]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/types.rs
Rollup merge of #68166 - ollie27:rustdoc_help_escape, r=GuillaumeGomez
[rust.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use crate::{LateContext, LateLintPass, LintContext};
4 use rustc::mir::interpret::{sign_extend, truncate};
5 use rustc::ty::layout::{self, IntegerExt, LayoutOf, SizeSkeleton, VariantIdx};
6 use rustc::ty::subst::SubstsRef;
7 use rustc::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
8 use rustc_data_structures::fx::FxHashSet;
9 use rustc_errors::Applicability;
10 use rustc_hir as hir;
11 use rustc_hir::def_id::DefId;
12 use rustc_hir::{is_range_literal, ExprKind, Node};
13 use rustc_index::vec::Idx;
14 use rustc_span::source_map;
15 use rustc_span::symbol::sym;
16 use rustc_span::Span;
17 use rustc_target::spec::abi::Abi;
18 use syntax::{ast, attr};
19
20 use log::debug;
21 use std::cmp;
22 use std::{f32, f64, i16, i32, i64, i8, u16, u32, u64, u8};
23
24 declare_lint! {
25     UNUSED_COMPARISONS,
26     Warn,
27     "comparisons made useless by limits of the types involved"
28 }
29
30 declare_lint! {
31     OVERFLOWING_LITERALS,
32     Deny,
33     "literal out of range for its type"
34 }
35
36 declare_lint! {
37     VARIANT_SIZE_DIFFERENCES,
38     Allow,
39     "detects enums with widely varying variant sizes"
40 }
41
42 #[derive(Copy, Clone)]
43 pub struct TypeLimits {
44     /// Id of the last visited negated expression
45     negated_expr_id: hir::HirId,
46 }
47
48 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
49
50 impl TypeLimits {
51     pub fn new() -> TypeLimits {
52         TypeLimits { negated_expr_id: hir::DUMMY_HIR_ID }
53     }
54 }
55
56 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
57 /// Returns `true` iff the lint was overridden.
58 fn lint_overflowing_range_endpoint<'a, 'tcx>(
59     cx: &LateContext<'a, 'tcx>,
60     lit: &hir::Lit,
61     lit_val: u128,
62     max: u128,
63     expr: &'tcx hir::Expr<'tcx>,
64     parent_expr: &'tcx hir::Expr<'tcx>,
65     ty: &str,
66 ) -> bool {
67     // We only want to handle exclusive (`..`) ranges,
68     // which are represented as `ExprKind::Struct`.
69     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
70         if eps.len() != 2 {
71             return false;
72         }
73         // We can suggest using an inclusive range
74         // (`..=`) instead only if it is the `end` that is
75         // overflowing and only by 1.
76         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
77             let mut err = cx.struct_span_lint(
78                 OVERFLOWING_LITERALS,
79                 parent_expr.span,
80                 &format!("range endpoint is out of range for `{}`", ty),
81             );
82             if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
83                 use ast::{LitIntType, LitKind};
84                 // We need to preserve the literal's suffix,
85                 // as it may determine typing information.
86                 let suffix = match lit.node {
87                     LitKind::Int(_, LitIntType::Signed(s)) => format!("{}", s.name_str()),
88                     LitKind::Int(_, LitIntType::Unsigned(s)) => format!("{}", s.name_str()),
89                     LitKind::Int(_, LitIntType::Unsuffixed) => "".to_owned(),
90                     _ => bug!(),
91                 };
92                 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
93                 err.span_suggestion(
94                     parent_expr.span,
95                     &"use an inclusive range instead",
96                     suggestion,
97                     Applicability::MachineApplicable,
98                 );
99                 err.emit();
100                 return true;
101             }
102         }
103     }
104
105     false
106 }
107
108 // For `isize` & `usize`, be conservative with the warnings, so that the
109 // warnings are consistent between 32- and 64-bit platforms.
110 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
111     match int_ty {
112         ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
113         ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
114         ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
115         ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
116         ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
117         ast::IntTy::I128 => (i128::min_value() as i128, i128::max_value()),
118     }
119 }
120
121 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
122     match uint_ty {
123         ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
124         ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
125         ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
126         ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
127         ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
128         ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
129     }
130 }
131
132 fn get_bin_hex_repr(cx: &LateContext<'_, '_>, lit: &hir::Lit) -> Option<String> {
133     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
134     let firstch = src.chars().next()?;
135
136     if firstch == '0' {
137         match src.chars().nth(1) {
138             Some('x') | Some('b') => return Some(src),
139             _ => return None,
140         }
141     }
142
143     None
144 }
145
146 fn report_bin_hex_error(
147     cx: &LateContext<'_, '_>,
148     expr: &hir::Expr<'_>,
149     ty: attr::IntType,
150     repr_str: String,
151     val: u128,
152     negative: bool,
153 ) {
154     let size = layout::Integer::from_attr(&cx.tcx, ty).size();
155     let (t, actually) = match ty {
156         attr::IntType::SignedInt(t) => {
157             let actually = sign_extend(val, size) as i128;
158             (t.name_str(), actually.to_string())
159         }
160         attr::IntType::UnsignedInt(t) => {
161             let actually = truncate(val, size);
162             (t.name_str(), actually.to_string())
163         }
164     };
165     let mut err = cx.struct_span_lint(
166         OVERFLOWING_LITERALS,
167         expr.span,
168         &format!("literal out of range for {}", t),
169     );
170     err.note(&format!(
171         "the literal `{}` (decimal `{}`) does not fit into \
172             an `{}` and will become `{}{}`",
173         repr_str, val, t, actually, t
174     ));
175     if let Some(sugg_ty) = get_type_suggestion(&cx.tables.node_type(expr.hir_id), val, negative) {
176         if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
177             let (sans_suffix, _) = repr_str.split_at(pos);
178             err.span_suggestion(
179                 expr.span,
180                 &format!("consider using `{}` instead", sugg_ty),
181                 format!("{}{}", sans_suffix, sugg_ty),
182                 Applicability::MachineApplicable,
183             );
184         } else {
185             err.help(&format!("consider using `{}` instead", sugg_ty));
186         }
187     }
188
189     err.emit();
190 }
191
192 // This function finds the next fitting type and generates a suggestion string.
193 // It searches for fitting types in the following way (`X < Y`):
194 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
195 //  - `-iX` => `iY`
196 //  - `uX` => `uY`
197 //
198 // No suggestion for: `isize`, `usize`.
199 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
200     use syntax::ast::IntTy::*;
201     use syntax::ast::UintTy::*;
202     macro_rules! find_fit {
203         ($ty:expr, $val:expr, $negative:expr,
204          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
205             {
206                 let _neg = if negative { 1 } else { 0 };
207                 match $ty {
208                     $($type => {
209                         $(if !negative && val <= uint_ty_range($utypes).1 {
210                             return Some($utypes.name_str())
211                         })*
212                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
213                             return Some($itypes.name_str())
214                         })*
215                         None
216                     },)+
217                     _ => None
218                 }
219             }
220         }
221     }
222     match t.kind {
223         ty::Int(i) => find_fit!(i, val, negative,
224                       I8 => [U8] => [I16, I32, I64, I128],
225                       I16 => [U16] => [I32, I64, I128],
226                       I32 => [U32] => [I64, I128],
227                       I64 => [U64] => [I128],
228                       I128 => [U128] => []),
229         ty::Uint(u) => find_fit!(u, val, negative,
230                       U8 => [U8, U16, U32, U64, U128] => [],
231                       U16 => [U16, U32, U64, U128] => [],
232                       U32 => [U32, U64, U128] => [],
233                       U64 => [U64, U128] => [],
234                       U128 => [U128] => []),
235         _ => None,
236     }
237 }
238
239 fn lint_int_literal<'a, 'tcx>(
240     cx: &LateContext<'a, 'tcx>,
241     type_limits: &TypeLimits,
242     e: &'tcx hir::Expr<'tcx>,
243     lit: &hir::Lit,
244     t: ast::IntTy,
245     v: u128,
246 ) {
247     let int_type = t.normalize(cx.sess().target.ptr_width);
248     let (_, max) = int_ty_range(int_type);
249     let max = max as u128;
250     let negative = type_limits.negated_expr_id == e.hir_id;
251
252     // Detect literal value out of range [min, max] inclusive
253     // avoiding use of -min to prevent overflow/panic
254     if (negative && v > max + 1) || (!negative && v > max) {
255         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
256             report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
257             return;
258         }
259
260         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
261         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
262             if let hir::ExprKind::Struct(..) = par_e.kind {
263                 if is_range_literal(cx.sess().source_map(), par_e)
264                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
265                 {
266                     // The overflowing literal lint was overridden.
267                     return;
268                 }
269             }
270         }
271
272         cx.span_lint(
273             OVERFLOWING_LITERALS,
274             e.span,
275             &format!("literal out of range for `{}`", t.name_str()),
276         );
277     }
278 }
279
280 fn lint_uint_literal<'a, 'tcx>(
281     cx: &LateContext<'a, 'tcx>,
282     e: &'tcx hir::Expr<'tcx>,
283     lit: &hir::Lit,
284     t: ast::UintTy,
285 ) {
286     let uint_type = t.normalize(cx.sess().target.ptr_width);
287     let (min, max) = uint_ty_range(uint_type);
288     let lit_val: u128 = match lit.node {
289         // _v is u8, within range by definition
290         ast::LitKind::Byte(_v) => return,
291         ast::LitKind::Int(v, _) => v,
292         _ => bug!(),
293     };
294     if lit_val < min || lit_val > max {
295         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
296         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
297             match par_e.kind {
298                 hir::ExprKind::Cast(..) => {
299                     if let ty::Char = cx.tables.expr_ty(par_e).kind {
300                         let mut err = cx.struct_span_lint(
301                             OVERFLOWING_LITERALS,
302                             par_e.span,
303                             "only `u8` can be cast into `char`",
304                         );
305                         err.span_suggestion(
306                             par_e.span,
307                             &"use a `char` literal instead",
308                             format!("'\\u{{{:X}}}'", lit_val),
309                             Applicability::MachineApplicable,
310                         );
311                         err.emit();
312                         return;
313                     }
314                 }
315                 hir::ExprKind::Struct(..) if is_range_literal(cx.sess().source_map(), par_e) => {
316                     let t = t.name_str();
317                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
318                         // The overflowing literal lint was overridden.
319                         return;
320                     }
321                 }
322                 _ => {}
323             }
324         }
325         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
326             report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
327             return;
328         }
329         cx.span_lint(
330             OVERFLOWING_LITERALS,
331             e.span,
332             &format!("literal out of range for `{}`", t.name_str()),
333         );
334     }
335 }
336
337 fn lint_literal<'a, 'tcx>(
338     cx: &LateContext<'a, 'tcx>,
339     type_limits: &TypeLimits,
340     e: &'tcx hir::Expr<'tcx>,
341     lit: &hir::Lit,
342 ) {
343     match cx.tables.node_type(e.hir_id).kind {
344         ty::Int(t) => {
345             match lit.node {
346                 ast::LitKind::Int(v, ast::LitIntType::Signed(_))
347                 | ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => {
348                     lint_int_literal(cx, type_limits, e, lit, t, v)
349                 }
350                 _ => bug!(),
351             };
352         }
353         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
354         ty::Float(t) => {
355             let is_infinite = match lit.node {
356                 ast::LitKind::Float(v, _) => match t {
357                     ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
358                     ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
359                 },
360                 _ => bug!(),
361             };
362             if is_infinite == Ok(true) {
363                 cx.span_lint(
364                     OVERFLOWING_LITERALS,
365                     e.span,
366                     &format!("literal out of range for `{}`", t.name_str()),
367                 );
368             }
369         }
370         _ => {}
371     }
372 }
373
374 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
375     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr<'tcx>) {
376         match e.kind {
377             hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
378                 // propagate negation, if the negation itself isn't negated
379                 if self.negated_expr_id != e.hir_id {
380                     self.negated_expr_id = expr.hir_id;
381                 }
382             }
383             hir::ExprKind::Binary(binop, ref l, ref r) => {
384                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
385                     cx.span_lint(
386                         UNUSED_COMPARISONS,
387                         e.span,
388                         "comparison is useless due to type limits",
389                     );
390                 }
391             }
392             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
393             _ => {}
394         };
395
396         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
397             match binop.node {
398                 hir::BinOpKind::Lt => v > min && v <= max,
399                 hir::BinOpKind::Le => v >= min && v < max,
400                 hir::BinOpKind::Gt => v >= min && v < max,
401                 hir::BinOpKind::Ge => v > min && v <= max,
402                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
403                 _ => bug!(),
404             }
405         }
406
407         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
408             source_map::respan(
409                 binop.span,
410                 match binop.node {
411                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
412                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
413                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
414                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
415                     _ => return binop,
416                 },
417             )
418         }
419
420         fn check_limits(
421             cx: &LateContext<'_, '_>,
422             binop: hir::BinOp,
423             l: &hir::Expr<'_>,
424             r: &hir::Expr<'_>,
425         ) -> bool {
426             let (lit, expr, swap) = match (&l.kind, &r.kind) {
427                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
428                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
429                 _ => return true,
430             };
431             // Normalize the binop so that the literal is always on the RHS in
432             // the comparison
433             let norm_binop = if swap { rev_binop(binop) } else { binop };
434             match cx.tables.node_type(expr.hir_id).kind {
435                 ty::Int(int_ty) => {
436                     let (min, max) = int_ty_range(int_ty);
437                     let lit_val: i128 = match lit.kind {
438                         hir::ExprKind::Lit(ref li) => match li.node {
439                             ast::LitKind::Int(v, ast::LitIntType::Signed(_))
440                             | ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => v as i128,
441                             _ => return true,
442                         },
443                         _ => bug!(),
444                     };
445                     is_valid(norm_binop, lit_val, min, max)
446                 }
447                 ty::Uint(uint_ty) => {
448                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
449                     let lit_val: u128 = match lit.kind {
450                         hir::ExprKind::Lit(ref li) => match li.node {
451                             ast::LitKind::Int(v, _) => v,
452                             _ => return true,
453                         },
454                         _ => bug!(),
455                     };
456                     is_valid(norm_binop, lit_val, min, max)
457                 }
458                 _ => true,
459             }
460         }
461
462         fn is_comparison(binop: hir::BinOp) -> bool {
463             match binop.node {
464                 hir::BinOpKind::Eq
465                 | hir::BinOpKind::Lt
466                 | hir::BinOpKind::Le
467                 | hir::BinOpKind::Ne
468                 | hir::BinOpKind::Ge
469                 | hir::BinOpKind::Gt => true,
470                 _ => false,
471             }
472         }
473     }
474 }
475
476 declare_lint! {
477     IMPROPER_CTYPES,
478     Warn,
479     "proper use of libc types in foreign modules"
480 }
481
482 declare_lint_pass!(ImproperCTypes => [IMPROPER_CTYPES]);
483
484 struct ImproperCTypesVisitor<'a, 'tcx> {
485     cx: &'a LateContext<'a, 'tcx>,
486 }
487
488 enum FfiResult<'tcx> {
489     FfiSafe,
490     FfiPhantom(Ty<'tcx>),
491     FfiUnsafe { ty: Ty<'tcx>, reason: &'static str, help: Option<&'static str> },
492 }
493
494 fn is_zst<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, ty: Ty<'tcx>) -> bool {
495     tcx.layout_of(tcx.param_env(did).and(ty)).map(|layout| layout.is_zst()).unwrap_or(false)
496 }
497
498 fn ty_is_known_nonnull<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
499     match ty.kind {
500         ty::FnPtr(_) => true,
501         ty::Ref(..) => true,
502         ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
503             for field in field_def.all_fields() {
504                 let field_ty =
505                     tcx.normalize_erasing_regions(ParamEnv::reveal_all(), field.ty(tcx, substs));
506                 if is_zst(tcx, field.did, field_ty) {
507                     continue;
508                 }
509
510                 let attrs = tcx.get_attrs(field_def.did);
511                 if attrs.iter().any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed))
512                     || ty_is_known_nonnull(tcx, field_ty)
513                 {
514                     return true;
515                 }
516             }
517
518             false
519         }
520         _ => false,
521     }
522 }
523
524 /// Check if this enum can be safely exported based on the
525 /// "nullable pointer optimization". Currently restricted
526 /// to function pointers, references, core::num::NonZero*,
527 /// core::ptr::NonNull, and #[repr(transparent)] newtypes.
528 /// FIXME: This duplicates code in codegen.
529 fn is_repr_nullable_ptr<'tcx>(
530     tcx: TyCtxt<'tcx>,
531     ty: Ty<'tcx>,
532     ty_def: &'tcx ty::AdtDef,
533     substs: SubstsRef<'tcx>,
534 ) -> bool {
535     if ty_def.variants.len() != 2 {
536         return false;
537     }
538
539     let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
540     let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
541     let fields = if variant_fields[0].is_empty() {
542         &variant_fields[1]
543     } else if variant_fields[1].is_empty() {
544         &variant_fields[0]
545     } else {
546         return false;
547     };
548
549     if fields.len() != 1 {
550         return false;
551     }
552
553     let field_ty = fields[0].ty(tcx, substs);
554     if !ty_is_known_nonnull(tcx, field_ty) {
555         return false;
556     }
557
558     // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
559     // If the computed size for the field and the enum are different, the nonnull optimization isn't
560     // being applied (and we've got a problem somewhere).
561     let compute_size_skeleton = |t| SizeSkeleton::compute(t, tcx, ParamEnv::reveal_all()).unwrap();
562     if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
563         bug!("improper_ctypes: Option nonnull optimization not applied?");
564     }
565
566     true
567 }
568
569 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
570     /// Check if the type is array and emit an unsafe type lint.
571     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
572         if let ty::Array(..) = ty.kind {
573             self.emit_ffi_unsafe_type_lint(
574                 ty,
575                 sp,
576                 "passing raw arrays by value is not FFI-safe",
577                 Some("consider passing a pointer to the array"),
578             );
579             true
580         } else {
581             false
582         }
583     }
584
585     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
586     /// representation which can be exported to C code).
587     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
588         use FfiResult::*;
589
590         let cx = self.cx.tcx;
591
592         // Protect against infinite recursion, for example
593         // `struct S(*mut S);`.
594         // FIXME: A recursion limit is necessary as well, for irregular
595         // recursive types.
596         if !cache.insert(ty) {
597             return FfiSafe;
598         }
599
600         match ty.kind {
601             ty::Adt(def, substs) => {
602                 if def.is_phantom_data() {
603                     return FfiPhantom(ty);
604                 }
605                 match def.adt_kind() {
606                     AdtKind::Struct => {
607                         if !def.repr.c() && !def.repr.transparent() {
608                             return FfiUnsafe {
609                                 ty,
610                                 reason: "this struct has unspecified layout",
611                                 help: Some(
612                                     "consider adding a `#[repr(C)]` or \
613                                             `#[repr(transparent)]` attribute to this struct",
614                                 ),
615                             };
616                         }
617
618                         let is_non_exhaustive =
619                             def.non_enum_variant().is_field_list_non_exhaustive();
620                         if is_non_exhaustive && !def.did.is_local() {
621                             return FfiUnsafe {
622                                 ty,
623                                 reason: "this struct is non-exhaustive",
624                                 help: None,
625                             };
626                         }
627
628                         if def.non_enum_variant().fields.is_empty() {
629                             return FfiUnsafe {
630                                 ty,
631                                 reason: "this struct has no fields",
632                                 help: Some("consider adding a member to this struct"),
633                             };
634                         }
635
636                         // We can't completely trust repr(C) and repr(transparent) markings;
637                         // make sure the fields are actually safe.
638                         let mut all_phantom = true;
639                         for field in &def.non_enum_variant().fields {
640                             let field_ty = cx.normalize_erasing_regions(
641                                 ParamEnv::reveal_all(),
642                                 field.ty(cx, substs),
643                             );
644                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
645                             // PhantomData -- skip checking all ZST fields
646                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
647                                 continue;
648                             }
649                             let r = self.check_type_for_ffi(cache, field_ty);
650                             match r {
651                                 FfiSafe => {
652                                     all_phantom = false;
653                                 }
654                                 FfiPhantom(..) => {}
655                                 FfiUnsafe { .. } => {
656                                     return r;
657                                 }
658                             }
659                         }
660
661                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
662                     }
663                     AdtKind::Union => {
664                         if !def.repr.c() && !def.repr.transparent() {
665                             return FfiUnsafe {
666                                 ty,
667                                 reason: "this union has unspecified layout",
668                                 help: Some(
669                                     "consider adding a `#[repr(C)]` or \
670                                             `#[repr(transparent)]` attribute to this union",
671                                 ),
672                             };
673                         }
674
675                         if def.non_enum_variant().fields.is_empty() {
676                             return FfiUnsafe {
677                                 ty,
678                                 reason: "this union has no fields",
679                                 help: Some("consider adding a field to this union"),
680                             };
681                         }
682
683                         let mut all_phantom = true;
684                         for field in &def.non_enum_variant().fields {
685                             let field_ty = cx.normalize_erasing_regions(
686                                 ParamEnv::reveal_all(),
687                                 field.ty(cx, substs),
688                             );
689                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
690                             // PhantomData -- skip checking all ZST fields.
691                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
692                                 continue;
693                             }
694                             let r = self.check_type_for_ffi(cache, field_ty);
695                             match r {
696                                 FfiSafe => {
697                                     all_phantom = false;
698                                 }
699                                 FfiPhantom(..) => {}
700                                 FfiUnsafe { .. } => {
701                                     return r;
702                                 }
703                             }
704                         }
705
706                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
707                     }
708                     AdtKind::Enum => {
709                         if def.variants.is_empty() {
710                             // Empty enums are okay... although sort of useless.
711                             return FfiSafe;
712                         }
713
714                         // Check for a repr() attribute to specify the size of the
715                         // discriminant.
716                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
717                             // Special-case types like `Option<extern fn()>`.
718                             if !is_repr_nullable_ptr(cx, ty, def, substs) {
719                                 return FfiUnsafe {
720                                     ty,
721                                     reason: "enum has no representation hint",
722                                     help: Some(
723                                         "consider adding a `#[repr(C)]`, \
724                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
725                                                 attribute to this enum",
726                                     ),
727                                 };
728                             }
729                         }
730
731                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
732                             return FfiUnsafe {
733                                 ty,
734                                 reason: "this enum is non-exhaustive",
735                                 help: None,
736                             };
737                         }
738
739                         // Check the contained variants.
740                         for variant in &def.variants {
741                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
742                             if is_non_exhaustive && !variant.def_id.is_local() {
743                                 return FfiUnsafe {
744                                     ty,
745                                     reason: "this enum has non-exhaustive variants",
746                                     help: None,
747                                 };
748                             }
749
750                             for field in &variant.fields {
751                                 let field_ty = cx.normalize_erasing_regions(
752                                     ParamEnv::reveal_all(),
753                                     field.ty(cx, substs),
754                                 );
755                                 // repr(transparent) types are allowed to have arbitrary ZSTs, not
756                                 // just PhantomData -- skip checking all ZST fields.
757                                 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
758                                     continue;
759                                 }
760                                 let r = self.check_type_for_ffi(cache, field_ty);
761                                 match r {
762                                     FfiSafe => {}
763                                     FfiUnsafe { .. } => {
764                                         return r;
765                                     }
766                                     FfiPhantom(..) => {
767                                         return FfiUnsafe {
768                                             ty,
769                                             reason: "this enum contains a PhantomData field",
770                                             help: None,
771                                         };
772                                     }
773                                 }
774                             }
775                         }
776                         FfiSafe
777                     }
778                 }
779             }
780
781             ty::Char => FfiUnsafe {
782                 ty,
783                 reason: "the `char` type has no C equivalent",
784                 help: Some("consider using `u32` or `libc::wchar_t` instead"),
785             },
786
787             ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
788                 ty,
789                 reason: "128-bit integers don't currently have a known stable ABI",
790                 help: None,
791             },
792
793             // Primitive types with a stable representation.
794             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
795
796             ty::Slice(_) => FfiUnsafe {
797                 ty,
798                 reason: "slices have no C equivalent",
799                 help: Some("consider using a raw pointer instead"),
800             },
801
802             ty::Dynamic(..) => {
803                 FfiUnsafe { ty, reason: "trait objects have no C equivalent", help: None }
804             }
805
806             ty::Str => FfiUnsafe {
807                 ty,
808                 reason: "string slices have no C equivalent",
809                 help: Some("consider using `*const u8` and a length instead"),
810             },
811
812             ty::Tuple(..) => FfiUnsafe {
813                 ty,
814                 reason: "tuples have unspecified layout",
815                 help: Some("consider using a struct instead"),
816             },
817
818             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
819                 self.check_type_for_ffi(cache, ty)
820             }
821
822             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
823
824             ty::FnPtr(sig) => {
825                 match sig.abi() {
826                     Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
827                         return FfiUnsafe {
828                             ty,
829                             reason: "this function pointer has Rust-specific calling convention",
830                             help: Some(
831                                 "consider using an `extern fn(...) -> ...` \
832                                         function pointer instead",
833                             ),
834                         };
835                     }
836                     _ => {}
837                 }
838
839                 let sig = cx.erase_late_bound_regions(&sig);
840                 if !sig.output().is_unit() {
841                     let r = self.check_type_for_ffi(cache, sig.output());
842                     match r {
843                         FfiSafe => {}
844                         _ => {
845                             return r;
846                         }
847                     }
848                 }
849                 for arg in sig.inputs() {
850                     let r = self.check_type_for_ffi(cache, arg);
851                     match r {
852                         FfiSafe => {}
853                         _ => {
854                             return r;
855                         }
856                     }
857                 }
858                 FfiSafe
859             }
860
861             ty::Foreign(..) => FfiSafe,
862
863             ty::Param(..)
864             | ty::Infer(..)
865             | ty::Bound(..)
866             | ty::Error
867             | ty::Closure(..)
868             | ty::Generator(..)
869             | ty::GeneratorWitness(..)
870             | ty::Placeholder(..)
871             | ty::UnnormalizedProjection(..)
872             | ty::Projection(..)
873             | ty::Opaque(..)
874             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
875         }
876     }
877
878     fn emit_ffi_unsafe_type_lint(
879         &mut self,
880         ty: Ty<'tcx>,
881         sp: Span,
882         note: &str,
883         help: Option<&str>,
884     ) {
885         let mut diag = self.cx.struct_span_lint(
886             IMPROPER_CTYPES,
887             sp,
888             &format!("`extern` block uses type `{}`, which is not FFI-safe", ty),
889         );
890         diag.span_label(sp, "not FFI-safe");
891         if let Some(help) = help {
892             diag.help(help);
893         }
894         diag.note(note);
895         if let ty::Adt(def, _) = ty.kind {
896             if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
897                 diag.span_note(sp, "type defined here");
898             }
899         }
900         diag.emit();
901     }
902
903     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
904         use crate::rustc::ty::TypeFoldable;
905
906         struct ProhibitOpaqueTypes<'tcx> {
907             ty: Option<Ty<'tcx>>,
908         };
909
910         impl<'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'tcx> {
911             fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
912                 if let ty::Opaque(..) = ty.kind {
913                     self.ty = Some(ty);
914                     true
915                 } else {
916                     ty.super_visit_with(self)
917                 }
918             }
919         }
920
921         let mut visitor = ProhibitOpaqueTypes { ty: None };
922         ty.visit_with(&mut visitor);
923         if let Some(ty) = visitor.ty {
924             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
925             true
926         } else {
927             false
928         }
929     }
930
931     fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>, is_static: bool) {
932         // We have to check for opaque types before `normalize_erasing_regions`,
933         // which will replace opaque types with their underlying concrete type.
934         if self.check_for_opaque_ty(sp, ty) {
935             // We've already emitted an error due to an opaque type.
936             return;
937         }
938
939         // it is only OK to use this function because extern fns cannot have
940         // any generic types right now:
941         let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
942         // C doesn't really support passing arrays by value.
943         // The only way to pass an array by value is through a struct.
944         // So we first test that the top level isn't an array,
945         // and then recursively check the types inside.
946         if !is_static && self.check_for_array_ty(sp, ty) {
947             return;
948         }
949
950         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
951             FfiResult::FfiSafe => {}
952             FfiResult::FfiPhantom(ty) => {
953                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
954             }
955             FfiResult::FfiUnsafe { ty, reason, help } => {
956                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
957             }
958         }
959     }
960
961     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
962         let def_id = self.cx.tcx.hir().local_def_id(id);
963         let sig = self.cx.tcx.fn_sig(def_id);
964         let sig = self.cx.tcx.erase_late_bound_regions(&sig);
965
966         for (input_ty, input_hir) in sig.inputs().iter().zip(decl.inputs) {
967             self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false);
968         }
969
970         if let hir::FunctionRetTy::Return(ref ret_hir) = decl.output {
971             let ret_ty = sig.output();
972             if !ret_ty.is_unit() {
973                 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false);
974             }
975         }
976     }
977
978     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
979         let def_id = self.cx.tcx.hir().local_def_id(id);
980         let ty = self.cx.tcx.type_of(def_id);
981         self.check_type_for_ffi_and_report_errors(span, ty, true);
982     }
983 }
984
985 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
986     fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::ForeignItem<'_>) {
987         let mut vis = ImproperCTypesVisitor { cx };
988         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
989         if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
990             // Don't worry about types in internal ABIs.
991         } else {
992             match it.kind {
993                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
994                     vis.check_foreign_fn(it.hir_id, decl);
995                 }
996                 hir::ForeignItemKind::Static(ref ty, _) => {
997                     vis.check_foreign_static(it.hir_id, ty.span);
998                 }
999                 hir::ForeignItemKind::Type => (),
1000             }
1001         }
1002     }
1003 }
1004
1005 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1006
1007 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
1008     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
1009         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1010             let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
1011             let t = cx.tcx.type_of(item_def_id);
1012             let ty = cx.tcx.erase_regions(&t);
1013             let layout = match cx.layout_of(ty) {
1014                 Ok(layout) => layout,
1015                 Err(ty::layout::LayoutError::Unknown(_)) => return,
1016                 Err(err @ ty::layout::LayoutError::SizeOverflow(_)) => {
1017                     bug!("failed to get layout for `{}`: {}", t, err);
1018                 }
1019             };
1020             let (variants, tag) = match layout.variants {
1021                 layout::Variants::Multiple {
1022                     discr_kind: layout::DiscriminantKind::Tag,
1023                     ref discr,
1024                     ref variants,
1025                     ..
1026                 } => (variants, discr),
1027                 _ => return,
1028             };
1029
1030             let discr_size = tag.value.size(&cx.tcx).bytes();
1031
1032             debug!(
1033                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1034                 t,
1035                 layout.size.bytes(),
1036                 layout
1037             );
1038
1039             let (largest, slargest, largest_index) = enum_definition
1040                 .variants
1041                 .iter()
1042                 .zip(variants)
1043                 .map(|(variant, variant_layout)| {
1044                     // Subtract the size of the enum discriminant.
1045                     let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
1046
1047                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1048                     bytes
1049                 })
1050                 .enumerate()
1051                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1052                     if size > l {
1053                         (size, l, idx)
1054                     } else if size > s {
1055                         (l, size, li)
1056                     } else {
1057                         (l, s, li)
1058                     }
1059                 });
1060
1061             // We only warn if the largest variant is at least thrice as large as
1062             // the second-largest.
1063             if largest > slargest * 3 && slargest > 0 {
1064                 cx.span_lint(
1065                     VARIANT_SIZE_DIFFERENCES,
1066                     enum_definition.variants[largest_index].span,
1067                     &format!(
1068                         "enum variant is more than three times \
1069                                           larger ({} bytes) than the next largest",
1070                         largest
1071                     ),
1072                 );
1073             }
1074         }
1075     }
1076 }