]> git.lizzy.rs Git - rust.git/blob - src/librustc_mir/borrow_check/nll/type_check/mod.rs
port the relate-types code from NLL type-check into a type-op
[rust.git] / src / librustc_mir / borrow_check / nll / type_check / mod.rs
1 // Copyright 2016 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! This pass type-checks the MIR to ensure it is not broken.
12 #![allow(unreachable_code)]
13
14 use borrow_check::borrow_set::BorrowSet;
15 use borrow_check::location::LocationTable;
16 use borrow_check::nll::constraints::{ConstraintSet, OutlivesConstraint};
17 use borrow_check::nll::facts::AllFacts;
18 use borrow_check::nll::region_infer::values::LivenessValues;
19 use borrow_check::nll::region_infer::values::PlaceholderIndices;
20 use borrow_check::nll::region_infer::values::RegionValueElements;
21 use borrow_check::nll::region_infer::{ClosureRegionRequirementsExt, TypeTest};
22 use borrow_check::nll::renumber;
23 use borrow_check::nll::type_check::free_region_relations::{
24     CreateResult, UniversalRegionRelations,
25 };
26 use borrow_check::nll::universal_regions::{DefiningTy, UniversalRegions};
27 use borrow_check::nll::ToRegionVid;
28 use dataflow::move_paths::MoveData;
29 use dataflow::FlowAtLocation;
30 use dataflow::MaybeInitializedPlaces;
31 use rustc::hir;
32 use rustc::hir::def_id::DefId;
33 use rustc::infer::canonical::QueryRegionConstraint;
34 use rustc::infer::outlives::env::RegionBoundPairs;
35 use rustc::infer::{InferCtxt, InferOk, LateBoundRegionConversionTime};
36 use rustc::mir::interpret::EvalErrorKind::BoundsCheck;
37 use rustc::mir::tcx::PlaceTy;
38 use rustc::mir::visit::{PlaceContext, Visitor};
39 use rustc::mir::*;
40 use rustc::traits::query::type_op;
41 use rustc::traits::query::type_op::custom::CustomTypeOp;
42 use rustc::traits::query::{Fallible, NoSolution};
43 use rustc::traits::{ObligationCause, PredicateObligations};
44 use rustc::ty::fold::TypeFoldable;
45 use rustc::ty::subst::{Subst, Substs, UnpackedKind};
46 use rustc::ty::{self, RegionVid, ToPolyTraitRef, Ty, TyCtxt, TyKind};
47 use std::rc::Rc;
48 use std::{fmt, iter};
49 use syntax_pos::{Span, DUMMY_SP};
50 use transform::{MirPass, MirSource};
51
52 use either::Either;
53 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
54
55 macro_rules! span_mirbug {
56     ($context:expr, $elem:expr, $($message:tt)*) => ({
57         $crate::borrow_check::nll::type_check::mirbug(
58             $context.tcx(),
59             $context.last_span,
60             &format!(
61                 "broken MIR in {:?} ({:?}): {}",
62                 $context.mir_def_id,
63                 $elem,
64                 format_args!($($message)*),
65             ),
66         )
67     })
68 }
69
70 macro_rules! span_mirbug_and_err {
71     ($context:expr, $elem:expr, $($message:tt)*) => ({
72         {
73             span_mirbug!($context, $elem, $($message)*);
74             $context.error()
75         }
76     })
77 }
78
79 mod constraint_conversion;
80 pub mod free_region_relations;
81 mod input_output;
82 crate mod liveness;
83 mod relate_tys;
84
85 /// Type checks the given `mir` in the context of the inference
86 /// context `infcx`. Returns any region constraints that have yet to
87 /// be proven. This result is includes liveness constraints that
88 /// ensure that regions appearing in the types of all local variables
89 /// are live at all points where that local variable may later be
90 /// used.
91 ///
92 /// This phase of type-check ought to be infallible -- this is because
93 /// the original, HIR-based type-check succeeded. So if any errors
94 /// occur here, we will get a `bug!` reported.
95 ///
96 /// # Parameters
97 ///
98 /// - `infcx` -- inference context to use
99 /// - `param_env` -- parameter environment to use for trait solving
100 /// - `mir` -- MIR to type-check
101 /// - `mir_def_id` -- DefId from which the MIR is derived (must be local)
102 /// - `region_bound_pairs` -- the implied outlives obligations between type parameters
103 ///   and lifetimes (e.g., `&'a T` implies `T: 'a`)
104 /// - `implicit_region_bound` -- a region which all generic parameters are assumed
105 ///   to outlive; should represent the fn body
106 /// - `input_tys` -- fully liberated, but **not** normalized, expected types of the arguments;
107 ///   the types of the input parameters found in the MIR itself will be equated with these
108 /// - `output_ty` -- fully liberated, but **not** normalized, expected return type;
109 ///   the type for the RETURN_PLACE will be equated with this
110 /// - `liveness` -- results of a liveness computation on the MIR; used to create liveness
111 ///   constraints for the regions in the types of variables
112 /// - `flow_inits` -- results of a maybe-init dataflow analysis
113 /// - `move_data` -- move-data constructed when performing the maybe-init dataflow analysiss
114 pub(crate) fn type_check<'gcx, 'tcx>(
115     infcx: &InferCtxt<'_, 'gcx, 'tcx>,
116     param_env: ty::ParamEnv<'gcx>,
117     mir: &Mir<'tcx>,
118     mir_def_id: DefId,
119     universal_regions: &Rc<UniversalRegions<'tcx>>,
120     location_table: &LocationTable,
121     borrow_set: &BorrowSet<'tcx>,
122     all_facts: &mut Option<AllFacts>,
123     flow_inits: &mut FlowAtLocation<MaybeInitializedPlaces<'_, 'gcx, 'tcx>>,
124     move_data: &MoveData<'tcx>,
125     elements: &Rc<RegionValueElements>,
126 ) -> MirTypeckResults<'tcx> {
127     let implicit_region_bound = infcx.tcx.mk_region(ty::ReVar(universal_regions.fr_fn_body));
128     let mut constraints = MirTypeckRegionConstraints {
129         liveness_constraints: LivenessValues::new(elements),
130         outlives_constraints: ConstraintSet::default(),
131         closure_bounds_mapping: Default::default(),
132         type_tests: Vec::default(),
133     };
134     let mut placeholder_indices = PlaceholderIndices::default();
135
136     let CreateResult {
137         universal_region_relations,
138         region_bound_pairs,
139         normalized_inputs_and_output,
140     } = free_region_relations::create(
141         infcx,
142         param_env,
143         Some(implicit_region_bound),
144         universal_regions,
145         &mut constraints,
146     );
147
148     let mut borrowck_context = BorrowCheckContext {
149         universal_regions,
150         location_table,
151         borrow_set,
152         all_facts,
153         constraints: &mut constraints,
154         placeholder_indices: &mut placeholder_indices,
155     };
156
157     type_check_internal(
158         infcx,
159         mir_def_id,
160         param_env,
161         mir,
162         &region_bound_pairs,
163         Some(implicit_region_bound),
164         Some(&mut borrowck_context),
165         Some(&universal_region_relations),
166         |cx| {
167             cx.equate_inputs_and_outputs(mir, universal_regions, &normalized_inputs_and_output);
168             liveness::generate(cx, mir, elements, flow_inits, move_data, location_table);
169
170             cx.borrowck_context
171                 .as_mut()
172                 .map(|bcx| translate_outlives_facts(bcx));
173         },
174     );
175
176     MirTypeckResults {
177         constraints,
178         placeholder_indices,
179         universal_region_relations,
180     }
181 }
182
183 fn type_check_internal<'a, 'gcx, 'tcx, R>(
184     infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
185     mir_def_id: DefId,
186     param_env: ty::ParamEnv<'gcx>,
187     mir: &'a Mir<'tcx>,
188     region_bound_pairs: &'a RegionBoundPairs<'tcx>,
189     implicit_region_bound: Option<ty::Region<'tcx>>,
190     borrowck_context: Option<&'a mut BorrowCheckContext<'a, 'tcx>>,
191     universal_region_relations: Option<&'a UniversalRegionRelations<'tcx>>,
192     mut extra: impl FnMut(&mut TypeChecker<'a, 'gcx, 'tcx>) -> R,
193 ) -> R where {
194     let mut checker = TypeChecker::new(
195         infcx,
196         mir,
197         mir_def_id,
198         param_env,
199         region_bound_pairs,
200         implicit_region_bound,
201         borrowck_context,
202         universal_region_relations,
203     );
204     let errors_reported = {
205         let mut verifier = TypeVerifier::new(&mut checker, mir);
206         verifier.visit_mir(mir);
207         verifier.errors_reported
208     };
209
210     if !errors_reported {
211         // if verifier failed, don't do further checks to avoid ICEs
212         checker.typeck_mir(mir);
213     }
214
215     extra(&mut checker)
216 }
217
218 fn translate_outlives_facts(cx: &mut BorrowCheckContext) {
219     if let Some(facts) = cx.all_facts {
220         let location_table = cx.location_table;
221         facts
222             .outlives
223             .extend(cx.constraints.outlives_constraints.iter().flat_map(
224                 |constraint: &OutlivesConstraint| {
225                     if let Some(from_location) = constraint.locations.from_location() {
226                         Either::Left(iter::once((
227                             constraint.sup,
228                             constraint.sub,
229                             location_table.mid_index(from_location),
230                         )))
231                     } else {
232                         Either::Right(
233                             location_table
234                                 .all_points()
235                                 .map(move |location| (constraint.sup, constraint.sub, location)),
236                         )
237                     }
238                 },
239             ));
240     }
241 }
242
243 fn mirbug(tcx: TyCtxt, span: Span, msg: &str) {
244     // We sometimes see MIR failures (notably predicate failures) due to
245     // the fact that we check rvalue sized predicates here. So use `delay_span_bug`
246     // to avoid reporting bugs in those cases.
247     tcx.sess.diagnostic().delay_span_bug(span, msg);
248 }
249
250 enum FieldAccessError {
251     OutOfRange { field_count: usize },
252 }
253
254 /// Verifies that MIR types are sane to not crash further checks.
255 ///
256 /// The sanitize_XYZ methods here take an MIR object and compute its
257 /// type, calling `span_mirbug` and returning an error type if there
258 /// is a problem.
259 struct TypeVerifier<'a, 'b: 'a, 'gcx: 'tcx, 'tcx: 'b> {
260     cx: &'a mut TypeChecker<'b, 'gcx, 'tcx>,
261     mir: &'a Mir<'tcx>,
262     last_span: Span,
263     mir_def_id: DefId,
264     errors_reported: bool,
265 }
266
267 impl<'a, 'b, 'gcx, 'tcx> Visitor<'tcx> for TypeVerifier<'a, 'b, 'gcx, 'tcx> {
268     fn visit_span(&mut self, span: &Span) {
269         if !span.is_dummy() {
270             self.last_span = *span;
271         }
272     }
273
274     fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) {
275         self.sanitize_place(place, location, context);
276     }
277
278     fn visit_constant(&mut self, constant: &Constant<'tcx>, location: Location) {
279         self.super_constant(constant, location);
280         self.sanitize_constant(constant, location);
281         self.sanitize_type(constant, constant.ty);
282
283         if let Some(user_ty) = constant.user_ty {
284             if let Err(terr) = self.cx.relate_type_and_user_type(
285                 constant.ty,
286                 ty::Variance::Invariant,
287                 user_ty,
288                 location.to_locations(),
289                 ConstraintCategory::Boring,
290             ) {
291                 span_mirbug!(
292                     self,
293                     constant,
294                     "bad constant user type {:?} vs {:?}: {:?}",
295                     user_ty,
296                     constant.ty,
297                     terr,
298                 );
299             }
300         }
301     }
302
303     fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) {
304         self.super_rvalue(rvalue, location);
305         let rval_ty = rvalue.ty(self.mir, self.tcx());
306         self.sanitize_type(rvalue, rval_ty);
307     }
308
309     fn visit_local_decl(&mut self, local: Local, local_decl: &LocalDecl<'tcx>) {
310         self.super_local_decl(local, local_decl);
311         self.sanitize_type(local_decl, local_decl.ty);
312
313         if let Some((user_ty, span)) = local_decl.user_ty {
314             if let Err(terr) = self.cx.relate_type_and_user_type(
315                 local_decl.ty,
316                 ty::Variance::Invariant,
317                 user_ty,
318                 Locations::All(span),
319                 ConstraintCategory::TypeAnnotation,
320             ) {
321                 span_mirbug!(
322                     self,
323                     local,
324                     "bad user type on variable {:?}: {:?} != {:?} ({:?})",
325                     local,
326                     local_decl.ty,
327                     local_decl.user_ty,
328                     terr,
329                 );
330             }
331         }
332     }
333
334     fn visit_mir(&mut self, mir: &Mir<'tcx>) {
335         self.sanitize_type(&"return type", mir.return_ty());
336         for local_decl in &mir.local_decls {
337             self.sanitize_type(local_decl, local_decl.ty);
338         }
339         if self.errors_reported {
340             return;
341         }
342         self.super_mir(mir);
343     }
344 }
345
346 impl<'a, 'b, 'gcx, 'tcx> TypeVerifier<'a, 'b, 'gcx, 'tcx> {
347     fn new(cx: &'a mut TypeChecker<'b, 'gcx, 'tcx>, mir: &'a Mir<'tcx>) -> Self {
348         TypeVerifier {
349             mir,
350             mir_def_id: cx.mir_def_id,
351             cx,
352             last_span: mir.span,
353             errors_reported: false,
354         }
355     }
356
357     fn tcx(&self) -> TyCtxt<'a, 'gcx, 'tcx> {
358         self.cx.infcx.tcx
359     }
360
361     fn sanitize_type(&mut self, parent: &dyn fmt::Debug, ty: Ty<'tcx>) -> Ty<'tcx> {
362         if ty.has_escaping_regions() || ty.references_error() {
363             span_mirbug_and_err!(self, parent, "bad type {:?}", ty)
364         } else {
365             ty
366         }
367     }
368
369     /// Checks that the constant's `ty` field matches up with what
370     /// would be expected from its literal.
371     fn sanitize_constant(&mut self, constant: &Constant<'tcx>, location: Location) {
372         debug!(
373             "sanitize_constant(constant={:?}, location={:?})",
374             constant, location
375         );
376
377         // FIXME(#46702) -- We need some way to get the predicates
378         // associated with the "pre-evaluated" form of the
379         // constant. For example, consider that the constant
380         // may have associated constant projections (`<Foo as
381         // Trait<'a, 'b>>::SOME_CONST`) that impose
382         // constraints on `'a` and `'b`. These constraints
383         // would be lost if we just look at the normalized
384         // value.
385         if let ty::FnDef(def_id, substs) = constant.literal.ty.sty {
386             let tcx = self.tcx();
387             let type_checker = &mut self.cx;
388
389             // FIXME -- For now, use the substitutions from
390             // `value.ty` rather than `value.val`. The
391             // renumberer will rewrite them to independent
392             // sets of regions; in principle, we ought to
393             // derive the type of the `value.val` from "first
394             // principles" and equate with value.ty, but as we
395             // are transitioning to the miri-based system, we
396             // don't have a handy function for that, so for
397             // now we just ignore `value.val` regions.
398
399             let instantiated_predicates = tcx.predicates_of(def_id).instantiate(tcx, substs);
400             type_checker.normalize_and_prove_instantiated_predicates(
401                 instantiated_predicates,
402                 location.to_locations(),
403             );
404         }
405
406         debug!("sanitize_constant: expected_ty={:?}", constant.literal.ty);
407
408         if let Err(terr) = self.cx.eq_types(
409             constant.literal.ty,
410             constant.ty,
411             location.to_locations(),
412             ConstraintCategory::Boring,
413         ) {
414             span_mirbug!(
415                 self,
416                 constant,
417                 "constant {:?} should have type {:?} but has {:?} ({:?})",
418                 constant,
419                 constant.literal.ty,
420                 constant.ty,
421                 terr,
422             );
423         }
424     }
425
426     /// Checks that the types internal to the `place` match up with
427     /// what would be expected.
428     fn sanitize_place(
429         &mut self,
430         place: &Place<'tcx>,
431         location: Location,
432         context: PlaceContext,
433     ) -> PlaceTy<'tcx> {
434         debug!("sanitize_place: {:?}", place);
435         let place_ty = match *place {
436             Place::Local(index) => PlaceTy::Ty {
437                 ty: self.mir.local_decls[index].ty,
438             },
439             Place::Promoted(box (_index, sty)) => {
440                 let sty = self.sanitize_type(place, sty);
441                 // FIXME -- promoted MIR return types reference
442                 // various "free regions" (e.g., scopes and things)
443                 // that they ought not to do. We have to figure out
444                 // how best to handle that -- probably we want treat
445                 // promoted MIR much like closures, renumbering all
446                 // their free regions and propagating constraints
447                 // upwards. We have the same acyclic guarantees, so
448                 // that should be possible. But for now, ignore them.
449                 //
450                 // let promoted_mir = &self.mir.promoted[index];
451                 // promoted_mir.return_ty()
452                 PlaceTy::Ty { ty: sty }
453             }
454             Place::Static(box Static { def_id, ty: sty }) => {
455                 let sty = self.sanitize_type(place, sty);
456                 let ty = self.tcx().type_of(def_id);
457                 let ty = self.cx.normalize(ty, location);
458                 if let Err(terr) =
459                     self.cx
460                         .eq_types(ty, sty, location.to_locations(), ConstraintCategory::Boring)
461                 {
462                     span_mirbug!(
463                         self,
464                         place,
465                         "bad static type ({:?}: {:?}): {:?}",
466                         ty,
467                         sty,
468                         terr
469                     );
470                 }
471                 PlaceTy::Ty { ty: sty }
472             }
473             Place::Projection(ref proj) => {
474                 let base_context = if context.is_mutating_use() {
475                     PlaceContext::Projection(Mutability::Mut)
476                 } else {
477                     PlaceContext::Projection(Mutability::Not)
478                 };
479                 let base_ty = self.sanitize_place(&proj.base, location, base_context);
480                 if let PlaceTy::Ty { ty } = base_ty {
481                     if ty.references_error() {
482                         assert!(self.errors_reported);
483                         return PlaceTy::Ty {
484                             ty: self.tcx().types.err,
485                         };
486                     }
487                 }
488                 self.sanitize_projection(base_ty, &proj.elem, place, location)
489             }
490         };
491         if let PlaceContext::Copy = context {
492             let tcx = self.tcx();
493             let trait_ref = ty::TraitRef {
494                 def_id: tcx.lang_items().copy_trait().unwrap(),
495                 substs: tcx.mk_substs_trait(place_ty.to_ty(tcx), &[]),
496             };
497
498             // In order to have a Copy operand, the type T of the value must be Copy. Note that we
499             // prove that T: Copy, rather than using the type_moves_by_default test. This is
500             // important because type_moves_by_default ignores the resulting region obligations and
501             // assumes they pass. This can result in bounds from Copy impls being unsoundly ignored
502             // (e.g., #29149). Note that we decide to use Copy before knowing whether the bounds
503             // fully apply: in effect, the rule is that if a value of some type could implement
504             // Copy, then it must.
505             self.cx.prove_trait_ref(
506                 trait_ref,
507                 location.to_locations(),
508                 ConstraintCategory::CopyBound,
509             );
510         }
511         place_ty
512     }
513
514     fn sanitize_projection(
515         &mut self,
516         base: PlaceTy<'tcx>,
517         pi: &PlaceElem<'tcx>,
518         place: &Place<'tcx>,
519         location: Location,
520     ) -> PlaceTy<'tcx> {
521         debug!("sanitize_projection: {:?} {:?} {:?}", base, pi, place);
522         let tcx = self.tcx();
523         let base_ty = base.to_ty(tcx);
524         match *pi {
525             ProjectionElem::Deref => {
526                 let deref_ty = base_ty.builtin_deref(true);
527                 PlaceTy::Ty {
528                     ty: deref_ty.map(|t| t.ty).unwrap_or_else(|| {
529                         span_mirbug_and_err!(self, place, "deref of non-pointer {:?}", base_ty)
530                     }),
531                 }
532             }
533             ProjectionElem::Index(i) => {
534                 let index_ty = Place::Local(i).ty(self.mir, tcx).to_ty(tcx);
535                 if index_ty != tcx.types.usize {
536                     PlaceTy::Ty {
537                         ty: span_mirbug_and_err!(self, i, "index by non-usize {:?}", i),
538                     }
539                 } else {
540                     PlaceTy::Ty {
541                         ty: base_ty.builtin_index().unwrap_or_else(|| {
542                             span_mirbug_and_err!(self, place, "index of non-array {:?}", base_ty)
543                         }),
544                     }
545                 }
546             }
547             ProjectionElem::ConstantIndex { .. } => {
548                 // consider verifying in-bounds
549                 PlaceTy::Ty {
550                     ty: base_ty.builtin_index().unwrap_or_else(|| {
551                         span_mirbug_and_err!(self, place, "index of non-array {:?}", base_ty)
552                     }),
553                 }
554             }
555             ProjectionElem::Subslice { from, to } => PlaceTy::Ty {
556                 ty: match base_ty.sty {
557                     ty::Array(inner, size) => {
558                         let size = size.unwrap_usize(tcx);
559                         let min_size = (from as u64) + (to as u64);
560                         if let Some(rest_size) = size.checked_sub(min_size) {
561                             tcx.mk_array(inner, rest_size)
562                         } else {
563                             span_mirbug_and_err!(
564                                 self,
565                                 place,
566                                 "taking too-small slice of {:?}",
567                                 base_ty
568                             )
569                         }
570                     }
571                     ty::Slice(..) => base_ty,
572                     _ => span_mirbug_and_err!(self, place, "slice of non-array {:?}", base_ty),
573                 },
574             },
575             ProjectionElem::Downcast(adt_def1, index) => match base_ty.sty {
576                 ty::Adt(adt_def, substs) if adt_def.is_enum() && adt_def == adt_def1 => {
577                     if index >= adt_def.variants.len() {
578                         PlaceTy::Ty {
579                             ty: span_mirbug_and_err!(
580                                 self,
581                                 place,
582                                 "cast to variant #{:?} but enum only has {:?}",
583                                 index,
584                                 adt_def.variants.len()
585                             ),
586                         }
587                     } else {
588                         PlaceTy::Downcast {
589                             adt_def,
590                             substs,
591                             variant_index: index,
592                         }
593                     }
594                 }
595                 _ => PlaceTy::Ty {
596                     ty: span_mirbug_and_err!(
597                         self,
598                         place,
599                         "can't downcast {:?} as {:?}",
600                         base_ty,
601                         adt_def1
602                     ),
603                 },
604             },
605             ProjectionElem::Field(field, fty) => {
606                 let fty = self.sanitize_type(place, fty);
607                 match self.field_ty(place, base, field, location) {
608                     Ok(ty) => if let Err(terr) = self.cx.eq_types(
609                         ty,
610                         fty,
611                         location.to_locations(),
612                         ConstraintCategory::Boring,
613                     ) {
614                         span_mirbug!(
615                             self,
616                             place,
617                             "bad field access ({:?}: {:?}): {:?}",
618                             ty,
619                             fty,
620                             terr
621                         );
622                     },
623                     Err(FieldAccessError::OutOfRange { field_count }) => span_mirbug!(
624                         self,
625                         place,
626                         "accessed field #{} but variant only has {}",
627                         field.index(),
628                         field_count
629                     ),
630                 }
631                 PlaceTy::Ty { ty: fty }
632             }
633         }
634     }
635
636     fn error(&mut self) -> Ty<'tcx> {
637         self.errors_reported = true;
638         self.tcx().types.err
639     }
640
641     fn field_ty(
642         &mut self,
643         parent: &dyn fmt::Debug,
644         base_ty: PlaceTy<'tcx>,
645         field: Field,
646         location: Location,
647     ) -> Result<Ty<'tcx>, FieldAccessError> {
648         let tcx = self.tcx();
649
650         let (variant, substs) = match base_ty {
651             PlaceTy::Downcast {
652                 adt_def,
653                 substs,
654                 variant_index,
655             } => (&adt_def.variants[variant_index], substs),
656             PlaceTy::Ty { ty } => match ty.sty {
657                 ty::Adt(adt_def, substs) if !adt_def.is_enum() => (&adt_def.variants[0], substs),
658                 ty::Closure(def_id, substs) => {
659                     return match substs.upvar_tys(def_id, tcx).nth(field.index()) {
660                         Some(ty) => Ok(ty),
661                         None => Err(FieldAccessError::OutOfRange {
662                             field_count: substs.upvar_tys(def_id, tcx).count(),
663                         }),
664                     }
665                 }
666                 ty::Generator(def_id, substs, _) => {
667                     // Try pre-transform fields first (upvars and current state)
668                     if let Some(ty) = substs.pre_transforms_tys(def_id, tcx).nth(field.index()) {
669                         return Ok(ty);
670                     }
671
672                     // Then try `field_tys` which contains all the fields, but it
673                     // requires the final optimized MIR.
674                     return match substs.field_tys(def_id, tcx).nth(field.index()) {
675                         Some(ty) => Ok(ty),
676                         None => Err(FieldAccessError::OutOfRange {
677                             field_count: substs.field_tys(def_id, tcx).count(),
678                         }),
679                     };
680                 }
681                 ty::Tuple(tys) => {
682                     return match tys.get(field.index()) {
683                         Some(&ty) => Ok(ty),
684                         None => Err(FieldAccessError::OutOfRange {
685                             field_count: tys.len(),
686                         }),
687                     }
688                 }
689                 _ => {
690                     return Ok(span_mirbug_and_err!(
691                         self,
692                         parent,
693                         "can't project out of {:?}",
694                         base_ty
695                     ))
696                 }
697             },
698         };
699
700         if let Some(field) = variant.fields.get(field.index()) {
701             Ok(self.cx.normalize(&field.ty(tcx, substs), location))
702         } else {
703             Err(FieldAccessError::OutOfRange {
704                 field_count: variant.fields.len(),
705             })
706         }
707     }
708 }
709
710 /// The MIR type checker. Visits the MIR and enforces all the
711 /// constraints needed for it to be valid and well-typed. Along the
712 /// way, it accrues region constraints -- these can later be used by
713 /// NLL region checking.
714 struct TypeChecker<'a, 'gcx: 'tcx, 'tcx: 'a> {
715     infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
716     param_env: ty::ParamEnv<'gcx>,
717     last_span: Span,
718     mir: &'a Mir<'tcx>,
719     mir_def_id: DefId,
720     region_bound_pairs: &'a RegionBoundPairs<'tcx>,
721     implicit_region_bound: Option<ty::Region<'tcx>>,
722     reported_errors: FxHashSet<(Ty<'tcx>, Span)>,
723     borrowck_context: Option<&'a mut BorrowCheckContext<'a, 'tcx>>,
724     universal_region_relations: Option<&'a UniversalRegionRelations<'tcx>>,
725 }
726
727 struct BorrowCheckContext<'a, 'tcx: 'a> {
728     universal_regions: &'a UniversalRegions<'tcx>,
729     location_table: &'a LocationTable,
730     all_facts: &'a mut Option<AllFacts>,
731     borrow_set: &'a BorrowSet<'tcx>,
732     constraints: &'a mut MirTypeckRegionConstraints<'tcx>,
733     placeholder_indices: &'a mut PlaceholderIndices,
734 }
735
736 crate struct MirTypeckResults<'tcx> {
737     crate constraints: MirTypeckRegionConstraints<'tcx>,
738     crate placeholder_indices: PlaceholderIndices,
739     crate universal_region_relations: Rc<UniversalRegionRelations<'tcx>>,
740 }
741
742 /// A collection of region constraints that must be satisfied for the
743 /// program to be considered well-typed.
744 crate struct MirTypeckRegionConstraints<'tcx> {
745     /// In general, the type-checker is not responsible for enforcing
746     /// liveness constraints; this job falls to the region inferencer,
747     /// which performs a liveness analysis. However, in some limited
748     /// cases, the MIR type-checker creates temporary regions that do
749     /// not otherwise appear in the MIR -- in particular, the
750     /// late-bound regions that it instantiates at call-sites -- and
751     /// hence it must report on their liveness constraints.
752     crate liveness_constraints: LivenessValues<RegionVid>,
753
754     crate outlives_constraints: ConstraintSet,
755
756     crate closure_bounds_mapping:
757         FxHashMap<Location, FxHashMap<(RegionVid, RegionVid), (ConstraintCategory, Span)>>,
758
759     crate type_tests: Vec<TypeTest<'tcx>>,
760 }
761
762 /// The `Locations` type summarizes *where* region constraints are
763 /// required to hold. Normally, this is at a particular point which
764 /// created the obligation, but for constraints that the user gave, we
765 /// want the constraint to hold at all points.
766 #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
767 pub enum Locations {
768     /// Indicates that a type constraint should always be true. This
769     /// is particularly important in the new borrowck analysis for
770     /// things like the type of the return slot. Consider this
771     /// example:
772     ///
773     /// ```
774     /// fn foo<'a>(x: &'a u32) -> &'a u32 {
775     ///     let y = 22;
776     ///     return &y; // error
777     /// }
778     /// ```
779     ///
780     /// Here, we wind up with the signature from the return type being
781     /// something like `&'1 u32` where `'1` is a universal region. But
782     /// the type of the return slot `_0` is something like `&'2 u32`
783     /// where `'2` is an existential region variable. The type checker
784     /// requires that `&'2 u32 = &'1 u32` -- but at what point? In the
785     /// older NLL analysis, we required this only at the entry point
786     /// to the function. By the nature of the constraints, this wound
787     /// up propagating to all points reachable from start (because
788     /// `'1` -- as a universal region -- is live everywhere).  In the
789     /// newer analysis, though, this doesn't work: `_0` is considered
790     /// dead at the start (it has no usable value) and hence this type
791     /// equality is basically a no-op. Then, later on, when we do `_0
792     /// = &'3 y`, that region `'3` never winds up related to the
793     /// universal region `'1` and hence no error occurs. Therefore, we
794     /// use Locations::All instead, which ensures that the `'1` and
795     /// `'2` are equal everything. We also use this for other
796     /// user-given type annotations; e.g., if the user wrote `let mut
797     /// x: &'static u32 = ...`, we would ensure that all values
798     /// assigned to `x` are of `'static` lifetime.
799     ///
800     /// The span points to the place the constraint arose. For example,
801     /// it points to the type in a user-given type annotation. If
802     /// there's no sensible span then it's DUMMY_SP.
803     All(Span),
804
805     /// An outlives constraint that only has to hold at a single location,
806     /// usually it represents a point where references flow from one spot to
807     /// another (e.g., `x = y`)
808     Single(Location),
809 }
810
811 impl Locations {
812     pub fn from_location(&self) -> Option<Location> {
813         match self {
814             Locations::All(_) => None,
815             Locations::Single(from_location) => Some(*from_location),
816         }
817     }
818
819     /// Gets a span representing the location.
820     pub fn span(&self, mir: &Mir<'_>) -> Span {
821         match self {
822             Locations::All(span) => *span,
823             Locations::Single(l) => mir.source_info(*l).span,
824         }
825     }
826 }
827
828 impl<'a, 'gcx, 'tcx> TypeChecker<'a, 'gcx, 'tcx> {
829     fn new(
830         infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
831         mir: &'a Mir<'tcx>,
832         mir_def_id: DefId,
833         param_env: ty::ParamEnv<'gcx>,
834         region_bound_pairs: &'a RegionBoundPairs<'tcx>,
835         implicit_region_bound: Option<ty::Region<'tcx>>,
836         borrowck_context: Option<&'a mut BorrowCheckContext<'a, 'tcx>>,
837         universal_region_relations: Option<&'a UniversalRegionRelations<'tcx>>,
838     ) -> Self {
839         TypeChecker {
840             infcx,
841             last_span: DUMMY_SP,
842             mir,
843             mir_def_id,
844             param_env,
845             region_bound_pairs,
846             implicit_region_bound,
847             borrowck_context,
848             reported_errors: Default::default(),
849             universal_region_relations,
850         }
851     }
852
853     /// Given some operation `op` that manipulates types, proves
854     /// predicates, or otherwise uses the inference context, executes
855     /// `op` and then executes all the further obligations that `op`
856     /// returns. This will yield a set of outlives constraints amongst
857     /// regions which are extracted and stored as having occurred at
858     /// `locations`.
859     ///
860     /// **Any `rustc::infer` operations that might generate region
861     /// constraints should occur within this method so that those
862     /// constraints can be properly localized!**
863     fn fully_perform_op<R>(
864         &mut self,
865         locations: Locations,
866         category: ConstraintCategory,
867         op: impl type_op::TypeOp<'gcx, 'tcx, Output = R>,
868     ) -> Fallible<R> {
869         let (r, opt_data) = op.fully_perform(self.infcx)?;
870
871         if let Some(data) = &opt_data {
872             self.push_region_constraints(locations, category, data);
873         }
874
875         Ok(r)
876     }
877
878     fn push_region_constraints(
879         &mut self,
880         locations: Locations,
881         category: ConstraintCategory,
882         data: &[QueryRegionConstraint<'tcx>],
883     ) {
884         debug!(
885             "push_region_constraints: constraints generated at {:?} are {:#?}",
886             locations, data
887         );
888
889         if let Some(ref mut borrowck_context) = self.borrowck_context {
890             constraint_conversion::ConstraintConversion::new(
891                 self.infcx.tcx,
892                 borrowck_context.universal_regions,
893                 self.region_bound_pairs,
894                 self.implicit_region_bound,
895                 self.param_env,
896                 locations,
897                 category,
898                 &mut borrowck_context.constraints.outlives_constraints,
899                 &mut borrowck_context.constraints.type_tests,
900             ).convert_all(&data);
901         }
902     }
903
904     /// Convenient wrapper around `relate_tys::relate_types` -- see
905     /// that fn for docs.
906     fn relate_types(
907         &mut self,
908         a: Ty<'tcx>,
909         v: ty::Variance,
910         b: Ty<'tcx>,
911         locations: Locations,
912         category: ConstraintCategory,
913     ) -> Fallible<()> {
914         relate_tys::relate_types(
915             self.infcx,
916             a,
917             v,
918             b,
919             locations,
920             category,
921             self.borrowck_context.as_mut().map(|x| &mut **x),
922         )
923     }
924
925     fn sub_types(
926         &mut self,
927         sub: Ty<'tcx>,
928         sup: Ty<'tcx>,
929         locations: Locations,
930         category: ConstraintCategory,
931     ) -> Fallible<()> {
932         self.relate_types(sub, ty::Variance::Covariant, sup, locations, category)
933     }
934
935     /// Try to relate `sub <: sup`; if this fails, instantiate opaque
936     /// variables in `sub` with their inferred definitions and try
937     /// again. This is used for opaque types in places (e.g., `let x:
938     /// impl Foo = ..`).
939     fn sub_types_or_anon(
940         &mut self,
941         sub: Ty<'tcx>,
942         sup: Ty<'tcx>,
943         locations: Locations,
944         category: ConstraintCategory,
945     ) -> Fallible<()> {
946         if let Err(terr) = self.sub_types(sub, sup, locations, category) {
947             if let TyKind::Opaque(..) = sup.sty {
948                 // When you have `let x: impl Foo = ...` in a closure,
949                 // the resulting inferend values are stored with the
950                 // def-id of the base function.
951                 let parent_def_id = self.tcx().closure_base_def_id(self.mir_def_id);
952                 return self.eq_opaque_type_and_type(sub, sup, parent_def_id, locations, category);
953             } else {
954                 return Err(terr);
955             }
956         }
957         Ok(())
958     }
959
960     fn eq_types(
961         &mut self,
962         a: Ty<'tcx>,
963         b: Ty<'tcx>,
964         locations: Locations,
965         category: ConstraintCategory,
966     ) -> Fallible<()> {
967         self.relate_types(a, ty::Variance::Invariant, b, locations, category)
968     }
969
970     fn relate_type_and_user_type(
971         &mut self,
972         a: Ty<'tcx>,
973         v: ty::Variance,
974         user_ty: UserTypeAnnotation<'tcx>,
975         locations: Locations,
976         category: ConstraintCategory,
977     ) -> Fallible<()> {
978         debug!(
979             "relate_type_and_user_type(a={:?}, v={:?}, user_ty={:?}, locations={:?})",
980             a, v, user_ty, locations,
981         );
982
983         match user_ty {
984             UserTypeAnnotation::Ty(canonical_ty) => {
985                 let (ty, _) = self.infcx
986                     .instantiate_canonical_with_fresh_inference_vars(DUMMY_SP, &canonical_ty);
987
988                 // The `TypeRelating` code assumes that "unresolved inference
989                 // variables" appear in the "a" side, so flip `Contravariant`
990                 // ambient variance to get the right relationship.
991                 let v1 = ty::Contravariant.xform(v);
992
993                 self.relate_types(ty, v1, a, locations, category)?;
994             }
995             UserTypeAnnotation::TypeOf(def_id, canonical_substs) => {
996                 let (
997                     user_substs,
998                     _,
999                 ) = self.infcx
1000                     .instantiate_canonical_with_fresh_inference_vars(DUMMY_SP, &canonical_substs);
1001
1002                 self.fully_perform_op(
1003                     locations,
1004                     category,
1005                     self.param_env.and(type_op::ascribe_user_type::AscribeUserType::new(
1006                         a, v, def_id, user_substs,
1007                     )),
1008                 )?;
1009             }
1010         }
1011
1012         Ok(())
1013     }
1014
1015     fn eq_opaque_type_and_type(
1016         &mut self,
1017         revealed_ty: Ty<'tcx>,
1018         anon_ty: Ty<'tcx>,
1019         anon_owner_def_id: DefId,
1020         locations: Locations,
1021         category: ConstraintCategory,
1022     ) -> Fallible<()> {
1023         debug!(
1024             "eq_opaque_type_and_type( \
1025              revealed_ty={:?}, \
1026              anon_ty={:?})",
1027             revealed_ty, anon_ty
1028         );
1029         let infcx = self.infcx;
1030         let tcx = infcx.tcx;
1031         let param_env = self.param_env;
1032         debug!("eq_opaque_type_and_type: mir_def_id={:?}", self.mir_def_id);
1033         let opaque_type_map = self.fully_perform_op(
1034             locations,
1035             category,
1036             CustomTypeOp::new(
1037                 |infcx| {
1038                     let mut obligations = ObligationAccumulator::default();
1039
1040                     let dummy_body_id = ObligationCause::dummy().body_id;
1041                     let (output_ty, opaque_type_map) =
1042                         obligations.add(infcx.instantiate_opaque_types(
1043                             anon_owner_def_id,
1044                             dummy_body_id,
1045                             param_env,
1046                             &anon_ty,
1047                         ));
1048                     debug!(
1049                         "eq_opaque_type_and_type: \
1050                          instantiated output_ty={:?} \
1051                          opaque_type_map={:#?} \
1052                          revealed_ty={:?}",
1053                         output_ty, opaque_type_map, revealed_ty
1054                     );
1055                     obligations.add(infcx
1056                         .at(&ObligationCause::dummy(), param_env)
1057                         .eq(output_ty, revealed_ty)?);
1058
1059                     for (&opaque_def_id, opaque_decl) in &opaque_type_map {
1060                         let opaque_defn_ty = tcx.type_of(opaque_def_id);
1061                         let opaque_defn_ty = opaque_defn_ty.subst(tcx, opaque_decl.substs);
1062                         let opaque_defn_ty = renumber::renumber_regions(infcx, &opaque_defn_ty);
1063                         debug!(
1064                             "eq_opaque_type_and_type: concrete_ty={:?}={:?} opaque_defn_ty={:?}",
1065                             opaque_decl.concrete_ty,
1066                             infcx.resolve_type_vars_if_possible(&opaque_decl.concrete_ty),
1067                             opaque_defn_ty
1068                         );
1069                         obligations.add(infcx
1070                             .at(&ObligationCause::dummy(), param_env)
1071                             .eq(opaque_decl.concrete_ty, opaque_defn_ty)?);
1072                     }
1073
1074                     debug!("eq_opaque_type_and_type: equated");
1075
1076                     Ok(InferOk {
1077                         value: Some(opaque_type_map),
1078                         obligations: obligations.into_vec(),
1079                     })
1080                 },
1081                 || "input_output".to_string(),
1082             ),
1083         )?;
1084
1085         let universal_region_relations = match self.universal_region_relations {
1086             Some(rel) => rel,
1087             None => return Ok(()),
1088         };
1089
1090         // Finally, if we instantiated the anon types successfully, we
1091         // have to solve any bounds (e.g., `-> impl Iterator` needs to
1092         // prove that `T: Iterator` where `T` is the type we
1093         // instantiated it with).
1094         if let Some(opaque_type_map) = opaque_type_map {
1095             for (opaque_def_id, opaque_decl) in opaque_type_map {
1096                 self.fully_perform_op(
1097                     locations,
1098                     ConstraintCategory::OpaqueType,
1099                     CustomTypeOp::new(
1100                         |_cx| {
1101                             infcx.constrain_opaque_type(
1102                                 opaque_def_id,
1103                                 &opaque_decl,
1104                                 universal_region_relations,
1105                             );
1106                             Ok(InferOk {
1107                                 value: (),
1108                                 obligations: vec![],
1109                             })
1110                         },
1111                         || "opaque_type_map".to_string(),
1112                     ),
1113                 )?;
1114             }
1115         }
1116         Ok(())
1117     }
1118
1119     fn tcx(&self) -> TyCtxt<'a, 'gcx, 'tcx> {
1120         self.infcx.tcx
1121     }
1122
1123     fn check_stmt(&mut self, mir: &Mir<'tcx>, stmt: &Statement<'tcx>, location: Location) {
1124         debug!("check_stmt: {:?}", stmt);
1125         let tcx = self.tcx();
1126         match stmt.kind {
1127             StatementKind::Assign(ref place, ref rv) => {
1128                 // Assignments to temporaries are not "interesting";
1129                 // they are not caused by the user, but rather artifacts
1130                 // of lowering. Assignments to other sorts of places *are* interesting
1131                 // though.
1132                 let category = match *place {
1133                     Place::Local(RETURN_PLACE) => if let Some(BorrowCheckContext {
1134                         universal_regions:
1135                             UniversalRegions {
1136                                 defining_ty: DefiningTy::Const(def_id, _),
1137                                 ..
1138                             },
1139                         ..
1140                     }) = self.borrowck_context
1141                     {
1142                         if tcx.is_static(*def_id).is_some() {
1143                             ConstraintCategory::UseAsStatic
1144                         } else {
1145                             ConstraintCategory::UseAsConst
1146                         }
1147                     } else {
1148                         ConstraintCategory::Return
1149                     },
1150                     Place::Local(l) if !mir.local_decls[l].is_user_variable.is_some() => {
1151                         ConstraintCategory::Boring
1152                     }
1153                     _ => ConstraintCategory::Assignment,
1154                 };
1155
1156                 let place_ty = place.ty(mir, tcx).to_ty(tcx);
1157                 let rv_ty = rv.ty(mir, tcx);
1158                 if let Err(terr) =
1159                     self.sub_types_or_anon(rv_ty, place_ty, location.to_locations(), category)
1160                 {
1161                     span_mirbug!(
1162                         self,
1163                         stmt,
1164                         "bad assignment ({:?} = {:?}): {:?}",
1165                         place_ty,
1166                         rv_ty,
1167                         terr
1168                     );
1169                 }
1170
1171                 if let Some(user_ty) = self.rvalue_user_ty(rv) {
1172                     if let Err(terr) = self.relate_type_and_user_type(
1173                         rv_ty,
1174                         ty::Variance::Invariant,
1175                         user_ty,
1176                         location.to_locations(),
1177                         ConstraintCategory::Boring,
1178                     ) {
1179                         span_mirbug!(
1180                             self,
1181                             stmt,
1182                             "bad user type on rvalue ({:?} = {:?}): {:?}",
1183                             user_ty,
1184                             rv_ty,
1185                             terr
1186                         );
1187                     }
1188                 }
1189
1190                 self.check_rvalue(mir, rv, location);
1191                 if !self.tcx().features().unsized_locals {
1192                     let trait_ref = ty::TraitRef {
1193                         def_id: tcx.lang_items().sized_trait().unwrap(),
1194                         substs: tcx.mk_substs_trait(place_ty, &[]),
1195                     };
1196                     self.prove_trait_ref(
1197                         trait_ref,
1198                         location.to_locations(),
1199                         ConstraintCategory::SizedBound,
1200                     );
1201                 }
1202             }
1203             StatementKind::SetDiscriminant {
1204                 ref place,
1205                 variant_index,
1206             } => {
1207                 let place_type = place.ty(mir, tcx).to_ty(tcx);
1208                 let adt = match place_type.sty {
1209                     TyKind::Adt(adt, _) if adt.is_enum() => adt,
1210                     _ => {
1211                         span_bug!(
1212                             stmt.source_info.span,
1213                             "bad set discriminant ({:?} = {:?}): lhs is not an enum",
1214                             place,
1215                             variant_index
1216                         );
1217                     }
1218                 };
1219                 if variant_index >= adt.variants.len() {
1220                     span_bug!(
1221                         stmt.source_info.span,
1222                         "bad set discriminant ({:?} = {:?}): value of of range",
1223                         place,
1224                         variant_index
1225                     );
1226                 };
1227             }
1228             StatementKind::AscribeUserType(ref place, variance, c_ty) => {
1229                 let place_ty = place.ty(mir, tcx).to_ty(tcx);
1230                 if let Err(terr) = self.relate_type_and_user_type(
1231                     place_ty,
1232                     variance,
1233                     c_ty,
1234                     Locations::All(stmt.source_info.span),
1235                     ConstraintCategory::TypeAnnotation,
1236                 ) {
1237                     span_mirbug!(
1238                         self,
1239                         stmt,
1240                         "bad type assert ({:?} <: {:?}): {:?}",
1241                         place_ty,
1242                         c_ty,
1243                         terr
1244                     );
1245                 }
1246             }
1247             StatementKind::FakeRead(..)
1248             | StatementKind::StorageLive(_)
1249             | StatementKind::StorageDead(_)
1250             | StatementKind::InlineAsm { .. }
1251             | StatementKind::EndRegion(_)
1252             | StatementKind::Validate(..)
1253             | StatementKind::Nop => {}
1254         }
1255     }
1256
1257     fn check_terminator(
1258         &mut self,
1259         mir: &Mir<'tcx>,
1260         term: &Terminator<'tcx>,
1261         term_location: Location,
1262     ) {
1263         debug!("check_terminator: {:?}", term);
1264         let tcx = self.tcx();
1265         match term.kind {
1266             TerminatorKind::Goto { .. }
1267             | TerminatorKind::Resume
1268             | TerminatorKind::Abort
1269             | TerminatorKind::Return
1270             | TerminatorKind::GeneratorDrop
1271             | TerminatorKind::Unreachable
1272             | TerminatorKind::Drop { .. }
1273             | TerminatorKind::FalseEdges { .. }
1274             | TerminatorKind::FalseUnwind { .. } => {
1275                 // no checks needed for these
1276             }
1277
1278             TerminatorKind::DropAndReplace {
1279                 ref location,
1280                 ref value,
1281                 target: _,
1282                 unwind: _,
1283             } => {
1284                 let place_ty = location.ty(mir, tcx).to_ty(tcx);
1285                 let rv_ty = value.ty(mir, tcx);
1286
1287                 let locations = term_location.to_locations();
1288                 if let Err(terr) =
1289                     self.sub_types(rv_ty, place_ty, locations, ConstraintCategory::Assignment)
1290                 {
1291                     span_mirbug!(
1292                         self,
1293                         term,
1294                         "bad DropAndReplace ({:?} = {:?}): {:?}",
1295                         place_ty,
1296                         rv_ty,
1297                         terr
1298                     );
1299                 }
1300             }
1301             TerminatorKind::SwitchInt {
1302                 ref discr,
1303                 switch_ty,
1304                 ..
1305             } => {
1306                 let discr_ty = discr.ty(mir, tcx);
1307                 if let Err(terr) = self.sub_types(
1308                     discr_ty,
1309                     switch_ty,
1310                     term_location.to_locations(),
1311                     ConstraintCategory::Assignment,
1312                 ) {
1313                     span_mirbug!(
1314                         self,
1315                         term,
1316                         "bad SwitchInt ({:?} on {:?}): {:?}",
1317                         switch_ty,
1318                         discr_ty,
1319                         terr
1320                     );
1321                 }
1322                 if !switch_ty.is_integral() && !switch_ty.is_char() && !switch_ty.is_bool() {
1323                     span_mirbug!(self, term, "bad SwitchInt discr ty {:?}", switch_ty);
1324                 }
1325                 // FIXME: check the values
1326             }
1327             TerminatorKind::Call {
1328                 ref func,
1329                 ref args,
1330                 ref destination,
1331                 from_hir_call,
1332                 ..
1333             } => {
1334                 let func_ty = func.ty(mir, tcx);
1335                 debug!("check_terminator: call, func_ty={:?}", func_ty);
1336                 let sig = match func_ty.sty {
1337                     ty::FnDef(..) | ty::FnPtr(_) => func_ty.fn_sig(tcx),
1338                     _ => {
1339                         span_mirbug!(self, term, "call to non-function {:?}", func_ty);
1340                         return;
1341                     }
1342                 };
1343                 let (sig, map) = self.infcx.replace_late_bound_regions_with_fresh_var(
1344                     term.source_info.span,
1345                     LateBoundRegionConversionTime::FnCall,
1346                     &sig,
1347                 );
1348                 let sig = self.normalize(sig, term_location);
1349                 self.check_call_dest(mir, term, &sig, destination, term_location);
1350
1351                 self.prove_predicates(
1352                     sig.inputs().iter().map(|ty| ty::Predicate::WellFormed(ty)),
1353                     term_location.to_locations(),
1354                     ConstraintCategory::Boring,
1355                 );
1356
1357                 // The ordinary liveness rules will ensure that all
1358                 // regions in the type of the callee are live here. We
1359                 // then further constrain the late-bound regions that
1360                 // were instantiated at the call site to be live as
1361                 // well. The resulting is that all the input (and
1362                 // output) types in the signature must be live, since
1363                 // all the inputs that fed into it were live.
1364                 for &late_bound_region in map.values() {
1365                     if let Some(ref mut borrowck_context) = self.borrowck_context {
1366                         let region_vid = borrowck_context
1367                             .universal_regions
1368                             .to_region_vid(late_bound_region);
1369                         borrowck_context
1370                             .constraints
1371                             .liveness_constraints
1372                             .add_element(region_vid, term_location);
1373                     }
1374                 }
1375
1376                 self.check_call_inputs(mir, term, &sig, args, term_location, from_hir_call);
1377             }
1378             TerminatorKind::Assert {
1379                 ref cond, ref msg, ..
1380             } => {
1381                 let cond_ty = cond.ty(mir, tcx);
1382                 if cond_ty != tcx.types.bool {
1383                     span_mirbug!(self, term, "bad Assert ({:?}, not bool", cond_ty);
1384                 }
1385
1386                 if let BoundsCheck { ref len, ref index } = *msg {
1387                     if len.ty(mir, tcx) != tcx.types.usize {
1388                         span_mirbug!(self, len, "bounds-check length non-usize {:?}", len)
1389                     }
1390                     if index.ty(mir, tcx) != tcx.types.usize {
1391                         span_mirbug!(self, index, "bounds-check index non-usize {:?}", index)
1392                     }
1393                 }
1394             }
1395             TerminatorKind::Yield { ref value, .. } => {
1396                 let value_ty = value.ty(mir, tcx);
1397                 match mir.yield_ty {
1398                     None => span_mirbug!(self, term, "yield in non-generator"),
1399                     Some(ty) => {
1400                         if let Err(terr) = self.sub_types(
1401                             value_ty,
1402                             ty,
1403                             term_location.to_locations(),
1404                             ConstraintCategory::Return,
1405                         ) {
1406                             span_mirbug!(
1407                                 self,
1408                                 term,
1409                                 "type of yield value is {:?}, but the yield type is {:?}: {:?}",
1410                                 value_ty,
1411                                 ty,
1412                                 terr
1413                             );
1414                         }
1415                     }
1416                 }
1417             }
1418         }
1419     }
1420
1421     fn check_call_dest(
1422         &mut self,
1423         mir: &Mir<'tcx>,
1424         term: &Terminator<'tcx>,
1425         sig: &ty::FnSig<'tcx>,
1426         destination: &Option<(Place<'tcx>, BasicBlock)>,
1427         term_location: Location,
1428     ) {
1429         let tcx = self.tcx();
1430         match *destination {
1431             Some((ref dest, _target_block)) => {
1432                 let dest_ty = dest.ty(mir, tcx).to_ty(tcx);
1433                 let category = match *dest {
1434                     Place::Local(RETURN_PLACE) => {
1435                         if let Some(BorrowCheckContext {
1436                             universal_regions:
1437                                 UniversalRegions {
1438                                     defining_ty: DefiningTy::Const(def_id, _),
1439                                     ..
1440                                 },
1441                             ..
1442                         }) = self.borrowck_context
1443                         {
1444                             if tcx.is_static(*def_id).is_some() {
1445                                 ConstraintCategory::UseAsStatic
1446                             } else {
1447                                 ConstraintCategory::UseAsConst
1448                             }
1449                         } else {
1450                             ConstraintCategory::Return
1451                         }
1452                     }
1453                     Place::Local(l) if !mir.local_decls[l].is_user_variable.is_some() => {
1454                         ConstraintCategory::Boring
1455                     }
1456                     _ => ConstraintCategory::Assignment,
1457                 };
1458
1459                 let locations = term_location.to_locations();
1460
1461                 if let Err(terr) =
1462                     self.sub_types_or_anon(sig.output(), dest_ty, locations, category)
1463                 {
1464                     span_mirbug!(
1465                         self,
1466                         term,
1467                         "call dest mismatch ({:?} <- {:?}): {:?}",
1468                         dest_ty,
1469                         sig.output(),
1470                         terr
1471                     );
1472                 }
1473
1474                 // When `#![feature(unsized_locals)]` is not enabled,
1475                 // this check is done at `check_local`.
1476                 if self.tcx().features().unsized_locals {
1477                     let span = term.source_info.span;
1478                     self.ensure_place_sized(dest_ty, span);
1479                 }
1480             }
1481             None => {
1482                 // FIXME(canndrew): This is_never should probably be an is_uninhabited
1483                 if !sig.output().is_never() {
1484                     span_mirbug!(self, term, "call to converging function {:?} w/o dest", sig);
1485                 }
1486             }
1487         }
1488     }
1489
1490     fn check_call_inputs(
1491         &mut self,
1492         mir: &Mir<'tcx>,
1493         term: &Terminator<'tcx>,
1494         sig: &ty::FnSig<'tcx>,
1495         args: &[Operand<'tcx>],
1496         term_location: Location,
1497         from_hir_call: bool,
1498     ) {
1499         debug!("check_call_inputs({:?}, {:?})", sig, args);
1500         if args.len() < sig.inputs().len() || (args.len() > sig.inputs().len() && !sig.variadic) {
1501             span_mirbug!(self, term, "call to {:?} with wrong # of args", sig);
1502         }
1503         for (n, (fn_arg, op_arg)) in sig.inputs().iter().zip(args).enumerate() {
1504             let op_arg_ty = op_arg.ty(mir, self.tcx());
1505             let category = if from_hir_call {
1506                 ConstraintCategory::CallArgument
1507             } else {
1508                 ConstraintCategory::Boring
1509             };
1510             if let Err(terr) =
1511                 self.sub_types(op_arg_ty, fn_arg, term_location.to_locations(), category)
1512             {
1513                 span_mirbug!(
1514                     self,
1515                     term,
1516                     "bad arg #{:?} ({:?} <- {:?}): {:?}",
1517                     n,
1518                     fn_arg,
1519                     op_arg_ty,
1520                     terr
1521                 );
1522             }
1523         }
1524     }
1525
1526     fn check_iscleanup(&mut self, mir: &Mir<'tcx>, block_data: &BasicBlockData<'tcx>) {
1527         let is_cleanup = block_data.is_cleanup;
1528         self.last_span = block_data.terminator().source_info.span;
1529         match block_data.terminator().kind {
1530             TerminatorKind::Goto { target } => {
1531                 self.assert_iscleanup(mir, block_data, target, is_cleanup)
1532             }
1533             TerminatorKind::SwitchInt { ref targets, .. } => for target in targets {
1534                 self.assert_iscleanup(mir, block_data, *target, is_cleanup);
1535             },
1536             TerminatorKind::Resume => if !is_cleanup {
1537                 span_mirbug!(self, block_data, "resume on non-cleanup block!")
1538             },
1539             TerminatorKind::Abort => if !is_cleanup {
1540                 span_mirbug!(self, block_data, "abort on non-cleanup block!")
1541             },
1542             TerminatorKind::Return => if is_cleanup {
1543                 span_mirbug!(self, block_data, "return on cleanup block")
1544             },
1545             TerminatorKind::GeneratorDrop { .. } => if is_cleanup {
1546                 span_mirbug!(self, block_data, "generator_drop in cleanup block")
1547             },
1548             TerminatorKind::Yield { resume, drop, .. } => {
1549                 if is_cleanup {
1550                     span_mirbug!(self, block_data, "yield in cleanup block")
1551                 }
1552                 self.assert_iscleanup(mir, block_data, resume, is_cleanup);
1553                 if let Some(drop) = drop {
1554                     self.assert_iscleanup(mir, block_data, drop, is_cleanup);
1555                 }
1556             }
1557             TerminatorKind::Unreachable => {}
1558             TerminatorKind::Drop { target, unwind, .. }
1559             | TerminatorKind::DropAndReplace { target, unwind, .. }
1560             | TerminatorKind::Assert {
1561                 target,
1562                 cleanup: unwind,
1563                 ..
1564             } => {
1565                 self.assert_iscleanup(mir, block_data, target, is_cleanup);
1566                 if let Some(unwind) = unwind {
1567                     if is_cleanup {
1568                         span_mirbug!(self, block_data, "unwind on cleanup block")
1569                     }
1570                     self.assert_iscleanup(mir, block_data, unwind, true);
1571                 }
1572             }
1573             TerminatorKind::Call {
1574                 ref destination,
1575                 cleanup,
1576                 ..
1577             } => {
1578                 if let &Some((_, target)) = destination {
1579                     self.assert_iscleanup(mir, block_data, target, is_cleanup);
1580                 }
1581                 if let Some(cleanup) = cleanup {
1582                     if is_cleanup {
1583                         span_mirbug!(self, block_data, "cleanup on cleanup block")
1584                     }
1585                     self.assert_iscleanup(mir, block_data, cleanup, true);
1586                 }
1587             }
1588             TerminatorKind::FalseEdges {
1589                 real_target,
1590                 ref imaginary_targets,
1591             } => {
1592                 self.assert_iscleanup(mir, block_data, real_target, is_cleanup);
1593                 for target in imaginary_targets {
1594                     self.assert_iscleanup(mir, block_data, *target, is_cleanup);
1595                 }
1596             }
1597             TerminatorKind::FalseUnwind {
1598                 real_target,
1599                 unwind,
1600             } => {
1601                 self.assert_iscleanup(mir, block_data, real_target, is_cleanup);
1602                 if let Some(unwind) = unwind {
1603                     if is_cleanup {
1604                         span_mirbug!(
1605                             self,
1606                             block_data,
1607                             "cleanup in cleanup block via false unwind"
1608                         );
1609                     }
1610                     self.assert_iscleanup(mir, block_data, unwind, true);
1611                 }
1612             }
1613         }
1614     }
1615
1616     fn assert_iscleanup(
1617         &mut self,
1618         mir: &Mir<'tcx>,
1619         ctxt: &dyn fmt::Debug,
1620         bb: BasicBlock,
1621         iscleanuppad: bool,
1622     ) {
1623         if mir[bb].is_cleanup != iscleanuppad {
1624             span_mirbug!(
1625                 self,
1626                 ctxt,
1627                 "cleanuppad mismatch: {:?} should be {:?}",
1628                 bb,
1629                 iscleanuppad
1630             );
1631         }
1632     }
1633
1634     fn check_local(&mut self, mir: &Mir<'tcx>, local: Local, local_decl: &LocalDecl<'tcx>) {
1635         match mir.local_kind(local) {
1636             LocalKind::ReturnPointer | LocalKind::Arg => {
1637                 // return values of normal functions are required to be
1638                 // sized by typeck, but return values of ADT constructors are
1639                 // not because we don't include a `Self: Sized` bounds on them.
1640                 //
1641                 // Unbound parts of arguments were never required to be Sized
1642                 // - maybe we should make that a warning.
1643                 return;
1644             }
1645             LocalKind::Var | LocalKind::Temp => {}
1646         }
1647
1648         // When `#![feature(unsized_locals)]` is enabled, only function calls
1649         // and nullary ops are checked in `check_call_dest`.
1650         if !self.tcx().features().unsized_locals {
1651             let span = local_decl.source_info.span;
1652             let ty = local_decl.ty;
1653             self.ensure_place_sized(ty, span);
1654         }
1655     }
1656
1657     fn ensure_place_sized(&mut self, ty: Ty<'tcx>, span: Span) {
1658         let tcx = self.tcx();
1659
1660         // Erase the regions from `ty` to get a global type.  The
1661         // `Sized` bound in no way depends on precise regions, so this
1662         // shouldn't affect `is_sized`.
1663         let gcx = tcx.global_tcx();
1664         let erased_ty = gcx.lift(&tcx.erase_regions(&ty)).unwrap();
1665         if !erased_ty.is_sized(gcx.at(span), self.param_env) {
1666             // in current MIR construction, all non-control-flow rvalue
1667             // expressions evaluate through `as_temp` or `into` a return
1668             // slot or local, so to find all unsized rvalues it is enough
1669             // to check all temps, return slots and locals.
1670             if let None = self.reported_errors.replace((ty, span)) {
1671                 let mut diag = struct_span_err!(
1672                     self.tcx().sess,
1673                     span,
1674                     E0161,
1675                     "cannot move a value of type {0}: the size of {0} \
1676                      cannot be statically determined",
1677                     ty
1678                 );
1679
1680                 // While this is located in `nll::typeck` this error is not
1681                 // an NLL error, it's a required check to prevent creation
1682                 // of unsized rvalues in certain cases:
1683                 // * operand of a box expression
1684                 // * callee in a call expression
1685                 diag.emit();
1686             }
1687         }
1688     }
1689
1690     fn aggregate_field_ty(
1691         &mut self,
1692         ak: &AggregateKind<'tcx>,
1693         field_index: usize,
1694         location: Location,
1695     ) -> Result<Ty<'tcx>, FieldAccessError> {
1696         let tcx = self.tcx();
1697
1698         match *ak {
1699             AggregateKind::Adt(def, variant_index, substs, _, active_field_index) => {
1700                 let variant = &def.variants[variant_index];
1701                 let adj_field_index = active_field_index.unwrap_or(field_index);
1702                 if let Some(field) = variant.fields.get(adj_field_index) {
1703                     Ok(self.normalize(field.ty(tcx, substs), location))
1704                 } else {
1705                     Err(FieldAccessError::OutOfRange {
1706                         field_count: variant.fields.len(),
1707                     })
1708                 }
1709             }
1710             AggregateKind::Closure(def_id, substs) => {
1711                 match substs.upvar_tys(def_id, tcx).nth(field_index) {
1712                     Some(ty) => Ok(ty),
1713                     None => Err(FieldAccessError::OutOfRange {
1714                         field_count: substs.upvar_tys(def_id, tcx).count(),
1715                     }),
1716                 }
1717             }
1718             AggregateKind::Generator(def_id, substs, _) => {
1719                 // Try pre-transform fields first (upvars and current state)
1720                 if let Some(ty) = substs.pre_transforms_tys(def_id, tcx).nth(field_index) {
1721                     Ok(ty)
1722                 } else {
1723                     // Then try `field_tys` which contains all the fields, but it
1724                     // requires the final optimized MIR.
1725                     match substs.field_tys(def_id, tcx).nth(field_index) {
1726                         Some(ty) => Ok(ty),
1727                         None => Err(FieldAccessError::OutOfRange {
1728                             field_count: substs.field_tys(def_id, tcx).count(),
1729                         }),
1730                     }
1731                 }
1732             }
1733             AggregateKind::Array(ty) => Ok(ty),
1734             AggregateKind::Tuple => {
1735                 unreachable!("This should have been covered in check_rvalues");
1736             }
1737         }
1738     }
1739
1740     fn check_rvalue(&mut self, mir: &Mir<'tcx>, rvalue: &Rvalue<'tcx>, location: Location) {
1741         let tcx = self.tcx();
1742
1743         match rvalue {
1744             Rvalue::Aggregate(ak, ops) => {
1745                 self.check_aggregate_rvalue(mir, rvalue, ak, ops, location)
1746             }
1747
1748             Rvalue::Repeat(operand, len) => if *len > 1 {
1749                 let operand_ty = operand.ty(mir, tcx);
1750
1751                 let trait_ref = ty::TraitRef {
1752                     def_id: tcx.lang_items().copy_trait().unwrap(),
1753                     substs: tcx.mk_substs_trait(operand_ty, &[]),
1754                 };
1755
1756                 self.prove_trait_ref(
1757                     trait_ref,
1758                     location.to_locations(),
1759                     ConstraintCategory::CopyBound,
1760                 );
1761             },
1762
1763             Rvalue::NullaryOp(_, ty) => {
1764                 // Even with unsized locals cannot box an unsized value.
1765                 if self.tcx().features().unsized_locals {
1766                     let span = mir.source_info(location).span;
1767                     self.ensure_place_sized(ty, span);
1768                 }
1769
1770                 let trait_ref = ty::TraitRef {
1771                     def_id: tcx.lang_items().sized_trait().unwrap(),
1772                     substs: tcx.mk_substs_trait(ty, &[]),
1773                 };
1774
1775                 self.prove_trait_ref(
1776                     trait_ref,
1777                     location.to_locations(),
1778                     ConstraintCategory::SizedBound,
1779                 );
1780             }
1781
1782             Rvalue::Cast(cast_kind, op, ty) => {
1783                 match cast_kind {
1784                     CastKind::ReifyFnPointer => {
1785                         let fn_sig = op.ty(mir, tcx).fn_sig(tcx);
1786
1787                         // The type that we see in the fcx is like
1788                         // `foo::<'a, 'b>`, where `foo` is the path to a
1789                         // function definition. When we extract the
1790                         // signature, it comes from the `fn_sig` query,
1791                         // and hence may contain unnormalized results.
1792                         let fn_sig = self.normalize(fn_sig, location);
1793
1794                         let ty_fn_ptr_from = tcx.mk_fn_ptr(fn_sig);
1795
1796                         if let Err(terr) = self.eq_types(
1797                             ty_fn_ptr_from,
1798                             ty,
1799                             location.to_locations(),
1800                             ConstraintCategory::Cast,
1801                         ) {
1802                             span_mirbug!(
1803                                 self,
1804                                 rvalue,
1805                                 "equating {:?} with {:?} yields {:?}",
1806                                 ty_fn_ptr_from,
1807                                 ty,
1808                                 terr
1809                             );
1810                         }
1811                     }
1812
1813                     CastKind::ClosureFnPointer => {
1814                         let sig = match op.ty(mir, tcx).sty {
1815                             ty::Closure(def_id, substs) => {
1816                                 substs.closure_sig_ty(def_id, tcx).fn_sig(tcx)
1817                             }
1818                             _ => bug!(),
1819                         };
1820                         let ty_fn_ptr_from = tcx.coerce_closure_fn_ty(sig);
1821
1822                         if let Err(terr) = self.eq_types(
1823                             ty_fn_ptr_from,
1824                             ty,
1825                             location.to_locations(),
1826                             ConstraintCategory::Cast,
1827                         ) {
1828                             span_mirbug!(
1829                                 self,
1830                                 rvalue,
1831                                 "equating {:?} with {:?} yields {:?}",
1832                                 ty_fn_ptr_from,
1833                                 ty,
1834                                 terr
1835                             );
1836                         }
1837                     }
1838
1839                     CastKind::UnsafeFnPointer => {
1840                         let fn_sig = op.ty(mir, tcx).fn_sig(tcx);
1841
1842                         // The type that we see in the fcx is like
1843                         // `foo::<'a, 'b>`, where `foo` is the path to a
1844                         // function definition. When we extract the
1845                         // signature, it comes from the `fn_sig` query,
1846                         // and hence may contain unnormalized results.
1847                         let fn_sig = self.normalize(fn_sig, location);
1848
1849                         let ty_fn_ptr_from = tcx.safe_to_unsafe_fn_ty(fn_sig);
1850
1851                         if let Err(terr) = self.eq_types(
1852                             ty_fn_ptr_from,
1853                             ty,
1854                             location.to_locations(),
1855                             ConstraintCategory::Cast,
1856                         ) {
1857                             span_mirbug!(
1858                                 self,
1859                                 rvalue,
1860                                 "equating {:?} with {:?} yields {:?}",
1861                                 ty_fn_ptr_from,
1862                                 ty,
1863                                 terr
1864                             );
1865                         }
1866                     }
1867
1868                     CastKind::Unsize => {
1869                         let &ty = ty;
1870                         let trait_ref = ty::TraitRef {
1871                             def_id: tcx.lang_items().coerce_unsized_trait().unwrap(),
1872                             substs: tcx.mk_substs_trait(op.ty(mir, tcx), &[ty.into()]),
1873                         };
1874
1875                         self.prove_trait_ref(
1876                             trait_ref,
1877                             location.to_locations(),
1878                             ConstraintCategory::Cast,
1879                         );
1880                     }
1881
1882                     CastKind::Misc => {}
1883                 }
1884             }
1885
1886             Rvalue::Ref(region, _borrow_kind, borrowed_place) => {
1887                 self.add_reborrow_constraint(location, region, borrowed_place);
1888             }
1889
1890             // FIXME: These other cases have to be implemented in future PRs
1891             Rvalue::Use(..)
1892             | Rvalue::Len(..)
1893             | Rvalue::BinaryOp(..)
1894             | Rvalue::CheckedBinaryOp(..)
1895             | Rvalue::UnaryOp(..)
1896             | Rvalue::Discriminant(..) => {}
1897         }
1898     }
1899
1900     /// If this rvalue supports a user-given type annotation, then
1901     /// extract and return it. This represents the final type of the
1902     /// rvalue and will be unified with the inferred type.
1903     fn rvalue_user_ty(&self, rvalue: &Rvalue<'tcx>) -> Option<UserTypeAnnotation<'tcx>> {
1904         match rvalue {
1905             Rvalue::Use(_)
1906             | Rvalue::Repeat(..)
1907             | Rvalue::Ref(..)
1908             | Rvalue::Len(..)
1909             | Rvalue::Cast(..)
1910             | Rvalue::BinaryOp(..)
1911             | Rvalue::CheckedBinaryOp(..)
1912             | Rvalue::NullaryOp(..)
1913             | Rvalue::UnaryOp(..)
1914             | Rvalue::Discriminant(..) => None,
1915
1916             Rvalue::Aggregate(aggregate, _) => match **aggregate {
1917                 AggregateKind::Adt(_, _, _, user_ty, _) => user_ty,
1918                 AggregateKind::Array(_) => None,
1919                 AggregateKind::Tuple => None,
1920                 AggregateKind::Closure(_, _) => None,
1921                 AggregateKind::Generator(_, _, _) => None,
1922             },
1923         }
1924     }
1925
1926     fn check_aggregate_rvalue(
1927         &mut self,
1928         mir: &Mir<'tcx>,
1929         rvalue: &Rvalue<'tcx>,
1930         aggregate_kind: &AggregateKind<'tcx>,
1931         operands: &[Operand<'tcx>],
1932         location: Location,
1933     ) {
1934         let tcx = self.tcx();
1935
1936         self.prove_aggregate_predicates(aggregate_kind, location);
1937
1938         if *aggregate_kind == AggregateKind::Tuple {
1939             // tuple rvalue field type is always the type of the op. Nothing to check here.
1940             return;
1941         }
1942
1943         for (i, operand) in operands.iter().enumerate() {
1944             let field_ty = match self.aggregate_field_ty(aggregate_kind, i, location) {
1945                 Ok(field_ty) => field_ty,
1946                 Err(FieldAccessError::OutOfRange { field_count }) => {
1947                     span_mirbug!(
1948                         self,
1949                         rvalue,
1950                         "accessed field #{} but variant only has {}",
1951                         i,
1952                         field_count
1953                     );
1954                     continue;
1955                 }
1956             };
1957             let operand_ty = operand.ty(mir, tcx);
1958
1959             if let Err(terr) = self.sub_types(
1960                 operand_ty,
1961                 field_ty,
1962                 location.to_locations(),
1963                 ConstraintCategory::Boring,
1964             ) {
1965                 span_mirbug!(
1966                     self,
1967                     rvalue,
1968                     "{:?} is not a subtype of {:?}: {:?}",
1969                     operand_ty,
1970                     field_ty,
1971                     terr
1972                 );
1973             }
1974         }
1975     }
1976
1977     /// Add the constraints that arise from a borrow expression `&'a P` at the location `L`.
1978     ///
1979     /// # Parameters
1980     ///
1981     /// - `location`: the location `L` where the borrow expression occurs
1982     /// - `borrow_region`: the region `'a` associated with the borrow
1983     /// - `borrowed_place`: the place `P` being borrowed
1984     fn add_reborrow_constraint(
1985         &mut self,
1986         location: Location,
1987         borrow_region: ty::Region<'tcx>,
1988         borrowed_place: &Place<'tcx>,
1989     ) {
1990         // These constraints are only meaningful during borrowck:
1991         let BorrowCheckContext {
1992             borrow_set,
1993             location_table,
1994             all_facts,
1995             constraints,
1996             ..
1997         } = match self.borrowck_context {
1998             Some(ref mut borrowck_context) => borrowck_context,
1999             None => return,
2000         };
2001
2002         // In Polonius mode, we also push a `borrow_region` fact
2003         // linking the loan to the region (in some cases, though,
2004         // there is no loan associated with this borrow expression --
2005         // that occurs when we are borrowing an unsafe place, for
2006         // example).
2007         if let Some(all_facts) = all_facts {
2008             if let Some(borrow_index) = borrow_set.location_map.get(&location) {
2009                 let region_vid = borrow_region.to_region_vid();
2010                 all_facts.borrow_region.push((
2011                     region_vid,
2012                     *borrow_index,
2013                     location_table.mid_index(location),
2014                 ));
2015             }
2016         }
2017
2018         // If we are reborrowing the referent of another reference, we
2019         // need to add outlives relationships. In a case like `&mut
2020         // *p`, where the `p` has type `&'b mut Foo`, for example, we
2021         // need to ensure that `'b: 'a`.
2022
2023         let mut borrowed_place = borrowed_place;
2024
2025         debug!(
2026             "add_reborrow_constraint({:?}, {:?}, {:?})",
2027             location, borrow_region, borrowed_place
2028         );
2029         while let Place::Projection(box PlaceProjection { base, elem }) = borrowed_place {
2030             debug!("add_reborrow_constraint - iteration {:?}", borrowed_place);
2031
2032             match *elem {
2033                 ProjectionElem::Deref => {
2034                     let tcx = self.infcx.tcx;
2035                     let base_ty = base.ty(self.mir, tcx).to_ty(tcx);
2036
2037                     debug!("add_reborrow_constraint - base_ty = {:?}", base_ty);
2038                     match base_ty.sty {
2039                         ty::Ref(ref_region, _, mutbl) => {
2040                             constraints.outlives_constraints.push(OutlivesConstraint {
2041                                 sup: ref_region.to_region_vid(),
2042                                 sub: borrow_region.to_region_vid(),
2043                                 locations: location.to_locations(),
2044                                 category: ConstraintCategory::Boring,
2045                             });
2046
2047                             match mutbl {
2048                                 hir::Mutability::MutImmutable => {
2049                                     // Immutable reference. We don't need the base
2050                                     // to be valid for the entire lifetime of
2051                                     // the borrow.
2052                                     break;
2053                                 }
2054                                 hir::Mutability::MutMutable => {
2055                                     // Mutable reference. We *do* need the base
2056                                     // to be valid, because after the base becomes
2057                                     // invalid, someone else can use our mutable deref.
2058
2059                                     // This is in order to make the following function
2060                                     // illegal:
2061                                     // ```
2062                                     // fn unsafe_deref<'a, 'b>(x: &'a &'b mut T) -> &'b mut T {
2063                                     //     &mut *x
2064                                     // }
2065                                     // ```
2066                                     //
2067                                     // As otherwise you could clone `&mut T` using the
2068                                     // following function:
2069                                     // ```
2070                                     // fn bad(x: &mut T) -> (&mut T, &mut T) {
2071                                     //     let my_clone = unsafe_deref(&'a x);
2072                                     //     ENDREGION 'a;
2073                                     //     (my_clone, x)
2074                                     // }
2075                                     // ```
2076                                 }
2077                             }
2078                         }
2079                         ty::RawPtr(..) => {
2080                             // deref of raw pointer, guaranteed to be valid
2081                             break;
2082                         }
2083                         ty::Adt(def, _) if def.is_box() => {
2084                             // deref of `Box`, need the base to be valid - propagate
2085                         }
2086                         _ => bug!("unexpected deref ty {:?} in {:?}", base_ty, borrowed_place),
2087                     }
2088                 }
2089                 ProjectionElem::Field(..)
2090                 | ProjectionElem::Downcast(..)
2091                 | ProjectionElem::Index(..)
2092                 | ProjectionElem::ConstantIndex { .. }
2093                 | ProjectionElem::Subslice { .. } => {
2094                     // other field access
2095                 }
2096             }
2097
2098             // The "propagate" case. We need to check that our base is valid
2099             // for the borrow's lifetime.
2100             borrowed_place = base;
2101         }
2102     }
2103
2104     fn prove_aggregate_predicates(
2105         &mut self,
2106         aggregate_kind: &AggregateKind<'tcx>,
2107         location: Location,
2108     ) {
2109         let tcx = self.tcx();
2110
2111         debug!(
2112             "prove_aggregate_predicates(aggregate_kind={:?}, location={:?})",
2113             aggregate_kind, location
2114         );
2115
2116         let instantiated_predicates = match aggregate_kind {
2117             AggregateKind::Adt(def, _, substs, _, _) => {
2118                 tcx.predicates_of(def.did).instantiate(tcx, substs)
2119             }
2120
2121             // For closures, we have some **extra requirements** we
2122             //
2123             // have to check. In particular, in their upvars and
2124             // signatures, closures often reference various regions
2125             // from the surrounding function -- we call those the
2126             // closure's free regions. When we borrow-check (and hence
2127             // region-check) closures, we may find that the closure
2128             // requires certain relationships between those free
2129             // regions. However, because those free regions refer to
2130             // portions of the CFG of their caller, the closure is not
2131             // in a position to verify those relationships. In that
2132             // case, the requirements get "propagated" to us, and so
2133             // we have to solve them here where we instantiate the
2134             // closure.
2135             //
2136             // Despite the opacity of the previous parapgrah, this is
2137             // actually relatively easy to understand in terms of the
2138             // desugaring. A closure gets desugared to a struct, and
2139             // these extra requirements are basically like where
2140             // clauses on the struct.
2141             AggregateKind::Closure(def_id, ty::ClosureSubsts { substs })
2142             | AggregateKind::Generator(def_id, ty::GeneratorSubsts { substs }, _) => {
2143                 self.prove_closure_bounds(tcx, *def_id, substs, location)
2144             }
2145
2146             AggregateKind::Array(_) | AggregateKind::Tuple => ty::InstantiatedPredicates::empty(),
2147         };
2148
2149         self.normalize_and_prove_instantiated_predicates(
2150             instantiated_predicates,
2151             location.to_locations(),
2152         );
2153     }
2154
2155     fn prove_closure_bounds(
2156         &mut self,
2157         tcx: TyCtxt<'a, 'gcx, 'tcx>,
2158         def_id: DefId,
2159         substs: &'tcx Substs<'tcx>,
2160         location: Location,
2161     ) -> ty::InstantiatedPredicates<'tcx> {
2162         if let Some(closure_region_requirements) = tcx.mir_borrowck(def_id).closure_requirements {
2163             let closure_constraints =
2164                 closure_region_requirements.apply_requirements(tcx, location, def_id, substs);
2165
2166             if let Some(ref mut borrowck_context) = self.borrowck_context {
2167                 let bounds_mapping = closure_constraints
2168                     .iter()
2169                     .enumerate()
2170                     .filter_map(|(idx, constraint)| {
2171                         let ty::OutlivesPredicate(k1, r2) =
2172                             constraint.no_late_bound_regions().unwrap_or_else(|| {
2173                                 bug!("query_constraint {:?} contained bound regions", constraint,);
2174                             });
2175
2176                         match k1.unpack() {
2177                             UnpackedKind::Lifetime(r1) => {
2178                                 // constraint is r1: r2
2179                                 let r1_vid = borrowck_context.universal_regions.to_region_vid(r1);
2180                                 let r2_vid = borrowck_context.universal_regions.to_region_vid(r2);
2181                                 let outlives_requirements =
2182                                     &closure_region_requirements.outlives_requirements[idx];
2183                                 Some((
2184                                     (r1_vid, r2_vid),
2185                                     (
2186                                         outlives_requirements.category,
2187                                         outlives_requirements.blame_span,
2188                                     ),
2189                                 ))
2190                             }
2191                             UnpackedKind::Type(_) => None,
2192                         }
2193                     })
2194                     .collect();
2195
2196                 let existing = borrowck_context
2197                     .constraints
2198                     .closure_bounds_mapping
2199                     .insert(location, bounds_mapping);
2200                 assert!(
2201                     existing.is_none(),
2202                     "Multiple closures at the same location."
2203                 );
2204             }
2205
2206             self.push_region_constraints(
2207                 location.to_locations(),
2208                 ConstraintCategory::ClosureBounds,
2209                 &closure_constraints,
2210             );
2211         }
2212
2213         tcx.predicates_of(def_id).instantiate(tcx, substs)
2214     }
2215
2216     fn prove_trait_ref(
2217         &mut self,
2218         trait_ref: ty::TraitRef<'tcx>,
2219         locations: Locations,
2220         category: ConstraintCategory,
2221     ) {
2222         self.prove_predicates(
2223             Some(ty::Predicate::Trait(
2224                 trait_ref.to_poly_trait_ref().to_poly_trait_predicate(),
2225             )),
2226             locations,
2227             category,
2228         );
2229     }
2230
2231     fn normalize_and_prove_instantiated_predicates(
2232         &mut self,
2233         instantiated_predicates: ty::InstantiatedPredicates<'tcx>,
2234         locations: Locations,
2235     ) {
2236         for predicate in instantiated_predicates.predicates {
2237             let predicate = self.normalize(predicate, locations);
2238             self.prove_predicate(predicate, locations, ConstraintCategory::Boring);
2239         }
2240     }
2241
2242     fn prove_predicates(
2243         &mut self,
2244         predicates: impl IntoIterator<Item = ty::Predicate<'tcx>>,
2245         locations: Locations,
2246         category: ConstraintCategory,
2247     ) {
2248         for predicate in predicates {
2249             debug!(
2250                 "prove_predicates(predicate={:?}, locations={:?})",
2251                 predicate, locations,
2252             );
2253
2254             self.prove_predicate(predicate, locations, category);
2255         }
2256     }
2257
2258     fn prove_predicate(
2259         &mut self,
2260         predicate: ty::Predicate<'tcx>,
2261         locations: Locations,
2262         category: ConstraintCategory,
2263     ) {
2264         debug!(
2265             "prove_predicate(predicate={:?}, location={:?})",
2266             predicate, locations,
2267         );
2268
2269         let param_env = self.param_env;
2270         self.fully_perform_op(
2271             locations,
2272             category,
2273             param_env.and(type_op::prove_predicate::ProvePredicate::new(predicate)),
2274         ).unwrap_or_else(|NoSolution| {
2275             span_mirbug!(self, NoSolution, "could not prove {:?}", predicate);
2276         })
2277     }
2278
2279     fn typeck_mir(&mut self, mir: &Mir<'tcx>) {
2280         self.last_span = mir.span;
2281         debug!("run_on_mir: {:?}", mir.span);
2282
2283         for (local, local_decl) in mir.local_decls.iter_enumerated() {
2284             self.check_local(mir, local, local_decl);
2285         }
2286
2287         for (block, block_data) in mir.basic_blocks().iter_enumerated() {
2288             let mut location = Location {
2289                 block,
2290                 statement_index: 0,
2291             };
2292             for stmt in &block_data.statements {
2293                 if !stmt.source_info.span.is_dummy() {
2294                     self.last_span = stmt.source_info.span;
2295                 }
2296                 self.check_stmt(mir, stmt, location);
2297                 location.statement_index += 1;
2298             }
2299
2300             self.check_terminator(mir, block_data.terminator(), location);
2301             self.check_iscleanup(mir, block_data);
2302         }
2303     }
2304
2305     fn normalize<T>(&mut self, value: T, location: impl NormalizeLocation) -> T
2306     where
2307         T: type_op::normalize::Normalizable<'gcx, 'tcx> + Copy,
2308     {
2309         debug!("normalize(value={:?}, location={:?})", value, location);
2310         let param_env = self.param_env;
2311         self.fully_perform_op(
2312             location.to_locations(),
2313             ConstraintCategory::Boring,
2314             param_env.and(type_op::normalize::Normalize::new(value)),
2315         ).unwrap_or_else(|NoSolution| {
2316             span_mirbug!(self, NoSolution, "failed to normalize `{:?}`", value);
2317             value
2318         })
2319     }
2320 }
2321
2322 pub struct TypeckMir;
2323
2324 impl MirPass for TypeckMir {
2325     fn run_pass<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, src: MirSource, mir: &mut Mir<'tcx>) {
2326         let def_id = src.def_id;
2327         debug!("run_pass: {:?}", def_id);
2328
2329         // When NLL is enabled, the borrow checker runs the typeck
2330         // itself, so we don't need this MIR pass anymore.
2331         if tcx.use_mir_borrowck() {
2332             return;
2333         }
2334
2335         if tcx.sess.err_count() > 0 {
2336             // compiling a broken program can obviously result in a
2337             // broken MIR, so try not to report duplicate errors.
2338             return;
2339         }
2340
2341         if tcx.is_struct_constructor(def_id) {
2342             // We just assume that the automatically generated struct constructors are
2343             // correct. See the comment in the `mir_borrowck` implementation for an
2344             // explanation why we need this.
2345             return;
2346         }
2347
2348         let param_env = tcx.param_env(def_id);
2349         tcx.infer_ctxt().enter(|infcx| {
2350             type_check_internal(
2351                 &infcx,
2352                 def_id,
2353                 param_env,
2354                 mir,
2355                 &vec![],
2356                 None,
2357                 None,
2358                 None,
2359                 |_| (),
2360             );
2361
2362             // For verification purposes, we just ignore the resulting
2363             // region constraint sets. Not our problem. =)
2364         });
2365     }
2366 }
2367
2368 trait NormalizeLocation: fmt::Debug + Copy {
2369     fn to_locations(self) -> Locations;
2370 }
2371
2372 impl NormalizeLocation for Locations {
2373     fn to_locations(self) -> Locations {
2374         self
2375     }
2376 }
2377
2378 impl NormalizeLocation for Location {
2379     fn to_locations(self) -> Locations {
2380         Locations::Single(self)
2381     }
2382 }
2383
2384 #[derive(Debug, Default)]
2385 struct ObligationAccumulator<'tcx> {
2386     obligations: PredicateObligations<'tcx>,
2387 }
2388
2389 impl<'tcx> ObligationAccumulator<'tcx> {
2390     fn add<T>(&mut self, value: InferOk<'tcx, T>) -> T {
2391         let InferOk { value, obligations } = value;
2392         self.obligations.extend(obligations);
2393         value
2394     }
2395
2396     fn into_vec(self) -> PredicateObligations<'tcx> {
2397         self.obligations
2398     }
2399 }