]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/build/matches/test.rs
Fix invalid associated type rendering in rustdoc
[rust.git] / src / librustc_mir / build / matches / test.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 // Testing candidates
12 //
13 // After candidates have been simplified, the only match pairs that
14 // remain are those that require some sort of test. The functions here
15 // identify what tests are needed, perform the tests, and then filter
16 // the candidates based on the result.
17
18 use build::Builder;
19 use build::matches::{Candidate, MatchPair, Test, TestKind};
20 use hair::*;
21 use rustc_data_structures::fx::FxHashMap;
22 use rustc_data_structures::bitvec::BitVector;
23 use rustc::middle::const_val::ConstVal;
24 use rustc::ty::{self, Ty};
25 use rustc::ty::util::IntTypeExt;
26 use rustc::mir::*;
27 use rustc::hir::RangeEnd;
28 use syntax_pos::Span;
29 use std::cmp::Ordering;
30
31 impl<'a, 'gcx, 'tcx> Builder<'a, 'gcx, 'tcx> {
32     /// Identifies what test is needed to decide if `match_pair` is applicable.
33     ///
34     /// It is a bug to call this with a simplifyable pattern.
35     pub fn test<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> Test<'tcx> {
36         match *match_pair.pattern.kind {
37             PatternKind::Variant { ref adt_def, substs: _, variant_index: _, subpatterns: _ } => {
38                 Test {
39                     span: match_pair.pattern.span,
40                     kind: TestKind::Switch {
41                         adt_def: adt_def.clone(),
42                         variants: BitVector::new(self.hir.num_variants(adt_def)),
43                     },
44                 }
45             }
46
47             PatternKind::Constant { .. }
48             if is_switch_ty(match_pair.pattern.ty) => {
49                 // for integers, we use a SwitchInt match, which allows
50                 // us to handle more cases
51                 Test {
52                     span: match_pair.pattern.span,
53                     kind: TestKind::SwitchInt {
54                         switch_ty: match_pair.pattern.ty,
55
56                         // these maps are empty to start; cases are
57                         // added below in add_cases_to_switch
58                         options: vec![],
59                         indices: FxHashMap(),
60                     }
61                 }
62             }
63
64             PatternKind::Constant { ref value } => {
65                 Test {
66                     span: match_pair.pattern.span,
67                     kind: TestKind::Eq {
68                         value: value.clone(),
69                         ty: match_pair.pattern.ty.clone()
70                     }
71                 }
72             }
73
74             PatternKind::Range { ref lo, ref hi, ref end } => {
75                 Test {
76                     span: match_pair.pattern.span,
77                     kind: TestKind::Range {
78                         lo: Literal::Value { value: lo.clone() },
79                         hi: Literal::Value { value: hi.clone() },
80                         ty: match_pair.pattern.ty.clone(),
81                         end: end.clone(),
82                     },
83                 }
84             }
85
86             PatternKind::Slice { ref prefix, ref slice, ref suffix }
87                     if !match_pair.slice_len_checked => {
88                 let len = prefix.len() + suffix.len();
89                 let op = if slice.is_some() {
90                     BinOp::Ge
91                 } else {
92                     BinOp::Eq
93                 };
94                 Test {
95                     span: match_pair.pattern.span,
96                     kind: TestKind::Len { len: len as u64, op: op },
97                 }
98             }
99
100             PatternKind::Array { .. } |
101             PatternKind::Slice { .. } |
102             PatternKind::Wild |
103             PatternKind::Binding { .. } |
104             PatternKind::Leaf { .. } |
105             PatternKind::Deref { .. } => {
106                 self.error_simplifyable(match_pair)
107             }
108         }
109     }
110
111     pub fn add_cases_to_switch<'pat>(&mut self,
112                                      test_lvalue: &Lvalue<'tcx>,
113                                      candidate: &Candidate<'pat, 'tcx>,
114                                      switch_ty: Ty<'tcx>,
115                                      options: &mut Vec<ConstVal<'tcx>>,
116                                      indices: &mut FxHashMap<ConstVal<'tcx>, usize>)
117                                      -> bool
118     {
119         let match_pair = match candidate.match_pairs.iter().find(|mp| mp.lvalue == *test_lvalue) {
120             Some(match_pair) => match_pair,
121             _ => { return false; }
122         };
123
124         match *match_pair.pattern.kind {
125             PatternKind::Constant { ref value } => {
126                 // if the lvalues match, the type should match
127                 assert_eq!(match_pair.pattern.ty, switch_ty);
128
129                 indices.entry(value.clone())
130                        .or_insert_with(|| {
131                            options.push(value.clone());
132                            options.len() - 1
133                        });
134                 true
135             }
136             PatternKind::Variant { .. } => {
137                 panic!("you should have called add_variants_to_switch instead!");
138             }
139             PatternKind::Range { .. } |
140             PatternKind::Slice { .. } |
141             PatternKind::Array { .. } |
142             PatternKind::Wild |
143             PatternKind::Binding { .. } |
144             PatternKind::Leaf { .. } |
145             PatternKind::Deref { .. } => {
146                 // don't know how to add these patterns to a switch
147                 false
148             }
149         }
150     }
151
152     pub fn add_variants_to_switch<'pat>(&mut self,
153                                         test_lvalue: &Lvalue<'tcx>,
154                                         candidate: &Candidate<'pat, 'tcx>,
155                                         variants: &mut BitVector)
156                                         -> bool
157     {
158         let match_pair = match candidate.match_pairs.iter().find(|mp| mp.lvalue == *test_lvalue) {
159             Some(match_pair) => match_pair,
160             _ => { return false; }
161         };
162
163         match *match_pair.pattern.kind {
164             PatternKind::Variant { adt_def: _ , variant_index,  .. } => {
165                 // We have a pattern testing for variant `variant_index`
166                 // set the corresponding index to true
167                 variants.insert(variant_index);
168                 true
169             }
170             _ => {
171                 // don't know how to add these patterns to a switch
172                 false
173             }
174         }
175     }
176
177     /// Generates the code to perform a test.
178     pub fn perform_test(&mut self,
179                         block: BasicBlock,
180                         lvalue: &Lvalue<'tcx>,
181                         test: &Test<'tcx>)
182                         -> Vec<BasicBlock> {
183         let source_info = self.source_info(test.span);
184         match test.kind {
185             TestKind::Switch { adt_def, ref variants } => {
186                 // Variants is a BitVec of indexes into adt_def.variants.
187                 let num_enum_variants = self.hir.num_variants(adt_def);
188                 let used_variants = variants.count();
189                 let mut otherwise_block = None;
190                 let mut target_blocks = Vec::with_capacity(num_enum_variants);
191                 let mut targets = Vec::with_capacity(used_variants + 1);
192                 let mut values = Vec::with_capacity(used_variants);
193                 let tcx = self.hir.tcx();
194                 for (idx, discr) in adt_def.discriminants(tcx).enumerate() {
195                     target_blocks.place_back() <- if variants.contains(idx) {
196                         values.push(discr);
197                         *(targets.place_back() <- self.cfg.start_new_block())
198                     } else {
199                         if otherwise_block.is_none() {
200                             otherwise_block = Some(self.cfg.start_new_block());
201                         }
202                         otherwise_block.unwrap()
203                     };
204                 }
205                 if let Some(otherwise_block) = otherwise_block {
206                     targets.push(otherwise_block);
207                 } else {
208                     values.pop();
209                 }
210                 debug!("num_enum_variants: {}, tested variants: {:?}, variants: {:?}",
211                        num_enum_variants, values, variants);
212                 let discr_ty = adt_def.repr.discr_type().to_ty(tcx);
213                 let discr = self.temp(discr_ty);
214                 self.cfg.push_assign(block, source_info, &discr,
215                                      Rvalue::Discriminant(lvalue.clone()));
216                 assert_eq!(values.len() + 1, targets.len());
217                 self.cfg.terminate(block, source_info, TerminatorKind::SwitchInt {
218                     discr: Operand::Consume(discr),
219                     switch_ty: discr_ty,
220                     values: From::from(values),
221                     targets: targets
222                 });
223                 target_blocks
224             }
225
226             TestKind::SwitchInt { switch_ty, ref options, indices: _ } => {
227                 let (ret, terminator) = if switch_ty.sty == ty::TyBool {
228                     assert!(options.len() > 0 && options.len() <= 2);
229                     let (true_bb, false_bb) = (self.cfg.start_new_block(),
230                                                self.cfg.start_new_block());
231                     let ret = match &options[0] {
232                         &ConstVal::Bool(true) => vec![true_bb, false_bb],
233                         &ConstVal::Bool(false) => vec![false_bb, true_bb],
234                         v => span_bug!(test.span, "expected boolean value but got {:?}", v)
235                     };
236                     (ret, TerminatorKind::if_(self.hir.tcx(), Operand::Consume(lvalue.clone()),
237                                               true_bb, false_bb))
238                 } else {
239                     // The switch may be inexhaustive so we
240                     // add a catch all block
241                     let otherwise = self.cfg.start_new_block();
242                     let targets: Vec<_> =
243                         options.iter()
244                                .map(|_| self.cfg.start_new_block())
245                                .chain(Some(otherwise))
246                                .collect();
247                     let values: Vec<_> = options.iter().map(|v|
248                         v.to_const_int().expect("switching on integral")
249                     ).collect();
250                     (targets.clone(), TerminatorKind::SwitchInt {
251                         discr: Operand::Consume(lvalue.clone()),
252                         switch_ty: switch_ty,
253                         values: From::from(values),
254                         targets: targets,
255                     })
256                 };
257                 self.cfg.terminate(block, source_info, terminator);
258                 ret
259             }
260
261             TestKind::Eq { ref value, mut ty } => {
262                 let mut val = Operand::Consume(lvalue.clone());
263
264                 // If we're using b"..." as a pattern, we need to insert an
265                 // unsizing coercion, as the byte string has the type &[u8; N].
266                 let expect = if let ConstVal::ByteStr(ref bytes) = *value {
267                     let tcx = self.hir.tcx();
268
269                     // Unsize the lvalue to &[u8], too, if necessary.
270                     if let ty::TyRef(region, mt) = ty.sty {
271                         if let ty::TyArray(_, _) = mt.ty.sty {
272                             ty = tcx.mk_imm_ref(region, tcx.mk_slice(tcx.types.u8));
273                             let val_slice = self.temp(ty);
274                             self.cfg.push_assign(block, source_info, &val_slice,
275                                                  Rvalue::Cast(CastKind::Unsize, val, ty));
276                             val = Operand::Consume(val_slice);
277                         }
278                     }
279
280                     assert!(ty.is_slice());
281
282                     let array_ty = tcx.mk_array(tcx.types.u8, bytes.len());
283                     let array_ref = tcx.mk_imm_ref(tcx.mk_region(ty::ReStatic), array_ty);
284                     let array = self.literal_operand(test.span, array_ref, Literal::Value {
285                         value: value.clone()
286                     });
287
288                     let slice = self.temp(ty);
289                     self.cfg.push_assign(block, source_info, &slice,
290                                          Rvalue::Cast(CastKind::Unsize, array, ty));
291                     Operand::Consume(slice)
292                 } else {
293                     self.literal_operand(test.span, ty, Literal::Value {
294                         value: value.clone()
295                     })
296                 };
297
298                 // Use PartialEq::eq for &str and &[u8] slices, instead of BinOp::Eq.
299                 let fail = self.cfg.start_new_block();
300                 if let ty::TyRef(_, mt) = ty.sty {
301                     assert!(ty.is_slice());
302                     let eq_def_id = self.hir.tcx().lang_items.eq_trait().unwrap();
303                     let ty = mt.ty;
304                     let (mty, method) = self.hir.trait_method(eq_def_id, "eq", ty, &[ty]);
305
306                     let bool_ty = self.hir.bool_ty();
307                     let eq_result = self.temp(bool_ty);
308                     let eq_block = self.cfg.start_new_block();
309                     let cleanup = self.diverge_cleanup();
310                     self.cfg.terminate(block, source_info, TerminatorKind::Call {
311                         func: Operand::Constant(Constant {
312                             span: test.span,
313                             ty: mty,
314                             literal: method
315                         }),
316                         args: vec![val, expect],
317                         destination: Some((eq_result.clone(), eq_block)),
318                         cleanup: cleanup,
319                     });
320
321                     // check the result
322                     let block = self.cfg.start_new_block();
323                     self.cfg.terminate(eq_block, source_info,
324                                        TerminatorKind::if_(self.hir.tcx(),
325                                                            Operand::Consume(eq_result),
326                                                            block, fail));
327                     vec![block, fail]
328                 } else {
329                     let block = self.compare(block, fail, test.span, BinOp::Eq, expect, val);
330                     vec![block, fail]
331                 }
332             }
333
334             TestKind::Range { ref lo, ref hi, ty, ref end } => {
335                 // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons.
336                 let lo = self.literal_operand(test.span, ty.clone(), lo.clone());
337                 let hi = self.literal_operand(test.span, ty.clone(), hi.clone());
338                 let val = Operand::Consume(lvalue.clone());
339
340                 let fail = self.cfg.start_new_block();
341                 let block = self.compare(block, fail, test.span, BinOp::Le, lo, val.clone());
342                 let block = match *end {
343                     RangeEnd::Included => self.compare(block, fail, test.span, BinOp::Le, val, hi),
344                     RangeEnd::Excluded => self.compare(block, fail, test.span, BinOp::Lt, val, hi),
345                 };
346
347                 vec![block, fail]
348             }
349
350             TestKind::Len { len, op } => {
351                 let (usize_ty, bool_ty) = (self.hir.usize_ty(), self.hir.bool_ty());
352                 let (actual, result) = (self.temp(usize_ty), self.temp(bool_ty));
353
354                 // actual = len(lvalue)
355                 self.cfg.push_assign(block, source_info,
356                                      &actual, Rvalue::Len(lvalue.clone()));
357
358                 // expected = <N>
359                 let expected = self.push_usize(block, source_info, len);
360
361                 // result = actual == expected OR result = actual < expected
362                 self.cfg.push_assign(block, source_info, &result,
363                                      Rvalue::BinaryOp(op,
364                                                       Operand::Consume(actual),
365                                                       Operand::Consume(expected)));
366
367                 // branch based on result
368                 let (false_bb, true_bb) = (self.cfg.start_new_block(),
369                                            self.cfg.start_new_block());
370                 self.cfg.terminate(block, source_info,
371                                    TerminatorKind::if_(self.hir.tcx(), Operand::Consume(result),
372                                                        true_bb, false_bb));
373                 vec![true_bb, false_bb]
374             }
375         }
376     }
377
378     fn compare(&mut self,
379                block: BasicBlock,
380                fail_block: BasicBlock,
381                span: Span,
382                op: BinOp,
383                left: Operand<'tcx>,
384                right: Operand<'tcx>) -> BasicBlock {
385         let bool_ty = self.hir.bool_ty();
386         let result = self.temp(bool_ty);
387
388         // result = op(left, right)
389         let source_info = self.source_info(span);
390         self.cfg.push_assign(block, source_info, &result,
391                              Rvalue::BinaryOp(op, left, right));
392
393         // branch based on result
394         let target_block = self.cfg.start_new_block();
395         self.cfg.terminate(block, source_info,
396                            TerminatorKind::if_(self.hir.tcx(), Operand::Consume(result),
397                                                target_block, fail_block));
398         target_block
399     }
400
401     /// Given that we are performing `test` against `test_lvalue`,
402     /// this job sorts out what the status of `candidate` will be
403     /// after the test. The `resulting_candidates` vector stores, for
404     /// each possible outcome of `test`, a vector of the candidates
405     /// that will result. This fn should add a (possibly modified)
406     /// clone of candidate into `resulting_candidates` wherever
407     /// appropriate.
408     ///
409     /// So, for example, if this candidate is `x @ Some(P0)` and the
410     /// test is a variant test, then we would add `(x as Option).0 @
411     /// P0` to the `resulting_candidates` entry corresponding to the
412     /// variant `Some`.
413     ///
414     /// However, in some cases, the test may just not be relevant to
415     /// candidate. For example, suppose we are testing whether `foo.x == 22`,
416     /// but in one match arm we have `Foo { x: _, ... }`... in that case,
417     /// the test for what value `x` has has no particular relevance
418     /// to this candidate. In such cases, this function just returns false
419     /// without doing anything. This is used by the overall `match_candidates`
420     /// algorithm to structure the match as a whole. See `match_candidates` for
421     /// more details.
422     ///
423     /// FIXME(#29623). In some cases, we have some tricky choices to
424     /// make.  for example, if we are testing that `x == 22`, but the
425     /// candidate is `x @ 13..55`, what should we do? In the event
426     /// that the test is true, we know that the candidate applies, but
427     /// in the event of false, we don't know that it *doesn't*
428     /// apply. For now, we return false, indicate that the test does
429     /// not apply to this candidate, but it might be we can get
430     /// tighter match code if we do something a bit different.
431     pub fn sort_candidate<'pat>(&mut self,
432                                 test_lvalue: &Lvalue<'tcx>,
433                                 test: &Test<'tcx>,
434                                 candidate: &Candidate<'pat, 'tcx>,
435                                 resulting_candidates: &mut [Vec<Candidate<'pat, 'tcx>>])
436                                 -> bool {
437         // Find the match_pair for this lvalue (if any). At present,
438         // afaik, there can be at most one. (In the future, if we
439         // adopted a more general `@` operator, there might be more
440         // than one, but it'd be very unusual to have two sides that
441         // both require tests; you'd expect one side to be simplified
442         // away.)
443         let tested_match_pair = candidate.match_pairs.iter()
444                                                      .enumerate()
445                                                      .filter(|&(_, mp)| mp.lvalue == *test_lvalue)
446                                                      .next();
447         let (match_pair_index, match_pair) = match tested_match_pair {
448             Some(pair) => pair,
449             None => {
450                 // We are not testing this lvalue. Therefore, this
451                 // candidate applies to ALL outcomes.
452                 return false;
453             }
454         };
455
456         match (&test.kind, &*match_pair.pattern.kind) {
457             // If we are performing a variant switch, then this
458             // informs variant patterns, but nothing else.
459             (&TestKind::Switch { adt_def: tested_adt_def, .. },
460              &PatternKind::Variant { adt_def, variant_index, ref subpatterns, .. }) => {
461                 assert_eq!(adt_def, tested_adt_def);
462                 let new_candidate =
463                     self.candidate_after_variant_switch(match_pair_index,
464                                                         adt_def,
465                                                         variant_index,
466                                                         subpatterns,
467                                                         candidate);
468                 resulting_candidates[variant_index].push(new_candidate);
469                 true
470             }
471             (&TestKind::Switch { .. }, _) => false,
472
473             // If we are performing a switch over integers, then this informs integer
474             // equality, but nothing else.
475             //
476             // FIXME(#29623) we could use PatternKind::Range to rule
477             // things out here, in some cases.
478             (&TestKind::SwitchInt { switch_ty: _, options: _, ref indices },
479              &PatternKind::Constant { ref value })
480             if is_switch_ty(match_pair.pattern.ty) => {
481                 let index = indices[value];
482                 let new_candidate = self.candidate_without_match_pair(match_pair_index,
483                                                                       candidate);
484                 resulting_candidates[index].push(new_candidate);
485                 true
486             }
487             (&TestKind::SwitchInt { .. }, _) => false,
488
489
490             (&TestKind::Len { len: test_len, op: BinOp::Eq },
491              &PatternKind::Slice { ref prefix, ref slice, ref suffix }) => {
492                 let pat_len = (prefix.len() + suffix.len()) as u64;
493                 match (test_len.cmp(&pat_len), slice) {
494                     (Ordering::Equal, &None) => {
495                         // on true, min_len = len = $actual_length,
496                         // on false, len != $actual_length
497                         resulting_candidates[0].push(
498                             self.candidate_after_slice_test(match_pair_index,
499                                                             candidate,
500                                                             prefix,
501                                                             slice.as_ref(),
502                                                             suffix)
503                         );
504                         true
505                     }
506                     (Ordering::Less, _) => {
507                         // test_len < pat_len. If $actual_len = test_len,
508                         // then $actual_len < pat_len and we don't have
509                         // enough elements.
510                         resulting_candidates[1].push(candidate.clone());
511                         true
512                     }
513                     (Ordering::Equal, &Some(_)) | (Ordering::Greater, &Some(_)) => {
514                         // This can match both if $actual_len = test_len >= pat_len,
515                         // and if $actual_len > test_len. We can't advance.
516                         false
517                     }
518                     (Ordering::Greater, &None) => {
519                         // test_len != pat_len, so if $actual_len = test_len, then
520                         // $actual_len != pat_len.
521                         resulting_candidates[1].push(candidate.clone());
522                         true
523                     }
524                 }
525             }
526
527             (&TestKind::Len { len: test_len, op: BinOp::Ge },
528              &PatternKind::Slice { ref prefix, ref slice, ref suffix }) => {
529                 // the test is `$actual_len >= test_len`
530                 let pat_len = (prefix.len() + suffix.len()) as u64;
531                 match (test_len.cmp(&pat_len), slice) {
532                     (Ordering::Equal, &Some(_))  => {
533                         // $actual_len >= test_len = pat_len,
534                         // so we can match.
535                         resulting_candidates[0].push(
536                             self.candidate_after_slice_test(match_pair_index,
537                                                             candidate,
538                                                             prefix,
539                                                             slice.as_ref(),
540                                                             suffix)
541                         );
542                         true
543                     }
544                     (Ordering::Less, _) | (Ordering::Equal, &None) => {
545                         // test_len <= pat_len. If $actual_len < test_len,
546                         // then it is also < pat_len, so the test passing is
547                         // necessary (but insufficient).
548                         resulting_candidates[0].push(candidate.clone());
549                         true
550                     }
551                     (Ordering::Greater, &None) => {
552                         // test_len > pat_len. If $actual_len >= test_len > pat_len,
553                         // then we know we won't have a match.
554                         resulting_candidates[1].push(candidate.clone());
555                         true
556                     }
557                     (Ordering::Greater, &Some(_)) => {
558                         // test_len < pat_len, and is therefore less
559                         // strict. This can still go both ways.
560                         false
561                     }
562                 }
563             }
564
565             (&TestKind::Eq { .. }, _) |
566             (&TestKind::Range { .. }, _) |
567             (&TestKind::Len { .. }, _) => {
568                 // These are all binary tests.
569                 //
570                 // FIXME(#29623) we can be more clever here
571                 let pattern_test = self.test(&match_pair);
572                 if pattern_test.kind == test.kind {
573                     let new_candidate = self.candidate_without_match_pair(match_pair_index,
574                                                                           candidate);
575                     resulting_candidates[0].push(new_candidate);
576                     true
577                 } else {
578                     false
579                 }
580             }
581         }
582     }
583
584     fn candidate_without_match_pair<'pat>(&mut self,
585                                           match_pair_index: usize,
586                                           candidate: &Candidate<'pat, 'tcx>)
587                                           -> Candidate<'pat, 'tcx> {
588         let other_match_pairs =
589             candidate.match_pairs.iter()
590                                  .enumerate()
591                                  .filter(|&(index, _)| index != match_pair_index)
592                                  .map(|(_, mp)| mp.clone())
593                                  .collect();
594         Candidate {
595             span: candidate.span,
596             match_pairs: other_match_pairs,
597             bindings: candidate.bindings.clone(),
598             guard: candidate.guard.clone(),
599             arm_index: candidate.arm_index,
600         }
601     }
602
603     fn candidate_after_slice_test<'pat>(&mut self,
604                                         match_pair_index: usize,
605                                         candidate: &Candidate<'pat, 'tcx>,
606                                         prefix: &'pat [Pattern<'tcx>],
607                                         opt_slice: Option<&'pat Pattern<'tcx>>,
608                                         suffix: &'pat [Pattern<'tcx>])
609                                         -> Candidate<'pat, 'tcx> {
610         let mut new_candidate =
611             self.candidate_without_match_pair(match_pair_index, candidate);
612         self.prefix_slice_suffix(
613             &mut new_candidate.match_pairs,
614             &candidate.match_pairs[match_pair_index].lvalue,
615             prefix,
616             opt_slice,
617             suffix);
618
619         new_candidate
620     }
621
622     fn candidate_after_variant_switch<'pat>(&mut self,
623                                             match_pair_index: usize,
624                                             adt_def: &'tcx ty::AdtDef,
625                                             variant_index: usize,
626                                             subpatterns: &'pat [FieldPattern<'tcx>],
627                                             candidate: &Candidate<'pat, 'tcx>)
628                                             -> Candidate<'pat, 'tcx> {
629         let match_pair = &candidate.match_pairs[match_pair_index];
630
631         // So, if we have a match-pattern like `x @ Enum::Variant(P1, P2)`,
632         // we want to create a set of derived match-patterns like
633         // `(x as Variant).0 @ P1` and `(x as Variant).1 @ P1`.
634         let elem = ProjectionElem::Downcast(adt_def, variant_index);
635         let downcast_lvalue = match_pair.lvalue.clone().elem(elem); // `(x as Variant)`
636         let consequent_match_pairs =
637             subpatterns.iter()
638                        .map(|subpattern| {
639                            // e.g., `(x as Variant).0`
640                            let lvalue = downcast_lvalue.clone().field(subpattern.field,
641                                                                       subpattern.pattern.ty);
642                            // e.g., `(x as Variant).0 @ P1`
643                            MatchPair::new(lvalue, &subpattern.pattern)
644                        });
645
646         // In addition, we need all the other match pairs from the old candidate.
647         let other_match_pairs =
648             candidate.match_pairs.iter()
649                                  .enumerate()
650                                  .filter(|&(index, _)| index != match_pair_index)
651                                  .map(|(_, mp)| mp.clone());
652
653         let all_match_pairs = consequent_match_pairs.chain(other_match_pairs).collect();
654
655         Candidate {
656             span: candidate.span,
657             match_pairs: all_match_pairs,
658             bindings: candidate.bindings.clone(),
659             guard: candidate.guard.clone(),
660             arm_index: candidate.arm_index,
661         }
662     }
663
664     fn error_simplifyable<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> ! {
665         span_bug!(match_pair.pattern.span,
666                   "simplifyable pattern found: {:?}",
667                   match_pair.pattern)
668     }
669 }
670
671 fn is_switch_ty<'tcx>(ty: Ty<'tcx>) -> bool {
672     ty.is_integral() || ty.is_char() || ty.is_bool()
673 }