]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/build/expr/as_rvalue.rs
Rollup merge of #67630 - oli-obk:extern_ptr_dangling, r=spastorino
[rust.git] / src / librustc_mir / build / expr / as_rvalue.rs
1 //! See docs in `build/expr/mod.rs`.
2
3 use rustc_index::vec::Idx;
4
5 use crate::build::expr::category::{Category, RvalueFunc};
6 use crate::build::{BlockAnd, BlockAndExtension, Builder};
7 use crate::hair::*;
8 use rustc::middle::region;
9 use rustc::mir::interpret::PanicInfo;
10 use rustc::mir::*;
11 use rustc::ty::{self, Ty, UpvarSubsts};
12 use rustc_span::Span;
13
14 impl<'a, 'tcx> Builder<'a, 'tcx> {
15     /// Returns an rvalue suitable for use until the end of the current
16     /// scope expression.
17     ///
18     /// The operand returned from this function will *not be valid* after
19     /// an ExprKind::Scope is passed, so please do *not* return it from
20     /// functions to avoid bad miscompiles.
21     pub fn as_local_rvalue<M>(&mut self, block: BasicBlock, expr: M) -> BlockAnd<Rvalue<'tcx>>
22     where
23         M: Mirror<'tcx, Output = Expr<'tcx>>,
24     {
25         let local_scope = self.local_scope();
26         self.as_rvalue(block, local_scope, expr)
27     }
28
29     /// Compile `expr`, yielding an rvalue.
30     fn as_rvalue<M>(
31         &mut self,
32         block: BasicBlock,
33         scope: Option<region::Scope>,
34         expr: M,
35     ) -> BlockAnd<Rvalue<'tcx>>
36     where
37         M: Mirror<'tcx, Output = Expr<'tcx>>,
38     {
39         let expr = self.hir.mirror(expr);
40         self.expr_as_rvalue(block, scope, expr)
41     }
42
43     fn expr_as_rvalue(
44         &mut self,
45         mut block: BasicBlock,
46         scope: Option<region::Scope>,
47         expr: Expr<'tcx>,
48     ) -> BlockAnd<Rvalue<'tcx>> {
49         debug!("expr_as_rvalue(block={:?}, scope={:?}, expr={:?})", block, scope, expr);
50
51         let this = self;
52         let expr_span = expr.span;
53         let source_info = this.source_info(expr_span);
54
55         match expr.kind {
56             ExprKind::Scope { region_scope, lint_level, value } => {
57                 let region_scope = (region_scope, source_info);
58                 this.in_scope(region_scope, lint_level, |this| this.as_rvalue(block, scope, value))
59             }
60             ExprKind::Repeat { value, count } => {
61                 let value_operand = unpack!(block = this.as_operand(block, scope, value));
62                 block.and(Rvalue::Repeat(value_operand, count))
63             }
64             ExprKind::Binary { op, lhs, rhs } => {
65                 let lhs = unpack!(block = this.as_operand(block, scope, lhs));
66                 let rhs = unpack!(block = this.as_operand(block, scope, rhs));
67                 this.build_binary_op(block, op, expr_span, expr.ty, lhs, rhs)
68             }
69             ExprKind::Unary { op, arg } => {
70                 let arg = unpack!(block = this.as_operand(block, scope, arg));
71                 // Check for -MIN on signed integers
72                 if this.hir.check_overflow() && op == UnOp::Neg && expr.ty.is_signed() {
73                     let bool_ty = this.hir.bool_ty();
74
75                     let minval = this.minval_literal(expr_span, expr.ty);
76                     let is_min = this.temp(bool_ty, expr_span);
77
78                     this.cfg.push_assign(
79                         block,
80                         source_info,
81                         &is_min,
82                         Rvalue::BinaryOp(BinOp::Eq, arg.to_copy(), minval),
83                     );
84
85                     block = this.assert(
86                         block,
87                         Operand::Move(is_min),
88                         false,
89                         PanicInfo::OverflowNeg,
90                         expr_span,
91                     );
92                 }
93                 block.and(Rvalue::UnaryOp(op, arg))
94             }
95             ExprKind::Box { value } => {
96                 let value = this.hir.mirror(value);
97                 // The `Box<T>` temporary created here is not a part of the HIR,
98                 // and therefore is not considered during generator OIBIT
99                 // determination. See the comment about `box` at `yield_in_scope`.
100                 let result = this.local_decls.push(LocalDecl::new_internal(expr.ty, expr_span));
101                 this.cfg.push(
102                     block,
103                     Statement { source_info, kind: StatementKind::StorageLive(result) },
104                 );
105                 if let Some(scope) = scope {
106                     // schedule a shallow free of that memory, lest we unwind:
107                     this.schedule_drop_storage_and_value(expr_span, scope, result);
108                 }
109
110                 // malloc some memory of suitable type (thus far, uninitialized):
111                 let box_ = Rvalue::NullaryOp(NullOp::Box, value.ty);
112                 this.cfg.push_assign(block, source_info, &Place::from(result), box_);
113
114                 // initialize the box contents:
115                 unpack!(
116                     block = this.into(
117                         &this.hir.tcx().mk_place_deref(Place::from(result)),
118                         block,
119                         value
120                     )
121                 );
122                 block.and(Rvalue::Use(Operand::Move(Place::from(result))))
123             }
124             ExprKind::Cast { source } => {
125                 let source = unpack!(block = this.as_operand(block, scope, source));
126                 block.and(Rvalue::Cast(CastKind::Misc, source, expr.ty))
127             }
128             ExprKind::Pointer { cast, source } => {
129                 let source = unpack!(block = this.as_operand(block, scope, source));
130                 block.and(Rvalue::Cast(CastKind::Pointer(cast), source, expr.ty))
131             }
132             ExprKind::Array { fields } => {
133                 // (*) We would (maybe) be closer to codegen if we
134                 // handled this and other aggregate cases via
135                 // `into()`, not `as_rvalue` -- in that case, instead
136                 // of generating
137                 //
138                 //     let tmp1 = ...1;
139                 //     let tmp2 = ...2;
140                 //     dest = Rvalue::Aggregate(Foo, [tmp1, tmp2])
141                 //
142                 // we could just generate
143                 //
144                 //     dest.f = ...1;
145                 //     dest.g = ...2;
146                 //
147                 // The problem is that then we would need to:
148                 //
149                 // (a) have a more complex mechanism for handling
150                 //     partial cleanup;
151                 // (b) distinguish the case where the type `Foo` has a
152                 //     destructor, in which case creating an instance
153                 //     as a whole "arms" the destructor, and you can't
154                 //     write individual fields; and,
155                 // (c) handle the case where the type Foo has no
156                 //     fields. We don't want `let x: ();` to compile
157                 //     to the same MIR as `let x = ();`.
158
159                 // first process the set of fields
160                 let el_ty = expr.ty.sequence_element_type(this.hir.tcx());
161                 let fields: Vec<_> = fields
162                     .into_iter()
163                     .map(|f| unpack!(block = this.as_operand(block, scope, f)))
164                     .collect();
165
166                 block.and(Rvalue::Aggregate(box AggregateKind::Array(el_ty), fields))
167             }
168             ExprKind::Tuple { fields } => {
169                 // see (*) above
170                 // first process the set of fields
171                 let fields: Vec<_> = fields
172                     .into_iter()
173                     .map(|f| unpack!(block = this.as_operand(block, scope, f)))
174                     .collect();
175
176                 block.and(Rvalue::Aggregate(box AggregateKind::Tuple, fields))
177             }
178             ExprKind::Closure { closure_id, substs, upvars, movability } => {
179                 // see (*) above
180                 let operands: Vec<_> = upvars
181                     .into_iter()
182                     .map(|upvar| {
183                         let upvar = this.hir.mirror(upvar);
184                         match Category::of(&upvar.kind) {
185                             // Use as_place to avoid creating a temporary when
186                             // moving a variable into a closure, so that
187                             // borrowck knows which variables to mark as being
188                             // used as mut. This is OK here because the upvar
189                             // expressions have no side effects and act on
190                             // disjoint places.
191                             // This occurs when capturing by copy/move, while
192                             // by reference captures use as_operand
193                             Some(Category::Place) => {
194                                 let place = unpack!(block = this.as_place(block, upvar));
195                                 this.consume_by_copy_or_move(place)
196                             }
197                             _ => {
198                                 // Turn mutable borrow captures into unique
199                                 // borrow captures when capturing an immutable
200                                 // variable. This is sound because the mutation
201                                 // that caused the capture will cause an error.
202                                 match upvar.kind {
203                                     ExprKind::Borrow {
204                                         borrow_kind:
205                                             BorrowKind::Mut { allow_two_phase_borrow: false },
206                                         arg,
207                                     } => unpack!(
208                                         block = this.limit_capture_mutability(
209                                             upvar.span, upvar.ty, scope, block, arg,
210                                         )
211                                     ),
212                                     _ => unpack!(block = this.as_operand(block, scope, upvar)),
213                                 }
214                             }
215                         }
216                     })
217                     .collect();
218                 let result = match substs {
219                     UpvarSubsts::Generator(substs) => {
220                         // We implicitly set the discriminant to 0. See
221                         // librustc_mir/transform/deaggregator.rs for details.
222                         let movability = movability.unwrap();
223                         box AggregateKind::Generator(closure_id, substs, movability)
224                     }
225                     UpvarSubsts::Closure(substs) => box AggregateKind::Closure(closure_id, substs),
226                 };
227                 block.and(Rvalue::Aggregate(result, operands))
228             }
229             ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => {
230                 block = unpack!(this.stmt_expr(block, expr, None));
231                 block.and(this.unit_rvalue())
232             }
233             ExprKind::Yield { value } => {
234                 let value = unpack!(block = this.as_operand(block, scope, value));
235                 let resume = this.cfg.start_new_block();
236                 let cleanup = this.generator_drop_cleanup();
237                 this.cfg.terminate(
238                     block,
239                     source_info,
240                     TerminatorKind::Yield { value: value, resume: resume, drop: cleanup },
241                 );
242                 resume.and(this.unit_rvalue())
243             }
244             ExprKind::Literal { .. }
245             | ExprKind::StaticRef { .. }
246             | ExprKind::Block { .. }
247             | ExprKind::Match { .. }
248             | ExprKind::NeverToAny { .. }
249             | ExprKind::Use { .. }
250             | ExprKind::Borrow { .. }
251             | ExprKind::AddressOf { .. }
252             | ExprKind::Adt { .. }
253             | ExprKind::Loop { .. }
254             | ExprKind::LogicalOp { .. }
255             | ExprKind::Call { .. }
256             | ExprKind::Field { .. }
257             | ExprKind::Deref { .. }
258             | ExprKind::Index { .. }
259             | ExprKind::VarRef { .. }
260             | ExprKind::SelfRef
261             | ExprKind::Break { .. }
262             | ExprKind::Continue { .. }
263             | ExprKind::Return { .. }
264             | ExprKind::InlineAsm { .. }
265             | ExprKind::PlaceTypeAscription { .. }
266             | ExprKind::ValueTypeAscription { .. } => {
267                 // these do not have corresponding `Rvalue` variants,
268                 // so make an operand and then return that
269                 debug_assert!(match Category::of(&expr.kind) {
270                     Some(Category::Rvalue(RvalueFunc::AsRvalue)) => false,
271                     _ => true,
272                 });
273                 let operand = unpack!(block = this.as_operand(block, scope, expr));
274                 block.and(Rvalue::Use(operand))
275             }
276         }
277     }
278
279     pub fn build_binary_op(
280         &mut self,
281         mut block: BasicBlock,
282         op: BinOp,
283         span: Span,
284         ty: Ty<'tcx>,
285         lhs: Operand<'tcx>,
286         rhs: Operand<'tcx>,
287     ) -> BlockAnd<Rvalue<'tcx>> {
288         let source_info = self.source_info(span);
289         let bool_ty = self.hir.bool_ty();
290         if self.hir.check_overflow() && op.is_checkable() && ty.is_integral() {
291             let result_tup = self.hir.tcx().intern_tup(&[ty, bool_ty]);
292             let result_value = self.temp(result_tup, span);
293
294             self.cfg.push_assign(
295                 block,
296                 source_info,
297                 &result_value,
298                 Rvalue::CheckedBinaryOp(op, lhs, rhs),
299             );
300             let val_fld = Field::new(0);
301             let of_fld = Field::new(1);
302
303             let tcx = self.hir.tcx();
304             let val = tcx.mk_place_field(result_value.clone(), val_fld, ty);
305             let of = tcx.mk_place_field(result_value, of_fld, bool_ty);
306
307             let err = PanicInfo::Overflow(op);
308
309             block = self.assert(block, Operand::Move(of), false, err, span);
310
311             block.and(Rvalue::Use(Operand::Move(val)))
312         } else {
313             if ty.is_integral() && (op == BinOp::Div || op == BinOp::Rem) {
314                 // Checking division and remainder is more complex, since we 1. always check
315                 // and 2. there are two possible failure cases, divide-by-zero and overflow.
316
317                 let zero_err = if op == BinOp::Div {
318                     PanicInfo::DivisionByZero
319                 } else {
320                     PanicInfo::RemainderByZero
321                 };
322                 let overflow_err = PanicInfo::Overflow(op);
323
324                 // Check for / 0
325                 let is_zero = self.temp(bool_ty, span);
326                 let zero = self.zero_literal(span, ty);
327                 self.cfg.push_assign(
328                     block,
329                     source_info,
330                     &is_zero,
331                     Rvalue::BinaryOp(BinOp::Eq, rhs.to_copy(), zero),
332                 );
333
334                 block = self.assert(block, Operand::Move(is_zero), false, zero_err, span);
335
336                 // We only need to check for the overflow in one case:
337                 // MIN / -1, and only for signed values.
338                 if ty.is_signed() {
339                     let neg_1 = self.neg_1_literal(span, ty);
340                     let min = self.minval_literal(span, ty);
341
342                     let is_neg_1 = self.temp(bool_ty, span);
343                     let is_min = self.temp(bool_ty, span);
344                     let of = self.temp(bool_ty, span);
345
346                     // this does (rhs == -1) & (lhs == MIN). It could short-circuit instead
347
348                     self.cfg.push_assign(
349                         block,
350                         source_info,
351                         &is_neg_1,
352                         Rvalue::BinaryOp(BinOp::Eq, rhs.to_copy(), neg_1),
353                     );
354                     self.cfg.push_assign(
355                         block,
356                         source_info,
357                         &is_min,
358                         Rvalue::BinaryOp(BinOp::Eq, lhs.to_copy(), min),
359                     );
360
361                     let is_neg_1 = Operand::Move(is_neg_1);
362                     let is_min = Operand::Move(is_min);
363                     self.cfg.push_assign(
364                         block,
365                         source_info,
366                         &of,
367                         Rvalue::BinaryOp(BinOp::BitAnd, is_neg_1, is_min),
368                     );
369
370                     block = self.assert(block, Operand::Move(of), false, overflow_err, span);
371                 }
372             }
373
374             block.and(Rvalue::BinaryOp(op, lhs, rhs))
375         }
376     }
377
378     fn limit_capture_mutability(
379         &mut self,
380         upvar_span: Span,
381         upvar_ty: Ty<'tcx>,
382         temp_lifetime: Option<region::Scope>,
383         mut block: BasicBlock,
384         arg: ExprRef<'tcx>,
385     ) -> BlockAnd<Operand<'tcx>> {
386         let this = self;
387
388         let source_info = this.source_info(upvar_span);
389         let temp = this.local_decls.push(LocalDecl::new_temp(upvar_ty, upvar_span));
390
391         this.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(temp) });
392
393         let arg_place = unpack!(block = this.as_place(block, arg));
394
395         let mutability = match arg_place.as_ref() {
396             PlaceRef { base: &PlaceBase::Local(local), projection: &[] } => {
397                 this.local_decls[local].mutability
398             }
399             PlaceRef { base: &PlaceBase::Local(local), projection: &[ProjectionElem::Deref] } => {
400                 debug_assert!(
401                     this.local_decls[local].is_ref_for_guard(),
402                     "Unexpected capture place",
403                 );
404                 this.local_decls[local].mutability
405             }
406             PlaceRef {
407                 ref base,
408                 projection: &[ref proj_base @ .., ProjectionElem::Field(upvar_index, _)],
409             }
410             | PlaceRef {
411                 ref base,
412                 projection:
413                     &[ref proj_base @ .., ProjectionElem::Field(upvar_index, _), ProjectionElem::Deref],
414             } => {
415                 let place = PlaceRef { base, projection: proj_base };
416
417                 // Not projected from the implicit `self` in a closure.
418                 debug_assert!(
419                     match place.local_or_deref_local() {
420                         Some(local) => local == Local::new(1),
421                         None => false,
422                     },
423                     "Unexpected capture place"
424                 );
425                 // Not in a closure
426                 debug_assert!(
427                     this.upvar_mutbls.len() > upvar_index.index(),
428                     "Unexpected capture place"
429                 );
430                 this.upvar_mutbls[upvar_index.index()]
431             }
432             _ => bug!("Unexpected capture place"),
433         };
434
435         let borrow_kind = match mutability {
436             Mutability::Not => BorrowKind::Unique,
437             Mutability::Mut => BorrowKind::Mut { allow_two_phase_borrow: false },
438         };
439
440         this.cfg.push_assign(
441             block,
442             source_info,
443             &Place::from(temp),
444             Rvalue::Ref(this.hir.tcx().lifetimes.re_erased, borrow_kind, arg_place),
445         );
446
447         // In constants, temp_lifetime is None. We should not need to drop
448         // anything because no values with a destructor can be created in
449         // a constant at this time, even if the type may need dropping.
450         if let Some(temp_lifetime) = temp_lifetime {
451             this.schedule_drop_storage_and_value(upvar_span, temp_lifetime, temp);
452         }
453
454         block.and(Operand::Move(Place::from(temp)))
455     }
456
457     // Helper to get a `-1` value of the appropriate type
458     fn neg_1_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> {
459         let param_ty = ty::ParamEnv::empty().and(ty);
460         let bits = self.hir.tcx().layout_of(param_ty).unwrap().size.bits();
461         let n = (!0u128) >> (128 - bits);
462         let literal = ty::Const::from_bits(self.hir.tcx(), n, param_ty);
463
464         self.literal_operand(span, literal)
465     }
466
467     // Helper to get the minimum value of the appropriate type
468     fn minval_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> {
469         assert!(ty.is_signed());
470         let param_ty = ty::ParamEnv::empty().and(ty);
471         let bits = self.hir.tcx().layout_of(param_ty).unwrap().size.bits();
472         let n = 1 << (bits - 1);
473         let literal = ty::Const::from_bits(self.hir.tcx(), n, param_ty);
474
475         self.literal_operand(span, literal)
476     }
477 }