]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/types.rs
Auto merge of #68943 - ecstatic-morse:no-useless-drop-on-enum-variants, r=matthewjasper
[rust.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use crate::{LateContext, LateLintPass, LintContext};
4 use rustc::mir::interpret::{sign_extend, truncate};
5 use rustc::ty::layout::{self, IntegerExt, LayoutOf, SizeSkeleton, VariantIdx};
6 use rustc::ty::subst::SubstsRef;
7 use rustc::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
8 use rustc_ast::ast;
9 use rustc_attr as attr;
10 use rustc_data_structures::fx::FxHashSet;
11 use rustc_errors::Applicability;
12 use rustc_hir as hir;
13 use rustc_hir::def_id::DefId;
14 use rustc_hir::{is_range_literal, ExprKind, Node};
15 use rustc_index::vec::Idx;
16 use rustc_span::source_map;
17 use rustc_span::symbol::sym;
18 use rustc_span::Span;
19 use rustc_target::spec::abi::Abi;
20
21 use log::debug;
22 use std::cmp;
23 use std::{f32, f64, i16, i32, i64, i8, u16, u32, u64, u8};
24
25 declare_lint! {
26     UNUSED_COMPARISONS,
27     Warn,
28     "comparisons made useless by limits of the types involved"
29 }
30
31 declare_lint! {
32     OVERFLOWING_LITERALS,
33     Deny,
34     "literal out of range for its type"
35 }
36
37 declare_lint! {
38     VARIANT_SIZE_DIFFERENCES,
39     Allow,
40     "detects enums with widely varying variant sizes"
41 }
42
43 #[derive(Copy, Clone)]
44 pub struct TypeLimits {
45     /// Id of the last visited negated expression
46     negated_expr_id: hir::HirId,
47 }
48
49 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
50
51 impl TypeLimits {
52     pub fn new() -> TypeLimits {
53         TypeLimits { negated_expr_id: hir::DUMMY_HIR_ID }
54     }
55 }
56
57 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
58 /// Returns `true` iff the lint was overridden.
59 fn lint_overflowing_range_endpoint<'a, 'tcx>(
60     cx: &LateContext<'a, 'tcx>,
61     lit: &hir::Lit,
62     lit_val: u128,
63     max: u128,
64     expr: &'tcx hir::Expr<'tcx>,
65     parent_expr: &'tcx hir::Expr<'tcx>,
66     ty: &str,
67 ) -> bool {
68     // We only want to handle exclusive (`..`) ranges,
69     // which are represented as `ExprKind::Struct`.
70     let mut overwritten = false;
71     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
72         if eps.len() != 2 {
73             return false;
74         }
75         // We can suggest using an inclusive range
76         // (`..=`) instead only if it is the `end` that is
77         // overflowing and only by 1.
78         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
79             cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
80                 let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
81                 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
82                     use ast::{LitIntType, LitKind};
83                     // We need to preserve the literal's suffix,
84                     // as it may determine typing information.
85                     let suffix = match lit.node {
86                         LitKind::Int(_, LitIntType::Signed(s)) => s.name_str().to_string(),
87                         LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str().to_string(),
88                         LitKind::Int(_, LitIntType::Unsuffixed) => "".to_string(),
89                         _ => bug!(),
90                     };
91                     let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
92                     err.span_suggestion(
93                         parent_expr.span,
94                         &"use an inclusive range instead",
95                         suggestion,
96                         Applicability::MachineApplicable,
97                     );
98                     err.emit();
99                     overwritten = true;
100                 }
101             });
102         }
103     }
104     overwritten
105 }
106
107 // For `isize` & `usize`, be conservative with the warnings, so that the
108 // warnings are consistent between 32- and 64-bit platforms.
109 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
110     match int_ty {
111         ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
112         ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
113         ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
114         ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
115         ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
116         ast::IntTy::I128 => (i128::min_value() as i128, i128::max_value()),
117     }
118 }
119
120 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
121     match uint_ty {
122         ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
123         ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
124         ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
125         ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
126         ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
127         ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
128     }
129 }
130
131 fn get_bin_hex_repr(cx: &LateContext<'_, '_>, lit: &hir::Lit) -> Option<String> {
132     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
133     let firstch = src.chars().next()?;
134
135     if firstch == '0' {
136         match src.chars().nth(1) {
137             Some('x') | Some('b') => return Some(src),
138             _ => return None,
139         }
140     }
141
142     None
143 }
144
145 fn report_bin_hex_error(
146     cx: &LateContext<'_, '_>,
147     expr: &hir::Expr<'_>,
148     ty: attr::IntType,
149     repr_str: String,
150     val: u128,
151     negative: bool,
152 ) {
153     let size = layout::Integer::from_attr(&cx.tcx, ty).size();
154     cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
155         let (t, actually) = match ty {
156             attr::IntType::SignedInt(t) => {
157                 let actually = sign_extend(val, size) as i128;
158                 (t.name_str(), actually.to_string())
159             }
160             attr::IntType::UnsignedInt(t) => {
161                 let actually = truncate(val, size);
162                 (t.name_str(), actually.to_string())
163             }
164         };
165         let mut err = lint.build(&format!("literal out of range for {}", t));
166         err.note(&format!(
167             "the literal `{}` (decimal `{}`) does not fit into \
168                     an `{}` and will become `{}{}`",
169             repr_str, val, t, actually, t
170         ));
171         if let Some(sugg_ty) = get_type_suggestion(&cx.tables.node_type(expr.hir_id), val, negative)
172         {
173             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
174                 let (sans_suffix, _) = repr_str.split_at(pos);
175                 err.span_suggestion(
176                     expr.span,
177                     &format!("consider using `{}` instead", sugg_ty),
178                     format!("{}{}", sans_suffix, sugg_ty),
179                     Applicability::MachineApplicable,
180                 );
181             } else {
182                 err.help(&format!("consider using `{}` instead", sugg_ty));
183             }
184         }
185         err.emit();
186     });
187 }
188
189 // This function finds the next fitting type and generates a suggestion string.
190 // It searches for fitting types in the following way (`X < Y`):
191 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
192 //  - `-iX` => `iY`
193 //  - `uX` => `uY`
194 //
195 // No suggestion for: `isize`, `usize`.
196 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
197     use rustc_ast::ast::IntTy::*;
198     use rustc_ast::ast::UintTy::*;
199     macro_rules! find_fit {
200         ($ty:expr, $val:expr, $negative:expr,
201          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
202             {
203                 let _neg = if negative { 1 } else { 0 };
204                 match $ty {
205                     $($type => {
206                         $(if !negative && val <= uint_ty_range($utypes).1 {
207                             return Some($utypes.name_str())
208                         })*
209                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
210                             return Some($itypes.name_str())
211                         })*
212                         None
213                     },)+
214                     _ => None
215                 }
216             }
217         }
218     }
219     match t.kind {
220         ty::Int(i) => find_fit!(i, val, negative,
221                       I8 => [U8] => [I16, I32, I64, I128],
222                       I16 => [U16] => [I32, I64, I128],
223                       I32 => [U32] => [I64, I128],
224                       I64 => [U64] => [I128],
225                       I128 => [U128] => []),
226         ty::Uint(u) => find_fit!(u, val, negative,
227                       U8 => [U8, U16, U32, U64, U128] => [],
228                       U16 => [U16, U32, U64, U128] => [],
229                       U32 => [U32, U64, U128] => [],
230                       U64 => [U64, U128] => [],
231                       U128 => [U128] => []),
232         _ => None,
233     }
234 }
235
236 fn lint_int_literal<'a, 'tcx>(
237     cx: &LateContext<'a, 'tcx>,
238     type_limits: &TypeLimits,
239     e: &'tcx hir::Expr<'tcx>,
240     lit: &hir::Lit,
241     t: ast::IntTy,
242     v: u128,
243 ) {
244     let int_type = t.normalize(cx.sess().target.ptr_width);
245     let (_, max) = int_ty_range(int_type);
246     let max = max as u128;
247     let negative = type_limits.negated_expr_id == e.hir_id;
248
249     // Detect literal value out of range [min, max] inclusive
250     // avoiding use of -min to prevent overflow/panic
251     if (negative && v > max + 1) || (!negative && v > max) {
252         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
253             report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
254             return;
255         }
256
257         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
258         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
259             if let hir::ExprKind::Struct(..) = par_e.kind {
260                 if is_range_literal(cx.sess().source_map(), par_e)
261                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
262                 {
263                     // The overflowing literal lint was overridden.
264                     return;
265                 }
266             }
267         }
268
269         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
270             lint.build(&format!("literal out of range for `{}`", t.name_str())).emit()
271         });
272     }
273 }
274
275 fn lint_uint_literal<'a, 'tcx>(
276     cx: &LateContext<'a, 'tcx>,
277     e: &'tcx hir::Expr<'tcx>,
278     lit: &hir::Lit,
279     t: ast::UintTy,
280 ) {
281     let uint_type = t.normalize(cx.sess().target.ptr_width);
282     let (min, max) = uint_ty_range(uint_type);
283     let lit_val: u128 = match lit.node {
284         // _v is u8, within range by definition
285         ast::LitKind::Byte(_v) => return,
286         ast::LitKind::Int(v, _) => v,
287         _ => bug!(),
288     };
289     if lit_val < min || lit_val > max {
290         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
291         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
292             match par_e.kind {
293                 hir::ExprKind::Cast(..) => {
294                     if let ty::Char = cx.tables.expr_ty(par_e).kind {
295                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
296                             lint.build("only `u8` can be cast into `char`")
297                                 .span_suggestion(
298                                     par_e.span,
299                                     &"use a `char` literal instead",
300                                     format!("'\\u{{{:X}}}'", lit_val),
301                                     Applicability::MachineApplicable,
302                                 )
303                                 .emit();
304                         });
305                         return;
306                     }
307                 }
308                 hir::ExprKind::Struct(..) if is_range_literal(cx.sess().source_map(), par_e) => {
309                     let t = t.name_str();
310                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
311                         // The overflowing literal lint was overridden.
312                         return;
313                     }
314                 }
315                 _ => {}
316             }
317         }
318         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
319             report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
320             return;
321         }
322         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
323             lint.build(&format!("literal out of range for `{}`", t.name_str())).emit()
324         });
325     }
326 }
327
328 fn lint_literal<'a, 'tcx>(
329     cx: &LateContext<'a, 'tcx>,
330     type_limits: &TypeLimits,
331     e: &'tcx hir::Expr<'tcx>,
332     lit: &hir::Lit,
333 ) {
334     match cx.tables.node_type(e.hir_id).kind {
335         ty::Int(t) => {
336             match lit.node {
337                 ast::LitKind::Int(v, ast::LitIntType::Signed(_))
338                 | ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => {
339                     lint_int_literal(cx, type_limits, e, lit, t, v)
340                 }
341                 _ => bug!(),
342             };
343         }
344         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
345         ty::Float(t) => {
346             let is_infinite = match lit.node {
347                 ast::LitKind::Float(v, _) => match t {
348                     ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
349                     ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
350                 },
351                 _ => bug!(),
352             };
353             if is_infinite == Ok(true) {
354                 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
355                     lint.build(&format!("literal out of range for `{}`", t.name_str())).emit()
356                 });
357             }
358         }
359         _ => {}
360     }
361 }
362
363 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
364     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr<'tcx>) {
365         match e.kind {
366             hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
367                 // propagate negation, if the negation itself isn't negated
368                 if self.negated_expr_id != e.hir_id {
369                     self.negated_expr_id = expr.hir_id;
370                 }
371             }
372             hir::ExprKind::Binary(binop, ref l, ref r) => {
373                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
374                     cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
375                         lint.build("comparison is useless due to type limits").emit()
376                     });
377                 }
378             }
379             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
380             _ => {}
381         };
382
383         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
384             match binop.node {
385                 hir::BinOpKind::Lt => v > min && v <= max,
386                 hir::BinOpKind::Le => v >= min && v < max,
387                 hir::BinOpKind::Gt => v >= min && v < max,
388                 hir::BinOpKind::Ge => v > min && v <= max,
389                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
390                 _ => bug!(),
391             }
392         }
393
394         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
395             source_map::respan(
396                 binop.span,
397                 match binop.node {
398                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
399                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
400                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
401                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
402                     _ => return binop,
403                 },
404             )
405         }
406
407         fn check_limits(
408             cx: &LateContext<'_, '_>,
409             binop: hir::BinOp,
410             l: &hir::Expr<'_>,
411             r: &hir::Expr<'_>,
412         ) -> bool {
413             let (lit, expr, swap) = match (&l.kind, &r.kind) {
414                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
415                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
416                 _ => return true,
417             };
418             // Normalize the binop so that the literal is always on the RHS in
419             // the comparison
420             let norm_binop = if swap { rev_binop(binop) } else { binop };
421             match cx.tables.node_type(expr.hir_id).kind {
422                 ty::Int(int_ty) => {
423                     let (min, max) = int_ty_range(int_ty);
424                     let lit_val: i128 = match lit.kind {
425                         hir::ExprKind::Lit(ref li) => match li.node {
426                             ast::LitKind::Int(v, ast::LitIntType::Signed(_))
427                             | ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => v as i128,
428                             _ => return true,
429                         },
430                         _ => bug!(),
431                     };
432                     is_valid(norm_binop, lit_val, min, max)
433                 }
434                 ty::Uint(uint_ty) => {
435                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
436                     let lit_val: u128 = match lit.kind {
437                         hir::ExprKind::Lit(ref li) => match li.node {
438                             ast::LitKind::Int(v, _) => v,
439                             _ => return true,
440                         },
441                         _ => bug!(),
442                     };
443                     is_valid(norm_binop, lit_val, min, max)
444                 }
445                 _ => true,
446             }
447         }
448
449         fn is_comparison(binop: hir::BinOp) -> bool {
450             match binop.node {
451                 hir::BinOpKind::Eq
452                 | hir::BinOpKind::Lt
453                 | hir::BinOpKind::Le
454                 | hir::BinOpKind::Ne
455                 | hir::BinOpKind::Ge
456                 | hir::BinOpKind::Gt => true,
457                 _ => false,
458             }
459         }
460     }
461 }
462
463 declare_lint! {
464     IMPROPER_CTYPES,
465     Warn,
466     "proper use of libc types in foreign modules"
467 }
468
469 declare_lint_pass!(ImproperCTypes => [IMPROPER_CTYPES]);
470
471 struct ImproperCTypesVisitor<'a, 'tcx> {
472     cx: &'a LateContext<'a, 'tcx>,
473 }
474
475 enum FfiResult<'tcx> {
476     FfiSafe,
477     FfiPhantom(Ty<'tcx>),
478     FfiUnsafe { ty: Ty<'tcx>, reason: &'static str, help: Option<&'static str> },
479 }
480
481 fn is_zst<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, ty: Ty<'tcx>) -> bool {
482     tcx.layout_of(tcx.param_env(did).and(ty)).map(|layout| layout.is_zst()).unwrap_or(false)
483 }
484
485 fn ty_is_known_nonnull<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
486     match ty.kind {
487         ty::FnPtr(_) => true,
488         ty::Ref(..) => true,
489         ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
490             for field in field_def.all_fields() {
491                 let field_ty =
492                     tcx.normalize_erasing_regions(ParamEnv::reveal_all(), field.ty(tcx, substs));
493                 if is_zst(tcx, field.did, field_ty) {
494                     continue;
495                 }
496
497                 let attrs = tcx.get_attrs(field_def.did);
498                 if attrs.iter().any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed))
499                     || ty_is_known_nonnull(tcx, field_ty)
500                 {
501                     return true;
502                 }
503             }
504
505             false
506         }
507         _ => false,
508     }
509 }
510
511 /// Check if this enum can be safely exported based on the
512 /// "nullable pointer optimization". Currently restricted
513 /// to function pointers, references, core::num::NonZero*,
514 /// core::ptr::NonNull, and #[repr(transparent)] newtypes.
515 /// FIXME: This duplicates code in codegen.
516 fn is_repr_nullable_ptr<'tcx>(
517     tcx: TyCtxt<'tcx>,
518     ty: Ty<'tcx>,
519     ty_def: &'tcx ty::AdtDef,
520     substs: SubstsRef<'tcx>,
521 ) -> bool {
522     if ty_def.variants.len() != 2 {
523         return false;
524     }
525
526     let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
527     let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
528     let fields = if variant_fields[0].is_empty() {
529         &variant_fields[1]
530     } else if variant_fields[1].is_empty() {
531         &variant_fields[0]
532     } else {
533         return false;
534     };
535
536     if fields.len() != 1 {
537         return false;
538     }
539
540     let field_ty = fields[0].ty(tcx, substs);
541     if !ty_is_known_nonnull(tcx, field_ty) {
542         return false;
543     }
544
545     // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
546     // If the computed size for the field and the enum are different, the nonnull optimization isn't
547     // being applied (and we've got a problem somewhere).
548     let compute_size_skeleton = |t| SizeSkeleton::compute(t, tcx, ParamEnv::reveal_all()).unwrap();
549     if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
550         bug!("improper_ctypes: Option nonnull optimization not applied?");
551     }
552
553     true
554 }
555
556 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
557     /// Check if the type is array and emit an unsafe type lint.
558     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
559         if let ty::Array(..) = ty.kind {
560             self.emit_ffi_unsafe_type_lint(
561                 ty,
562                 sp,
563                 "passing raw arrays by value is not FFI-safe",
564                 Some("consider passing a pointer to the array"),
565             );
566             true
567         } else {
568             false
569         }
570     }
571
572     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
573     /// representation which can be exported to C code).
574     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
575         use FfiResult::*;
576
577         let cx = self.cx.tcx;
578
579         // Protect against infinite recursion, for example
580         // `struct S(*mut S);`.
581         // FIXME: A recursion limit is necessary as well, for irregular
582         // recursive types.
583         if !cache.insert(ty) {
584             return FfiSafe;
585         }
586
587         match ty.kind {
588             ty::Adt(def, substs) => {
589                 if def.is_phantom_data() {
590                     return FfiPhantom(ty);
591                 }
592                 match def.adt_kind() {
593                     AdtKind::Struct => {
594                         if !def.repr.c() && !def.repr.transparent() {
595                             return FfiUnsafe {
596                                 ty,
597                                 reason: "this struct has unspecified layout",
598                                 help: Some(
599                                     "consider adding a `#[repr(C)]` or \
600                                             `#[repr(transparent)]` attribute to this struct",
601                                 ),
602                             };
603                         }
604
605                         let is_non_exhaustive =
606                             def.non_enum_variant().is_field_list_non_exhaustive();
607                         if is_non_exhaustive && !def.did.is_local() {
608                             return FfiUnsafe {
609                                 ty,
610                                 reason: "this struct is non-exhaustive",
611                                 help: None,
612                             };
613                         }
614
615                         if def.non_enum_variant().fields.is_empty() {
616                             return FfiUnsafe {
617                                 ty,
618                                 reason: "this struct has no fields",
619                                 help: Some("consider adding a member to this struct"),
620                             };
621                         }
622
623                         // We can't completely trust repr(C) and repr(transparent) markings;
624                         // make sure the fields are actually safe.
625                         let mut all_phantom = true;
626                         for field in &def.non_enum_variant().fields {
627                             let field_ty = cx.normalize_erasing_regions(
628                                 ParamEnv::reveal_all(),
629                                 field.ty(cx, substs),
630                             );
631                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
632                             // PhantomData -- skip checking all ZST fields
633                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
634                                 continue;
635                             }
636                             let r = self.check_type_for_ffi(cache, field_ty);
637                             match r {
638                                 FfiSafe => {
639                                     all_phantom = false;
640                                 }
641                                 FfiPhantom(..) => {}
642                                 FfiUnsafe { .. } => {
643                                     return r;
644                                 }
645                             }
646                         }
647
648                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
649                     }
650                     AdtKind::Union => {
651                         if !def.repr.c() && !def.repr.transparent() {
652                             return FfiUnsafe {
653                                 ty,
654                                 reason: "this union has unspecified layout",
655                                 help: Some(
656                                     "consider adding a `#[repr(C)]` or \
657                                             `#[repr(transparent)]` attribute to this union",
658                                 ),
659                             };
660                         }
661
662                         if def.non_enum_variant().fields.is_empty() {
663                             return FfiUnsafe {
664                                 ty,
665                                 reason: "this union has no fields",
666                                 help: Some("consider adding a field to this union"),
667                             };
668                         }
669
670                         let mut all_phantom = true;
671                         for field in &def.non_enum_variant().fields {
672                             let field_ty = cx.normalize_erasing_regions(
673                                 ParamEnv::reveal_all(),
674                                 field.ty(cx, substs),
675                             );
676                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
677                             // PhantomData -- skip checking all ZST fields.
678                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
679                                 continue;
680                             }
681                             let r = self.check_type_for_ffi(cache, field_ty);
682                             match r {
683                                 FfiSafe => {
684                                     all_phantom = false;
685                                 }
686                                 FfiPhantom(..) => {}
687                                 FfiUnsafe { .. } => {
688                                     return r;
689                                 }
690                             }
691                         }
692
693                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
694                     }
695                     AdtKind::Enum => {
696                         if def.variants.is_empty() {
697                             // Empty enums are okay... although sort of useless.
698                             return FfiSafe;
699                         }
700
701                         // Check for a repr() attribute to specify the size of the
702                         // discriminant.
703                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
704                             // Special-case types like `Option<extern fn()>`.
705                             if !is_repr_nullable_ptr(cx, ty, def, substs) {
706                                 return FfiUnsafe {
707                                     ty,
708                                     reason: "enum has no representation hint",
709                                     help: Some(
710                                         "consider adding a `#[repr(C)]`, \
711                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
712                                                 attribute to this enum",
713                                     ),
714                                 };
715                             }
716                         }
717
718                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
719                             return FfiUnsafe {
720                                 ty,
721                                 reason: "this enum is non-exhaustive",
722                                 help: None,
723                             };
724                         }
725
726                         // Check the contained variants.
727                         for variant in &def.variants {
728                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
729                             if is_non_exhaustive && !variant.def_id.is_local() {
730                                 return FfiUnsafe {
731                                     ty,
732                                     reason: "this enum has non-exhaustive variants",
733                                     help: None,
734                                 };
735                             }
736
737                             for field in &variant.fields {
738                                 let field_ty = cx.normalize_erasing_regions(
739                                     ParamEnv::reveal_all(),
740                                     field.ty(cx, substs),
741                                 );
742                                 // repr(transparent) types are allowed to have arbitrary ZSTs, not
743                                 // just PhantomData -- skip checking all ZST fields.
744                                 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
745                                     continue;
746                                 }
747                                 let r = self.check_type_for_ffi(cache, field_ty);
748                                 match r {
749                                     FfiSafe => {}
750                                     FfiUnsafe { .. } => {
751                                         return r;
752                                     }
753                                     FfiPhantom(..) => {
754                                         return FfiUnsafe {
755                                             ty,
756                                             reason: "this enum contains a PhantomData field",
757                                             help: None,
758                                         };
759                                     }
760                                 }
761                             }
762                         }
763                         FfiSafe
764                     }
765                 }
766             }
767
768             ty::Char => FfiUnsafe {
769                 ty,
770                 reason: "the `char` type has no C equivalent",
771                 help: Some("consider using `u32` or `libc::wchar_t` instead"),
772             },
773
774             ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
775                 ty,
776                 reason: "128-bit integers don't currently have a known stable ABI",
777                 help: None,
778             },
779
780             // Primitive types with a stable representation.
781             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
782
783             ty::Slice(_) => FfiUnsafe {
784                 ty,
785                 reason: "slices have no C equivalent",
786                 help: Some("consider using a raw pointer instead"),
787             },
788
789             ty::Dynamic(..) => {
790                 FfiUnsafe { ty, reason: "trait objects have no C equivalent", help: None }
791             }
792
793             ty::Str => FfiUnsafe {
794                 ty,
795                 reason: "string slices have no C equivalent",
796                 help: Some("consider using `*const u8` and a length instead"),
797             },
798
799             ty::Tuple(..) => FfiUnsafe {
800                 ty,
801                 reason: "tuples have unspecified layout",
802                 help: Some("consider using a struct instead"),
803             },
804
805             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
806                 self.check_type_for_ffi(cache, ty)
807             }
808
809             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
810
811             ty::FnPtr(sig) => {
812                 match sig.abi() {
813                     Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
814                         return FfiUnsafe {
815                             ty,
816                             reason: "this function pointer has Rust-specific calling convention",
817                             help: Some(
818                                 "consider using an `extern fn(...) -> ...` \
819                                         function pointer instead",
820                             ),
821                         };
822                     }
823                     _ => {}
824                 }
825
826                 let sig = cx.erase_late_bound_regions(&sig);
827                 if !sig.output().is_unit() {
828                     let r = self.check_type_for_ffi(cache, sig.output());
829                     match r {
830                         FfiSafe => {}
831                         _ => {
832                             return r;
833                         }
834                     }
835                 }
836                 for arg in sig.inputs() {
837                     let r = self.check_type_for_ffi(cache, arg);
838                     match r {
839                         FfiSafe => {}
840                         _ => {
841                             return r;
842                         }
843                     }
844                 }
845                 FfiSafe
846             }
847
848             ty::Foreign(..) => FfiSafe,
849
850             ty::Param(..)
851             | ty::Infer(..)
852             | ty::Bound(..)
853             | ty::Error
854             | ty::Closure(..)
855             | ty::Generator(..)
856             | ty::GeneratorWitness(..)
857             | ty::Placeholder(..)
858             | ty::UnnormalizedProjection(..)
859             | ty::Projection(..)
860             | ty::Opaque(..)
861             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
862         }
863     }
864
865     fn emit_ffi_unsafe_type_lint(
866         &mut self,
867         ty: Ty<'tcx>,
868         sp: Span,
869         note: &str,
870         help: Option<&str>,
871     ) {
872         self.cx.struct_span_lint(IMPROPER_CTYPES, sp, |lint| {
873             let mut diag =
874                 lint.build(&format!("`extern` block uses type `{}`, which is not FFI-safe", ty));
875             diag.span_label(sp, "not FFI-safe");
876             if let Some(help) = help {
877                 diag.help(help);
878             }
879             diag.note(note);
880             if let ty::Adt(def, _) = ty.kind {
881                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
882                     diag.span_note(sp, "the type is defined here");
883                 }
884             }
885             diag.emit();
886         });
887     }
888
889     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
890         use crate::rustc::ty::TypeFoldable;
891
892         struct ProhibitOpaqueTypes<'tcx> {
893             ty: Option<Ty<'tcx>>,
894         };
895
896         impl<'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'tcx> {
897             fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
898                 if let ty::Opaque(..) = ty.kind {
899                     self.ty = Some(ty);
900                     true
901                 } else {
902                     ty.super_visit_with(self)
903                 }
904             }
905         }
906
907         let mut visitor = ProhibitOpaqueTypes { ty: None };
908         ty.visit_with(&mut visitor);
909         if let Some(ty) = visitor.ty {
910             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
911             true
912         } else {
913             false
914         }
915     }
916
917     fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>, is_static: bool) {
918         // We have to check for opaque types before `normalize_erasing_regions`,
919         // which will replace opaque types with their underlying concrete type.
920         if self.check_for_opaque_ty(sp, ty) {
921             // We've already emitted an error due to an opaque type.
922             return;
923         }
924
925         // it is only OK to use this function because extern fns cannot have
926         // any generic types right now:
927         let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
928         // C doesn't really support passing arrays by value.
929         // The only way to pass an array by value is through a struct.
930         // So we first test that the top level isn't an array,
931         // and then recursively check the types inside.
932         if !is_static && self.check_for_array_ty(sp, ty) {
933             return;
934         }
935
936         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
937             FfiResult::FfiSafe => {}
938             FfiResult::FfiPhantom(ty) => {
939                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
940             }
941             FfiResult::FfiUnsafe { ty, reason, help } => {
942                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
943             }
944         }
945     }
946
947     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
948         let def_id = self.cx.tcx.hir().local_def_id(id);
949         let sig = self.cx.tcx.fn_sig(def_id);
950         let sig = self.cx.tcx.erase_late_bound_regions(&sig);
951
952         for (input_ty, input_hir) in sig.inputs().iter().zip(decl.inputs) {
953             self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false);
954         }
955
956         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
957             let ret_ty = sig.output();
958             if !ret_ty.is_unit() {
959                 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false);
960             }
961         }
962     }
963
964     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
965         let def_id = self.cx.tcx.hir().local_def_id(id);
966         let ty = self.cx.tcx.type_of(def_id);
967         self.check_type_for_ffi_and_report_errors(span, ty, true);
968     }
969 }
970
971 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
972     fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::ForeignItem<'_>) {
973         let mut vis = ImproperCTypesVisitor { cx };
974         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
975         if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
976             // Don't worry about types in internal ABIs.
977         } else {
978             match it.kind {
979                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
980                     vis.check_foreign_fn(it.hir_id, decl);
981                 }
982                 hir::ForeignItemKind::Static(ref ty, _) => {
983                     vis.check_foreign_static(it.hir_id, ty.span);
984                 }
985                 hir::ForeignItemKind::Type => (),
986             }
987         }
988     }
989 }
990
991 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
992
993 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
994     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
995         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
996             let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
997             let t = cx.tcx.type_of(item_def_id);
998             let ty = cx.tcx.erase_regions(&t);
999             let layout = match cx.layout_of(ty) {
1000                 Ok(layout) => layout,
1001                 Err(ty::layout::LayoutError::Unknown(_)) => return,
1002                 Err(err @ ty::layout::LayoutError::SizeOverflow(_)) => {
1003                     bug!("failed to get layout for `{}`: {}", t, err);
1004                 }
1005             };
1006             let (variants, tag) = match layout.variants {
1007                 layout::Variants::Multiple {
1008                     discr_kind: layout::DiscriminantKind::Tag,
1009                     ref discr,
1010                     ref variants,
1011                     ..
1012                 } => (variants, discr),
1013                 _ => return,
1014             };
1015
1016             let discr_size = tag.value.size(&cx.tcx).bytes();
1017
1018             debug!(
1019                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1020                 t,
1021                 layout.size.bytes(),
1022                 layout
1023             );
1024
1025             let (largest, slargest, largest_index) = enum_definition
1026                 .variants
1027                 .iter()
1028                 .zip(variants)
1029                 .map(|(variant, variant_layout)| {
1030                     // Subtract the size of the enum discriminant.
1031                     let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
1032
1033                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1034                     bytes
1035                 })
1036                 .enumerate()
1037                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1038                     if size > l {
1039                         (size, l, idx)
1040                     } else if size > s {
1041                         (l, size, li)
1042                     } else {
1043                         (l, s, li)
1044                     }
1045                 });
1046
1047             // We only warn if the largest variant is at least thrice as large as
1048             // the second-largest.
1049             if largest > slargest * 3 && slargest > 0 {
1050                 cx.struct_span_lint(
1051                     VARIANT_SIZE_DIFFERENCES,
1052                     enum_definition.variants[largest_index].span,
1053                     |lint| {
1054                         lint.build(&format!(
1055                             "enum variant is more than three times \
1056                                           larger ({} bytes) than the next largest",
1057                             largest
1058                         ))
1059                         .emit()
1060                     },
1061                 );
1062             }
1063         }
1064     }
1065 }