]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/types.rs
Rollup merge of #68932 - michaelwoerister:self-profile-generic-activity-args, r=wesle...
[rust.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use crate::{LateContext, LateLintPass, LintContext};
4 use rustc::mir::interpret::{sign_extend, truncate};
5 use rustc::ty::layout::{self, IntegerExt, LayoutOf, SizeSkeleton, VariantIdx};
6 use rustc::ty::subst::SubstsRef;
7 use rustc::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
8 use rustc_attr as attr;
9 use rustc_data_structures::fx::FxHashSet;
10 use rustc_errors::Applicability;
11 use rustc_hir as hir;
12 use rustc_hir::def_id::DefId;
13 use rustc_hir::{is_range_literal, ExprKind, Node};
14 use rustc_index::vec::Idx;
15 use rustc_span::source_map;
16 use rustc_span::symbol::sym;
17 use rustc_span::Span;
18 use rustc_target::spec::abi::Abi;
19 use syntax::ast;
20
21 use log::debug;
22 use std::cmp;
23 use std::{f32, f64, i16, i32, i64, i8, u16, u32, u64, u8};
24
25 declare_lint! {
26     UNUSED_COMPARISONS,
27     Warn,
28     "comparisons made useless by limits of the types involved"
29 }
30
31 declare_lint! {
32     OVERFLOWING_LITERALS,
33     Deny,
34     "literal out of range for its type"
35 }
36
37 declare_lint! {
38     VARIANT_SIZE_DIFFERENCES,
39     Allow,
40     "detects enums with widely varying variant sizes"
41 }
42
43 #[derive(Copy, Clone)]
44 pub struct TypeLimits {
45     /// Id of the last visited negated expression
46     negated_expr_id: hir::HirId,
47 }
48
49 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
50
51 impl TypeLimits {
52     pub fn new() -> TypeLimits {
53         TypeLimits { negated_expr_id: hir::DUMMY_HIR_ID }
54     }
55 }
56
57 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
58 /// Returns `true` iff the lint was overridden.
59 fn lint_overflowing_range_endpoint<'a, 'tcx>(
60     cx: &LateContext<'a, 'tcx>,
61     lit: &hir::Lit,
62     lit_val: u128,
63     max: u128,
64     expr: &'tcx hir::Expr<'tcx>,
65     parent_expr: &'tcx hir::Expr<'tcx>,
66     ty: &str,
67 ) -> bool {
68     // We only want to handle exclusive (`..`) ranges,
69     // which are represented as `ExprKind::Struct`.
70     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
71         if eps.len() != 2 {
72             return false;
73         }
74         // We can suggest using an inclusive range
75         // (`..=`) instead only if it is the `end` that is
76         // overflowing and only by 1.
77         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
78             let mut err = cx.struct_span_lint(
79                 OVERFLOWING_LITERALS,
80                 parent_expr.span,
81                 &format!("range endpoint is out of range for `{}`", ty),
82             );
83             if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
84                 use ast::{LitIntType, LitKind};
85                 // We need to preserve the literal's suffix,
86                 // as it may determine typing information.
87                 let suffix = match lit.node {
88                     LitKind::Int(_, LitIntType::Signed(s)) => format!("{}", s.name_str()),
89                     LitKind::Int(_, LitIntType::Unsigned(s)) => format!("{}", s.name_str()),
90                     LitKind::Int(_, LitIntType::Unsuffixed) => "".to_owned(),
91                     _ => bug!(),
92                 };
93                 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
94                 err.span_suggestion(
95                     parent_expr.span,
96                     &"use an inclusive range instead",
97                     suggestion,
98                     Applicability::MachineApplicable,
99                 );
100                 err.emit();
101                 return true;
102             }
103         }
104     }
105
106     false
107 }
108
109 // For `isize` & `usize`, be conservative with the warnings, so that the
110 // warnings are consistent between 32- and 64-bit platforms.
111 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
112     match int_ty {
113         ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
114         ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
115         ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
116         ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
117         ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
118         ast::IntTy::I128 => (i128::min_value() as i128, i128::max_value()),
119     }
120 }
121
122 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
123     match uint_ty {
124         ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
125         ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
126         ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
127         ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
128         ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
129         ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
130     }
131 }
132
133 fn get_bin_hex_repr(cx: &LateContext<'_, '_>, lit: &hir::Lit) -> Option<String> {
134     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
135     let firstch = src.chars().next()?;
136
137     if firstch == '0' {
138         match src.chars().nth(1) {
139             Some('x') | Some('b') => return Some(src),
140             _ => return None,
141         }
142     }
143
144     None
145 }
146
147 fn report_bin_hex_error(
148     cx: &LateContext<'_, '_>,
149     expr: &hir::Expr<'_>,
150     ty: attr::IntType,
151     repr_str: String,
152     val: u128,
153     negative: bool,
154 ) {
155     let size = layout::Integer::from_attr(&cx.tcx, ty).size();
156     let (t, actually) = match ty {
157         attr::IntType::SignedInt(t) => {
158             let actually = sign_extend(val, size) as i128;
159             (t.name_str(), actually.to_string())
160         }
161         attr::IntType::UnsignedInt(t) => {
162             let actually = truncate(val, size);
163             (t.name_str(), actually.to_string())
164         }
165     };
166     let mut err = cx.struct_span_lint(
167         OVERFLOWING_LITERALS,
168         expr.span,
169         &format!("literal out of range for {}", t),
170     );
171     err.note(&format!(
172         "the literal `{}` (decimal `{}`) does not fit into \
173             an `{}` and will become `{}{}`",
174         repr_str, val, t, actually, t
175     ));
176     if let Some(sugg_ty) = get_type_suggestion(&cx.tables.node_type(expr.hir_id), val, negative) {
177         if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
178             let (sans_suffix, _) = repr_str.split_at(pos);
179             err.span_suggestion(
180                 expr.span,
181                 &format!("consider using `{}` instead", sugg_ty),
182                 format!("{}{}", sans_suffix, sugg_ty),
183                 Applicability::MachineApplicable,
184             );
185         } else {
186             err.help(&format!("consider using `{}` instead", sugg_ty));
187         }
188     }
189
190     err.emit();
191 }
192
193 // This function finds the next fitting type and generates a suggestion string.
194 // It searches for fitting types in the following way (`X < Y`):
195 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
196 //  - `-iX` => `iY`
197 //  - `uX` => `uY`
198 //
199 // No suggestion for: `isize`, `usize`.
200 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
201     use syntax::ast::IntTy::*;
202     use syntax::ast::UintTy::*;
203     macro_rules! find_fit {
204         ($ty:expr, $val:expr, $negative:expr,
205          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
206             {
207                 let _neg = if negative { 1 } else { 0 };
208                 match $ty {
209                     $($type => {
210                         $(if !negative && val <= uint_ty_range($utypes).1 {
211                             return Some($utypes.name_str())
212                         })*
213                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
214                             return Some($itypes.name_str())
215                         })*
216                         None
217                     },)+
218                     _ => None
219                 }
220             }
221         }
222     }
223     match t.kind {
224         ty::Int(i) => find_fit!(i, val, negative,
225                       I8 => [U8] => [I16, I32, I64, I128],
226                       I16 => [U16] => [I32, I64, I128],
227                       I32 => [U32] => [I64, I128],
228                       I64 => [U64] => [I128],
229                       I128 => [U128] => []),
230         ty::Uint(u) => find_fit!(u, val, negative,
231                       U8 => [U8, U16, U32, U64, U128] => [],
232                       U16 => [U16, U32, U64, U128] => [],
233                       U32 => [U32, U64, U128] => [],
234                       U64 => [U64, U128] => [],
235                       U128 => [U128] => []),
236         _ => None,
237     }
238 }
239
240 fn lint_int_literal<'a, 'tcx>(
241     cx: &LateContext<'a, 'tcx>,
242     type_limits: &TypeLimits,
243     e: &'tcx hir::Expr<'tcx>,
244     lit: &hir::Lit,
245     t: ast::IntTy,
246     v: u128,
247 ) {
248     let int_type = t.normalize(cx.sess().target.ptr_width);
249     let (_, max) = int_ty_range(int_type);
250     let max = max as u128;
251     let negative = type_limits.negated_expr_id == e.hir_id;
252
253     // Detect literal value out of range [min, max] inclusive
254     // avoiding use of -min to prevent overflow/panic
255     if (negative && v > max + 1) || (!negative && v > max) {
256         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
257             report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
258             return;
259         }
260
261         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
262         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
263             if let hir::ExprKind::Struct(..) = par_e.kind {
264                 if is_range_literal(cx.sess().source_map(), par_e)
265                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
266                 {
267                     // The overflowing literal lint was overridden.
268                     return;
269                 }
270             }
271         }
272
273         cx.span_lint(
274             OVERFLOWING_LITERALS,
275             e.span,
276             &format!("literal out of range for `{}`", t.name_str()),
277         );
278     }
279 }
280
281 fn lint_uint_literal<'a, 'tcx>(
282     cx: &LateContext<'a, 'tcx>,
283     e: &'tcx hir::Expr<'tcx>,
284     lit: &hir::Lit,
285     t: ast::UintTy,
286 ) {
287     let uint_type = t.normalize(cx.sess().target.ptr_width);
288     let (min, max) = uint_ty_range(uint_type);
289     let lit_val: u128 = match lit.node {
290         // _v is u8, within range by definition
291         ast::LitKind::Byte(_v) => return,
292         ast::LitKind::Int(v, _) => v,
293         _ => bug!(),
294     };
295     if lit_val < min || lit_val > max {
296         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
297         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
298             match par_e.kind {
299                 hir::ExprKind::Cast(..) => {
300                     if let ty::Char = cx.tables.expr_ty(par_e).kind {
301                         let mut err = cx.struct_span_lint(
302                             OVERFLOWING_LITERALS,
303                             par_e.span,
304                             "only `u8` can be cast into `char`",
305                         );
306                         err.span_suggestion(
307                             par_e.span,
308                             &"use a `char` literal instead",
309                             format!("'\\u{{{:X}}}'", lit_val),
310                             Applicability::MachineApplicable,
311                         );
312                         err.emit();
313                         return;
314                     }
315                 }
316                 hir::ExprKind::Struct(..) if is_range_literal(cx.sess().source_map(), par_e) => {
317                     let t = t.name_str();
318                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
319                         // The overflowing literal lint was overridden.
320                         return;
321                     }
322                 }
323                 _ => {}
324             }
325         }
326         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
327             report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
328             return;
329         }
330         cx.span_lint(
331             OVERFLOWING_LITERALS,
332             e.span,
333             &format!("literal out of range for `{}`", t.name_str()),
334         );
335     }
336 }
337
338 fn lint_literal<'a, 'tcx>(
339     cx: &LateContext<'a, 'tcx>,
340     type_limits: &TypeLimits,
341     e: &'tcx hir::Expr<'tcx>,
342     lit: &hir::Lit,
343 ) {
344     match cx.tables.node_type(e.hir_id).kind {
345         ty::Int(t) => {
346             match lit.node {
347                 ast::LitKind::Int(v, ast::LitIntType::Signed(_))
348                 | ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => {
349                     lint_int_literal(cx, type_limits, e, lit, t, v)
350                 }
351                 _ => bug!(),
352             };
353         }
354         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
355         ty::Float(t) => {
356             let is_infinite = match lit.node {
357                 ast::LitKind::Float(v, _) => match t {
358                     ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
359                     ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
360                 },
361                 _ => bug!(),
362             };
363             if is_infinite == Ok(true) {
364                 cx.span_lint(
365                     OVERFLOWING_LITERALS,
366                     e.span,
367                     &format!("literal out of range for `{}`", t.name_str()),
368                 );
369             }
370         }
371         _ => {}
372     }
373 }
374
375 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
376     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr<'tcx>) {
377         match e.kind {
378             hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
379                 // propagate negation, if the negation itself isn't negated
380                 if self.negated_expr_id != e.hir_id {
381                     self.negated_expr_id = expr.hir_id;
382                 }
383             }
384             hir::ExprKind::Binary(binop, ref l, ref r) => {
385                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
386                     cx.span_lint(
387                         UNUSED_COMPARISONS,
388                         e.span,
389                         "comparison is useless due to type limits",
390                     );
391                 }
392             }
393             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
394             _ => {}
395         };
396
397         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
398             match binop.node {
399                 hir::BinOpKind::Lt => v > min && v <= max,
400                 hir::BinOpKind::Le => v >= min && v < max,
401                 hir::BinOpKind::Gt => v >= min && v < max,
402                 hir::BinOpKind::Ge => v > min && v <= max,
403                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
404                 _ => bug!(),
405             }
406         }
407
408         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
409             source_map::respan(
410                 binop.span,
411                 match binop.node {
412                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
413                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
414                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
415                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
416                     _ => return binop,
417                 },
418             )
419         }
420
421         fn check_limits(
422             cx: &LateContext<'_, '_>,
423             binop: hir::BinOp,
424             l: &hir::Expr<'_>,
425             r: &hir::Expr<'_>,
426         ) -> bool {
427             let (lit, expr, swap) = match (&l.kind, &r.kind) {
428                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
429                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
430                 _ => return true,
431             };
432             // Normalize the binop so that the literal is always on the RHS in
433             // the comparison
434             let norm_binop = if swap { rev_binop(binop) } else { binop };
435             match cx.tables.node_type(expr.hir_id).kind {
436                 ty::Int(int_ty) => {
437                     let (min, max) = int_ty_range(int_ty);
438                     let lit_val: i128 = match lit.kind {
439                         hir::ExprKind::Lit(ref li) => match li.node {
440                             ast::LitKind::Int(v, ast::LitIntType::Signed(_))
441                             | ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => v as i128,
442                             _ => return true,
443                         },
444                         _ => bug!(),
445                     };
446                     is_valid(norm_binop, lit_val, min, max)
447                 }
448                 ty::Uint(uint_ty) => {
449                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
450                     let lit_val: u128 = match lit.kind {
451                         hir::ExprKind::Lit(ref li) => match li.node {
452                             ast::LitKind::Int(v, _) => v,
453                             _ => return true,
454                         },
455                         _ => bug!(),
456                     };
457                     is_valid(norm_binop, lit_val, min, max)
458                 }
459                 _ => true,
460             }
461         }
462
463         fn is_comparison(binop: hir::BinOp) -> bool {
464             match binop.node {
465                 hir::BinOpKind::Eq
466                 | hir::BinOpKind::Lt
467                 | hir::BinOpKind::Le
468                 | hir::BinOpKind::Ne
469                 | hir::BinOpKind::Ge
470                 | hir::BinOpKind::Gt => true,
471                 _ => false,
472             }
473         }
474     }
475 }
476
477 declare_lint! {
478     IMPROPER_CTYPES,
479     Warn,
480     "proper use of libc types in foreign modules"
481 }
482
483 declare_lint_pass!(ImproperCTypes => [IMPROPER_CTYPES]);
484
485 struct ImproperCTypesVisitor<'a, 'tcx> {
486     cx: &'a LateContext<'a, 'tcx>,
487 }
488
489 enum FfiResult<'tcx> {
490     FfiSafe,
491     FfiPhantom(Ty<'tcx>),
492     FfiUnsafe { ty: Ty<'tcx>, reason: &'static str, help: Option<&'static str> },
493 }
494
495 fn is_zst<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, ty: Ty<'tcx>) -> bool {
496     tcx.layout_of(tcx.param_env(did).and(ty)).map(|layout| layout.is_zst()).unwrap_or(false)
497 }
498
499 fn ty_is_known_nonnull<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
500     match ty.kind {
501         ty::FnPtr(_) => true,
502         ty::Ref(..) => true,
503         ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
504             for field in field_def.all_fields() {
505                 let field_ty =
506                     tcx.normalize_erasing_regions(ParamEnv::reveal_all(), field.ty(tcx, substs));
507                 if is_zst(tcx, field.did, field_ty) {
508                     continue;
509                 }
510
511                 let attrs = tcx.get_attrs(field_def.did);
512                 if attrs.iter().any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed))
513                     || ty_is_known_nonnull(tcx, field_ty)
514                 {
515                     return true;
516                 }
517             }
518
519             false
520         }
521         _ => false,
522     }
523 }
524
525 /// Check if this enum can be safely exported based on the
526 /// "nullable pointer optimization". Currently restricted
527 /// to function pointers, references, core::num::NonZero*,
528 /// core::ptr::NonNull, and #[repr(transparent)] newtypes.
529 /// FIXME: This duplicates code in codegen.
530 fn is_repr_nullable_ptr<'tcx>(
531     tcx: TyCtxt<'tcx>,
532     ty: Ty<'tcx>,
533     ty_def: &'tcx ty::AdtDef,
534     substs: SubstsRef<'tcx>,
535 ) -> bool {
536     if ty_def.variants.len() != 2 {
537         return false;
538     }
539
540     let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
541     let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
542     let fields = if variant_fields[0].is_empty() {
543         &variant_fields[1]
544     } else if variant_fields[1].is_empty() {
545         &variant_fields[0]
546     } else {
547         return false;
548     };
549
550     if fields.len() != 1 {
551         return false;
552     }
553
554     let field_ty = fields[0].ty(tcx, substs);
555     if !ty_is_known_nonnull(tcx, field_ty) {
556         return false;
557     }
558
559     // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
560     // If the computed size for the field and the enum are different, the nonnull optimization isn't
561     // being applied (and we've got a problem somewhere).
562     let compute_size_skeleton = |t| SizeSkeleton::compute(t, tcx, ParamEnv::reveal_all()).unwrap();
563     if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
564         bug!("improper_ctypes: Option nonnull optimization not applied?");
565     }
566
567     true
568 }
569
570 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
571     /// Check if the type is array and emit an unsafe type lint.
572     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
573         if let ty::Array(..) = ty.kind {
574             self.emit_ffi_unsafe_type_lint(
575                 ty,
576                 sp,
577                 "passing raw arrays by value is not FFI-safe",
578                 Some("consider passing a pointer to the array"),
579             );
580             true
581         } else {
582             false
583         }
584     }
585
586     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
587     /// representation which can be exported to C code).
588     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
589         use FfiResult::*;
590
591         let cx = self.cx.tcx;
592
593         // Protect against infinite recursion, for example
594         // `struct S(*mut S);`.
595         // FIXME: A recursion limit is necessary as well, for irregular
596         // recursive types.
597         if !cache.insert(ty) {
598             return FfiSafe;
599         }
600
601         match ty.kind {
602             ty::Adt(def, substs) => {
603                 if def.is_phantom_data() {
604                     return FfiPhantom(ty);
605                 }
606                 match def.adt_kind() {
607                     AdtKind::Struct => {
608                         if !def.repr.c() && !def.repr.transparent() {
609                             return FfiUnsafe {
610                                 ty,
611                                 reason: "this struct has unspecified layout",
612                                 help: Some(
613                                     "consider adding a `#[repr(C)]` or \
614                                             `#[repr(transparent)]` attribute to this struct",
615                                 ),
616                             };
617                         }
618
619                         let is_non_exhaustive =
620                             def.non_enum_variant().is_field_list_non_exhaustive();
621                         if is_non_exhaustive && !def.did.is_local() {
622                             return FfiUnsafe {
623                                 ty,
624                                 reason: "this struct is non-exhaustive",
625                                 help: None,
626                             };
627                         }
628
629                         if def.non_enum_variant().fields.is_empty() {
630                             return FfiUnsafe {
631                                 ty,
632                                 reason: "this struct has no fields",
633                                 help: Some("consider adding a member to this struct"),
634                             };
635                         }
636
637                         // We can't completely trust repr(C) and repr(transparent) markings;
638                         // make sure the fields are actually safe.
639                         let mut all_phantom = true;
640                         for field in &def.non_enum_variant().fields {
641                             let field_ty = cx.normalize_erasing_regions(
642                                 ParamEnv::reveal_all(),
643                                 field.ty(cx, substs),
644                             );
645                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
646                             // PhantomData -- skip checking all ZST fields
647                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
648                                 continue;
649                             }
650                             let r = self.check_type_for_ffi(cache, field_ty);
651                             match r {
652                                 FfiSafe => {
653                                     all_phantom = false;
654                                 }
655                                 FfiPhantom(..) => {}
656                                 FfiUnsafe { .. } => {
657                                     return r;
658                                 }
659                             }
660                         }
661
662                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
663                     }
664                     AdtKind::Union => {
665                         if !def.repr.c() && !def.repr.transparent() {
666                             return FfiUnsafe {
667                                 ty,
668                                 reason: "this union has unspecified layout",
669                                 help: Some(
670                                     "consider adding a `#[repr(C)]` or \
671                                             `#[repr(transparent)]` attribute to this union",
672                                 ),
673                             };
674                         }
675
676                         if def.non_enum_variant().fields.is_empty() {
677                             return FfiUnsafe {
678                                 ty,
679                                 reason: "this union has no fields",
680                                 help: Some("consider adding a field to this union"),
681                             };
682                         }
683
684                         let mut all_phantom = true;
685                         for field in &def.non_enum_variant().fields {
686                             let field_ty = cx.normalize_erasing_regions(
687                                 ParamEnv::reveal_all(),
688                                 field.ty(cx, substs),
689                             );
690                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
691                             // PhantomData -- skip checking all ZST fields.
692                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
693                                 continue;
694                             }
695                             let r = self.check_type_for_ffi(cache, field_ty);
696                             match r {
697                                 FfiSafe => {
698                                     all_phantom = false;
699                                 }
700                                 FfiPhantom(..) => {}
701                                 FfiUnsafe { .. } => {
702                                     return r;
703                                 }
704                             }
705                         }
706
707                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
708                     }
709                     AdtKind::Enum => {
710                         if def.variants.is_empty() {
711                             // Empty enums are okay... although sort of useless.
712                             return FfiSafe;
713                         }
714
715                         // Check for a repr() attribute to specify the size of the
716                         // discriminant.
717                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
718                             // Special-case types like `Option<extern fn()>`.
719                             if !is_repr_nullable_ptr(cx, ty, def, substs) {
720                                 return FfiUnsafe {
721                                     ty,
722                                     reason: "enum has no representation hint",
723                                     help: Some(
724                                         "consider adding a `#[repr(C)]`, \
725                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
726                                                 attribute to this enum",
727                                     ),
728                                 };
729                             }
730                         }
731
732                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
733                             return FfiUnsafe {
734                                 ty,
735                                 reason: "this enum is non-exhaustive",
736                                 help: None,
737                             };
738                         }
739
740                         // Check the contained variants.
741                         for variant in &def.variants {
742                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
743                             if is_non_exhaustive && !variant.def_id.is_local() {
744                                 return FfiUnsafe {
745                                     ty,
746                                     reason: "this enum has non-exhaustive variants",
747                                     help: None,
748                                 };
749                             }
750
751                             for field in &variant.fields {
752                                 let field_ty = cx.normalize_erasing_regions(
753                                     ParamEnv::reveal_all(),
754                                     field.ty(cx, substs),
755                                 );
756                                 // repr(transparent) types are allowed to have arbitrary ZSTs, not
757                                 // just PhantomData -- skip checking all ZST fields.
758                                 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
759                                     continue;
760                                 }
761                                 let r = self.check_type_for_ffi(cache, field_ty);
762                                 match r {
763                                     FfiSafe => {}
764                                     FfiUnsafe { .. } => {
765                                         return r;
766                                     }
767                                     FfiPhantom(..) => {
768                                         return FfiUnsafe {
769                                             ty,
770                                             reason: "this enum contains a PhantomData field",
771                                             help: None,
772                                         };
773                                     }
774                                 }
775                             }
776                         }
777                         FfiSafe
778                     }
779                 }
780             }
781
782             ty::Char => FfiUnsafe {
783                 ty,
784                 reason: "the `char` type has no C equivalent",
785                 help: Some("consider using `u32` or `libc::wchar_t` instead"),
786             },
787
788             ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
789                 ty,
790                 reason: "128-bit integers don't currently have a known stable ABI",
791                 help: None,
792             },
793
794             // Primitive types with a stable representation.
795             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
796
797             ty::Slice(_) => FfiUnsafe {
798                 ty,
799                 reason: "slices have no C equivalent",
800                 help: Some("consider using a raw pointer instead"),
801             },
802
803             ty::Dynamic(..) => {
804                 FfiUnsafe { ty, reason: "trait objects have no C equivalent", help: None }
805             }
806
807             ty::Str => FfiUnsafe {
808                 ty,
809                 reason: "string slices have no C equivalent",
810                 help: Some("consider using `*const u8` and a length instead"),
811             },
812
813             ty::Tuple(..) => FfiUnsafe {
814                 ty,
815                 reason: "tuples have unspecified layout",
816                 help: Some("consider using a struct instead"),
817             },
818
819             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
820                 self.check_type_for_ffi(cache, ty)
821             }
822
823             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
824
825             ty::FnPtr(sig) => {
826                 match sig.abi() {
827                     Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
828                         return FfiUnsafe {
829                             ty,
830                             reason: "this function pointer has Rust-specific calling convention",
831                             help: Some(
832                                 "consider using an `extern fn(...) -> ...` \
833                                         function pointer instead",
834                             ),
835                         };
836                     }
837                     _ => {}
838                 }
839
840                 let sig = cx.erase_late_bound_regions(&sig);
841                 if !sig.output().is_unit() {
842                     let r = self.check_type_for_ffi(cache, sig.output());
843                     match r {
844                         FfiSafe => {}
845                         _ => {
846                             return r;
847                         }
848                     }
849                 }
850                 for arg in sig.inputs() {
851                     let r = self.check_type_for_ffi(cache, arg);
852                     match r {
853                         FfiSafe => {}
854                         _ => {
855                             return r;
856                         }
857                     }
858                 }
859                 FfiSafe
860             }
861
862             ty::Foreign(..) => FfiSafe,
863
864             ty::Param(..)
865             | ty::Infer(..)
866             | ty::Bound(..)
867             | ty::Error
868             | ty::Closure(..)
869             | ty::Generator(..)
870             | ty::GeneratorWitness(..)
871             | ty::Placeholder(..)
872             | ty::UnnormalizedProjection(..)
873             | ty::Projection(..)
874             | ty::Opaque(..)
875             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
876         }
877     }
878
879     fn emit_ffi_unsafe_type_lint(
880         &mut self,
881         ty: Ty<'tcx>,
882         sp: Span,
883         note: &str,
884         help: Option<&str>,
885     ) {
886         let mut diag = self.cx.struct_span_lint(
887             IMPROPER_CTYPES,
888             sp,
889             &format!("`extern` block uses type `{}`, which is not FFI-safe", ty),
890         );
891         diag.span_label(sp, "not FFI-safe");
892         if let Some(help) = help {
893             diag.help(help);
894         }
895         diag.note(note);
896         if let ty::Adt(def, _) = ty.kind {
897             if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
898                 diag.span_note(sp, "the type is defined here");
899             }
900         }
901         diag.emit();
902     }
903
904     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
905         use crate::rustc::ty::TypeFoldable;
906
907         struct ProhibitOpaqueTypes<'tcx> {
908             ty: Option<Ty<'tcx>>,
909         };
910
911         impl<'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'tcx> {
912             fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
913                 if let ty::Opaque(..) = ty.kind {
914                     self.ty = Some(ty);
915                     true
916                 } else {
917                     ty.super_visit_with(self)
918                 }
919             }
920         }
921
922         let mut visitor = ProhibitOpaqueTypes { ty: None };
923         ty.visit_with(&mut visitor);
924         if let Some(ty) = visitor.ty {
925             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
926             true
927         } else {
928             false
929         }
930     }
931
932     fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>, is_static: bool) {
933         // We have to check for opaque types before `normalize_erasing_regions`,
934         // which will replace opaque types with their underlying concrete type.
935         if self.check_for_opaque_ty(sp, ty) {
936             // We've already emitted an error due to an opaque type.
937             return;
938         }
939
940         // it is only OK to use this function because extern fns cannot have
941         // any generic types right now:
942         let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
943         // C doesn't really support passing arrays by value.
944         // The only way to pass an array by value is through a struct.
945         // So we first test that the top level isn't an array,
946         // and then recursively check the types inside.
947         if !is_static && self.check_for_array_ty(sp, ty) {
948             return;
949         }
950
951         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
952             FfiResult::FfiSafe => {}
953             FfiResult::FfiPhantom(ty) => {
954                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
955             }
956             FfiResult::FfiUnsafe { ty, reason, help } => {
957                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
958             }
959         }
960     }
961
962     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
963         let def_id = self.cx.tcx.hir().local_def_id(id);
964         let sig = self.cx.tcx.fn_sig(def_id);
965         let sig = self.cx.tcx.erase_late_bound_regions(&sig);
966
967         for (input_ty, input_hir) in sig.inputs().iter().zip(decl.inputs) {
968             self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false);
969         }
970
971         if let hir::FunctionRetTy::Return(ref ret_hir) = decl.output {
972             let ret_ty = sig.output();
973             if !ret_ty.is_unit() {
974                 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false);
975             }
976         }
977     }
978
979     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
980         let def_id = self.cx.tcx.hir().local_def_id(id);
981         let ty = self.cx.tcx.type_of(def_id);
982         self.check_type_for_ffi_and_report_errors(span, ty, true);
983     }
984 }
985
986 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
987     fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::ForeignItem<'_>) {
988         let mut vis = ImproperCTypesVisitor { cx };
989         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
990         if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
991             // Don't worry about types in internal ABIs.
992         } else {
993             match it.kind {
994                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
995                     vis.check_foreign_fn(it.hir_id, decl);
996                 }
997                 hir::ForeignItemKind::Static(ref ty, _) => {
998                     vis.check_foreign_static(it.hir_id, ty.span);
999                 }
1000                 hir::ForeignItemKind::Type => (),
1001             }
1002         }
1003     }
1004 }
1005
1006 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1007
1008 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
1009     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
1010         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1011             let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
1012             let t = cx.tcx.type_of(item_def_id);
1013             let ty = cx.tcx.erase_regions(&t);
1014             let layout = match cx.layout_of(ty) {
1015                 Ok(layout) => layout,
1016                 Err(ty::layout::LayoutError::Unknown(_)) => return,
1017                 Err(err @ ty::layout::LayoutError::SizeOverflow(_)) => {
1018                     bug!("failed to get layout for `{}`: {}", t, err);
1019                 }
1020             };
1021             let (variants, tag) = match layout.variants {
1022                 layout::Variants::Multiple {
1023                     discr_kind: layout::DiscriminantKind::Tag,
1024                     ref discr,
1025                     ref variants,
1026                     ..
1027                 } => (variants, discr),
1028                 _ => return,
1029             };
1030
1031             let discr_size = tag.value.size(&cx.tcx).bytes();
1032
1033             debug!(
1034                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1035                 t,
1036                 layout.size.bytes(),
1037                 layout
1038             );
1039
1040             let (largest, slargest, largest_index) = enum_definition
1041                 .variants
1042                 .iter()
1043                 .zip(variants)
1044                 .map(|(variant, variant_layout)| {
1045                     // Subtract the size of the enum discriminant.
1046                     let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
1047
1048                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1049                     bytes
1050                 })
1051                 .enumerate()
1052                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1053                     if size > l {
1054                         (size, l, idx)
1055                     } else if size > s {
1056                         (l, size, li)
1057                     } else {
1058                         (l, s, li)
1059                     }
1060                 });
1061
1062             // We only warn if the largest variant is at least thrice as large as
1063             // the second-largest.
1064             if largest > slargest * 3 && slargest > 0 {
1065                 cx.span_lint(
1066                     VARIANT_SIZE_DIFFERENCES,
1067                     enum_definition.variants[largest_index].span,
1068                     &format!(
1069                         "enum variant is more than three times \
1070                                           larger ({} bytes) than the next largest",
1071                         largest
1072                     ),
1073                 );
1074             }
1075         }
1076     }
1077 }