaustive so we
243                     // add a catch all block
244                     let otherwise = self.cfg.start_new_block();
245                     let targets: Vec<_> =
246                         options.iter()
247                                .map(|_| self.cfg.start_new_block())
248                                .chain(Some(otherwise))
249                                .collect();
250                     let values: Vec<_> = options.iter().map(|v|
251                         v.to_const_int().expect("switching on integral")
252                     ).collect();
253                     (From::from(values), targets.clone(), targets)
254                 };
255
256                 self.cfg.terminate(block, source_info, TerminatorKind::SwitchInt {
257                     discr: Operand::Consume(lvalue.clone()),
258                     switch_ty: switch_ty,
259                     values: values,
260                     targets: targets.clone(),
261                 });
262                 ret
263             }
264
265             TestKind::Eq { ref value, mut ty } => {
266                 let mut val = Operand::Consume(lvalue.clone());
267
268                 // If we're using b"..." as a pattern, we need to insert an
269                 // unsizing coercion, as the byte string has the type &[u8; N].
270                 let expect = if let ConstVal::ByteStr(ref bytes) = *value {
271                     let tcx = self.hir.tcx();
272
273                     // Unsize the lvalue to &[u8], too, if necessary.
274                     if let ty::TyRef(region, mt) = ty.sty {
275                         if let ty::TyArray(_, _) = mt.ty.sty {
276                             ty = tcx.mk_imm_ref(region, tcx.mk_slice(tcx.types.u8));
277                             let val_slice = self.temp(ty);
278                             self.cfg.push_assign(block, source_info, &val_slice,
279                                                  Rvalue::Cast(CastKind::Unsize, val, ty));
280                             val = Operand::Consume(val_slice);
281                         }
282                     }
283
284                     assert!(ty.is_slice());
285
286                     let array_ty = tcx.mk_array(tcx.types.u8, bytes.len());
287                     let array_ref = tcx.mk_imm_ref(tcx.mk_region(ty::ReStatic), array_ty);
288                     let array = self.literal_operand(test.span, array_ref, Literal::Value {
289                         value: value.clone()
290                     });
291
292                     let slice = self.temp(ty);
293                     self.cfg.push_assign(block, source_info, &slice,
294                                          Rvalue::Cast(CastKind::Unsize, array, ty));
295                     Operand::Consume(slice)
296                 } else {
297                     self.literal_operand(test.span, ty, Literal::Value {
298                         value: value.clone()
299                     })
300                 };
301
302                 // Use PartialEq::eq for &str and &[u8] slices, instead of BinOp::Eq.
303                 let fail = self.cfg.start_new_block();
304                 if let ty::TyRef(_, mt) = ty.sty {
305                     assert!(ty.is_slice());
306                     let eq_def_id = self.hir.tcx().lang_items.eq_trait().unwrap();
307                     let ty = mt.ty;
308                     let (mty, method) = self.hir.trait_method(eq_def_id, "eq", ty, &[ty]);
309
310                     let bool_ty = self.hir.bool_ty();
311                     let eq_result = self.temp(bool_ty);
312                     let eq_block = self.cfg.start_new_block();
313                     let cleanup = self.diverge_cleanup();
314                     self.cfg.terminate(block, source_info, TerminatorKind::Call {
315                         func: Operand::Constant(Constant {
316                             span: test.span,
317                             ty: mty,
318                             literal: method
319                         }),
320                         args: vec![val, expect],
321                         destination: Some((eq_result.clone(), eq_block)),
322                         cleanup: cleanup,
323                     });
324
325                     // check the result
326                     let block = self.cfg.start_new_block();
327                     self.cfg.terminate(eq_block, source_info,
328                                        TerminatorKind::if_(self.hir.tcx(),
329                                                            Operand::Consume(eq_result),
330                                                            block, fail));
331                     vec![block, fail]
332                 } else {
333                     let block = self.compare(block, fail, test.span, BinOp::Eq, expect, val);
334                     vec![block, fail]
335                 }
336             }
337
338             TestKind::Range { ref lo, ref hi, ty, ref end } => {
339                 // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons.
340                 let lo = self.literal_operand(test.span, ty.clone(), lo.clone());
341                 let hi = self.literal_operand(test.span, ty.clone(), hi.clone());
342                 let val = Operand::Consume(lvalue.clone());
343
344                 let fail = self.cfg.start_new_block();
345                 let block = self.compare(block, fail, test.span, BinOp::Le, lo, val.clone());
346                 let block = match *end {
347                     RangeEnd::Included => self.compare(block, fail, test.span, BinOp::Le, val, hi),
348                     RangeEnd::Excluded => self.compare(block, fail, test.span, BinOp::Lt, val, hi),
349                 };
350
351                 vec![block, fail]
352             }
353
354             TestKind::Len { len, op } => {
355                 let (usize_ty, bool_ty) = (self.hir.usize_ty(), self.hir.bool_ty());
356                 let (actual, result) = (self.temp(usize_ty), self.temp(bool_ty));
357
358                 // actual = len(lvalue)
359                 self.cfg.push_assign(block, source_info,
360                                      &actual, Rvalue::Len(lvalue.clone()));
361
362                 // expected = <N>
363                 let expected = self.push_usize(block, source_info, len);
364
365                 // result = actual == expected OR result = actual < expected
366                 self.cfg.push_assign(block, source_info, &result,
367                                      Rvalue::BinaryOp(op,
368                                                       Operand::Consume(actual),
369                                                       Operand::Consume(expected)));
370
371                 // branch based on result
372                 let (false_bb, true_bb) = (self.cfg.start_new_block(),
373                                            self.cfg.start_new_block());
374                 self.cfg.terminate(block, source_info,
375                                    TerminatorKind::if_(self.hir.tcx(), Operand::Consume(result),
376                                                        true_bb, false_bb));
377                 vec![true_bb, false_bb]
378             }
379         }
380     }
381
382     fn compare(&mut self,
383                block: BasicBlock,
384                fail_block: BasicBlock,
385                span: Span,
386                op: BinOp,
387                left: Operand<'tcx>,
388                right: Operand<'tcx>) -> BasicBlock {
389         let bool_ty = self.hir.bool_ty();
390         let result = self.temp(bool_ty);
391
392         // result = op(left, right)
393         let source_info = self.source_info(span);
394         self.cfg.push_assign(block, source_info, &result,
395                              Rvalue::BinaryOp(op, left, right));
396
397         // branch based on result
398         let target_block = self.cfg.start_new_block();
399         self.cfg.terminate(block, source_info,
400                            TerminatorKind::if_(self.hir.tcx(), Operand::Consume(result),
401                                                target_block, fail_block));
402         target_block
403     }
404
405     /// Given that we are performing `test` against `test_lvalue`,
406     /// this job sorts out what the status of `candidate` will be
407     /// after the test. The `resulting_candidates` vector stores, for
408     /// each possible outcome of `test`, a vector of the candidates
409     /// that will result. This fn should add a (possibly modified)
410     /// clone of candidate into `resulting_candidates` wherever
411     /// appropriate.
412     ///
413     /// So, for example, if this candidate is `x @ Some(P0)` and the
414     /// test is a variant test, then we would add `(x as Option).0 @
415     /// P0` to the `resulting_candidates` entry corresponding to the
416     /// variant `Some`.
417     ///
418     /// However, in some cases, the test may just not be relevant to
419     /// candidate. For example, suppose we are testing whether `foo.x == 22`,
420     /// but in one match arm we have `Foo { x: _, ... }`... in that case,
421     /// the test for what value `x` has has no particular relevance
422     /// to this candidate. In such cases, this function just returns false
423     /// without doing anything. This is used by the overall `match_candidates`
424     /// algorithm to structure the match as a whole. See `match_candidates` for
425     /// more details.
426     ///
427     /// FIXME(#29623). In some cases, we have some tricky choices to
428     /// make.  for example, if we are testing that `x == 22`, but the
429     /// candidate is `x @ 13..55`, what should we do? In the event
430     /// that the test is true, we know that the candidate applies, but
431     /// in the event of false, we don't know that it *doesn't*
432     /// apply. For now, we return false, indicate that the test does
433     /// not apply to this candidate, but it might be we can get
434     /// tighter match code if we do something a bit different.
435     pub fn sort_candidate<'pat>(&mut self,
436                                 test_lvalue: &Lvalue<'tcx>,
437                                 test: &Test<'tcx>,
438                                 candidate: &Candidate<'pat, 'tcx>,
439                                 resulting_candidates: &mut [Vec<Candidate<'pat, 'tcx>>])
440                                 -> bool {
441         // Find the match_pair for this lvalue (if any). At present,
442         // afaik, there can be at most one. (In the future, if we
443         // adopted a more general `@` operator, there might be more
444         // than one, but it'd be very unusual to have two sides that
445         // both require tests; you'd expect one side to be simplified
446         // away.)
447         let tested_match_pair = candidate.match_pairs.iter()
448                                                      .enumerate()
449                                                      .filter(|&(_, mp)| mp.lvalue == *test_lvalue)
450                                                      .next();
451         let (match_pair_index, match_pair) = match tested_match_pair {
452             Some(pair) => pair,
453             None => {
454                 // We are not testing this lvalue. Therefore, this
455                 // candidate applies to ALL outcomes.
456                 return false;
457             }
458         };
459
460         match (&test.kind, &*match_pair.pattern.kind) {
461             // If we are performing a variant switch, then this
462             // informs variant patterns, but nothing else.
463             (&TestKind::Switch { adt_def: tested_adt_def, .. },
464              &PatternKind::Variant { adt_def, variant_index, ref subpatterns, .. }) => {
465                 assert_eq!(adt_def, tested_adt_def);
466                 let new_candidate =
467                     self.candidate_after_variant_switch(match_pair_index,
468                                                         adt_def,
469                                                         variant_index,
470                                                         subpatterns,
471                                                         candidate);
472                 resulting_candidates[variant_index].push(new_candidate);
473                 true
474             }
475             (&TestKind::Switch { .. }, _) => false,
476
477             // If we are performing a switch over integers, then this informs integer
478             // equality, but nothing else.
479             //
480             // FIXME(#29623) we could use PatternKind::Range to rule
481             // things out here, in some cases.
482             (&TestKind::SwitchInt { switch_ty: _, options: _, ref indices },
483              &PatternKind::Constant { ref value })
484             if is_switch_ty(match_pair.pattern.ty) => {
485                 let index = indices[value];
486                 let new_candidate = self.candidate_without_match_pair(match_pair_index,
487                                                                       candidate);
488                 resulting_candidates[index].push(new_candidate);
489                 true
490             }
491             (&TestKind::SwitchInt { .. }, _) => false,
492
493
494             (&TestKind::Len { len: test_len, op: BinOp::Eq },
495              &PatternKind::Slice { ref prefix, ref slice, ref suffix }) => {
496                 let pat_len = (prefix.len() + suffix.len()) as u64;
497                 match (test_len.cmp(&pat_len), slice) {
498                     (Ordering::Equal, &None) => {
499                         // on true, min_len = len = $actual_length,
500                         // on false, len != $actual_length
501                         resulting_candidates[0].push(
502                             self.candidate_after_slice_test(match_pair_index,
503                                                             candidate,
504                                                             prefix,
505                                                             slice.as_ref(),
506                                                             suffix)
507                         );
508                         true
509                     }
510                     (Ordering::Less, _) => {
511                         // test_len < pat_len. If $actual_len = test_len,
512                         // then $actual_len < pat_len and we don't have
513                         // enough elements.
514                         resulting_candidates[1].push(candidate.clone());
515                         true
516                     }
517                     (Ordering::Equal, &Some(_)) | (Ordering::Greater, &Some(_)) => {
518                         // This can match both if $actual_len = test_len >= pat_len,
519                         // and if $actual_len > test_len. We can't advance.
520                         false
521                     }
522                     (Ordering::Greater, &None) => {
523                         // test_len != pat_len, so if $actual_len = test_len, then
524                         // $actual_len != pat_len.
525                         resulting_candidates[1].push(candidate.clone());
526                         true
527                     }
528                 }
529             }
530
531             (&TestKind::Len { len: test_len, op: BinOp::Ge },
532              &PatternKind::Slice { ref prefix, ref slice, ref suffix }) => {
533                 // the test is `$actual_len >= test_len`
534                 let pat_len = (prefix.len() + suffix.len()) as u64;
535                 match (test_len.cmp(&pat_len), slice) {
536                     (Ordering::Equal, &Some(_))  => {
537                         // $actual_len >= test_len = pat_len,
538                         // so we can match.
539                         resulting_candidates[0].push(
540                             self.candidate_after_slice_test(match_pair_index,
541                                                             candidate,
542                                                             prefix,
543                                                             slice.as_ref(),
544                                                             suffix)
545                         );
546                         true
547                     }
548                     (Ordering::Less, _) | (Ordering::Equal, &None) => {
549                         // test_len <= pat_len. If $actual_len < test_len,
550                         // then it is also < pat_len, so the test passing is
551                         // necessary (but insufficient).
552                         resulting_candidates[0].push(candidate.clone());
553                         true
554                     }
555                     (Ordering::Greater, &None) => {
556                         // test_len > pat_len. If $actual_len >= test_len > pat_len,
557                         // then we know we won't have a match.
558                         resulting_candidates[1].push(candidate.clone());
559                         true
560                     }
561                     (Ordering::Greater, &Some(_)) => {
562                         // test_len < pat_len, and is therefore less
563                         // strict. This can still go both ways.
564                         false
565                     }
566                 }
567             }
568
569             (&TestKind::Eq { .. }, _) |
570             (&TestKind::Range { .. }, _) |
571             (&TestKind::Len { .. }, _) => {
572                 // These are all binary tests.
573                 //
574                 // FIXME(#29623) we can be more clever here
575                 let pattern_test = self.test(&match_pair);
576                 if pattern_test.kind == test.kind {
577                     let new_candidate = self.candidate_without_match_pair(match_pair_index,
578                                                                           candidate);
579                     resulting_candidates[0].push(new_candidate);
580                     true
581                 } else {
582                     false
583                 }
584             }
585         }
586     }
587
588     fn candidate_without_match_pair<'pat>(&mut self,
589                                           match_pair_index: usize,
590                                           candidate: &Candidate<'pat, 'tcx>)
591                                           -> Candidate<'pat, 'tcx> {
592         let other_match_pairs =
593             candidate.match_pairs.iter()
594                                  .enumerate()
595                                  .filter(|&(index, _)| index != match_pair_index)
596                                  .map(|(_, mp)| mp.clone())
597                                  .collect();
598         Candidate {
599             span: candidate.span,
600             match_pairs: other_match_pairs,
601             bindings: candidate.bindings.clone(),
602             guard: candidate.guard.clone(),
603             arm_index: candidate.arm_index,
604         }
605     }
606
607     fn candidate_after_slice_test<'pat>(&mut self,
608                                         match_pair_index: usize,
609                                         candidate: &Candidate<'pat, 'tcx>,
610                                         prefix: &'pat [Pattern<'tcx>],
611                                         opt_slice: Option<&'pat Pattern<'tcx>>,
612                                         suffix: &'pat [Pattern<'tcx>])
613                                         -> Candidate<'pat, 'tcx> {
614         let mut new_candidate =
615             self.candidate_without_match_pair(match_pair_index, candidate);
616         self.prefix_slice_suffix(
617             &mut new_candidate.match_pairs,
618             &candidate.match_pairs[match_pair_index].lvalue,
619             prefix,
620             opt_slice,
621             suffix);
622
623         new_candidate
624     }
625
626     fn candidate_after_variant_switch<'pat>(&mut self,
627                                             match_pair_index: usize,
628                                             adt_def: &'tcx ty::AdtDef,
629                                             variant_index: usize,
630                                             subpatterns: &'pat [FieldPattern<'tcx>],
631                                             candidate: &Candidate<'pat, 'tcx>)
632                                             -> Candidate<'pat, 'tcx> {
633         let match_pair = &candidate.match_pairs[match_pair_index];
634
635         // So, if we have a match-pattern like `x @ Enum::Variant(P1, P2)`,
636         // we want to create a set of derived match-patterns like
637         // `(x as Variant).0 @ P1` and `(x as Variant).1 @ P1`.
638         let elem = ProjectionElem::Downcast(adt_def, variant_index);
639         let downcast_lvalue = match_pair.lvalue.clone().elem(elem); // `(x as Variant)`
640         let consequent_match_pairs =
641             subpatterns.iter()
642                        .map(|subpattern| {
643                            // e.g., `(x as Variant).0`
644                            let lvalue = downcast_lvalue.clone().field(subpattern.field,
645                                                                       subpattern.pattern.ty);
646                            // e.g., `(x as Variant).0 @ P1`
647                            MatchPair::new(lvalue, &subpattern.pattern)
648                        });
649
650         // In addition, we need all the other match pairs from the old candidate.
651         let other_match_pairs =
652             candidate.match_pairs.iter()
653                                  .enumerate()
654                                  .filter(|&(index, _)| index != match_pair_index)
655                                  .map(|(_, mp)| mp.clone());
656
657         let all_match_pairs = consequent_match_pairs.chain(other_match_pairs).collect();
658
659         Candidate {
660             span: candidate.span,
661             match_pairs: all_match_pairs,
662             bindings: candidate.bindings.clone(),
663             guard: candidate.guard.clone(),
664             arm_index: candidate.arm_index,
665         }
666     }
667
668     fn error_simplifyable<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> ! {
669         span_bug!(match_pair.pattern.span,
670                   "simplifyable pattern found: {:?}",
671                   match_pair.pattern)
672     }
673 }
674
675 fn is_switch_ty<'tcx>(ty: Ty<'tcx>) -> bool {
676     ty.is_integral() || ty.is_char() || ty.is_bool()
677 }