]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/types.rs
Rollup merge of #72061 - lcnr:const-inference-test, r=eddyb
[rust.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use crate::{LateContext, LateLintPass, LintContext};
4 use rustc_ast::ast;
5 use rustc_attr as attr;
6 use rustc_data_structures::fx::FxHashSet;
7 use rustc_errors::Applicability;
8 use rustc_hir as hir;
9 use rustc_hir::def_id::DefId;
10 use rustc_hir::{is_range_literal, ExprKind, Node};
11 use rustc_index::vec::Idx;
12 use rustc_middle::mir::interpret::{sign_extend, truncate};
13 use rustc_middle::ty::layout::{IntegerExt, SizeSkeleton};
14 use rustc_middle::ty::subst::SubstsRef;
15 use rustc_middle::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
16 use rustc_span::source_map;
17 use rustc_span::symbol::sym;
18 use rustc_span::Span;
19 use rustc_target::abi::{DiscriminantKind, Integer, LayoutOf, VariantIdx, Variants};
20 use rustc_target::spec::abi::Abi;
21
22 use log::debug;
23 use std::cmp;
24
25 declare_lint! {
26     UNUSED_COMPARISONS,
27     Warn,
28     "comparisons made useless by limits of the types involved"
29 }
30
31 declare_lint! {
32     OVERFLOWING_LITERALS,
33     Deny,
34     "literal out of range for its type"
35 }
36
37 declare_lint! {
38     VARIANT_SIZE_DIFFERENCES,
39     Allow,
40     "detects enums with widely varying variant sizes"
41 }
42
43 #[derive(Copy, Clone)]
44 pub struct TypeLimits {
45     /// Id of the last visited negated expression
46     negated_expr_id: Option<hir::HirId>,
47 }
48
49 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
50
51 impl TypeLimits {
52     pub fn new() -> TypeLimits {
53         TypeLimits { negated_expr_id: None }
54     }
55 }
56
57 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
58 /// Returns `true` iff the lint was overridden.
59 fn lint_overflowing_range_endpoint<'a, 'tcx>(
60     cx: &LateContext<'a, 'tcx>,
61     lit: &hir::Lit,
62     lit_val: u128,
63     max: u128,
64     expr: &'tcx hir::Expr<'tcx>,
65     parent_expr: &'tcx hir::Expr<'tcx>,
66     ty: &str,
67 ) -> bool {
68     // We only want to handle exclusive (`..`) ranges,
69     // which are represented as `ExprKind::Struct`.
70     let mut overwritten = false;
71     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
72         if eps.len() != 2 {
73             return false;
74         }
75         // We can suggest using an inclusive range
76         // (`..=`) instead only if it is the `end` that is
77         // overflowing and only by 1.
78         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
79             cx.struct_span_lint(OVERFLOWING_LITERALS, parent_expr.span, |lint| {
80                 let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
81                 if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
82                     use ast::{LitIntType, LitKind};
83                     // We need to preserve the literal's suffix,
84                     // as it may determine typing information.
85                     let suffix = match lit.node {
86                         LitKind::Int(_, LitIntType::Signed(s)) => s.name_str().to_string(),
87                         LitKind::Int(_, LitIntType::Unsigned(s)) => s.name_str().to_string(),
88                         LitKind::Int(_, LitIntType::Unsuffixed) => "".to_string(),
89                         _ => bug!(),
90                     };
91                     let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
92                     err.span_suggestion(
93                         parent_expr.span,
94                         &"use an inclusive range instead",
95                         suggestion,
96                         Applicability::MachineApplicable,
97                     );
98                     err.emit();
99                     overwritten = true;
100                 }
101             });
102         }
103     }
104     overwritten
105 }
106
107 // For `isize` & `usize`, be conservative with the warnings, so that the
108 // warnings are consistent between 32- and 64-bit platforms.
109 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
110     match int_ty {
111         ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
112         ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
113         ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
114         ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
115         ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
116         ast::IntTy::I128 => (i128::min_value() as i128, i128::max_value()),
117     }
118 }
119
120 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
121     match uint_ty {
122         ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
123         ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
124         ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
125         ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
126         ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
127         ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
128     }
129 }
130
131 fn get_bin_hex_repr(cx: &LateContext<'_, '_>, lit: &hir::Lit) -> Option<String> {
132     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
133     let firstch = src.chars().next()?;
134
135     if firstch == '0' {
136         match src.chars().nth(1) {
137             Some('x' | 'b') => return Some(src),
138             _ => return None,
139         }
140     }
141
142     None
143 }
144
145 fn report_bin_hex_error(
146     cx: &LateContext<'_, '_>,
147     expr: &hir::Expr<'_>,
148     ty: attr::IntType,
149     repr_str: String,
150     val: u128,
151     negative: bool,
152 ) {
153     let size = Integer::from_attr(&cx.tcx, ty).size();
154     cx.struct_span_lint(OVERFLOWING_LITERALS, expr.span, |lint| {
155         let (t, actually) = match ty {
156             attr::IntType::SignedInt(t) => {
157                 let actually = sign_extend(val, size) as i128;
158                 (t.name_str(), actually.to_string())
159             }
160             attr::IntType::UnsignedInt(t) => {
161                 let actually = truncate(val, size);
162                 (t.name_str(), actually.to_string())
163             }
164         };
165         let mut err = lint.build(&format!("literal out of range for {}", t));
166         err.note(&format!(
167             "the literal `{}` (decimal `{}`) does not fit into \
168              the type `{}` and will become `{}{}`",
169             repr_str, val, t, actually, t
170         ));
171         if let Some(sugg_ty) = get_type_suggestion(&cx.tables.node_type(expr.hir_id), val, negative)
172         {
173             if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
174                 let (sans_suffix, _) = repr_str.split_at(pos);
175                 err.span_suggestion(
176                     expr.span,
177                     &format!("consider using `{}` instead", sugg_ty),
178                     format!("{}{}", sans_suffix, sugg_ty),
179                     Applicability::MachineApplicable,
180                 );
181             } else {
182                 err.help(&format!("consider using `{}` instead", sugg_ty));
183             }
184         }
185         err.emit();
186     });
187 }
188
189 // This function finds the next fitting type and generates a suggestion string.
190 // It searches for fitting types in the following way (`X < Y`):
191 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
192 //  - `-iX` => `iY`
193 //  - `uX` => `uY`
194 //
195 // No suggestion for: `isize`, `usize`.
196 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
197     use rustc_ast::ast::IntTy::*;
198     use rustc_ast::ast::UintTy::*;
199     macro_rules! find_fit {
200         ($ty:expr, $val:expr, $negative:expr,
201          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
202             {
203                 let _neg = if negative { 1 } else { 0 };
204                 match $ty {
205                     $($type => {
206                         $(if !negative && val <= uint_ty_range($utypes).1 {
207                             return Some($utypes.name_str())
208                         })*
209                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
210                             return Some($itypes.name_str())
211                         })*
212                         None
213                     },)+
214                     _ => None
215                 }
216             }
217         }
218     }
219     match t.kind {
220         ty::Int(i) => find_fit!(i, val, negative,
221                       I8 => [U8] => [I16, I32, I64, I128],
222                       I16 => [U16] => [I32, I64, I128],
223                       I32 => [U32] => [I64, I128],
224                       I64 => [U64] => [I128],
225                       I128 => [U128] => []),
226         ty::Uint(u) => find_fit!(u, val, negative,
227                       U8 => [U8, U16, U32, U64, U128] => [],
228                       U16 => [U16, U32, U64, U128] => [],
229                       U32 => [U32, U64, U128] => [],
230                       U64 => [U64, U128] => [],
231                       U128 => [U128] => []),
232         _ => None,
233     }
234 }
235
236 fn lint_int_literal<'a, 'tcx>(
237     cx: &LateContext<'a, 'tcx>,
238     type_limits: &TypeLimits,
239     e: &'tcx hir::Expr<'tcx>,
240     lit: &hir::Lit,
241     t: ast::IntTy,
242     v: u128,
243 ) {
244     let int_type = t.normalize(cx.sess().target.ptr_width);
245     let (min, max) = int_ty_range(int_type);
246     let max = max as u128;
247     let negative = type_limits.negated_expr_id == Some(e.hir_id);
248
249     // Detect literal value out of range [min, max] inclusive
250     // avoiding use of -min to prevent overflow/panic
251     if (negative && v > max + 1) || (!negative && v > max) {
252         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
253             report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
254             return;
255         }
256
257         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
258         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
259             if let hir::ExprKind::Struct(..) = par_e.kind {
260                 if is_range_literal(cx.sess().source_map(), par_e)
261                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
262                 {
263                     // The overflowing literal lint was overridden.
264                     return;
265                 }
266             }
267         }
268
269         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
270             lint.build(&format!("literal out of range for `{}`", t.name_str()))
271                 .note(&format!(
272                     "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
273                     cx.sess()
274                         .source_map()
275                         .span_to_snippet(lit.span)
276                         .expect("must get snippet from literal"),
277                     t.name_str(),
278                     min,
279                     max,
280                 ))
281                 .emit();
282         });
283     }
284 }
285
286 fn lint_uint_literal<'a, 'tcx>(
287     cx: &LateContext<'a, 'tcx>,
288     e: &'tcx hir::Expr<'tcx>,
289     lit: &hir::Lit,
290     t: ast::UintTy,
291 ) {
292     let uint_type = t.normalize(cx.sess().target.ptr_width);
293     let (min, max) = uint_ty_range(uint_type);
294     let lit_val: u128 = match lit.node {
295         // _v is u8, within range by definition
296         ast::LitKind::Byte(_v) => return,
297         ast::LitKind::Int(v, _) => v,
298         _ => bug!(),
299     };
300     if lit_val < min || lit_val > max {
301         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
302         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
303             match par_e.kind {
304                 hir::ExprKind::Cast(..) => {
305                     if let ty::Char = cx.tables.expr_ty(par_e).kind {
306                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
307                             lint.build("only `u8` can be cast into `char`")
308                                 .span_suggestion(
309                                     par_e.span,
310                                     &"use a `char` literal instead",
311                                     format!("'\\u{{{:X}}}'", lit_val),
312                                     Applicability::MachineApplicable,
313                                 )
314                                 .emit();
315                         });
316                         return;
317                     }
318                 }
319                 hir::ExprKind::Struct(..) if is_range_literal(cx.sess().source_map(), par_e) => {
320                     let t = t.name_str();
321                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
322                         // The overflowing literal lint was overridden.
323                         return;
324                     }
325                 }
326                 _ => {}
327             }
328         }
329         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
330             report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
331             return;
332         }
333         cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
334             lint.build(&format!("literal out of range for `{}`", t.name_str()))
335                 .note(&format!(
336                     "the literal `{}` does not fit into the type `{}` whose range is `{}..={}`",
337                     cx.sess()
338                         .source_map()
339                         .span_to_snippet(lit.span)
340                         .expect("must get snippet from literal"),
341                     t.name_str(),
342                     min,
343                     max,
344                 ))
345                 .emit()
346         });
347     }
348 }
349
350 fn lint_literal<'a, 'tcx>(
351     cx: &LateContext<'a, 'tcx>,
352     type_limits: &TypeLimits,
353     e: &'tcx hir::Expr<'tcx>,
354     lit: &hir::Lit,
355 ) {
356     match cx.tables.node_type(e.hir_id).kind {
357         ty::Int(t) => {
358             match lit.node {
359                 ast::LitKind::Int(v, ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed) => {
360                     lint_int_literal(cx, type_limits, e, lit, t, v)
361                 }
362                 _ => bug!(),
363             };
364         }
365         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
366         ty::Float(t) => {
367             let is_infinite = match lit.node {
368                 ast::LitKind::Float(v, _) => match t {
369                     ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
370                     ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
371                 },
372                 _ => bug!(),
373             };
374             if is_infinite == Ok(true) {
375                 cx.struct_span_lint(OVERFLOWING_LITERALS, e.span, |lint| {
376                     lint.build(&format!("literal out of range for `{}`", t.name_str()))
377                         .note(&format!(
378                             "the literal `{}` does not fit into the type `{}` and will be converted to `std::{}::INFINITY`",
379                             cx.sess()
380                                 .source_map()
381                                 .span_to_snippet(lit.span)
382                                 .expect("must get snippet from literal"),
383                             t.name_str(),
384                             t.name_str(),
385                         ))
386                         .emit();
387                 });
388             }
389         }
390         _ => {}
391     }
392 }
393
394 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
395     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr<'tcx>) {
396         match e.kind {
397             hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
398                 // propagate negation, if the negation itself isn't negated
399                 if self.negated_expr_id != Some(e.hir_id) {
400                     self.negated_expr_id = Some(expr.hir_id);
401                 }
402             }
403             hir::ExprKind::Binary(binop, ref l, ref r) => {
404                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
405                     cx.struct_span_lint(UNUSED_COMPARISONS, e.span, |lint| {
406                         lint.build("comparison is useless due to type limits").emit()
407                     });
408                 }
409             }
410             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
411             _ => {}
412         };
413
414         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
415             match binop.node {
416                 hir::BinOpKind::Lt => v > min && v <= max,
417                 hir::BinOpKind::Le => v >= min && v < max,
418                 hir::BinOpKind::Gt => v >= min && v < max,
419                 hir::BinOpKind::Ge => v > min && v <= max,
420                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
421                 _ => bug!(),
422             }
423         }
424
425         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
426             source_map::respan(
427                 binop.span,
428                 match binop.node {
429                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
430                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
431                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
432                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
433                     _ => return binop,
434                 },
435             )
436         }
437
438         fn check_limits(
439             cx: &LateContext<'_, '_>,
440             binop: hir::BinOp,
441             l: &hir::Expr<'_>,
442             r: &hir::Expr<'_>,
443         ) -> bool {
444             let (lit, expr, swap) = match (&l.kind, &r.kind) {
445                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
446                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
447                 _ => return true,
448             };
449             // Normalize the binop so that the literal is always on the RHS in
450             // the comparison
451             let norm_binop = if swap { rev_binop(binop) } else { binop };
452             match cx.tables.node_type(expr.hir_id).kind {
453                 ty::Int(int_ty) => {
454                     let (min, max) = int_ty_range(int_ty);
455                     let lit_val: i128 = match lit.kind {
456                         hir::ExprKind::Lit(ref li) => match li.node {
457                             ast::LitKind::Int(
458                                 v,
459                                 ast::LitIntType::Signed(_) | ast::LitIntType::Unsuffixed,
460                             ) => v as i128,
461                             _ => return true,
462                         },
463                         _ => bug!(),
464                     };
465                     is_valid(norm_binop, lit_val, min, max)
466                 }
467                 ty::Uint(uint_ty) => {
468                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
469                     let lit_val: u128 = match lit.kind {
470                         hir::ExprKind::Lit(ref li) => match li.node {
471                             ast::LitKind::Int(v, _) => v,
472                             _ => return true,
473                         },
474                         _ => bug!(),
475                     };
476                     is_valid(norm_binop, lit_val, min, max)
477                 }
478                 _ => true,
479             }
480         }
481
482         fn is_comparison(binop: hir::BinOp) -> bool {
483             match binop.node {
484                 hir::BinOpKind::Eq
485                 | hir::BinOpKind::Lt
486                 | hir::BinOpKind::Le
487                 | hir::BinOpKind::Ne
488                 | hir::BinOpKind::Ge
489                 | hir::BinOpKind::Gt => true,
490                 _ => false,
491             }
492         }
493     }
494 }
495
496 declare_lint! {
497     IMPROPER_CTYPES,
498     Warn,
499     "proper use of libc types in foreign modules"
500 }
501
502 declare_lint_pass!(ImproperCTypes => [IMPROPER_CTYPES]);
503
504 struct ImproperCTypesVisitor<'a, 'tcx> {
505     cx: &'a LateContext<'a, 'tcx>,
506 }
507
508 enum FfiResult<'tcx> {
509     FfiSafe,
510     FfiPhantom(Ty<'tcx>),
511     FfiUnsafe { ty: Ty<'tcx>, reason: &'static str, help: Option<&'static str> },
512 }
513
514 fn is_zst<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, ty: Ty<'tcx>) -> bool {
515     tcx.layout_of(tcx.param_env(did).and(ty)).map(|layout| layout.is_zst()).unwrap_or(false)
516 }
517
518 fn ty_is_known_nonnull<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
519     match ty.kind {
520         ty::FnPtr(_) => true,
521         ty::Ref(..) => true,
522         ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
523             for field in field_def.all_fields() {
524                 let field_ty =
525                     tcx.normalize_erasing_regions(ParamEnv::reveal_all(), field.ty(tcx, substs));
526                 if is_zst(tcx, field.did, field_ty) {
527                     continue;
528                 }
529
530                 let attrs = tcx.get_attrs(field_def.did);
531                 if attrs.iter().any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed))
532                     || ty_is_known_nonnull(tcx, field_ty)
533                 {
534                     return true;
535                 }
536             }
537
538             false
539         }
540         _ => false,
541     }
542 }
543
544 /// Check if this enum can be safely exported based on the
545 /// "nullable pointer optimization". Currently restricted
546 /// to function pointers, references, core::num::NonZero*,
547 /// core::ptr::NonNull, and #[repr(transparent)] newtypes.
548 /// FIXME: This duplicates code in codegen.
549 fn is_repr_nullable_ptr<'tcx>(
550     tcx: TyCtxt<'tcx>,
551     ty: Ty<'tcx>,
552     ty_def: &'tcx ty::AdtDef,
553     substs: SubstsRef<'tcx>,
554 ) -> bool {
555     if ty_def.variants.len() != 2 {
556         return false;
557     }
558
559     let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
560     let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
561     let fields = if variant_fields[0].is_empty() {
562         &variant_fields[1]
563     } else if variant_fields[1].is_empty() {
564         &variant_fields[0]
565     } else {
566         return false;
567     };
568
569     if fields.len() != 1 {
570         return false;
571     }
572
573     let field_ty = fields[0].ty(tcx, substs);
574     if !ty_is_known_nonnull(tcx, field_ty) {
575         return false;
576     }
577
578     // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
579     // If the computed size for the field and the enum are different, the nonnull optimization isn't
580     // being applied (and we've got a problem somewhere).
581     let compute_size_skeleton = |t| SizeSkeleton::compute(t, tcx, ParamEnv::reveal_all()).unwrap();
582     if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
583         bug!("improper_ctypes: Option nonnull optimization not applied?");
584     }
585
586     true
587 }
588
589 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
590     /// Check if the type is array and emit an unsafe type lint.
591     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
592         if let ty::Array(..) = ty.kind {
593             self.emit_ffi_unsafe_type_lint(
594                 ty,
595                 sp,
596                 "passing raw arrays by value is not FFI-safe",
597                 Some("consider passing a pointer to the array"),
598             );
599             true
600         } else {
601             false
602         }
603     }
604
605     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
606     /// representation which can be exported to C code).
607     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
608         use FfiResult::*;
609
610         let cx = self.cx.tcx;
611
612         // Protect against infinite recursion, for example
613         // `struct S(*mut S);`.
614         // FIXME: A recursion limit is necessary as well, for irregular
615         // recursive types.
616         if !cache.insert(ty) {
617             return FfiSafe;
618         }
619
620         match ty.kind {
621             ty::Adt(def, substs) => {
622                 if def.is_phantom_data() {
623                     return FfiPhantom(ty);
624                 }
625                 match def.adt_kind() {
626                     AdtKind::Struct => {
627                         if !def.repr.c() && !def.repr.transparent() {
628                             return FfiUnsafe {
629                                 ty,
630                                 reason: "this struct has unspecified layout",
631                                 help: Some(
632                                     "consider adding a `#[repr(C)]` or \
633                                             `#[repr(transparent)]` attribute to this struct",
634                                 ),
635                             };
636                         }
637
638                         let is_non_exhaustive =
639                             def.non_enum_variant().is_field_list_non_exhaustive();
640                         if is_non_exhaustive && !def.did.is_local() {
641                             return FfiUnsafe {
642                                 ty,
643                                 reason: "this struct is non-exhaustive",
644                                 help: None,
645                             };
646                         }
647
648                         if def.non_enum_variant().fields.is_empty() {
649                             return FfiUnsafe {
650                                 ty,
651                                 reason: "this struct has no fields",
652                                 help: Some("consider adding a member to this struct"),
653                             };
654                         }
655
656                         // We can't completely trust repr(C) and repr(transparent) markings;
657                         // make sure the fields are actually safe.
658                         let mut all_phantom = true;
659                         for field in &def.non_enum_variant().fields {
660                             let field_ty = cx.normalize_erasing_regions(
661                                 ParamEnv::reveal_all(),
662                                 field.ty(cx, substs),
663                             );
664                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
665                             // PhantomData -- skip checking all ZST fields
666                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
667                                 continue;
668                             }
669                             let r = self.check_type_for_ffi(cache, field_ty);
670                             match r {
671                                 FfiSafe => {
672                                     all_phantom = false;
673                                 }
674                                 FfiPhantom(..) => {}
675                                 FfiUnsafe { .. } => {
676                                     return r;
677                                 }
678                             }
679                         }
680
681                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
682                     }
683                     AdtKind::Union => {
684                         if !def.repr.c() && !def.repr.transparent() {
685                             return FfiUnsafe {
686                                 ty,
687                                 reason: "this union has unspecified layout",
688                                 help: Some(
689                                     "consider adding a `#[repr(C)]` or \
690                                             `#[repr(transparent)]` attribute to this union",
691                                 ),
692                             };
693                         }
694
695                         if def.non_enum_variant().fields.is_empty() {
696                             return FfiUnsafe {
697                                 ty,
698                                 reason: "this union has no fields",
699                                 help: Some("consider adding a field to this union"),
700                             };
701                         }
702
703                         let mut all_phantom = true;
704                         for field in &def.non_enum_variant().fields {
705                             let field_ty = cx.normalize_erasing_regions(
706                                 ParamEnv::reveal_all(),
707                                 field.ty(cx, substs),
708                             );
709                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
710                             // PhantomData -- skip checking all ZST fields.
711                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
712                                 continue;
713                             }
714                             let r = self.check_type_for_ffi(cache, field_ty);
715                             match r {
716                                 FfiSafe => {
717                                     all_phantom = false;
718                                 }
719                                 FfiPhantom(..) => {}
720                                 FfiUnsafe { .. } => {
721                                     return r;
722                                 }
723                             }
724                         }
725
726                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
727                     }
728                     AdtKind::Enum => {
729                         if def.variants.is_empty() {
730                             // Empty enums are okay... although sort of useless.
731                             return FfiSafe;
732                         }
733
734                         // Check for a repr() attribute to specify the size of the
735                         // discriminant.
736                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
737                             // Special-case types like `Option<extern fn()>`.
738                             if !is_repr_nullable_ptr(cx, ty, def, substs) {
739                                 return FfiUnsafe {
740                                     ty,
741                                     reason: "enum has no representation hint",
742                                     help: Some(
743                                         "consider adding a `#[repr(C)]`, \
744                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
745                                                 attribute to this enum",
746                                     ),
747                                 };
748                             }
749                         }
750
751                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
752                             return FfiUnsafe {
753                                 ty,
754                                 reason: "this enum is non-exhaustive",
755                                 help: None,
756                             };
757                         }
758
759                         // Check the contained variants.
760                         for variant in &def.variants {
761                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
762                             if is_non_exhaustive && !variant.def_id.is_local() {
763                                 return FfiUnsafe {
764                                     ty,
765                                     reason: "this enum has non-exhaustive variants",
766                                     help: None,
767                                 };
768                             }
769
770                             for field in &variant.fields {
771                                 let field_ty = cx.normalize_erasing_regions(
772                                     ParamEnv::reveal_all(),
773                                     field.ty(cx, substs),
774                                 );
775                                 // repr(transparent) types are allowed to have arbitrary ZSTs, not
776                                 // just PhantomData -- skip checking all ZST fields.
777                                 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
778                                     continue;
779                                 }
780                                 let r = self.check_type_for_ffi(cache, field_ty);
781                                 match r {
782                                     FfiSafe => {}
783                                     FfiUnsafe { .. } => {
784                                         return r;
785                                     }
786                                     FfiPhantom(..) => {
787                                         return FfiUnsafe {
788                                             ty,
789                                             reason: "this enum contains a PhantomData field",
790                                             help: None,
791                                         };
792                                     }
793                                 }
794                             }
795                         }
796                         FfiSafe
797                     }
798                 }
799             }
800
801             ty::Char => FfiUnsafe {
802                 ty,
803                 reason: "the `char` type has no C equivalent",
804                 help: Some("consider using `u32` or `libc::wchar_t` instead"),
805             },
806
807             ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
808                 ty,
809                 reason: "128-bit integers don't currently have a known stable ABI",
810                 help: None,
811             },
812
813             // Primitive types with a stable representation.
814             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
815
816             ty::Slice(_) => FfiUnsafe {
817                 ty,
818                 reason: "slices have no C equivalent",
819                 help: Some("consider using a raw pointer instead"),
820             },
821
822             ty::Dynamic(..) => {
823                 FfiUnsafe { ty, reason: "trait objects have no C equivalent", help: None }
824             }
825
826             ty::Str => FfiUnsafe {
827                 ty,
828                 reason: "string slices have no C equivalent",
829                 help: Some("consider using `*const u8` and a length instead"),
830             },
831
832             ty::Tuple(..) => FfiUnsafe {
833                 ty,
834                 reason: "tuples have unspecified layout",
835                 help: Some("consider using a struct instead"),
836             },
837
838             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
839                 self.check_type_for_ffi(cache, ty)
840             }
841
842             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
843
844             ty::FnPtr(sig) => {
845                 match sig.abi() {
846                     Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
847                         return FfiUnsafe {
848                             ty,
849                             reason: "this function pointer has Rust-specific calling convention",
850                             help: Some(
851                                 "consider using an `extern fn(...) -> ...` \
852                                         function pointer instead",
853                             ),
854                         };
855                     }
856                     _ => {}
857                 }
858
859                 let sig = cx.erase_late_bound_regions(&sig);
860                 if !sig.output().is_unit() {
861                     let r = self.check_type_for_ffi(cache, sig.output());
862                     match r {
863                         FfiSafe => {}
864                         _ => {
865                             return r;
866                         }
867                     }
868                 }
869                 for arg in sig.inputs() {
870                     let r = self.check_type_for_ffi(cache, arg);
871                     match r {
872                         FfiSafe => {}
873                         _ => {
874                             return r;
875                         }
876                     }
877                 }
878                 FfiSafe
879             }
880
881             ty::Foreign(..) => FfiSafe,
882
883             ty::Param(..)
884             | ty::Infer(..)
885             | ty::Bound(..)
886             | ty::Error
887             | ty::Closure(..)
888             | ty::Generator(..)
889             | ty::GeneratorWitness(..)
890             | ty::Placeholder(..)
891             | ty::Projection(..)
892             | ty::Opaque(..)
893             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
894         }
895     }
896
897     fn emit_ffi_unsafe_type_lint(
898         &mut self,
899         ty: Ty<'tcx>,
900         sp: Span,
901         note: &str,
902         help: Option<&str>,
903     ) {
904         self.cx.struct_span_lint(IMPROPER_CTYPES, sp, |lint| {
905             let mut diag =
906                 lint.build(&format!("`extern` block uses type `{}`, which is not FFI-safe", ty));
907             diag.span_label(sp, "not FFI-safe");
908             if let Some(help) = help {
909                 diag.help(help);
910             }
911             diag.note(note);
912             if let ty::Adt(def, _) = ty.kind {
913                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
914                     diag.span_note(sp, "the type is defined here");
915                 }
916             }
917             diag.emit();
918         });
919     }
920
921     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
922         use rustc_middle::ty::TypeFoldable;
923
924         struct ProhibitOpaqueTypes<'tcx> {
925             ty: Option<Ty<'tcx>>,
926         };
927
928         impl<'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'tcx> {
929             fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
930                 if let ty::Opaque(..) = ty.kind {
931                     self.ty = Some(ty);
932                     true
933                 } else {
934                     ty.super_visit_with(self)
935                 }
936             }
937         }
938
939         let mut visitor = ProhibitOpaqueTypes { ty: None };
940         ty.visit_with(&mut visitor);
941         if let Some(ty) = visitor.ty {
942             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
943             true
944         } else {
945             false
946         }
947     }
948
949     fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>, is_static: bool) {
950         // We have to check for opaque types before `normalize_erasing_regions`,
951         // which will replace opaque types with their underlying concrete type.
952         if self.check_for_opaque_ty(sp, ty) {
953             // We've already emitted an error due to an opaque type.
954             return;
955         }
956
957         // it is only OK to use this function because extern fns cannot have
958         // any generic types right now:
959         let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
960         // C doesn't really support passing arrays by value.
961         // The only way to pass an array by value is through a struct.
962         // So we first test that the top level isn't an array,
963         // and then recursively check the types inside.
964         if !is_static && self.check_for_array_ty(sp, ty) {
965             return;
966         }
967
968         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
969             FfiResult::FfiSafe => {}
970             FfiResult::FfiPhantom(ty) => {
971                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
972             }
973             FfiResult::FfiUnsafe { ty, reason, help } => {
974                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
975             }
976         }
977     }
978
979     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
980         let def_id = self.cx.tcx.hir().local_def_id(id);
981         let sig = self.cx.tcx.fn_sig(def_id);
982         let sig = self.cx.tcx.erase_late_bound_regions(&sig);
983
984         for (input_ty, input_hir) in sig.inputs().iter().zip(decl.inputs) {
985             self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false);
986         }
987
988         if let hir::FnRetTy::Return(ref ret_hir) = decl.output {
989             let ret_ty = sig.output();
990             if !ret_ty.is_unit() {
991                 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false);
992             }
993         }
994     }
995
996     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
997         let def_id = self.cx.tcx.hir().local_def_id(id);
998         let ty = self.cx.tcx.type_of(def_id);
999         self.check_type_for_ffi_and_report_errors(span, ty, true);
1000     }
1001 }
1002
1003 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
1004     fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::ForeignItem<'_>) {
1005         let mut vis = ImproperCTypesVisitor { cx };
1006         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
1007         if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
1008             // Don't worry about types in internal ABIs.
1009         } else {
1010             match it.kind {
1011                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1012                     vis.check_foreign_fn(it.hir_id, decl);
1013                 }
1014                 hir::ForeignItemKind::Static(ref ty, _) => {
1015                     vis.check_foreign_static(it.hir_id, ty.span);
1016                 }
1017                 hir::ForeignItemKind::Type => (),
1018             }
1019         }
1020     }
1021 }
1022
1023 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1024
1025 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
1026     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
1027         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1028             let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
1029             let t = cx.tcx.type_of(item_def_id);
1030             let ty = cx.tcx.erase_regions(&t);
1031             let layout = match cx.layout_of(ty) {
1032                 Ok(layout) => layout,
1033                 Err(
1034                     ty::layout::LayoutError::Unknown(_) | ty::layout::LayoutError::SizeOverflow(_),
1035                 ) => return,
1036             };
1037             let (variants, tag) = match layout.variants {
1038                 Variants::Multiple {
1039                     discr_kind: DiscriminantKind::Tag,
1040                     ref discr,
1041                     ref variants,
1042                     ..
1043                 } => (variants, discr),
1044                 _ => return,
1045             };
1046
1047             let discr_size = tag.value.size(&cx.tcx).bytes();
1048
1049             debug!(
1050                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1051                 t,
1052                 layout.size.bytes(),
1053                 layout
1054             );
1055
1056             let (largest, slargest, largest_index) = enum_definition
1057                 .variants
1058                 .iter()
1059                 .zip(variants)
1060                 .map(|(variant, variant_layout)| {
1061                     // Subtract the size of the enum discriminant.
1062                     let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
1063
1064                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1065                     bytes
1066                 })
1067                 .enumerate()
1068                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1069                     if size > l {
1070                         (size, l, idx)
1071                     } else if size > s {
1072                         (l, size, li)
1073                     } else {
1074                         (l, s, li)
1075                     }
1076                 });
1077
1078             // We only warn if the largest variant is at least thrice as large as
1079             // the second-largest.
1080             if largest > slargest * 3 && slargest > 0 {
1081                 cx.struct_span_lint(
1082                     VARIANT_SIZE_DIFFERENCES,
1083                     enum_definition.variants[largest_index].span,
1084                     |lint| {
1085                         lint.build(&format!(
1086                             "enum variant is more than three times \
1087                                           larger ({} bytes) than the next largest",
1088                             largest
1089                         ))
1090                         .emit()
1091                     },
1092                 );
1093             }
1094         }
1095     }
1096 }