]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/types.rs
Rollup merge of #66589 - TheSamsa:master, r=Dylan-DPC
[rust.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use rustc::hir::{ExprKind, Node};
4 use crate::hir::def_id::DefId;
5 use rustc::hir::lowering::is_range_literal;
6 use rustc::ty::subst::SubstsRef;
7 use rustc::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
8 use rustc::ty::layout::{self, IntegerExt, LayoutOf, VariantIdx, SizeSkeleton};
9 use rustc::{lint, util};
10 use rustc_index::vec::Idx;
11 use util::nodemap::FxHashSet;
12 use lint::{LateContext, LintContext, LintArray};
13 use lint::{LintPass, LateLintPass};
14
15 use std::cmp;
16 use std::{i8, i16, i32, i64, u8, u16, u32, u64, f32, f64};
17
18 use syntax::{ast, attr, source_map};
19 use syntax::errors::Applicability;
20 use syntax::symbol::sym;
21 use rustc_target::spec::abi::Abi;
22 use syntax_pos::Span;
23
24 use rustc::hir;
25
26 use rustc::mir::interpret::{sign_extend, truncate};
27
28 use log::debug;
29
30 declare_lint! {
31     UNUSED_COMPARISONS,
32     Warn,
33     "comparisons made useless by limits of the types involved"
34 }
35
36 declare_lint! {
37     OVERFLOWING_LITERALS,
38     Deny,
39     "literal out of range for its type"
40 }
41
42 declare_lint! {
43     VARIANT_SIZE_DIFFERENCES,
44     Allow,
45     "detects enums with widely varying variant sizes"
46 }
47
48 #[derive(Copy, Clone)]
49 pub struct TypeLimits {
50     /// Id of the last visited negated expression
51     negated_expr_id: hir::HirId,
52 }
53
54 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
55
56 impl TypeLimits {
57     pub fn new() -> TypeLimits {
58         TypeLimits { negated_expr_id: hir::DUMMY_HIR_ID }
59     }
60 }
61
62 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
63 /// Returns `true` iff the lint was overridden.
64 fn lint_overflowing_range_endpoint<'a, 'tcx>(
65     cx: &LateContext<'a, 'tcx>,
66     lit: &hir::Lit,
67     lit_val: u128,
68     max: u128,
69     expr: &'tcx hir::Expr,
70     parent_expr: &'tcx hir::Expr,
71     ty: &str,
72 ) -> bool {
73     // We only want to handle exclusive (`..`) ranges,
74     // which are represented as `ExprKind::Struct`.
75     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
76         if eps.len() != 2 {
77             return false;
78         }
79         // We can suggest using an inclusive range
80         // (`..=`) instead only if it is the `end` that is
81         // overflowing and only by 1.
82         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
83             let mut err = cx.struct_span_lint(
84                 OVERFLOWING_LITERALS,
85                 parent_expr.span,
86                 &format!("range endpoint is out of range for `{}`", ty),
87             );
88             if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
89                 use ast::{LitKind, LitIntType};
90                 // We need to preserve the literal's suffix,
91                 // as it may determine typing information.
92                 let suffix = match lit.node {
93                     LitKind::Int(_, LitIntType::Signed(s)) => format!("{}", s.name_str()),
94                     LitKind::Int(_, LitIntType::Unsigned(s)) => format!("{}", s.name_str()),
95                     LitKind::Int(_, LitIntType::Unsuffixed) => "".to_owned(),
96                     _ => bug!(),
97                 };
98                 let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
99                 err.span_suggestion(
100                     parent_expr.span,
101                     &"use an inclusive range instead",
102                     suggestion,
103                     Applicability::MachineApplicable,
104                 );
105                 err.emit();
106                 return true;
107             }
108         }
109     }
110
111     false
112 }
113
114 // For `isize` & `usize`, be conservative with the warnings, so that the
115 // warnings are consistent between 32- and 64-bit platforms.
116 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
117     match int_ty {
118         ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
119         ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
120         ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
121         ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
122         ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
123         ast::IntTy::I128 =>(i128::min_value() as i128, i128::max_value()),
124     }
125 }
126
127 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
128     match uint_ty {
129         ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
130         ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
131         ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
132         ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
133         ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
134         ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
135     }
136 }
137
138 fn get_bin_hex_repr(cx: &LateContext<'_, '_>, lit: &hir::Lit) -> Option<String> {
139     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
140     let firstch = src.chars().next()?;
141
142     if firstch == '0' {
143         match src.chars().nth(1) {
144             Some('x') | Some('b') => return Some(src),
145             _ => return None,
146         }
147     }
148
149     None
150 }
151
152 fn report_bin_hex_error(
153     cx: &LateContext<'_, '_>,
154     expr: &hir::Expr,
155     ty: attr::IntType,
156     repr_str: String,
157     val: u128,
158     negative: bool,
159 ) {
160     let size = layout::Integer::from_attr(&cx.tcx, ty).size();
161     let (t, actually) = match ty {
162         attr::IntType::SignedInt(t) => {
163             let actually = sign_extend(val, size) as i128;
164             (t.name_str(), actually.to_string())
165         }
166         attr::IntType::UnsignedInt(t) => {
167             let actually = truncate(val, size);
168             (t.name_str(), actually.to_string())
169         }
170     };
171     let mut err = cx.struct_span_lint(
172         OVERFLOWING_LITERALS,
173         expr.span,
174         &format!("literal out of range for {}", t),
175     );
176     err.note(&format!(
177         "the literal `{}` (decimal `{}`) does not fit into \
178             an `{}` and will become `{}{}`",
179         repr_str, val, t, actually, t
180     ));
181     if let Some(sugg_ty) =
182         get_type_suggestion(&cx.tables.node_type(expr.hir_id), val, negative)
183     {
184         if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
185             let (sans_suffix, _) = repr_str.split_at(pos);
186             err.span_suggestion(
187                 expr.span,
188                 &format!("consider using `{}` instead", sugg_ty),
189                 format!("{}{}", sans_suffix, sugg_ty),
190                 Applicability::MachineApplicable
191             );
192         } else {
193             err.help(&format!("consider using `{}` instead", sugg_ty));
194         }
195     }
196
197     err.emit();
198 }
199
200 // This function finds the next fitting type and generates a suggestion string.
201 // It searches for fitting types in the following way (`X < Y`):
202 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
203 //  - `-iX` => `iY`
204 //  - `uX` => `uY`
205 //
206 // No suggestion for: `isize`, `usize`.
207 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
208     use syntax::ast::IntTy::*;
209     use syntax::ast::UintTy::*;
210     macro_rules! find_fit {
211         ($ty:expr, $val:expr, $negative:expr,
212          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
213             {
214                 let _neg = if negative { 1 } else { 0 };
215                 match $ty {
216                     $($type => {
217                         $(if !negative && val <= uint_ty_range($utypes).1 {
218                             return Some($utypes.name_str())
219                         })*
220                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
221                             return Some($itypes.name_str())
222                         })*
223                         None
224                     },)+
225                     _ => None
226                 }
227             }
228         }
229     }
230     match t.kind {
231         ty::Int(i) => find_fit!(i, val, negative,
232                       I8 => [U8] => [I16, I32, I64, I128],
233                       I16 => [U16] => [I32, I64, I128],
234                       I32 => [U32] => [I64, I128],
235                       I64 => [U64] => [I128],
236                       I128 => [U128] => []),
237         ty::Uint(u) => find_fit!(u, val, negative,
238                       U8 => [U8, U16, U32, U64, U128] => [],
239                       U16 => [U16, U32, U64, U128] => [],
240                       U32 => [U32, U64, U128] => [],
241                       U64 => [U64, U128] => [],
242                       U128 => [U128] => []),
243         _ => None,
244     }
245 }
246
247 fn lint_int_literal<'a, 'tcx>(
248     cx: &LateContext<'a, 'tcx>,
249     type_limits: &TypeLimits,
250     e: &'tcx hir::Expr,
251     lit: &hir::Lit,
252     t: ast::IntTy,
253     v: u128,
254 ) {
255     let int_type = t.normalize(cx.sess().target.ptr_width);
256     let (_, max) = int_ty_range(int_type);
257     let max = max as u128;
258     let negative = type_limits.negated_expr_id == e.hir_id;
259
260     // Detect literal value out of range [min, max] inclusive
261     // avoiding use of -min to prevent overflow/panic
262     if (negative && v > max + 1) || (!negative && v > max) {
263         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
264             report_bin_hex_error(
265                 cx,
266                 e,
267                 attr::IntType::SignedInt(t),
268                 repr_str,
269                 v,
270                 negative,
271             );
272             return;
273         }
274
275         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
276         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
277             if let hir::ExprKind::Struct(..) = par_e.kind {
278                 if is_range_literal(cx.sess(), par_e)
279                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
280                 {
281                     // The overflowing literal lint was overridden.
282                     return;
283                 }
284             }
285         }
286
287         cx.span_lint(
288             OVERFLOWING_LITERALS,
289             e.span,
290             &format!("literal out of range for `{}`", t.name_str()),
291         );
292     }
293 }
294
295 fn lint_uint_literal<'a, 'tcx>(
296     cx: &LateContext<'a, 'tcx>,
297     e: &'tcx hir::Expr,
298     lit: &hir::Lit,
299     t: ast::UintTy,
300 ) {
301     let uint_type = t.normalize(cx.sess().target.ptr_width);
302     let (min, max) = uint_ty_range(uint_type);
303     let lit_val: u128 = match lit.node {
304         // _v is u8, within range by definition
305         ast::LitKind::Byte(_v) => return,
306         ast::LitKind::Int(v, _) => v,
307         _ => bug!(),
308     };
309     if lit_val < min || lit_val > max {
310         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
311         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
312             match par_e.kind {
313                 hir::ExprKind::Cast(..) => {
314                     if let ty::Char = cx.tables.expr_ty(par_e).kind {
315                         let mut err = cx.struct_span_lint(
316                             OVERFLOWING_LITERALS,
317                             par_e.span,
318                             "only `u8` can be cast into `char`",
319                         );
320                         err.span_suggestion(
321                             par_e.span,
322                             &"use a `char` literal instead",
323                             format!("'\\u{{{:X}}}'", lit_val),
324                             Applicability::MachineApplicable,
325                         );
326                         err.emit();
327                         return;
328                     }
329                 }
330                 hir::ExprKind::Struct(..)
331                     if is_range_literal(cx.sess(), par_e) => {
332                         let t = t.name_str();
333                         if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
334                             // The overflowing literal lint was overridden.
335                             return;
336                         }
337                     }
338                 _ => {}
339             }
340         }
341         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
342             report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
343             return;
344         }
345         cx.span_lint(
346             OVERFLOWING_LITERALS,
347             e.span,
348             &format!("literal out of range for `{}`", t.name_str()),
349         );
350     }
351 }
352
353 fn lint_literal<'a, 'tcx>(
354     cx: &LateContext<'a, 'tcx>,
355     type_limits: &TypeLimits,
356     e: &'tcx hir::Expr,
357     lit: &hir::Lit,
358 ) {
359     match cx.tables.node_type(e.hir_id).kind {
360         ty::Int(t) => {
361             match lit.node {
362                 ast::LitKind::Int(v, ast::LitIntType::Signed(_)) |
363                 ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => {
364                     lint_int_literal(cx, type_limits, e, lit, t, v)
365                 }
366                 _ => bug!(),
367             };
368         }
369         ty::Uint(t) => {
370             lint_uint_literal(cx, e, lit, t)
371         }
372         ty::Float(t) => {
373             let is_infinite = match lit.node {
374                 ast::LitKind::Float(v, _) => {
375                     match t {
376                         ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
377                         ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
378                     }
379                 }
380                 _ => bug!(),
381             };
382             if is_infinite == Ok(true) {
383                 cx.span_lint(
384                     OVERFLOWING_LITERALS,
385                     e.span,
386                     &format!("literal out of range for `{}`", t.name_str()),
387                 );
388             }
389         }
390         _ => {}
391     }
392 }
393
394 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
395     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr) {
396         match e.kind {
397             hir::ExprKind::Unary(hir::UnNeg, ref expr) => {
398                 // propagate negation, if the negation itself isn't negated
399                 if self.negated_expr_id != e.hir_id {
400                     self.negated_expr_id = expr.hir_id;
401                 }
402             }
403             hir::ExprKind::Binary(binop, ref l, ref r) => {
404                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
405                     cx.span_lint(UNUSED_COMPARISONS,
406                                  e.span,
407                                  "comparison is useless due to type limits");
408                 }
409             }
410             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
411             _ => {}
412         };
413
414         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
415             match binop.node {
416                 hir::BinOpKind::Lt => v > min && v <= max,
417                 hir::BinOpKind::Le => v >= min && v < max,
418                 hir::BinOpKind::Gt => v >= min && v < max,
419                 hir::BinOpKind::Ge => v > min && v <= max,
420                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
421                 _ => bug!(),
422             }
423         }
424
425         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
426             source_map::respan(binop.span,
427                             match binop.node {
428                                 hir::BinOpKind::Lt => hir::BinOpKind::Gt,
429                                 hir::BinOpKind::Le => hir::BinOpKind::Ge,
430                                 hir::BinOpKind::Gt => hir::BinOpKind::Lt,
431                                 hir::BinOpKind::Ge => hir::BinOpKind::Le,
432                                 _ => return binop,
433                             })
434         }
435
436         fn check_limits(cx: &LateContext<'_, '_>,
437                         binop: hir::BinOp,
438                         l: &hir::Expr,
439                         r: &hir::Expr)
440                         -> bool {
441             let (lit, expr, swap) = match (&l.kind, &r.kind) {
442                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
443                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
444                 _ => return true,
445             };
446             // Normalize the binop so that the literal is always on the RHS in
447             // the comparison
448             let norm_binop = if swap { rev_binop(binop) } else { binop };
449             match cx.tables.node_type(expr.hir_id).kind {
450                 ty::Int(int_ty) => {
451                     let (min, max) = int_ty_range(int_ty);
452                     let lit_val: i128 = match lit.kind {
453                         hir::ExprKind::Lit(ref li) => {
454                             match li.node {
455                                 ast::LitKind::Int(v, ast::LitIntType::Signed(_)) |
456                                 ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => v as i128,
457                                 _ => return true
458                             }
459                         },
460                         _ => bug!()
461                     };
462                     is_valid(norm_binop, lit_val, min, max)
463                 }
464                 ty::Uint(uint_ty) => {
465                     let (min, max) :(u128, u128) = uint_ty_range(uint_ty);
466                     let lit_val: u128 = match lit.kind {
467                         hir::ExprKind::Lit(ref li) => {
468                             match li.node {
469                                 ast::LitKind::Int(v, _) => v,
470                                 _ => return true
471                             }
472                         },
473                         _ => bug!()
474                     };
475                     is_valid(norm_binop, lit_val, min, max)
476                 }
477                 _ => true,
478             }
479         }
480
481         fn is_comparison(binop: hir::BinOp) -> bool {
482             match binop.node {
483                 hir::BinOpKind::Eq |
484                 hir::BinOpKind::Lt |
485                 hir::BinOpKind::Le |
486                 hir::BinOpKind::Ne |
487                 hir::BinOpKind::Ge |
488                 hir::BinOpKind::Gt => true,
489                 _ => false,
490             }
491         }
492     }
493 }
494
495 declare_lint! {
496     IMPROPER_CTYPES,
497     Warn,
498     "proper use of libc types in foreign modules"
499 }
500
501 declare_lint_pass!(ImproperCTypes => [IMPROPER_CTYPES]);
502
503 struct ImproperCTypesVisitor<'a, 'tcx> {
504     cx: &'a LateContext<'a, 'tcx>,
505 }
506
507 enum FfiResult<'tcx> {
508     FfiSafe,
509     FfiPhantom(Ty<'tcx>),
510     FfiUnsafe {
511         ty: Ty<'tcx>,
512         reason: &'static str,
513         help: Option<&'static str>,
514     },
515 }
516
517 fn is_zst<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, ty: Ty<'tcx>) -> bool {
518     tcx.layout_of(tcx.param_env(did).and(ty)).map(|layout| layout.is_zst()).unwrap_or(false)
519 }
520
521 fn ty_is_known_nonnull<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
522     match ty.kind {
523         ty::FnPtr(_) => true,
524         ty::Ref(..) => true,
525         ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
526             for field in field_def.all_fields() {
527                 let field_ty = tcx.normalize_erasing_regions(
528                     ParamEnv::reveal_all(),
529                     field.ty(tcx, substs),
530                 );
531                 if is_zst(tcx, field.did, field_ty) {
532                     continue;
533                 }
534
535                 let attrs = tcx.get_attrs(field_def.did);
536                 if attrs.iter().any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed)) ||
537                     ty_is_known_nonnull(tcx, field_ty) {
538                     return true;
539                 }
540             }
541
542             false
543         }
544         _ => false,
545     }
546 }
547
548 /// Check if this enum can be safely exported based on the
549 /// "nullable pointer optimization". Currently restricted
550 /// to function pointers, references, core::num::NonZero*,
551 /// core::ptr::NonNull, and #[repr(transparent)] newtypes.
552 /// FIXME: This duplicates code in codegen.
553 fn is_repr_nullable_ptr<'tcx>(
554     tcx: TyCtxt<'tcx>,
555     ty: Ty<'tcx>,
556     ty_def: &'tcx ty::AdtDef,
557     substs: SubstsRef<'tcx>,
558 ) -> bool {
559     if ty_def.variants.len() != 2 {
560         return false;
561     }
562
563     let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
564     let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
565     let fields = if variant_fields[0].is_empty() {
566         &variant_fields[1]
567     } else if variant_fields[1].is_empty() {
568         &variant_fields[0]
569     } else {
570         return false;
571     };
572
573     if fields.len() != 1 {
574         return false;
575     }
576
577     let field_ty = fields[0].ty(tcx, substs);
578     if !ty_is_known_nonnull(tcx, field_ty) {
579         return false;
580     }
581
582     // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
583     // If the computed size for the field and the enum are different, the nonnull optimization isn't
584     // being applied (and we've got a problem somewhere).
585     let compute_size_skeleton = |t| SizeSkeleton::compute(t, tcx, ParamEnv::reveal_all()).unwrap();
586     if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
587         bug!("improper_ctypes: Option nonnull optimization not applied?");
588     }
589
590     true
591 }
592
593 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
594
595     /// Check if the type is array and emit an unsafe type lint.
596     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
597         if let ty::Array(..) = ty.kind {
598             self.emit_ffi_unsafe_type_lint(
599                 ty,
600                 sp,
601                 "passing raw arrays by value is not FFI-safe",
602                 Some("consider passing a pointer to the array"),
603             );
604             true
605         } else {
606             false
607         }
608     }
609
610
611     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
612     /// representation which can be exported to C code).
613     fn check_type_for_ffi(&self,
614                           cache: &mut FxHashSet<Ty<'tcx>>,
615                           ty: Ty<'tcx>) -> FfiResult<'tcx> {
616         use FfiResult::*;
617
618         let cx = self.cx.tcx;
619
620         // Protect against infinite recursion, for example
621         // `struct S(*mut S);`.
622         // FIXME: A recursion limit is necessary as well, for irregular
623         // recursive types.
624         if !cache.insert(ty) {
625             return FfiSafe;
626         }
627
628         match ty.kind {
629             ty::Adt(def, substs) => {
630                 if def.is_phantom_data() {
631                     return FfiPhantom(ty);
632                 }
633                 match def.adt_kind() {
634                     AdtKind::Struct => {
635                         if !def.repr.c() && !def.repr.transparent() {
636                             return FfiUnsafe {
637                                 ty,
638                                 reason: "this struct has unspecified layout",
639                                 help: Some("consider adding a `#[repr(C)]` or \
640                                             `#[repr(transparent)]` attribute to this struct"),
641                             };
642                         }
643
644                         let is_non_exhaustive =
645                             def.non_enum_variant().is_field_list_non_exhaustive();
646                         if is_non_exhaustive && !def.did.is_local() {
647                             return FfiUnsafe {
648                                 ty,
649                                 reason: "this struct is non-exhaustive",
650                                 help: None,
651                             };
652                         }
653
654                         if def.non_enum_variant().fields.is_empty() {
655                             return FfiUnsafe {
656                                 ty,
657                                 reason: "this struct has no fields",
658                                 help: Some("consider adding a member to this struct"),
659                             };
660                         }
661
662                         // We can't completely trust repr(C) and repr(transparent) markings;
663                         // make sure the fields are actually safe.
664                         let mut all_phantom = true;
665                         for field in &def.non_enum_variant().fields {
666                             let field_ty = cx.normalize_erasing_regions(
667                                 ParamEnv::reveal_all(),
668                                 field.ty(cx, substs),
669                             );
670                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
671                             // PhantomData -- skip checking all ZST fields
672                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
673                                 continue;
674                             }
675                             let r = self.check_type_for_ffi(cache, field_ty);
676                             match r {
677                                 FfiSafe => {
678                                     all_phantom = false;
679                                 }
680                                 FfiPhantom(..) => {}
681                                 FfiUnsafe { .. } => {
682                                     return r;
683                                 }
684                             }
685                         }
686
687                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
688                     }
689                     AdtKind::Union => {
690                         if !def.repr.c() && !def.repr.transparent() {
691                             return FfiUnsafe {
692                                 ty,
693                                 reason: "this union has unspecified layout",
694                                 help: Some("consider adding a `#[repr(C)]` or \
695                                             `#[repr(transparent)]` attribute to this union"),
696                             };
697                         }
698
699                         if def.non_enum_variant().fields.is_empty() {
700                             return FfiUnsafe {
701                                 ty,
702                                 reason: "this union has no fields",
703                                 help: Some("consider adding a field to this union"),
704                             };
705                         }
706
707                         let mut all_phantom = true;
708                         for field in &def.non_enum_variant().fields {
709                             let field_ty = cx.normalize_erasing_regions(
710                                 ParamEnv::reveal_all(),
711                                 field.ty(cx, substs),
712                             );
713                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
714                             // PhantomData -- skip checking all ZST fields.
715                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
716                                 continue;
717                             }
718                             let r = self.check_type_for_ffi(cache, field_ty);
719                             match r {
720                                 FfiSafe => {
721                                     all_phantom = false;
722                                 }
723                                 FfiPhantom(..) => {}
724                                 FfiUnsafe { .. } => {
725                                     return r;
726                                 }
727                             }
728                         }
729
730                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
731                     }
732                     AdtKind::Enum => {
733                         if def.variants.is_empty() {
734                             // Empty enums are okay... although sort of useless.
735                             return FfiSafe;
736                         }
737
738                         // Check for a repr() attribute to specify the size of the
739                         // discriminant.
740                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
741                             // Special-case types like `Option<extern fn()>`.
742                             if !is_repr_nullable_ptr(cx, ty, def, substs) {
743                                 return FfiUnsafe {
744                                     ty,
745                                     reason: "enum has no representation hint",
746                                     help: Some("consider adding a `#[repr(C)]`, \
747                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
748                                                 attribute to this enum"),
749                                 };
750                             }
751                         }
752
753                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
754                             return FfiUnsafe {
755                                 ty,
756                                 reason: "this enum is non-exhaustive",
757                                 help: None,
758                             };
759                         }
760
761                         // Check the contained variants.
762                         for variant in &def.variants {
763                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
764                             if is_non_exhaustive && !variant.def_id.is_local() {
765                                 return FfiUnsafe {
766                                     ty,
767                                     reason: "this enum has non-exhaustive variants",
768                                     help: None,
769                                 };
770                             }
771
772                             for field in &variant.fields {
773                                 let field_ty = cx.normalize_erasing_regions(
774                                     ParamEnv::reveal_all(),
775                                     field.ty(cx, substs),
776                                 );
777                                 // repr(transparent) types are allowed to have arbitrary ZSTs, not
778                                 // just PhantomData -- skip checking all ZST fields.
779                                 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
780                                     continue;
781                                 }
782                                 let r = self.check_type_for_ffi(cache, field_ty);
783                                 match r {
784                                     FfiSafe => {}
785                                     FfiUnsafe { .. } => {
786                                         return r;
787                                     }
788                                     FfiPhantom(..) => {
789                                         return FfiUnsafe {
790                                             ty,
791                                             reason: "this enum contains a PhantomData field",
792                                             help: None,
793                                         };
794                                     }
795                                 }
796                             }
797                         }
798                         FfiSafe
799                     }
800                 }
801             }
802
803             ty::Char => FfiUnsafe {
804                 ty,
805                 reason: "the `char` type has no C equivalent",
806                 help: Some("consider using `u32` or `libc::wchar_t` instead"),
807             },
808
809             ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
810                 ty,
811                 reason: "128-bit integers don't currently have a known stable ABI",
812                 help: None,
813             },
814
815             // Primitive types with a stable representation.
816             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
817
818             ty::Slice(_) => FfiUnsafe {
819                 ty,
820                 reason: "slices have no C equivalent",
821                 help: Some("consider using a raw pointer instead"),
822             },
823
824             ty::Dynamic(..) => FfiUnsafe {
825                 ty,
826                 reason: "trait objects have no C equivalent",
827                 help: None,
828             },
829
830             ty::Str => FfiUnsafe {
831                 ty,
832                 reason: "string slices have no C equivalent",
833                 help: Some("consider using `*const u8` and a length instead"),
834             },
835
836             ty::Tuple(..) => FfiUnsafe {
837                 ty,
838                 reason: "tuples have unspecified layout",
839                 help: Some("consider using a struct instead"),
840             },
841
842             ty::RawPtr(ty::TypeAndMut { ty, .. }) |
843             ty::Ref(_, ty, _) => self.check_type_for_ffi(cache, ty),
844
845             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
846
847             ty::FnPtr(sig) => {
848                 match sig.abi() {
849                     Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
850                         return FfiUnsafe {
851                             ty,
852                             reason: "this function pointer has Rust-specific calling convention",
853                             help: Some("consider using an `extern fn(...) -> ...` \
854                                         function pointer instead"),
855                         }
856                     }
857                     _ => {}
858                 }
859
860                 let sig = cx.erase_late_bound_regions(&sig);
861                 if !sig.output().is_unit() {
862                     let r = self.check_type_for_ffi(cache, sig.output());
863                     match r {
864                         FfiSafe => {}
865                         _ => {
866                             return r;
867                         }
868                     }
869                 }
870                 for arg in sig.inputs() {
871                     let r = self.check_type_for_ffi(cache, arg);
872                     match r {
873                         FfiSafe => {}
874                         _ => {
875                             return r;
876                         }
877                     }
878                 }
879                 FfiSafe
880             }
881
882             ty::Foreign(..) => FfiSafe,
883
884             ty::Param(..) |
885             ty::Infer(..) |
886             ty::Bound(..) |
887             ty::Error |
888             ty::Closure(..) |
889             ty::Generator(..) |
890             ty::GeneratorWitness(..) |
891             ty::Placeholder(..) |
892             ty::UnnormalizedProjection(..) |
893             ty::Projection(..) |
894             ty::Opaque(..) |
895             ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
896         }
897     }
898
899     fn emit_ffi_unsafe_type_lint(
900         &mut self,
901         ty: Ty<'tcx>,
902         sp: Span,
903         note: &str,
904         help: Option<&str>,
905     ) {
906         let mut diag = self.cx.struct_span_lint(
907             IMPROPER_CTYPES,
908             sp,
909             &format!("`extern` block uses type `{}`, which is not FFI-safe", ty),
910         );
911         diag.span_label(sp, "not FFI-safe");
912         if let Some(help) = help {
913             diag.help(help);
914         }
915         diag.note(note);
916         if let ty::Adt(def, _) = ty.kind {
917             if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
918                 diag.span_note(sp, "type defined here");
919             }
920         }
921         diag.emit();
922     }
923
924     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
925         use crate::rustc::ty::TypeFoldable;
926
927         struct ProhibitOpaqueTypes<'tcx> {
928             ty: Option<Ty<'tcx>>,
929         };
930
931         impl<'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'tcx> {
932             fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
933                 if let ty::Opaque(..) = ty.kind {
934                     self.ty = Some(ty);
935                     true
936                 } else {
937                     ty.super_visit_with(self)
938                 }
939             }
940         }
941
942         let mut visitor = ProhibitOpaqueTypes { ty: None };
943         ty.visit_with(&mut visitor);
944         if let Some(ty) = visitor.ty {
945             self.emit_ffi_unsafe_type_lint(
946                 ty,
947                 sp,
948                 "opaque types have no C equivalent",
949                 None,
950             );
951             true
952         } else {
953             false
954         }
955     }
956
957     fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>, is_static: bool) {
958         // We have to check for opaque types before `normalize_erasing_regions`,
959         // which will replace opaque types with their underlying concrete type.
960         if self.check_for_opaque_ty(sp, ty) {
961             // We've already emitted an error due to an opaque type.
962             return;
963         }
964
965         // it is only OK to use this function because extern fns cannot have
966         // any generic types right now:
967         let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
968         // C doesn't really support passing arrays by value.
969         // The only way to pass an array by value is through a struct.
970         // So we first test that the top level isn't an array,
971         // and then recursively check the types inside.
972         if !is_static && self.check_for_array_ty(sp, ty) {
973             return;
974         }
975
976         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
977             FfiResult::FfiSafe => {}
978             FfiResult::FfiPhantom(ty) => {
979                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
980             }
981             FfiResult::FfiUnsafe { ty, reason, help } => {
982                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
983             }
984         }
985     }
986
987     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl) {
988         let def_id = self.cx.tcx.hir().local_def_id(id);
989         let sig = self.cx.tcx.fn_sig(def_id);
990         let sig = self.cx.tcx.erase_late_bound_regions(&sig);
991
992         for (input_ty, input_hir) in sig.inputs().iter().zip(&decl.inputs) {
993             self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false);
994         }
995
996         if let hir::Return(ref ret_hir) = decl.output {
997             let ret_ty = sig.output();
998             if !ret_ty.is_unit() {
999                 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false);
1000             }
1001         }
1002     }
1003
1004     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
1005         let def_id = self.cx.tcx.hir().local_def_id(id);
1006         let ty = self.cx.tcx.type_of(def_id);
1007         self.check_type_for_ffi_and_report_errors(span, ty, true);
1008     }
1009 }
1010
1011 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
1012     fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::ForeignItem) {
1013         let mut vis = ImproperCTypesVisitor { cx };
1014         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
1015         if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
1016             // Don't worry about types in internal ABIs.
1017         } else {
1018             match it.kind {
1019                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
1020                     vis.check_foreign_fn(it.hir_id, decl);
1021                 }
1022                 hir::ForeignItemKind::Static(ref ty, _) => {
1023                     vis.check_foreign_static(it.hir_id, ty.span);
1024                 }
1025                 hir::ForeignItemKind::Type => ()
1026             }
1027         }
1028     }
1029 }
1030
1031 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1032
1033 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
1034     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
1035         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1036             let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
1037             let t = cx.tcx.type_of(item_def_id);
1038             let ty = cx.tcx.erase_regions(&t);
1039             let layout = match cx.layout_of(ty) {
1040                 Ok(layout) => layout,
1041                 Err(ty::layout::LayoutError::Unknown(_)) => return,
1042                 Err(err @ ty::layout::LayoutError::SizeOverflow(_)) => {
1043                     bug!("failed to get layout for `{}`: {}", t, err);
1044                 }
1045             };
1046             let (variants, tag) = match layout.variants {
1047                 layout::Variants::Multiple {
1048                     discr_kind: layout::DiscriminantKind::Tag,
1049                     ref discr,
1050                     ref variants,
1051                     ..
1052                 } => (variants, discr),
1053                 _ => return,
1054             };
1055
1056             let discr_size = tag.value.size(&cx.tcx).bytes();
1057
1058             debug!("enum `{}` is {} bytes large with layout:\n{:#?}",
1059                    t, layout.size.bytes(), layout);
1060
1061             let (largest, slargest, largest_index) = enum_definition.variants
1062                 .iter()
1063                 .zip(variants)
1064                 .map(|(variant, variant_layout)| {
1065                     // Subtract the size of the enum discriminant.
1066                     let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
1067
1068                     debug!("- variant `{}` is {} bytes large",
1069                            variant.ident,
1070                            bytes);
1071                     bytes
1072                 })
1073                 .enumerate()
1074                 .fold((0, 0, 0), |(l, s, li), (idx, size)| if size > l {
1075                     (size, l, idx)
1076                 } else if size > s {
1077                     (l, size, li)
1078                 } else {
1079                     (l, s, li)
1080                 });
1081
1082             // We only warn if the largest variant is at least thrice as large as
1083             // the second-largest.
1084             if largest > slargest * 3 && slargest > 0 {
1085                 cx.span_lint(VARIANT_SIZE_DIFFERENCES,
1086                                 enum_definition.variants[largest_index].span,
1087                                 &format!("enum variant is more than three times \
1088                                           larger ({} bytes) than the next largest",
1089                                          largest));
1090             }
1091         }
1092     }
1093 }