]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/build/matches/test.rs
Auto merge of #52733 - pnkfelix:issue-51348-make-temp-for-each-candidate-in-arm,...
[rust.git] / src / librustc_mir / build / matches / test.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 // Testing candidates
12 //
13 // After candidates have been simplified, the only match pairs that
14 // remain are those that require some sort of test. The functions here
15 // identify what tests are needed, perform the tests, and then filter
16 // the candidates based on the result.
17
18 use build::Builder;
19 use build::matches::{Candidate, MatchPair, Test, TestKind};
20 use hair::*;
21 use rustc_data_structures::fx::FxHashMap;
22 use rustc_data_structures::bitvec::BitVector;
23 use rustc::ty::{self, Ty};
24 use rustc::ty::util::IntTypeExt;
25 use rustc::mir::*;
26 use rustc::hir::{RangeEnd, Mutability};
27 use syntax_pos::Span;
28 use std::cmp::Ordering;
29
30 impl<'a, 'gcx, 'tcx> Builder<'a, 'gcx, 'tcx> {
31     /// Identifies what test is needed to decide if `match_pair` is applicable.
32     ///
33     /// It is a bug to call this with a simplifyable pattern.
34     pub fn test<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> Test<'tcx> {
35         match *match_pair.pattern.kind {
36             PatternKind::Variant { ref adt_def, substs: _, variant_index: _, subpatterns: _ } => {
37                 Test {
38                     span: match_pair.pattern.span,
39                     kind: TestKind::Switch {
40                         adt_def: adt_def.clone(),
41                         variants: BitVector::new(adt_def.variants.len()),
42                     },
43                 }
44             }
45
46             PatternKind::Constant { .. }
47             if is_switch_ty(match_pair.pattern.ty) => {
48                 // for integers, we use a SwitchInt match, which allows
49                 // us to handle more cases
50                 Test {
51                     span: match_pair.pattern.span,
52                     kind: TestKind::SwitchInt {
53                         switch_ty: match_pair.pattern.ty,
54
55                         // these maps are empty to start; cases are
56                         // added below in add_cases_to_switch
57                         options: vec![],
58                         indices: FxHashMap(),
59                     }
60                 }
61             }
62
63             PatternKind::Constant { value } => {
64                 Test {
65                     span: match_pair.pattern.span,
66                     kind: TestKind::Eq {
67                         value,
68                         ty: match_pair.pattern.ty.clone()
69                     }
70                 }
71             }
72
73             PatternKind::Range { lo, hi, end } => {
74                 Test {
75                     span: match_pair.pattern.span,
76                     kind: TestKind::Range {
77                         lo,
78                         hi,
79                         ty: match_pair.pattern.ty.clone(),
80                         end,
81                     },
82                 }
83             }
84
85             PatternKind::Slice { ref prefix, ref slice, ref suffix }
86                     if !match_pair.slice_len_checked => {
87                 let len = prefix.len() + suffix.len();
88                 let op = if slice.is_some() {
89                     BinOp::Ge
90                 } else {
91                     BinOp::Eq
92                 };
93                 Test {
94                     span: match_pair.pattern.span,
95                     kind: TestKind::Len { len: len as u64, op: op },
96                 }
97             }
98
99             PatternKind::Array { .. } |
100             PatternKind::Slice { .. } |
101             PatternKind::Wild |
102             PatternKind::Binding { .. } |
103             PatternKind::Leaf { .. } |
104             PatternKind::Deref { .. } => {
105                 self.error_simplifyable(match_pair)
106             }
107         }
108     }
109
110     pub fn add_cases_to_switch<'pat>(&mut self,
111                                      test_place: &Place<'tcx>,
112                                      candidate: &Candidate<'pat, 'tcx>,
113                                      switch_ty: Ty<'tcx>,
114                                      options: &mut Vec<u128>,
115                                      indices: &mut FxHashMap<&'tcx ty::Const<'tcx>, usize>)
116                                      -> bool
117     {
118         let match_pair = match candidate.match_pairs.iter().find(|mp| mp.place == *test_place) {
119             Some(match_pair) => match_pair,
120             _ => { return false; }
121         };
122
123         match *match_pair.pattern.kind {
124             PatternKind::Constant { value } => {
125                 let switch_ty = ty::ParamEnv::empty().and(switch_ty);
126                 indices.entry(value)
127                        .or_insert_with(|| {
128                            options.push(value.unwrap_bits(self.hir.tcx(), switch_ty));
129                            options.len() - 1
130                        });
131                 true
132             }
133             PatternKind::Variant { .. } => {
134                 panic!("you should have called add_variants_to_switch instead!");
135             }
136             PatternKind::Range { .. } |
137             PatternKind::Slice { .. } |
138             PatternKind::Array { .. } |
139             PatternKind::Wild |
140             PatternKind::Binding { .. } |
141             PatternKind::Leaf { .. } |
142             PatternKind::Deref { .. } => {
143                 // don't know how to add these patterns to a switch
144                 false
145             }
146         }
147     }
148
149     pub fn add_variants_to_switch<'pat>(&mut self,
150                                         test_place: &Place<'tcx>,
151                                         candidate: &Candidate<'pat, 'tcx>,
152                                         variants: &mut BitVector<usize>)
153                                         -> bool
154     {
155         let match_pair = match candidate.match_pairs.iter().find(|mp| mp.place == *test_place) {
156             Some(match_pair) => match_pair,
157             _ => { return false; }
158         };
159
160         match *match_pair.pattern.kind {
161             PatternKind::Variant { adt_def: _ , variant_index,  .. } => {
162                 // We have a pattern testing for variant `variant_index`
163                 // set the corresponding index to true
164                 variants.insert(variant_index);
165                 true
166             }
167             _ => {
168                 // don't know how to add these patterns to a switch
169                 false
170             }
171         }
172     }
173
174     /// Generates the code to perform a test.
175     pub fn perform_test(&mut self,
176                         block: BasicBlock,
177                         place: &Place<'tcx>,
178                         test: &Test<'tcx>)
179                         -> Vec<BasicBlock> {
180         debug!("perform_test({:?}, {:?}: {:?}, {:?})",
181                block,
182                place,
183                place.ty(&self.local_decls, self.hir.tcx()),
184                test);
185         let source_info = self.source_info(test.span);
186         match test.kind {
187             TestKind::Switch { adt_def, ref variants } => {
188                 // Variants is a BitVec of indexes into adt_def.variants.
189                 let num_enum_variants = adt_def.variants.len();
190                 let used_variants = variants.count();
191                 let mut otherwise_block = None;
192                 let mut target_blocks = Vec::with_capacity(num_enum_variants);
193                 let mut targets = Vec::with_capacity(used_variants + 1);
194                 let mut values = Vec::with_capacity(used_variants);
195                 let tcx = self.hir.tcx();
196                 for (idx, discr) in adt_def.discriminants(tcx).enumerate() {
197                     target_blocks.push(if variants.contains(idx) {
198                         values.push(discr.val);
199                         targets.push(self.cfg.start_new_block());
200                         *targets.last().unwrap()
201                     } else {
202                         if otherwise_block.is_none() {
203                             otherwise_block = Some(self.cfg.start_new_block());
204                         }
205                         otherwise_block.unwrap()
206                     });
207                 }
208                 if let Some(otherwise_block) = otherwise_block {
209                     targets.push(otherwise_block);
210                 } else {
211                     targets.push(self.unreachable_block());
212                 }
213                 debug!("num_enum_variants: {}, tested variants: {:?}, variants: {:?}",
214                        num_enum_variants, values, variants);
215                 let discr_ty = adt_def.repr.discr_type().to_ty(tcx);
216                 let discr = self.temp(discr_ty, test.span);
217                 self.cfg.push_assign(block, source_info, &discr,
218                                      Rvalue::Discriminant(place.clone()));
219                 assert_eq!(values.len() + 1, targets.len());
220                 self.cfg.terminate(block, source_info, TerminatorKind::SwitchInt {
221                     discr: Operand::Move(discr),
222                     switch_ty: discr_ty,
223                     values: From::from(values),
224                     targets,
225                 });
226                 target_blocks
227             }
228
229             TestKind::SwitchInt { switch_ty, ref options, indices: _ } => {
230                 let (ret, terminator) = if switch_ty.sty == ty::TyBool {
231                     assert!(options.len() > 0 && options.len() <= 2);
232                     let (true_bb, false_bb) = (self.cfg.start_new_block(),
233                                                self.cfg.start_new_block());
234                     let ret = match options[0] {
235                         1 => vec![true_bb, false_bb],
236                         0 => vec![false_bb, true_bb],
237                         v => span_bug!(test.span, "expected boolean value but got {:?}", v)
238                     };
239                     (ret, TerminatorKind::if_(self.hir.tcx(), Operand::Copy(place.clone()),
240                                               true_bb, false_bb))
241                 } else {
242                     // The switch may be inexhaustive so we
243                     // add a catch all block
244                     let otherwise = self.cfg.start_new_block();
245                     let targets: Vec<_> =
246                         options.iter()
247                                .map(|_| self.cfg.start_new_block())
248                                .chain(Some(otherwise))
249                                .collect();
250                     (targets.clone(), TerminatorKind::SwitchInt {
251                         discr: Operand::Copy(place.clone()),
252                         switch_ty,
253                         values: options.clone().into(),
254                         targets,
255                     })
256                 };
257                 self.cfg.terminate(block, source_info, terminator);
258                 ret
259             }
260
261             TestKind::Eq { value, mut ty } => {
262                 let mut val = Operand::Copy(place.clone());
263                 let mut expect = self.literal_operand(test.span, ty, value);
264                 // Use PartialEq::eq instead of BinOp::Eq
265                 // (the binop can only handle primitives)
266                 let fail = self.cfg.start_new_block();
267                 if !ty.is_scalar() {
268                     // If we're using b"..." as a pattern, we need to insert an
269                     // unsizing coercion, as the byte string has the type &[u8; N].
270                     //
271                     // We want to do this even when the scrutinee is a reference to an
272                     // array, so we can call `<[u8]>::eq` rather than having to find an
273                     // `<[u8; N]>::eq`.
274                     let unsize = |ty: Ty<'tcx>| match ty.sty {
275                         ty::TyRef(region, rty, _) => match rty.sty {
276                             ty::TyArray(inner_ty, n) => Some((region, inner_ty, n)),
277                             _ => None,
278                         },
279                         _ => None,
280                     };
281                     let opt_ref_ty = unsize(ty);
282                     let opt_ref_test_ty = unsize(value.ty);
283                     let mut place = place.clone();
284                     match (opt_ref_ty, opt_ref_test_ty) {
285                         // nothing to do, neither is an array
286                         (None, None) => {},
287                         (Some((region, elem_ty, _)), _) |
288                         (None, Some((region, elem_ty, _))) => {
289                             let tcx = self.hir.tcx();
290                             // make both a slice
291                             ty = tcx.mk_imm_ref(region, tcx.mk_slice(elem_ty));
292                             if opt_ref_ty.is_some() {
293                                 place = self.temp(ty, test.span);
294                                 self.cfg.push_assign(block, source_info, &place,
295                                                     Rvalue::Cast(CastKind::Unsize, val, ty));
296                             }
297                             if opt_ref_test_ty.is_some() {
298                                 let array = self.literal_operand(
299                                     test.span,
300                                     value.ty,
301                                     value,
302                                 );
303
304                                 let slice = self.temp(ty, test.span);
305                                 self.cfg.push_assign(block, source_info, &slice,
306                                                     Rvalue::Cast(CastKind::Unsize, array, ty));
307                                 expect = Operand::Move(slice);
308                             }
309                         },
310                     }
311                     let eq_def_id = self.hir.tcx().lang_items().eq_trait().unwrap();
312                     let (mty, method) = self.hir.trait_method(eq_def_id, "eq", ty, &[ty.into()]);
313
314                     // take the argument by reference
315                     let region_scope = self.topmost_scope();
316                     let region = self.hir.tcx().mk_region(ty::ReScope(region_scope));
317                     let tam = ty::TypeAndMut {
318                         ty,
319                         mutbl: Mutability::MutImmutable,
320                     };
321                     let ref_ty = self.hir.tcx().mk_ref(region, tam);
322
323                     // let lhs_ref_place = &lhs;
324                     let ref_rvalue = Rvalue::Ref(region, BorrowKind::Shared, place.clone());
325                     let lhs_ref_place = self.temp(ref_ty, test.span);
326                     self.cfg.push_assign(block, source_info, &lhs_ref_place, ref_rvalue);
327                     let val = Operand::Move(lhs_ref_place);
328
329                     // let rhs_place = rhs;
330                     let rhs_place = self.temp(ty, test.span);
331                     self.cfg.push_assign(block, source_info, &rhs_place, Rvalue::Use(expect));
332
333                     // let rhs_ref_place = &rhs_place;
334                     let ref_rvalue = Rvalue::Ref(region, BorrowKind::Shared, rhs_place);
335                     let rhs_ref_place = self.temp(ref_ty, test.span);
336                     self.cfg.push_assign(block, source_info, &rhs_ref_place, ref_rvalue);
337                     let expect = Operand::Move(rhs_ref_place);
338
339                     let bool_ty = self.hir.bool_ty();
340                     let eq_result = self.temp(bool_ty, test.span);
341                     let eq_block = self.cfg.start_new_block();
342                     let cleanup = self.diverge_cleanup();
343                     self.cfg.terminate(block, source_info, TerminatorKind::Call {
344                         func: Operand::Constant(box Constant {
345                             span: test.span,
346                             ty: mty,
347                             literal: method
348                         }),
349                         args: vec![val, expect],
350                         destination: Some((eq_result.clone(), eq_block)),
351                         cleanup: Some(cleanup),
352                     });
353
354                     // check the result
355                     let block = self.cfg.start_new_block();
356                     self.cfg.terminate(eq_block, source_info,
357                                        TerminatorKind::if_(self.hir.tcx(),
358                                                            Operand::Move(eq_result),
359                                                            block, fail));
360                     vec![block, fail]
361                 } else {
362                     let block = self.compare(block, fail, test.span, BinOp::Eq, expect, val);
363                     vec![block, fail]
364                 }
365             }
366
367             TestKind::Range { ref lo, ref hi, ty, ref end } => {
368                 // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons.
369                 let lo = self.literal_operand(test.span, ty.clone(), lo.clone());
370                 let hi = self.literal_operand(test.span, ty.clone(), hi.clone());
371                 let val = Operand::Copy(place.clone());
372
373                 let fail = self.cfg.start_new_block();
374                 let block = self.compare(block, fail, test.span, BinOp::Le, lo, val.clone());
375                 let block = match *end {
376                     RangeEnd::Included => self.compare(block, fail, test.span, BinOp::Le, val, hi),
377                     RangeEnd::Excluded => self.compare(block, fail, test.span, BinOp::Lt, val, hi),
378                 };
379
380                 vec![block, fail]
381             }
382
383             TestKind::Len { len, op } => {
384                 let (usize_ty, bool_ty) = (self.hir.usize_ty(), self.hir.bool_ty());
385                 let (actual, result) = (self.temp(usize_ty, test.span),
386                                         self.temp(bool_ty, test.span));
387
388                 // actual = len(place)
389                 self.cfg.push_assign(block, source_info,
390                                      &actual, Rvalue::Len(place.clone()));
391
392                 // expected = <N>
393                 let expected = self.push_usize(block, source_info, len);
394
395                 // result = actual == expected OR result = actual < expected
396                 self.cfg.push_assign(block, source_info, &result,
397                                      Rvalue::BinaryOp(op,
398                                                       Operand::Move(actual),
399                                                       Operand::Move(expected)));
400
401                 // branch based on result
402                 let (false_bb, true_bb) = (self.cfg.start_new_block(),
403                                            self.cfg.start_new_block());
404                 self.cfg.terminate(block, source_info,
405                                    TerminatorKind::if_(self.hir.tcx(), Operand::Move(result),
406                                                        true_bb, false_bb));
407                 vec![true_bb, false_bb]
408             }
409         }
410     }
411
412     fn compare(&mut self,
413                block: BasicBlock,
414                fail_block: BasicBlock,
415                span: Span,
416                op: BinOp,
417                left: Operand<'tcx>,
418                right: Operand<'tcx>) -> BasicBlock {
419         let bool_ty = self.hir.bool_ty();
420         let result = self.temp(bool_ty, span);
421
422         // result = op(left, right)
423         let source_info = self.source_info(span);
424         self.cfg.push_assign(block, source_info, &result,
425                              Rvalue::BinaryOp(op, left, right));
426
427         // branch based on result
428         let target_block = self.cfg.start_new_block();
429         self.cfg.terminate(block, source_info,
430                            TerminatorKind::if_(self.hir.tcx(), Operand::Move(result),
431                                                target_block, fail_block));
432         target_block
433     }
434
435     /// Given that we are performing `test` against `test_place`,
436     /// this job sorts out what the status of `candidate` will be
437     /// after the test. The `resulting_candidates` vector stores, for
438     /// each possible outcome of `test`, a vector of the candidates
439     /// that will result. This fn should add a (possibly modified)
440     /// clone of candidate into `resulting_candidates` wherever
441     /// appropriate.
442     ///
443     /// So, for example, if this candidate is `x @ Some(P0)` and the
444     /// test is a variant test, then we would add `(x as Option).0 @
445     /// P0` to the `resulting_candidates` entry corresponding to the
446     /// variant `Some`.
447     ///
448     /// However, in some cases, the test may just not be relevant to
449     /// candidate. For example, suppose we are testing whether `foo.x == 22`,
450     /// but in one match arm we have `Foo { x: _, ... }`... in that case,
451     /// the test for what value `x` has has no particular relevance
452     /// to this candidate. In such cases, this function just returns false
453     /// without doing anything. This is used by the overall `match_candidates`
454     /// algorithm to structure the match as a whole. See `match_candidates` for
455     /// more details.
456     ///
457     /// FIXME(#29623). In some cases, we have some tricky choices to
458     /// make.  for example, if we are testing that `x == 22`, but the
459     /// candidate is `x @ 13..55`, what should we do? In the event
460     /// that the test is true, we know that the candidate applies, but
461     /// in the event of false, we don't know that it *doesn't*
462     /// apply. For now, we return false, indicate that the test does
463     /// not apply to this candidate, but it might be we can get
464     /// tighter match code if we do something a bit different.
465     pub fn sort_candidate<'pat>(&mut self,
466                                 test_place: &Place<'tcx>,
467                                 test: &Test<'tcx>,
468                                 candidate: &Candidate<'pat, 'tcx>,
469                                 resulting_candidates: &mut [Vec<Candidate<'pat, 'tcx>>])
470                                 -> bool {
471         // Find the match_pair for this place (if any). At present,
472         // afaik, there can be at most one. (In the future, if we
473         // adopted a more general `@` operator, there might be more
474         // than one, but it'd be very unusual to have two sides that
475         // both require tests; you'd expect one side to be simplified
476         // away.)
477         let tested_match_pair = candidate.match_pairs.iter()
478                                                      .enumerate()
479                                                      .filter(|&(_, mp)| mp.place == *test_place)
480                                                      .next();
481         let (match_pair_index, match_pair) = match tested_match_pair {
482             Some(pair) => pair,
483             None => {
484                 // We are not testing this place. Therefore, this
485                 // candidate applies to ALL outcomes.
486                 return false;
487             }
488         };
489
490         match (&test.kind, &*match_pair.pattern.kind) {
491             // If we are performing a variant switch, then this
492             // informs variant patterns, but nothing else.
493             (&TestKind::Switch { adt_def: tested_adt_def, .. },
494              &PatternKind::Variant { adt_def, variant_index, ref subpatterns, .. }) => {
495                 assert_eq!(adt_def, tested_adt_def);
496                 let new_candidate =
497                     self.candidate_after_variant_switch(match_pair_index,
498                                                         adt_def,
499                                                         variant_index,
500                                                         subpatterns,
501                                                         candidate);
502                 resulting_candidates[variant_index].push(new_candidate);
503                 true
504             }
505             (&TestKind::Switch { .. }, _) => false,
506
507             // If we are performing a switch over integers, then this informs integer
508             // equality, but nothing else.
509             //
510             // FIXME(#29623) we could use PatternKind::Range to rule
511             // things out here, in some cases.
512             (&TestKind::SwitchInt { switch_ty: _, options: _, ref indices },
513              &PatternKind::Constant { ref value })
514             if is_switch_ty(match_pair.pattern.ty) => {
515                 let index = indices[value];
516                 let new_candidate = self.candidate_without_match_pair(match_pair_index,
517                                                                       candidate);
518                 resulting_candidates[index].push(new_candidate);
519                 true
520             }
521             (&TestKind::SwitchInt { .. }, _) => false,
522
523
524             (&TestKind::Len { len: test_len, op: BinOp::Eq },
525              &PatternKind::Slice { ref prefix, ref slice, ref suffix }) => {
526                 let pat_len = (prefix.len() + suffix.len()) as u64;
527                 match (test_len.cmp(&pat_len), slice) {
528                     (Ordering::Equal, &None) => {
529                         // on true, min_len = len = $actual_length,
530                         // on false, len != $actual_length
531                         resulting_candidates[0].push(
532                             self.candidate_after_slice_test(match_pair_index,
533                                                             candidate,
534                                                             prefix,
535                                                             slice.as_ref(),
536                                                             suffix)
537                         );
538                         true
539                     }
540                     (Ordering::Less, _) => {
541                         // test_len < pat_len. If $actual_len = test_len,
542                         // then $actual_len < pat_len and we don't have
543                         // enough elements.
544                         resulting_candidates[1].push(candidate.clone());
545                         true
546                     }
547                     (Ordering::Equal, &Some(_)) | (Ordering::Greater, &Some(_)) => {
548                         // This can match both if $actual_len = test_len >= pat_len,
549                         // and if $actual_len > test_len. We can't advance.
550                         false
551                     }
552                     (Ordering::Greater, &None) => {
553                         // test_len != pat_len, so if $actual_len = test_len, then
554                         // $actual_len != pat_len.
555                         resulting_candidates[1].push(candidate.clone());
556                         true
557                     }
558                 }
559             }
560
561             (&TestKind::Len { len: test_len, op: BinOp::Ge },
562              &PatternKind::Slice { ref prefix, ref slice, ref suffix }) => {
563                 // the test is `$actual_len >= test_len`
564                 let pat_len = (prefix.len() + suffix.len()) as u64;
565                 match (test_len.cmp(&pat_len), slice) {
566                     (Ordering::Equal, &Some(_))  => {
567                         // $actual_len >= test_len = pat_len,
568                         // so we can match.
569                         resulting_candidates[0].push(
570                             self.candidate_after_slice_test(match_pair_index,
571                                                             candidate,
572                                                             prefix,
573                                                             slice.as_ref(),
574                                                             suffix)
575                         );
576                         true
577                     }
578                     (Ordering::Less, _) | (Ordering::Equal, &None) => {
579                         // test_len <= pat_len. If $actual_len < test_len,
580                         // then it is also < pat_len, so the test passing is
581                         // necessary (but insufficient).
582                         resulting_candidates[0].push(candidate.clone());
583                         true
584                     }
585                     (Ordering::Greater, &None) => {
586                         // test_len > pat_len. If $actual_len >= test_len > pat_len,
587                         // then we know we won't have a match.
588                         resulting_candidates[1].push(candidate.clone());
589                         true
590                     }
591                     (Ordering::Greater, &Some(_)) => {
592                         // test_len < pat_len, and is therefore less
593                         // strict. This can still go both ways.
594                         false
595                     }
596                 }
597             }
598
599             (&TestKind::Eq { .. }, _) |
600             (&TestKind::Range { .. }, _) |
601             (&TestKind::Len { .. }, _) => {
602                 // These are all binary tests.
603                 //
604                 // FIXME(#29623) we can be more clever here
605                 let pattern_test = self.test(&match_pair);
606                 if pattern_test.kind == test.kind {
607                     let new_candidate = self.candidate_without_match_pair(match_pair_index,
608                                                                           candidate);
609                     resulting_candidates[0].push(new_candidate);
610                     true
611                 } else {
612                     false
613                 }
614             }
615         }
616     }
617
618     fn candidate_without_match_pair<'pat>(&mut self,
619                                           match_pair_index: usize,
620                                           candidate: &Candidate<'pat, 'tcx>)
621                                           -> Candidate<'pat, 'tcx> {
622         let other_match_pairs =
623             candidate.match_pairs.iter()
624                                  .enumerate()
625                                  .filter(|&(index, _)| index != match_pair_index)
626                                  .map(|(_, mp)| mp.clone())
627                                  .collect();
628         Candidate {
629             span: candidate.span,
630             match_pairs: other_match_pairs,
631             bindings: candidate.bindings.clone(),
632             guard: candidate.guard.clone(),
633             arm_index: candidate.arm_index,
634             pat_index: candidate.pat_index,
635             pre_binding_block: candidate.pre_binding_block,
636             next_candidate_pre_binding_block: candidate.next_candidate_pre_binding_block,
637         }
638     }
639
640     fn candidate_after_slice_test<'pat>(&mut self,
641                                         match_pair_index: usize,
642                                         candidate: &Candidate<'pat, 'tcx>,
643                                         prefix: &'pat [Pattern<'tcx>],
644                                         opt_slice: Option<&'pat Pattern<'tcx>>,
645                                         suffix: &'pat [Pattern<'tcx>])
646                                         -> Candidate<'pat, 'tcx> {
647         let mut new_candidate =
648             self.candidate_without_match_pair(match_pair_index, candidate);
649         self.prefix_slice_suffix(
650             &mut new_candidate.match_pairs,
651             &candidate.match_pairs[match_pair_index].place,
652             prefix,
653             opt_slice,
654             suffix);
655
656         new_candidate
657     }
658
659     fn candidate_after_variant_switch<'pat>(&mut self,
660                                             match_pair_index: usize,
661                                             adt_def: &'tcx ty::AdtDef,
662                                             variant_index: usize,
663                                             subpatterns: &'pat [FieldPattern<'tcx>],
664                                             candidate: &Candidate<'pat, 'tcx>)
665                                             -> Candidate<'pat, 'tcx> {
666         let match_pair = &candidate.match_pairs[match_pair_index];
667
668         // So, if we have a match-pattern like `x @ Enum::Variant(P1, P2)`,
669         // we want to create a set of derived match-patterns like
670         // `(x as Variant).0 @ P1` and `(x as Variant).1 @ P1`.
671         let elem = ProjectionElem::Downcast(adt_def, variant_index);
672         let downcast_place = match_pair.place.clone().elem(elem); // `(x as Variant)`
673         let consequent_match_pairs =
674             subpatterns.iter()
675                        .map(|subpattern| {
676                            // e.g., `(x as Variant).0`
677                            let place = downcast_place.clone().field(subpattern.field,
678                                                                       subpattern.pattern.ty);
679                            // e.g., `(x as Variant).0 @ P1`
680                            MatchPair::new(place, &subpattern.pattern)
681                        });
682
683         // In addition, we need all the other match pairs from the old candidate.
684         let other_match_pairs =
685             candidate.match_pairs.iter()
686                                  .enumerate()
687                                  .filter(|&(index, _)| index != match_pair_index)
688                                  .map(|(_, mp)| mp.clone());
689
690         let all_match_pairs = consequent_match_pairs.chain(other_match_pairs).collect();
691
692         Candidate {
693             span: candidate.span,
694             match_pairs: all_match_pairs,
695             bindings: candidate.bindings.clone(),
696             guard: candidate.guard.clone(),
697             arm_index: candidate.arm_index,
698             pat_index: candidate.pat_index,
699             pre_binding_block: candidate.pre_binding_block,
700             next_candidate_pre_binding_block: candidate.next_candidate_pre_binding_block,
701         }
702     }
703
704     fn error_simplifyable<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> ! {
705         span_bug!(match_pair.pattern.span,
706                   "simplifyable pattern found: {:?}",
707                   match_pair.pattern)
708     }
709 }
710
711 fn is_switch_ty<'tcx>(ty: Ty<'tcx>) -> bool {
712     ty.is_integral() || ty.is_char() || ty.is_bool()
713 }