]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/types.rs
Rollup merge of #73930 - a1phyr:feature_const_option, r=dtolnay
[rust.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use crate::{LateContext, LateLintPass, LintContext};
4 use rustc_ast::ast;
5 use rustc_attr as attr;
6 use rustc_data_structures::fx::FxHashSet;
7 use rustc_errors::Applicability;
8 use rustc_hir as hir;
9 use rustc_hir::{is_range_literal, ExprKind, Node};
10 use rustc_index::vec::Idx;
11 use rustc_middle::mir::interpret::{sign_extend, truncate};
12 use rustc_middle::ty::layout::{IntegerExt, SizeSkeleton};
13 use rustc_middle::ty::subst::SubstsRef;
14 use rustc_middle::ty::{self, AdtKind, Ty, TypeFoldable};
15 use rustc_span::source_map;
16 use rustc_span::symbol::sym;
17 use rustc_span::{Span, DUMMY_SP};
18 use rustc_target::abi::{Integer, LayoutOf, TagEncoding, VariantIdx, Variants};
19 use rustc_target::spec::abi::Abi;
20
21 use log::debug;
22 use std::cmp;
23
24 declare_lint! {
25     UNUSED_COMPARISONS,
26     Warn,
27     "comparisons made useless by limits of the types involved"
28 }
29
30 declare_lint! {
31     OVERFLOWING_LITERALS,
32     Deny,
33     "literal out of range for its type"
34 }
35
36 declare_lint! {
37     VARIANT_SIZE_DIFFERENCES,
38     Allow,
39     "detects enums with widely varying variant sizes"
40 }
41
42 #[derive(Copy, Clone)]
43 pub struct TypeLimits {
44     /// Id of the last visited negated expression
45     negated_expr_id: Option<hir::HirId>,
46 }
47
48 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
49
50 impl TypeLimits {
51     pub fn new() -> TypeLimits {
52         TypeLimits { negated_expr_id: None }
53     }
54 }
55
56 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
57 /// Returns `true` iff the lint was overridden.
58 fn lint_overflowing_range_endpoint<'tcx>(
59     cx: &LateContext<'tcx>,
60     lit: &hir::Lit,
61     lit_val: u128,
62     max: u128,
63     expr: &'tcx hir::Expr<'tcx>,
64     parent_expr: &'tcx hir::Expr<'tcx>,
65     ty: &str,
66 ) -> bool {
67     // We only want to handle exclusive (`..`) ranges,
68     // which are represented as `ExprKind::Struct`.
69     let mut overwritten = false;
70     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
71         if eps.len() != 2 {
72             return false;
73         }
74         // We can suggest using an inclusive range
75         // (`..=`) instead only if it is the `end` that is
76         // overflowing and only by 1.
77         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
78             cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
79                 let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
80                 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
81                     use ast::{LitIntType, LitKind};
82                     // We need to preserve the literal's suffix,
83                     // as it may determine typing information.
84                     let suffix = match lit.node {
85                         LitKind::Int(_, LitIntType::Signed(s)) => s.name_str().to_string(),
86                         LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str().to_string(),
87                         LitKind::Int(_, LitIntType::Unsuffixed) => "".to_string(),
88                         _ => bug!(),
89                     };
90                     let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
91                     err.span_suggestion(
92                         parent_expr.span,
93                         &"use an inclusive range instead",
94                         suggestion,
95                         Applicability::MachineApplicable,
96                     );
97                     err.emit();
98                     overwritten = true;
99                 }
100             });
101         }
102     }
103     overwritten
104 }
105
106 // For `isize` & `usize`, be conservative with the warnings, so that the
107 // warnings are consistent between 32- and 64-bit platforms.
108 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
109     match int_ty {
110         ast::IntTy::Isize => (i64::MIN as i128, i64::MAX as i128),
111         ast::IntTy::I8 => (i8::MIN as i64 as i128, i8::MAX as i128),
112         ast::IntTy::I16 => (i16::MIN as i64 as i128, i16::MAX as i128),
113         ast::IntTy::I32 => (i32::MIN as i64 as i128, i32::MAX as i128),
114         ast::IntTy::I64 => (i64::MIN as i128, i64::MAX as i128),
115         ast::IntTy::I128 => (i128::MIN as i128, i128::MAX),
116     }
117 }
118
119 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
120     match uint_ty {
121         ast::UintTy::Usize => (u64::MIN as u128, u64::MAX as u128),
122         ast::UintTy::U8 => (u8::MIN as u128, u8::MAX as u128),
123         ast::UintTy::U16 => (u16::MIN as u128, u16::MAX as u128),
124         ast::UintTy::U32 => (u32::MIN as u128, u32::MAX as u128),
125         ast::UintTy::U64 => (u64::MIN as u128, u64::MAX as u128),
126         ast::UintTy::U128 => (u128::MIN, u128::MAX),
127     }
128 }
129
130 fn get_bin_hex_repr(cx: &LateContext<'_>, lit: &hir::Lit) -> Option<String> {
131     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
132     let firstch = src.chars().next()?;
133
134     if firstch == '0' {
135         match src.chars().nth(1) {
136             Some('x' | 'b') => return Some(src),
137             _ => return None,
138         }
139     }
140
141     None
142 }
143
144 fn report_bin_hex_error(
145     cx: &LateContext<'_>,
146     expr: &hir::Expr<'_>,
147     ty: attr::IntType,
148     repr_str: String,
149     val: u128,
150     negative: bool,
151 ) {
152     let size = Integer::from_attr(&cx.tcx, ty).size();
153     cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
154         let (t, actually) = match ty {
155             attr::IntType::SignedInt(t) => {
156                 let actually = sign_extend(val, size) as i128;
157                 (t.name_str(), actually.to_string())
158             }
159             attr::IntType::UnsignedInt(t) => {
160                 let actually = truncate(val, size);
161                 (t.name_str(), actually.to_string())
162             }
163         };
164         let mut err = lint.build(&format!("literal out of range for {}", t));
165         err.note(&format!(
166             "the literal `{}` (decimal `{}`) does not fit into \
167              the type `{}` and will become `{}{}`",
168             repr_str, val, t, actually, t
169         ));
170         if let Some(sugg_ty) =
171             get_type_suggestion(&cx.typeck_results().node_type(expr.hir_id), val, negative)
172         {
173             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
174                 let (sans_suffix, _) = repr_str.split_at(pos);
175                 err.span_suggestion(
176                     expr.span,
177                     &format!("consider using `{}` instead", sugg_ty),
178                     format!("{}{}", sans_suffix, sugg_ty),
179                     Applicability::MachineApplicable,
180                 );
181             } else {
182                 err.help(&format!("consider using `{}` instead", sugg_ty));
183             }
184         }
185         err.emit();
186     });
187 }
188
189 // This function finds the next fitting type and generates a suggestion string.
190 // It searches for fitting types in the following way (`X < Y`):
191 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
192 //  - `-iX` => `iY`
193 //  - `uX` => `uY`
194 //
195 // No suggestion for: `isize`, `usize`.
196 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
197     use rustc_ast::ast::IntTy::*;
198     use rustc_ast::ast::UintTy::*;
199     macro_rules! find_fit {
200         ($ty:expr, $val:expr, $negative:expr,
201          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
202             {
203                 let _neg = if negative { 1 } else { 0 };
204                 match $ty {
205                     $($type => {
206                         $(if !negative && val <= uint_ty_range($utypes).1 {
207                             return Some($utypes.name_str())
208                         })*
209                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
210                             return Some($itypes.name_str())
211                         })*
212                         None
213                     },)+
214                     _ => None
215                 }
216             }
217         }
218     }
219     match t.kind {
220         ty::Int(i) => find_fit!(i, val, negative,
221                       I8 => [U8] => [I16, I32, I64, I128],
222                       I16 => [U16] => [I32, I64, I128],
223                       I32 => [U32] => [I64, I128],
224                       I64 => [U64] => [I128],
225                       I128 => [U128] => []),
226         ty::Uint(u) => find_fit!(u, val, negative,
227                       U8 => [U8, U16, U32, U64, U128] => [],
228                       U16 => [U16, U32, U64, U128] => [],
229                       U32 => [U32, U64, U128] => [],
230                       U64 => [U64, U128] => [],
231                       U128 => [U128] => []),
232         _ => None,
233     }
234 }
235
236 fn lint_int_literal<'tcx>(
237     cx: &LateContext<'tcx>,
238     type_limits: &TypeLimits,
239     e: &'tcx hir::Expr<'tcx>,
240     lit: &hir::Lit,
241     t: ast::IntTy,
242     v: u128,
243 ) {
244     let int_type = t.normalize(cx.sess().target.ptr_width);
245     let (min, max) = int_ty_range(int_type);
246     let max = max as u128;
247     let negative = type_limits.negated_expr_id == Some(e.hir_id);
248
249     // Detect literal value out of range [min, max] inclusive
250     // avoiding use of -min to prevent overflow/panic
251     if (negative && v > max + 1) || (!negative && v > max) {
252         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
253             report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
254             return;
255         }
256
257         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
258         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
259             if let hir::ExprKind::Struct(..) = par_e.kind {
260                 if is_range_literal(cx.sess().source_map(), par_e)
261                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
262                 {
263                     // The overflowing literal lint was overridden.
264                     return;
265                 }
266             }
267         }
268
269         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
270             lint.build(&format!("literal out of range for `{}`", t.name_str()))
271                 .note(&format!(
272                     "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
273                     cx.sess()
274                         .source_map()
275                         .span_to_snippet(lit.span)
276                         .expect("must get snippet from literal"),
277                     t.name_str(),
278                     min,
279                     max,
280                 ))
281                 .emit();
282         });
283     }
284 }
285
286 fn lint_uint_literal<'tcx>(
287     cx: &LateContext<'tcx>,
288     e: &'tcx hir::Expr<'tcx>,
289     lit: &hir::Lit,
290     t: ast::UintTy,
291 ) {
292     let uint_type = t.normalize(cx.sess().target.ptr_width);
293     let (min, max) = uint_ty_range(uint_type);
294     let lit_val: u128 = match lit.node {
295         // _v is u8, within range by definition
296         ast::LitKind::Byte(_v) => return,
297         ast::LitKind::Int(v, _) => v,
298         _ => bug!(),
299     };
300     if lit_val < min || lit_val > max {
301         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
302         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
303             match par_e.kind {
304                 hir::ExprKind::Cast(..) => {
305                     if let ty::Char = cx.typeck_results().expr_ty(par_e).kind {
306                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
307                             lint.build("only `u8` can be cast into `char`")
308                                 .span_suggestion(
309                                     par_e.span,
310                                     &"use a `char` literal instead",
311                                     format!("'\\u{{{:X}}}'", lit_val),
312                                     Applicability::MachineApplicable,
313                                 )
314                                 .emit();
315                         });
316                         return;
317                     }
318                 }
319                 hir::ExprKind::Struct(..) if is_range_literal(cx.sess().source_map(), par_e) => {
320                     let t = t.name_str();
321                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
322                         // The overflowing literal lint was overridden.
323                         return;
324                     }
325                 }
326                 _ => {}
327             }
328         }
329         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
330             report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
331             return;
332         }
333         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
334             lint.build(&format!("literal out of range for `{}`", t.name_str()))
335                 .note(&format!(
336                     "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
337                     cx.sess()
338                         .source_map()
339                         .span_to_snippet(lit.span)
340                         .expect("must get snippet from literal"),
341                     t.name_str(),
342                     min,
343                     max,
344                 ))
345                 .emit()
346         });
347     }
348 }
349
350 fn lint_literal<'tcx>(
351     cx: &LateContext<'tcx>,
352     type_limits: &TypeLimits,
353     e: &'tcx hir::Expr<'tcx>,
354     lit: &hir::Lit,
355 ) {
356     match cx.typeck_results().node_type(e.hir_id).kind {
357         ty::Int(t) => {
358             match lit.node {
359                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
360                     lint_int_literal(cx, type_limits, e, lit, t, v)
361                 }
362                 _ => bug!(),
363             };
364         }
365         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
366         ty::Float(t) => {
367             let is_infinite = match lit.node {
368                 ast::LitKind::Float(v, _) => match t {
369                     ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
370                     ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
371                 },
372                 _ => bug!(),
373             };
374             if is_infinite == Ok(true) {
375                 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
376                     lint.build(&format!("literal out of range for `{}`", t.name_str()))
377                         .note(&format!(
378                             "the literal `{}` does not fit into the type `{}` and will be converted to `std::{}::INFINITY`",
379                             cx.sess()
380                                 .source_map()
381                                 .span_to_snippet(lit.span)
382                                 .expect("must get snippet from literal"),
383                             t.name_str(),
384                             t.name_str(),
385                         ))
386                         .emit();
387                 });
388             }
389         }
390         _ => {}
391     }
392 }
393
394 impl<'tcx> LateLintPass<'tcx> for TypeLimits {
395     fn check_expr(&mut self, cx: &LateContext<'tcx>, e: &'tcx hir::Expr<'tcx>) {
396         match e.kind {
397             hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
398                 // propagate negation, if the negation itself isn't negated
399                 if self.negated_expr_id != Some(e.hir_id) {
400                     self.negated_expr_id = Some(expr.hir_id);
401                 }
402             }
403             hir::ExprKind::Binary(binop, ref l, ref r) => {
404                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
405                     cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
406                         lint.build("comparison is useless due to type limits").emit()
407                     });
408                 }
409             }
410             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
411             _ => {}
412         };
413
414         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
415             match binop.node {
416                 hir::BinOpKind::Lt => v > min && v <= max,
417                 hir::BinOpKind::Le => v >= min && v < max,
418                 hir::BinOpKind::Gt => v >= min && v < max,
419                 hir::BinOpKind::Ge => v > min && v <= max,
420                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
421                 _ => bug!(),
422             }
423         }
424
425         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
426             source_map::respan(
427                 binop.span,
428                 match binop.node {
429                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
430                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
431                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
432                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
433                     _ => return binop,
434                 },
435             )
436         }
437
438         fn check_limits(
439             cx: &LateContext<'_>,
440             binop: hir::BinOp,
441             l: &hir::Expr<'_>,
442             r: &hir::Expr<'_>,
443         ) -> bool {
444             let (lit, expr, swap) = match (&l.kind, &r.kind) {
445                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
446                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
447                 _ => return true,
448             };
449             // Normalize the binop so that the literal is always on the RHS in
450             // the comparison
451             let norm_binop = if swap { rev_binop(binop) } else { binop };
452             match cx.typeck_results().node_type(expr.hir_id).kind {
453                 ty::Int(int_ty) => {
454                     let (min, max) = int_ty_range(int_ty);
455                     let lit_val: i128 = match lit.kind {
456                         hir::ExprKind::Lit(ref li) => match li.node {
457                             ast::LitKind::Int(
458                                 v,
459                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
460                             ) => v as i128,
461                             _ => return true,
462                         },
463                         _ => bug!(),
464                     };
465                     is_valid(norm_binop, lit_val, min, max)
466                 }
467                 ty::Uint(uint_ty) => {
468                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
469                     let lit_val: u128 = match lit.kind {
470                         hir::ExprKind::Lit(ref li) => match li.node {
471                             ast::LitKind::Int(v, _) => v,
472                             _ => return true,
473                         },
474                         _ => bug!(),
475                     };
476                     is_valid(norm_binop, lit_val, min, max)
477                 }
478                 _ => true,
479             }
480         }
481
482         fn is_comparison(binop: hir::BinOp) -> bool {
483             match binop.node {
484                 hir::BinOpKind::Eq
485                 | hir::BinOpKind::Lt
486                 | hir::BinOpKind::Le
487                 | hir::BinOpKind::Ne
488                 | hir::BinOpKind::Ge
489                 | hir::BinOpKind::Gt => true,
490                 _ => false,
491             }
492         }
493     }
494 }
495
496 declare_lint! {
497     IMPROPER_CTYPES,
498     Warn,
499     "proper use of libc types in foreign modules"
500 }
501
502 declare_lint_pass!(ImproperCTypesDeclarations => [IMPROPER_CTYPES]);
503
504 declare_lint! {
505     IMPROPER_CTYPES_DEFINITIONS,
506     Warn,
507     "proper use of libc types in foreign item definitions"
508 }
509
510 declare_lint_pass!(ImproperCTypesDefinitions => [IMPROPER_CTYPES_DEFINITIONS]);
511
512 enum ImproperCTypesMode {
513     Declarations,
514     Definitions,
515 }
516
517 struct ImproperCTypesVisitor<'a, 'tcx> {
518     cx: &'a LateContext<'tcx>,
519     mode: ImproperCTypesMode,
520 }
521
522 enum FfiResult<'tcx> {
523     FfiSafe,
524     FfiPhantom(Ty<'tcx>),
525     FfiUnsafe { ty: Ty<'tcx>, reason: String, help: Option<String> },
526 }
527
528 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
529     /// Is type known to be non-null?
530     fn ty_is_known_nonnull(&self, ty: Ty<'tcx>) -> bool {
531         match ty.kind {
532             ty::FnPtr(_) => true,
533             ty::Ref(..) => true,
534             ty::Adt(def, substs) if def.repr.transparent() && !def.is_union() => {
535                 let guaranteed_nonnull_optimization = self
536                     .cx
537                     .tcx
538                     .get_attrs(def.did)
539                     .iter()
540                     .any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed));
541
542                 if guaranteed_nonnull_optimization {
543                     return true;
544                 }
545
546                 for variant in &def.variants {
547                     if let Some(field) = variant.transparent_newtype_field(self.cx.tcx) {
548                         if self.ty_is_known_nonnull(field.ty(self.cx.tcx, substs)) {
549                             return true;
550                         }
551                     }
552                 }
553
554                 false
555             }
556             _ => false,
557         }
558     }
559
560     /// Check if this enum can be safely exported based on the "nullable pointer optimization".
561     /// Currently restricted to function pointers, references, `core::num::NonZero*`,
562     /// `core::ptr::NonNull`, and `#[repr(transparent)]` newtypes.
563     fn is_repr_nullable_ptr(
564         &self,
565         ty: Ty<'tcx>,
566         ty_def: &'tcx ty::AdtDef,
567         substs: SubstsRef<'tcx>,
568     ) -> bool {
569         if ty_def.variants.len() != 2 {
570             return false;
571         }
572
573         let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
574         let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
575         let fields = if variant_fields[0].is_empty() {
576             &variant_fields[1]
577         } else if variant_fields[1].is_empty() {
578             &variant_fields[0]
579         } else {
580             return false;
581         };
582
583         if fields.len() != 1 {
584             return false;
585         }
586
587         let field_ty = fields[0].ty(self.cx.tcx, substs);
588         if !self.ty_is_known_nonnull(field_ty) {
589             return false;
590         }
591
592         // At this point, the field's type is known to be nonnull and the parent enum is
593         // Option-like. If the computed size for the field and the enum are different, the non-null
594         // optimization isn't being applied (and we've got a problem somewhere).
595         let compute_size_skeleton =
596             |t| SizeSkeleton::compute(t, self.cx.tcx, self.cx.param_env).unwrap();
597         if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
598             bug!("improper_ctypes: Option nonnull optimization not applied?");
599         }
600
601         true
602     }
603
604     /// Check if the type is array and emit an unsafe type lint.
605     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
606         if let ty::Array(..) = ty.kind {
607             self.emit_ffi_unsafe_type_lint(
608                 ty,
609                 sp,
610                 "passing raw arrays by value is not FFI-safe",
611                 Some("consider passing a pointer to the array"),
612             );
613             true
614         } else {
615             false
616         }
617     }
618
619     /// Checks if the given field's type is "ffi-safe".
620     fn check_field_type_for_ffi(
621         &self,
622         cache: &mut FxHashSet<Ty<'tcx>>,
623         field: &ty::FieldDef,
624         substs: SubstsRef<'tcx>,
625     ) -> FfiResult<'tcx> {
626         let field_ty = field.ty(self.cx.tcx, substs);
627         if field_ty.has_opaque_types() {
628             self.check_type_for_ffi(cache, field_ty)
629         } else {
630             let field_ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, field_ty);
631             self.check_type_for_ffi(cache, field_ty)
632         }
633     }
634
635     /// Checks if the given `VariantDef`'s field types are "ffi-safe".
636     fn check_variant_for_ffi(
637         &self,
638         cache: &mut FxHashSet<Ty<'tcx>>,
639         ty: Ty<'tcx>,
640         def: &ty::AdtDef,
641         variant: &ty::VariantDef,
642         substs: SubstsRef<'tcx>,
643     ) -> FfiResult<'tcx> {
644         use FfiResult::*;
645
646         if def.repr.transparent() {
647             // Can assume that only one field is not a ZST, so only check
648             // that field's type for FFI-safety.
649             if let Some(field) = variant.transparent_newtype_field(self.cx.tcx) {
650                 self.check_field_type_for_ffi(cache, field, substs)
651             } else {
652                 bug!("malformed transparent type");
653             }
654         } else {
655             // We can't completely trust repr(C) markings; make sure the fields are
656             // actually safe.
657             let mut all_phantom = !variant.fields.is_empty();
658             for field in &variant.fields {
659                 match self.check_field_type_for_ffi(cache, &field, substs) {
660                     FfiSafe => {
661                         all_phantom = false;
662                     }
663                     FfiPhantom(..) if def.is_enum() => {
664                         return FfiUnsafe {
665                             ty,
666                             reason: "this enum contains a PhantomData field".into(),
667                             help: None,
668                         };
669                     }
670                     FfiPhantom(..) => {}
671                     r => return r,
672                 }
673             }
674
675             if all_phantom { FfiPhantom(ty) } else { FfiSafe }
676         }
677     }
678
679     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
680     /// representation which can be exported to C code).
681     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
682         use FfiResult::*;
683
684         let cx = self.cx.tcx;
685
686         // Protect against infinite recursion, for example
687         // `struct S(*mut S);`.
688         // FIXME: A recursion limit is necessary as well, for irregular
689         // recursive types.
690         if !cache.insert(ty) {
691             return FfiSafe;
692         }
693
694         match ty.kind {
695             ty::Adt(def, substs) => {
696                 if def.is_phantom_data() {
697                     return FfiPhantom(ty);
698                 }
699                 match def.adt_kind() {
700                     AdtKind::Struct | AdtKind::Union => {
701                         let kind = if def.is_struct() { "struct" } else { "union" };
702
703                         if !def.repr.c() && !def.repr.transparent() {
704                             return FfiUnsafe {
705                                 ty,
706                                 reason: format!("this {} has unspecified layout", kind),
707                                 help: Some(format!(
708                                     "consider adding a `#[repr(C)]` or \
709                                              `#[repr(transparent)]` attribute to this {}",
710                                     kind
711                                 )),
712                             };
713                         }
714
715                         let is_non_exhaustive =
716                             def.non_enum_variant().is_field_list_non_exhaustive();
717                         if is_non_exhaustive && !def.did.is_local() {
718                             return FfiUnsafe {
719                                 ty,
720                                 reason: format!("this {} is non-exhaustive", kind),
721                                 help: None,
722                             };
723                         }
724
725                         if def.non_enum_variant().fields.is_empty() {
726                             return FfiUnsafe {
727                                 ty,
728                                 reason: format!("this {} has no fields", kind),
729                                 help: Some(format!("consider adding a member to this {}", kind)),
730                             };
731                         }
732
733                         self.check_variant_for_ffi(cache, ty, def, def.non_enum_variant(), substs)
734                     }
735                     AdtKind::Enum => {
736                         if def.variants.is_empty() {
737                             // Empty enums are okay... although sort of useless.
738                             return FfiSafe;
739                         }
740
741                         // Check for a repr() attribute to specify the size of the
742                         // discriminant.
743                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
744                             // Special-case types like `Option<extern fn()>`.
745                             if !self.is_repr_nullable_ptr(ty, def, substs) {
746                                 return FfiUnsafe {
747                                     ty,
748                                     reason: "enum has no representation hint".into(),
749                                     help: Some(
750                                         "consider adding a `#[repr(C)]`, \
751                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
752                                                 attribute to this enum"
753                                             .into(),
754                                     ),
755                                 };
756                             }
757                         }
758
759                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
760                             return FfiUnsafe {
761                                 ty,
762                                 reason: "this enum is non-exhaustive".into(),
763                                 help: None,
764                             };
765                         }
766
767                         // Check the contained variants.
768                         for variant in &def.variants {
769                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
770                             if is_non_exhaustive && !variant.def_id.is_local() {
771                                 return FfiUnsafe {
772                                     ty,
773                                     reason: "this enum has non-exhaustive variants".into(),
774                                     help: None,
775                                 };
776                             }
777
778                             match self.check_variant_for_ffi(cache, ty, def, variant, substs) {
779                                 FfiSafe => (),
780                                 r => return r,
781                             }
782                         }
783
784                         FfiSafe
785                     }
786                 }
787             }
788
789             ty::Char => FfiUnsafe {
790                 ty,
791                 reason: "the `char` type has no C equivalent".into(),
792                 help: Some("consider using `u32` or `libc::wchar_t` instead".into()),
793             },
794
795             ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
796                 ty,
797                 reason: "128-bit integers don't currently have a known stable ABI".into(),
798                 help: None,
799             },
800
801             // Primitive types with a stable representation.
802             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
803
804             ty::Slice(_) => FfiUnsafe {
805                 ty,
806                 reason: "slices have no C equivalent".into(),
807                 help: Some("consider using a raw pointer instead".into()),
808             },
809
810             ty::Dynamic(..) => {
811                 FfiUnsafe { ty, reason: "trait objects have no C equivalent".into(), help: None }
812             }
813
814             ty::Str => FfiUnsafe {
815                 ty,
816                 reason: "string slices have no C equivalent".into(),
817                 help: Some("consider using `*const u8` and a length instead".into()),
818             },
819
820             ty::Tuple(..) => FfiUnsafe {
821                 ty,
822                 reason: "tuples have unspecified layout".into(),
823                 help: Some("consider using a struct instead".into()),
824             },
825
826             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _)
827                 if {
828                     matches!(self.mode, ImproperCTypesMode::Definitions)
829                         && ty.is_sized(self.cx.tcx.at(DUMMY_SP), self.cx.param_env)
830                 } =>
831             {
832                 FfiSafe
833             }
834
835             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
836                 self.check_type_for_ffi(cache, ty)
837             }
838
839             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
840
841             ty::FnPtr(sig) => {
842                 if self.is_internal_abi(sig.abi()) {
843                     return FfiUnsafe {
844                         ty,
845                         reason: "this function pointer has Rust-specific calling convention".into(),
846                         help: Some(
847                             "consider using an `extern fn(...) -> ...` \
848                                     function pointer instead"
849                                 .into(),
850                         ),
851                     };
852                 }
853
854                 let sig = cx.erase_late_bound_regions(&sig);
855                 if !sig.output().is_unit() {
856                     let r = self.check_type_for_ffi(cache, sig.output());
857                     match r {
858                         FfiSafe => {}
859                         _ => {
860                             return r;
861                         }
862                     }
863                 }
864                 for arg in sig.inputs() {
865                     let r = self.check_type_for_ffi(cache, arg);
866                     match r {
867                         FfiSafe => {}
868                         _ => {
869                             return r;
870                         }
871                     }
872                 }
873                 FfiSafe
874             }
875
876             ty::Foreign(..) => FfiSafe,
877
878             // While opaque types are checked for earlier, if a projection in a struct field
879             // normalizes to an opaque type, then it will reach this branch.
880             ty::Opaque(..) => {
881                 FfiUnsafe { ty, reason: "opaque types have no C equivalent".into(), help: None }
882             }
883
884             // `extern "C" fn` functions can have type parameters, which may or may not be FFI-safe,
885             //  so they are currently ignored for the purposes of this lint.
886             ty::Param(..) | ty::Projection(..)
887                 if matches!(self.mode, ImproperCTypesMode::Definitions) =>
888             {
889                 FfiSafe
890             }
891
892             ty::Param(..)
893             | ty::Projection(..)
894             | ty::Infer(..)
895             | ty::Bound(..)
896             | ty::Error(_)
897             | ty::Closure(..)
898             | ty::Generator(..)
899             | ty::GeneratorWitness(..)
900             | ty::Placeholder(..)
901             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
902         }
903     }
904
905     fn emit_ffi_unsafe_type_lint(
906         &mut self,
907         ty: Ty<'tcx>,
908         sp: Span,
909         note: &str,
910         help: Option<&str>,
911     ) {
912         let lint = match self.mode {
913             ImproperCTypesMode::Declarations => IMPROPER_CTYPES,
914             ImproperCTypesMode::Definitions => IMPROPER_CTYPES_DEFINITIONS,
915         };
916
917         self.cx.struct_span_lint(lint, sp, |lint| {
918             let item_description = match self.mode {
919                 ImproperCTypesMode::Declarations => "block",
920                 ImproperCTypesMode::Definitions => "fn",
921             };
922             let mut diag = lint.build(&format!(
923                 "`extern` {} uses type `{}`, which is not FFI-safe",
924                 item_description, ty
925             ));
926             diag.span_label(sp, "not FFI-safe");
927             if let Some(help) = help {
928                 diag.help(help);
929             }
930             diag.note(note);
931             if let ty::Adt(def, _) = ty.kind {
932                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
933                     diag.span_note(sp, "the type is defined here");
934                 }
935             }
936             diag.emit();
937         });
938     }
939
940     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
941         struct ProhibitOpaqueTypes<'a, 'tcx> {
942             cx: &'a LateContext<'tcx>,
943             ty: Option<Ty<'tcx>>,
944         };
945
946         impl<'a, 'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'a, 'tcx> {
947             fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
948                 match ty.kind {
949                     ty::Opaque(..) => {
950                         self.ty = Some(ty);
951                         true
952                     }
953                     // Consider opaque types within projections FFI-safe if they do not normalize
954                     // to more opaque types.
955                     ty::Projection(..) => {
956                         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
957
958                         // If `ty` is a opaque type directly then `super_visit_with` won't invoke
959                         // this function again.
960                         if ty.has_opaque_types() { self.visit_ty(ty) } else { false }
961                     }
962                     _ => ty.super_visit_with(self),
963                 }
964             }
965         }
966
967         let mut visitor = ProhibitOpaqueTypes { cx: self.cx, ty: None };
968         ty.visit_with(&mut visitor);
969         if let Some(ty) = visitor.ty {
970             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
971             true
972         } else {
973             false
974         }
975     }
976
977     fn check_type_for_ffi_and_report_errors(
978         &mut self,
979         sp: Span,
980         ty: Ty<'tcx>,
981         is_static: bool,
982         is_return_type: bool,
983     ) {
984         // We have to check for opaque types before `normalize_erasing_regions`,
985         // which will replace opaque types with their underlying concrete type.
986         if self.check_for_opaque_ty(sp, ty) {
987             // We've already emitted an error due to an opaque type.
988             return;
989         }
990
991         // it is only OK to use this function because extern fns cannot have
992         // any generic types right now:
993         let ty = self.cx.tcx.normalize_erasing_regions(self.cx.param_env, ty);
994
995         // C doesn't really support passing arrays by value - the only way to pass an array by value
996         // is through a struct. So, first test that the top level isn't an array, and then
997         // recursively check the types inside.
998         if !is_static && self.check_for_array_ty(sp, ty) {
999             return;
1000         }
1001
1002         // Don't report FFI errors for unit return types. This check exists here, and not in
1003         // `check_foreign_fn` (where it would make more sense) so that normalization has definitely
1004         // happened.
1005         if is_return_type && ty.is_unit() {
1006             return;
1007         }
1008
1009         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
1010             FfiResult::FfiSafe => {}
1011             FfiResult::FfiPhantom(ty) => {
1012                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
1013             }
1014             // If `ty` is a `repr(transparent)` newtype, and the non-zero-sized type is a generic
1015             // argument, which after substitution, is `()`, then this branch can be hit.
1016             FfiResult::FfiUnsafe { ty, .. } if is_return_type && ty.is_unit() => return,
1017             FfiResult::FfiUnsafe { ty, reason, help } => {
1018                 self.emit_ffi_unsafe_type_lint(ty, sp, &reason, help.as_deref());
1019             }
1020         }
1021     }
1022
1023     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
1024         let def_id = self.cx.tcx.hir().local_def_id(id);
1025         let sig = self.cx.tcx.fn_sig(def_id);
1026         let sig = self.cx.tcx.erase_late_bound_regions(&sig);
1027
1028         for (input_ty, input_hir) in sig.inputs().iter().zip(decl.inputs) {
1029             self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false, false);
1030         }
1031
1032         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
1033             let ret_ty = sig.output();
1034             self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false, true);
1035         }
1036     }
1037
1038     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1039         let def_id = self.cx.tcx.hir().local_def_id(id);
1040         let ty = self.cx.tcx.type_of(def_id);
1041         self.check_type_for_ffi_and_report_errors(span, ty, true, false);
1042     }
1043
1044     fn is_internal_abi(&self, abi: Abi) -> bool {
1045         if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
1046             true
1047         } else {
1048             false
1049         }
1050     }
1051 }
1052
1053 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDeclarations {
1054     fn check_foreign_item(&mut self, cx: &LateContext<'_>, it: &hir::ForeignItem<'_>) {
1055         let mut vis = ImproperCTypesVisitor { cx, mode: ImproperCTypesMode::Declarations };
1056         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
1057
1058         if !vis.is_internal_abi(abi) {
1059             match it.kind {
1060                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1061                     vis.check_foreign_fn(it.hir_id, decl);
1062                 }
1063                 hir::ForeignItemKind::Static(ref ty, _) => {
1064                     vis.check_foreign_static(it.hir_id, ty.span);
1065                 }
1066                 hir::ForeignItemKind::Type => (),
1067             }
1068         }
1069     }
1070 }
1071
1072 impl<'tcx> LateLintPass<'tcx> for ImproperCTypesDefinitions {
1073     fn check_fn(
1074         &mut self,
1075         cx: &LateContext<'tcx>,
1076         kind: hir::intravisit::FnKind<'tcx>,
1077         decl: &'tcx hir::FnDecl<'_>,
1078         _: &'tcx hir::Body<'_>,
1079         _: Span,
1080         hir_id: hir::HirId,
1081     ) {
1082         use hir::intravisit::FnKind;
1083
1084         let abi = match kind {
1085             FnKind::ItemFn(_, _, header, ..) => header.abi,
1086             FnKind::Method(_, sig, ..) => sig.header.abi,
1087             _ => return,
1088         };
1089
1090         let mut vis = ImproperCTypesVisitor { cx, mode: ImproperCTypesMode::Definitions };
1091         if !vis.is_internal_abi(abi) {
1092             vis.check_foreign_fn(hir_id, decl);
1093         }
1094     }
1095 }
1096
1097 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1098
1099 impl<'tcx> LateLintPass<'tcx> for VariantSizeDifferences {
1100     fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) {
1101         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1102             let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
1103             let t = cx.tcx.type_of(item_def_id);
1104             let ty = cx.tcx.erase_regions(&t);
1105             let layout = match cx.layout_of(ty) {
1106                 Ok(layout) => layout,
1107                 Err(
1108                     ty::layout::LayoutError::Unknown(_) | ty::layout::LayoutError::SizeOverflow(_),
1109                 ) => return,
1110             };
1111             let (variants, tag) = match layout.variants {
1112                 Variants::Multiple {
1113                     tag_encoding: TagEncoding::Direct,
1114                     ref tag,
1115                     ref variants,
1116                     ..
1117                 } => (variants, tag),
1118                 _ => return,
1119             };
1120
1121             let tag_size = tag.value.size(&cx.tcx).bytes();
1122
1123             debug!(
1124                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1125                 t,
1126                 layout.size.bytes(),
1127                 layout
1128             );
1129
1130             let (largest, slargest, largest_index) = enum_definition
1131                 .variants
1132                 .iter()
1133                 .zip(variants)
1134                 .map(|(variant, variant_layout)| {
1135                     // Subtract the size of the enum tag.
1136                     let bytes = variant_layout.size.bytes().saturating_sub(tag_size);
1137
1138                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1139                     bytes
1140                 })
1141                 .enumerate()
1142                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1143                     if size > l {
1144                         (size, l, idx)
1145                     } else if size > s {
1146                         (l, size, li)
1147                     } else {
1148                         (l, s, li)
1149                     }
1150                 });
1151
1152             // We only warn if the largest variant is at least thrice as large as
1153             // the second-largest.
1154             if largest > slargest * 3 && slargest > 0 {
1155                 cx.struct_span_lint(
1156                     VARIANT_SIZE_DIFFERENCES,
1157                     enum_definition.variants[largest_index].span,
1158                     |lint| {
1159                         lint.build(&format!(
1160                             "enum variant is more than three times \
1161                                           larger ({} bytes) than the next largest",
1162                             largest
1163                         ))
1164                         .emit()
1165                     },
1166                 );
1167             }
1168         }
1169     }
1170 }