]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/build/matches/test.rs
Auto merge of #43651 - petrochenkov:foreign-life, r=eddyb
[rust.git] / src / librustc_mir / build / matches / test.rs
1 // Copyright 2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 // Testing candidates
12 //
13 // After candidates have been simplified, the only match pairs that
14 // remain are those that require some sort of test. The functions here
15 // identify what tests are needed, perform the tests, and then filter
16 // the candidates based on the result.
17
18 use build::Builder;
19 use build::matches::{Candidate, MatchPair, Test, TestKind};
20 use hair::*;
21 use rustc_data_structures::fx::FxHashMap;
22 use rustc_data_structures::bitvec::BitVector;
23 use rustc::middle::const_val::ConstVal;
24 use rustc::ty::{self, Ty};
25 use rustc::ty::util::IntTypeExt;
26 use rustc::mir::*;
27 use rustc::hir::RangeEnd;
28 use syntax_pos::Span;
29 use std::cmp::Ordering;
30
31 impl<'a, 'gcx, 'tcx> Builder<'a, 'gcx, 'tcx> {
32     /// Identifies what test is needed to decide if `match_pair` is applicable.
33     ///
34     /// It is a bug to call this with a simplifyable pattern.
35     pub fn test<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> Test<'tcx> {
36         match *match_pair.pattern.kind {
37             PatternKind::Variant { ref adt_def, substs: _, variant_index: _, subpatterns: _ } => {
38                 Test {
39                     span: match_pair.pattern.span,
40                     kind: TestKind::Switch {
41                         adt_def: adt_def.clone(),
42                         variants: BitVector::new(self.hir.num_variants(adt_def)),
43                     },
44                 }
45             }
46
47             PatternKind::Constant { .. }
48             if is_switch_ty(match_pair.pattern.ty) => {
49                 // for integers, we use a SwitchInt match, which allows
50                 // us to handle more cases
51                 Test {
52                     span: match_pair.pattern.span,
53                     kind: TestKind::SwitchInt {
54                         switch_ty: match_pair.pattern.ty,
55
56                         // these maps are empty to start; cases are
57                         // added below in add_cases_to_switch
58                         options: vec![],
59                         indices: FxHashMap(),
60                     }
61                 }
62             }
63
64             PatternKind::Constant { ref value } => {
65                 Test {
66                     span: match_pair.pattern.span,
67                     kind: TestKind::Eq {
68                         value: value.clone(),
69                         ty: match_pair.pattern.ty.clone()
70                     }
71                 }
72             }
73
74             PatternKind::Range { ref lo, ref hi, ref end } => {
75                 Test {
76                     span: match_pair.pattern.span,
77                     kind: TestKind::Range {
78                         lo: Literal::Value { value: lo.clone() },
79                         hi: Literal::Value { value: hi.clone() },
80                         ty: match_pair.pattern.ty.clone(),
81                         end: end.clone(),
82                     },
83                 }
84             }
85
86             PatternKind::Slice { ref prefix, ref slice, ref suffix }
87                     if !match_pair.slice_len_checked => {
88                 let len = prefix.len() + suffix.len();
89                 let op = if slice.is_some() {
90                     BinOp::Ge
91                 } else {
92                     BinOp::Eq
93                 };
94                 Test {
95                     span: match_pair.pattern.span,
96                     kind: TestKind::Len { len: len as u64, op: op },
97                 }
98             }
99
100             PatternKind::Array { .. } |
101             PatternKind::Slice { .. } |
102             PatternKind::Wild |
103             PatternKind::Binding { .. } |
104             PatternKind::Leaf { .. } |
105             PatternKind::Deref { .. } => {
106                 self.error_simplifyable(match_pair)
107             }
108         }
109     }
110
111     pub fn add_cases_to_switch<'pat>(&mut self,
112                                      test_lvalue: &Lvalue<'tcx>,
113                                      candidate: &Candidate<'pat, 'tcx>,
114                                      switch_ty: Ty<'tcx>,
115                                      options: &mut Vec<ConstVal<'tcx>>,
116                                      indices: &mut FxHashMap<ConstVal<'tcx>, usize>)
117                                      -> bool
118     {
119         let match_pair = match candidate.match_pairs.iter().find(|mp| mp.lvalue == *test_lvalue) {
120             Some(match_pair) => match_pair,
121             _ => { return false; }
122         };
123
124         match *match_pair.pattern.kind {
125             PatternKind::Constant { ref value } => {
126                 // if the lvalues match, the type should match
127                 assert_eq!(match_pair.pattern.ty, switch_ty);
128
129                 indices.entry(value.clone())
130                        .or_insert_with(|| {
131                            options.push(value.clone());
132                            options.len() - 1
133                        });
134                 true
135             }
136             PatternKind::Variant { .. } => {
137                 panic!("you should have called add_variants_to_switch instead!");
138             }
139             PatternKind::Range { .. } |
140             PatternKind::Slice { .. } |
141             PatternKind::Array { .. } |
142             PatternKind::Wild |
143             PatternKind::Binding { .. } |
144             PatternKind::Leaf { .. } |
145             PatternKind::Deref { .. } => {
146                 // don't know how to add these patterns to a switch
147                 false
148             }
149         }
150     }
151
152     pub fn add_variants_to_switch<'pat>(&mut self,
153                                         test_lvalue: &Lvalue<'tcx>,
154                                         candidate: &Candidate<'pat, 'tcx>,
155                                         variants: &mut BitVector)
156                                         -> bool
157     {
158         let match_pair = match candidate.match_pairs.iter().find(|mp| mp.lvalue == *test_lvalue) {
159             Some(match_pair) => match_pair,
160             _ => { return false; }
161         };
162
163         match *match_pair.pattern.kind {
164             PatternKind::Variant { adt_def: _ , variant_index,  .. } => {
165                 // We have a pattern testing for variant `variant_index`
166                 // set the corresponding index to true
167                 variants.insert(variant_index);
168                 true
169             }
170             _ => {
171                 // don't know how to add these patterns to a switch
172                 false
173             }
174         }
175     }
176
177     /// Generates the code to perform a test.
178     pub fn perform_test(&mut self,
179                         block: BasicBlock,
180                         lvalue: &Lvalue<'tcx>,
181                         test: &Test<'tcx>)
182                         -> Vec<BasicBlock> {
183         let source_info = self.source_info(test.span);
184         match test.kind {
185             TestKind::Switch { adt_def, ref variants } => {
186                 // Variants is a BitVec of indexes into adt_def.variants.
187                 let num_enum_variants = self.hir.num_variants(adt_def);
188                 let used_variants = variants.count();
189                 let mut otherwise_block = None;
190                 let mut target_blocks = Vec::with_capacity(num_enum_variants);
191                 let mut targets = Vec::with_capacity(used_variants + 1);
192                 let mut values = Vec::with_capacity(used_variants);
193                 let tcx = self.hir.tcx();
194                 for (idx, discr) in adt_def.discriminants(tcx).enumerate() {
195                     target_blocks.place_back() <- if variants.contains(idx) {
196                         values.push(discr);
197                         *(targets.place_back() <- self.cfg.start_new_block())
198                     } else {
199                         if otherwise_block.is_none() {
200                             otherwise_block = Some(self.cfg.start_new_block());
201                         }
202                         otherwise_block.unwrap()
203                     };
204                 }
205                 if let Some(otherwise_block) = otherwise_block {
206                     targets.push(otherwise_block);
207                 } else {
208                     values.pop();
209                 }
210                 debug!("num_enum_variants: {}, tested variants: {:?}, variants: {:?}",
211                        num_enum_variants, values, variants);
212                 let discr_ty = adt_def.repr.discr_type().to_ty(tcx);
213                 let discr = self.temp(discr_ty, test.span);
214                 self.cfg.push_assign(block, source_info, &discr,
215                                      Rvalue::Discriminant(lvalue.clone()));
216                 assert_eq!(values.len() + 1, targets.len());
217                 self.cfg.terminate(block, source_info, TerminatorKind::SwitchInt {
218                     discr: Operand::Consume(discr),
219                     switch_ty: discr_ty,
220                     values: From::from(values),
221                     targets: targets
222                 });
223                 target_blocks
224             }
225
226             TestKind::SwitchInt { switch_ty, ref options, indices: _ } => {
227                 let (ret, terminator) = if switch_ty.sty == ty::TyBool {
228                     assert!(options.len() > 0 && options.len() <= 2);
229                     let (true_bb, false_bb) = (self.cfg.start_new_block(),
230                                                self.cfg.start_new_block());
231                     let ret = match &options[0] {
232                         &ConstVal::Bool(true) => vec![true_bb, false_bb],
233                         &ConstVal::Bool(false) => vec![false_bb, true_bb],
234                         v => span_bug!(test.span, "expected boolean value but got {:?}", v)
235                     };
236                     (ret, TerminatorKind::if_(self.hir.tcx(), Operand::Consume(lvalue.clone()),
237                                               true_bb, false_bb))
238                 } else {
239                     // The switch may be inexhaustive so we
240                     // add a catch all block
241                     let otherwise = self.cfg.start_new_block();
242                     let targets: Vec<_> =
243                         options.iter()
244                                .map(|_| self.cfg.start_new_block())
245                                .chain(Some(otherwise))
246                                .collect();
247                     let values: Vec<_> = options.iter().map(|v|
248                         v.to_const_int().expect("switching on integral")
249                     ).collect();
250                     (targets.clone(), TerminatorKind::SwitchInt {
251                         discr: Operand::Consume(lvalue.clone()),
252                         switch_ty: switch_ty,
253                         values: From::from(values),
254                         targets: targets,
255                     })
256                 };
257                 self.cfg.terminate(block, source_info, terminator);
258                 ret
259             }
260
261             TestKind::Eq { ref value, mut ty } => {
262                 let mut val = Operand::Consume(lvalue.clone());
263
264                 // If we're using b"..." as a pattern, we need to insert an
265                 // unsizing coercion, as the byte string has the type &[u8; N].
266                 let expect = if let ConstVal::ByteStr(ref bytes) = *value {
267                     let tcx = self.hir.tcx();
268
269                     // Unsize the lvalue to &[u8], too, if necessary.
270                     if let ty::TyRef(region, mt) = ty.sty {
271                         if let ty::TyArray(_, _) = mt.ty.sty {
272                             ty = tcx.mk_imm_ref(region, tcx.mk_slice(tcx.types.u8));
273                             let val_slice = self.temp(ty, test.span);
274                             self.cfg.push_assign(block, source_info, &val_slice,
275                                                  Rvalue::Cast(CastKind::Unsize, val, ty));
276                             val = Operand::Consume(val_slice);
277                         }
278                     }
279
280                     assert!(ty.is_slice());
281
282                     let array_ty = tcx.mk_array(tcx.types.u8, bytes.len());
283                     let array_ref = tcx.mk_imm_ref(tcx.types.re_static, array_ty);
284                     let array = self.literal_operand(test.span, array_ref, Literal::Value {
285                         value: value.clone()
286                     });
287
288                     let slice = self.temp(ty, test.span);
289                     self.cfg.push_assign(block, source_info, &slice,
290                                          Rvalue::Cast(CastKind::Unsize, array, ty));
291                     Operand::Consume(slice)
292                 } else {
293                     self.literal_operand(test.span, ty, Literal::Value {
294                         value: value.clone()
295                     })
296                 };
297
298                 // Use PartialEq::eq for &str and &[u8] slices, instead of BinOp::Eq.
299                 let fail = self.cfg.start_new_block();
300                 if let ty::TyRef(_, mt) = ty.sty {
301                     assert!(ty.is_slice());
302                     let eq_def_id = self.hir.tcx().lang_items.eq_trait().unwrap();
303                     let ty = mt.ty;
304                     let (mty, method) = self.hir.trait_method(eq_def_id, "eq", ty, &[ty]);
305
306                     let bool_ty = self.hir.bool_ty();
307                     let eq_result = self.temp(bool_ty, test.span);
308                     let eq_block = self.cfg.start_new_block();
309                     let cleanup = self.diverge_cleanup();
310                     self.cfg.terminate(block, source_info, TerminatorKind::Call {
311                         func: Operand::Constant(box Constant {
312                             span: test.span,
313                             ty: mty,
314                             literal: method
315                         }),
316                         args: vec![val, expect],
317                         destination: Some((eq_result.clone(), eq_block)),
318                         cleanup: cleanup,
319                     });
320
321                     // check the result
322                     let block = self.cfg.start_new_block();
323                     self.cfg.terminate(eq_block, source_info,
324                                        TerminatorKind::if_(self.hir.tcx(),
325                                                            Operand::Consume(eq_result),
326                                                            block, fail));
327                     vec![block, fail]
328                 } else {
329                     let block = self.compare(block, fail, test.span, BinOp::Eq, expect, val);
330                     vec![block, fail]
331                 }
332             }
333
334             TestKind::Range { ref lo, ref hi, ty, ref end } => {
335                 // Test `val` by computing `lo <= val && val <= hi`, using primitive comparisons.
336                 let lo = self.literal_operand(test.span, ty.clone(), lo.clone());
337                 let hi = self.literal_operand(test.span, ty.clone(), hi.clone());
338                 let val = Operand::Consume(lvalue.clone());
339
340                 let fail = self.cfg.start_new_block();
341                 let block = self.compare(block, fail, test.span, BinOp::Le, lo, val.clone());
342                 let block = match *end {
343                     RangeEnd::Included => self.compare(block, fail, test.span, BinOp::Le, val, hi),
344                     RangeEnd::Excluded => self.compare(block, fail, test.span, BinOp::Lt, val, hi),
345                 };
346
347                 vec![block, fail]
348             }
349
350             TestKind::Len { len, op } => {
351                 let (usize_ty, bool_ty) = (self.hir.usize_ty(), self.hir.bool_ty());
352                 let (actual, result) = (self.temp(usize_ty, test.span),
353                                         self.temp(bool_ty, test.span));
354
355                 // actual = len(lvalue)
356                 self.cfg.push_assign(block, source_info,
357                                      &actual, Rvalue::Len(lvalue.clone()));
358
359                 // expected = <N>
360                 let expected = self.push_usize(block, source_info, len);
361
362                 // result = actual == expected OR result = actual < expected
363                 self.cfg.push_assign(block, source_info, &result,
364                                      Rvalue::BinaryOp(op,
365                                                       Operand::Consume(actual),
366                                                       Operand::Consume(expected)));
367
368                 // branch based on result
369                 let (false_bb, true_bb) = (self.cfg.start_new_block(),
370                                            self.cfg.start_new_block());
371                 self.cfg.terminate(block, source_info,
372                                    TerminatorKind::if_(self.hir.tcx(), Operand::Consume(result),
373                                                        true_bb, false_bb));
374                 vec![true_bb, false_bb]
375             }
376         }
377     }
378
379     fn compare(&mut self,
380                block: BasicBlock,
381                fail_block: BasicBlock,
382                span: Span,
383                op: BinOp,
384                left: Operand<'tcx>,
385                right: Operand<'tcx>) -> BasicBlock {
386         let bool_ty = self.hir.bool_ty();
387         let result = self.temp(bool_ty, span);
388
389         // result = op(left, right)
390         let source_info = self.source_info(span);
391         self.cfg.push_assign(block, source_info, &result,
392                              Rvalue::BinaryOp(op, left, right));
393
394         // branch based on result
395         let target_block = self.cfg.start_new_block();
396         self.cfg.terminate(block, source_info,
397                            TerminatorKind::if_(self.hir.tcx(), Operand::Consume(result),
398                                                target_block, fail_block));
399         target_block
400     }
401
402     /// Given that we are performing `test` against `test_lvalue`,
403     /// this job sorts out what the status of `candidate` will be
404     /// after the test. The `resulting_candidates` vector stores, for
405     /// each possible outcome of `test`, a vector of the candidates
406     /// that will result. This fn should add a (possibly modified)
407     /// clone of candidate into `resulting_candidates` wherever
408     /// appropriate.
409     ///
410     /// So, for example, if this candidate is `x @ Some(P0)` and the
411     /// test is a variant test, then we would add `(x as Option).0 @
412     /// P0` to the `resulting_candidates` entry corresponding to the
413     /// variant `Some`.
414     ///
415     /// However, in some cases, the test may just not be relevant to
416     /// candidate. For example, suppose we are testing whether `foo.x == 22`,
417     /// but in one match arm we have `Foo { x: _, ... }`... in that case,
418     /// the test for what value `x` has has no particular relevance
419     /// to this candidate. In such cases, this function just returns false
420     /// without doing anything. This is used by the overall `match_candidates`
421     /// algorithm to structure the match as a whole. See `match_candidates` for
422     /// more details.
423     ///
424     /// FIXME(#29623). In some cases, we have some tricky choices to
425     /// make.  for example, if we are testing that `x == 22`, but the
426     /// candidate is `x @ 13..55`, what should we do? In the event
427     /// that the test is true, we know that the candidate applies, but
428     /// in the event of false, we don't know that it *doesn't*
429     /// apply. For now, we return false, indicate that the test does
430     /// not apply to this candidate, but it might be we can get
431     /// tighter match code if we do something a bit different.
432     pub fn sort_candidate<'pat>(&mut self,
433                                 test_lvalue: &Lvalue<'tcx>,
434                                 test: &Test<'tcx>,
435                                 candidate: &Candidate<'pat, 'tcx>,
436                                 resulting_candidates: &mut [Vec<Candidate<'pat, 'tcx>>])
437                                 -> bool {
438         // Find the match_pair for this lvalue (if any). At present,
439         // afaik, there can be at most one. (In the future, if we
440         // adopted a more general `@` operator, there might be more
441         // than one, but it'd be very unusual to have two sides that
442         // both require tests; you'd expect one side to be simplified
443         // away.)
444         let tested_match_pair = candidate.match_pairs.iter()
445                                                      .enumerate()
446                                                      .filter(|&(_, mp)| mp.lvalue == *test_lvalue)
447                                                      .next();
448         let (match_pair_index, match_pair) = match tested_match_pair {
449             Some(pair) => pair,
450             None => {
451                 // We are not testing this lvalue. Therefore, this
452                 // candidate applies to ALL outcomes.
453                 return false;
454             }
455         };
456
457         match (&test.kind, &*match_pair.pattern.kind) {
458             // If we are performing a variant switch, then this
459             // informs variant patterns, but nothing else.
460             (&TestKind::Switch { adt_def: tested_adt_def, .. },
461              &PatternKind::Variant { adt_def, variant_index, ref subpatterns, .. }) => {
462                 assert_eq!(adt_def, tested_adt_def);
463                 let new_candidate =
464                     self.candidate_after_variant_switch(match_pair_index,
465                                                         adt_def,
466                                                         variant_index,
467                                                         subpatterns,
468                                                         candidate);
469                 resulting_candidates[variant_index].push(new_candidate);
470                 true
471             }
472             (&TestKind::Switch { .. }, _) => false,
473
474             // If we are performing a switch over integers, then this informs integer
475             // equality, but nothing else.
476             //
477             // FIXME(#29623) we could use PatternKind::Range to rule
478             // things out here, in some cases.
479             (&TestKind::SwitchInt { switch_ty: _, options: _, ref indices },
480              &PatternKind::Constant { ref value })
481             if is_switch_ty(match_pair.pattern.ty) => {
482                 let index = indices[value];
483                 let new_candidate = self.candidate_without_match_pair(match_pair_index,
484                                                                       candidate);
485                 resulting_candidates[index].push(new_candidate);
486                 true
487             }
488             (&TestKind::SwitchInt { .. }, _) => false,
489
490
491             (&TestKind::Len { len: test_len, op: BinOp::Eq },
492              &PatternKind::Slice { ref prefix, ref slice, ref suffix }) => {
493                 let pat_len = (prefix.len() + suffix.len()) as u64;
494                 match (test_len.cmp(&pat_len), slice) {
495                     (Ordering::Equal, &None) => {
496                         // on true, min_len = len = $actual_length,
497                         // on false, len != $actual_length
498                         resulting_candidates[0].push(
499                             self.candidate_after_slice_test(match_pair_index,
500                                                             candidate,
501                                                             prefix,
502                                                             slice.as_ref(),
503                                                             suffix)
504                         );
505                         true
506                     }
507                     (Ordering::Less, _) => {
508                         // test_len < pat_len. If $actual_len = test_len,
509                         // then $actual_len < pat_len and we don't have
510                         // enough elements.
511                         resulting_candidates[1].push(candidate.clone());
512                         true
513                     }
514                     (Ordering::Equal, &Some(_)) | (Ordering::Greater, &Some(_)) => {
515                         // This can match both if $actual_len = test_len >= pat_len,
516                         // and if $actual_len > test_len. We can't advance.
517                         false
518                     }
519                     (Ordering::Greater, &None) => {
520                         // test_len != pat_len, so if $actual_len = test_len, then
521                         // $actual_len != pat_len.
522                         resulting_candidates[1].push(candidate.clone());
523                         true
524                     }
525                 }
526             }
527
528             (&TestKind::Len { len: test_len, op: BinOp::Ge },
529              &PatternKind::Slice { ref prefix, ref slice, ref suffix }) => {
530                 // the test is `$actual_len >= test_len`
531                 let pat_len = (prefix.len() + suffix.len()) as u64;
532                 match (test_len.cmp(&pat_len), slice) {
533                     (Ordering::Equal, &Some(_))  => {
534                         // $actual_len >= test_len = pat_len,
535                         // so we can match.
536                         resulting_candidates[0].push(
537                             self.candidate_after_slice_test(match_pair_index,
538                                                             candidate,
539                                                             prefix,
540                                                             slice.as_ref(),
541                                                             suffix)
542                         );
543                         true
544                     }
545                     (Ordering::Less, _) | (Ordering::Equal, &None) => {
546                         // test_len <= pat_len. If $actual_len < test_len,
547                         // then it is also < pat_len, so the test passing is
548                         // necessary (but insufficient).
549                         resulting_candidates[0].push(candidate.clone());
550                         true
551                     }
552                     (Ordering::Greater, &None) => {
553                         // test_len > pat_len. If $actual_len >= test_len > pat_len,
554                         // then we know we won't have a match.
555                         resulting_candidates[1].push(candidate.clone());
556                         true
557                     }
558                     (Ordering::Greater, &Some(_)) => {
559                         // test_len < pat_len, and is therefore less
560                         // strict. This can still go both ways.
561                         false
562                     }
563                 }
564             }
565
566             (&TestKind::Eq { .. }, _) |
567             (&TestKind::Range { .. }, _) |
568             (&TestKind::Len { .. }, _) => {
569                 // These are all binary tests.
570                 //
571                 // FIXME(#29623) we can be more clever here
572                 let pattern_test = self.test(&match_pair);
573                 if pattern_test.kind == test.kind {
574                     let new_candidate = self.candidate_without_match_pair(match_pair_index,
575                                                                           candidate);
576                     resulting_candidates[0].push(new_candidate);
577                     true
578                 } else {
579                     false
580                 }
581             }
582         }
583     }
584
585     fn candidate_without_match_pair<'pat>(&mut self,
586                                           match_pair_index: usize,
587                                           candidate: &Candidate<'pat, 'tcx>)
588                                           -> Candidate<'pat, 'tcx> {
589         let other_match_pairs =
590             candidate.match_pairs.iter()
591                                  .enumerate()
592                                  .filter(|&(index, _)| index != match_pair_index)
593                                  .map(|(_, mp)| mp.clone())
594                                  .collect();
595         Candidate {
596             span: candidate.span,
597             match_pairs: other_match_pairs,
598             bindings: candidate.bindings.clone(),
599             guard: candidate.guard.clone(),
600             arm_index: candidate.arm_index,
601         }
602     }
603
604     fn candidate_after_slice_test<'pat>(&mut self,
605                                         match_pair_index: usize,
606                                         candidate: &Candidate<'pat, 'tcx>,
607                                         prefix: &'pat [Pattern<'tcx>],
608                                         opt_slice: Option<&'pat Pattern<'tcx>>,
609                                         suffix: &'pat [Pattern<'tcx>])
610                                         -> Candidate<'pat, 'tcx> {
611         let mut new_candidate =
612             self.candidate_without_match_pair(match_pair_index, candidate);
613         self.prefix_slice_suffix(
614             &mut new_candidate.match_pairs,
615             &candidate.match_pairs[match_pair_index].lvalue,
616             prefix,
617             opt_slice,
618             suffix);
619
620         new_candidate
621     }
622
623     fn candidate_after_variant_switch<'pat>(&mut self,
624                                             match_pair_index: usize,
625                                             adt_def: &'tcx ty::AdtDef,
626                                             variant_index: usize,
627                                             subpatterns: &'pat [FieldPattern<'tcx>],
628                                             candidate: &Candidate<'pat, 'tcx>)
629                                             -> Candidate<'pat, 'tcx> {
630         let match_pair = &candidate.match_pairs[match_pair_index];
631
632         // So, if we have a match-pattern like `x @ Enum::Variant(P1, P2)`,
633         // we want to create a set of derived match-patterns like
634         // `(x as Variant).0 @ P1` and `(x as Variant).1 @ P1`.
635         let elem = ProjectionElem::Downcast(adt_def, variant_index);
636         let downcast_lvalue = match_pair.lvalue.clone().elem(elem); // `(x as Variant)`
637         let consequent_match_pairs =
638             subpatterns.iter()
639                        .map(|subpattern| {
640                            // e.g., `(x as Variant).0`
641                            let lvalue = downcast_lvalue.clone().field(subpattern.field,
642                                                                       subpattern.pattern.ty);
643                            // e.g., `(x as Variant).0 @ P1`
644                            MatchPair::new(lvalue, &subpattern.pattern)
645                        });
646
647         // In addition, we need all the other match pairs from the old candidate.
648         let other_match_pairs =
649             candidate.match_pairs.iter()
650                                  .enumerate()
651                                  .filter(|&(index, _)| index != match_pair_index)
652                                  .map(|(_, mp)| mp.clone());
653
654         let all_match_pairs = consequent_match_pairs.chain(other_match_pairs).collect();
655
656         Candidate {
657             span: candidate.span,
658             match_pairs: all_match_pairs,
659             bindings: candidate.bindings.clone(),
660             guard: candidate.guard.clone(),
661             arm_index: candidate.arm_index,
662         }
663     }
664
665     fn error_simplifyable<'pat>(&mut self, match_pair: &MatchPair<'pat, 'tcx>) -> ! {
666         span_bug!(match_pair.pattern.span,
667                   "simplifyable pattern found: {:?}",
668                   match_pair.pattern)
669     }
670 }
671
672 fn is_switch_ty<'tcx>(ty: Ty<'tcx>) -> bool {
673     ty.is_integral() || ty.is_char() || ty.is_bool()
674 }