]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/types.rs
Invert control in struct_lint_level.
[rust.git] / src / librustc_lint / types.rs
1 #![allow(non_snake_case)]
2
3 use crate::{LateContext, LateLintPass, LintContext};
4 use rustc::mir::interpret::{sign_extend, truncate};
5 use rustc::ty::layout::{self, IntegerExt, LayoutOf, SizeSkeleton, VariantIdx};
6 use rustc::ty::subst::SubstsRef;
7 use rustc::ty::{self, AdtKind, ParamEnv, Ty, TyCtxt};
8 use rustc_attr as attr;
9 use rustc_data_structures::fx::FxHashSet;
10 use rustc_errors::Applicability;
11 use rustc_hir as hir;
12 use rustc_hir::def_id::DefId;
13 use rustc_hir::{is_range_literal, ExprKind, Node};
14 use rustc_index::vec::Idx;
15 use rustc_span::source_map;
16 use rustc_span::symbol::sym;
17 use rustc_span::Span;
18 use rustc_target::spec::abi::Abi;
19 use syntax::ast;
20
21 use log::debug;
22 use std::cmp;
23 use std::{f32, f64, i16, i32, i64, i8, u16, u32, u64, u8};
24
25 declare_lint! {
26     UNUSED_COMPARISONS,
27     Warn,
28     "comparisons made useless by limits of the types involved"
29 }
30
31 declare_lint! {
32     OVERFLOWING_LITERALS,
33     Deny,
34     "literal out of range for its type"
35 }
36
37 declare_lint! {
38     VARIANT_SIZE_DIFFERENCES,
39     Allow,
40     "detects enums with widely varying variant sizes"
41 }
42
43 #[derive(Copy, Clone)]
44 pub struct TypeLimits {
45     /// Id of the last visited negated expression
46     negated_expr_id: hir::HirId,
47 }
48
49 impl_lint_pass!(TypeLimits => [UNUSED_COMPARISONS, OVERFLOWING_LITERALS]);
50
51 impl TypeLimits {
52     pub fn new() -> TypeLimits {
53         TypeLimits { negated_expr_id: hir::DUMMY_HIR_ID }
54     }
55 }
56
57 /// Attempts to special-case the overflowing literal lint when it occurs as a range endpoint.
58 /// Returns `true` iff the lint was overridden.
59 fn lint_overflowing_range_endpoint<'a, 'tcx>(
60     cx: &LateContext<'a, 'tcx>,
61     lit: &hir::Lit,
62     lit_val: u128,
63     max: u128,
64     expr: &'tcx hir::Expr<'tcx>,
65     parent_expr: &'tcx hir::Expr<'tcx>,
66     ty: &str,
67 ) -> bool {
68     // We only want to handle exclusive (`..`) ranges,
69     // which are represented as `ExprKind::Struct`.
70     let mut overwritten = false;
71     if let ExprKind::Struct(_, eps, _) = &parent_expr.kind {
72         if eps.len() != 2 {
73             return false;
74         }
75         // We can suggest using an inclusive range
76         // (`..=`) instead only if it is the `end` that is
77         // overflowing and only by 1.
78         if eps[1].expr.hir_id == expr.hir_id && lit_val - 1 == max {
79             cx.struct_span_lint(
80                 OVERFLOWING_LITERALS,
81                 parent_expr.span,
82                 |lint| {
83                     let mut err = lint.build(&format!("range endpoint is out of range for `{}`", ty));
84                     if let Ok(start) = cx.sess().source_map().span_to_snippet(eps[0].span) {
85                         use ast::{LitIntType, LitKind};
86                         // We need to preserve the literal's suffix,
87                         // as it may determine typing information.
88                         let suffix = match lit.node {
89                             LitKind::Int(_, LitIntType::Signed(s)) => format!("{}", s.name_str()),
90                             LitKind::Int(_, LitIntType::Unsigned(s)) => format!("{}", s.name_str()),
91                             LitKind::Int(_, LitIntType::Unsuffixed) => "".to_owned(),
92                             _ => bug!(),
93                         };
94                         let suggestion = format!("{}..={}{}", start, lit_val - 1, suffix);
95                         err.span_suggestion(
96                             parent_expr.span,
97                             &"use an inclusive range instead",
98                             suggestion,
99                             Applicability::MachineApplicable,
100                         );
101                         err.emit();
102                         overwritten = true;
103                     }
104                 },
105             );
106         }
107     }
108     overwritten
109 }
110
111 // For `isize` & `usize`, be conservative with the warnings, so that the
112 // warnings are consistent between 32- and 64-bit platforms.
113 fn int_ty_range(int_ty: ast::IntTy) -> (i128, i128) {
114     match int_ty {
115         ast::IntTy::Isize => (i64::min_value() as i128, i64::max_value() as i128),
116         ast::IntTy::I8 => (i8::min_value() as i64 as i128, i8::max_value() as i128),
117         ast::IntTy::I16 => (i16::min_value() as i64 as i128, i16::max_value() as i128),
118         ast::IntTy::I32 => (i32::min_value() as i64 as i128, i32::max_value() as i128),
119         ast::IntTy::I64 => (i64::min_value() as i128, i64::max_value() as i128),
120         ast::IntTy::I128 => (i128::min_value() as i128, i128::max_value()),
121     }
122 }
123
124 fn uint_ty_range(uint_ty: ast::UintTy) -> (u128, u128) {
125     match uint_ty {
126         ast::UintTy::Usize => (u64::min_value() as u128, u64::max_value() as u128),
127         ast::UintTy::U8 => (u8::min_value() as u128, u8::max_value() as u128),
128         ast::UintTy::U16 => (u16::min_value() as u128, u16::max_value() as u128),
129         ast::UintTy::U32 => (u32::min_value() as u128, u32::max_value() as u128),
130         ast::UintTy::U64 => (u64::min_value() as u128, u64::max_value() as u128),
131         ast::UintTy::U128 => (u128::min_value(), u128::max_value()),
132     }
133 }
134
135 fn get_bin_hex_repr(cx: &LateContext<'_, '_>, lit: &hir::Lit) -> Option<String> {
136     let src = cx.sess().source_map().span_to_snippet(lit.span).ok()?;
137     let firstch = src.chars().next()?;
138
139     if firstch == '0' {
140         match src.chars().nth(1) {
141             Some('x') | Some('b') => return Some(src),
142             _ => return None,
143         }
144     }
145
146     None
147 }
148
149 fn report_bin_hex_error(
150     cx: &LateContext<'_, '_>,
151     expr: &hir::Expr<'_>,
152     ty: attr::IntType,
153     repr_str: String,
154     val: u128,
155     negative: bool,
156 ) {
157     let size = layout::Integer::from_attr(&cx.tcx, ty).size();
158     let (t, actually) = match ty {
159         attr::IntType::SignedInt(t) => {
160             let actually = sign_extend(val, size) as i128;
161             (t.name_str(), actually.to_string())
162         }
163         attr::IntType::UnsignedInt(t) => {
164             let actually = truncate(val, size);
165             (t.name_str(), actually.to_string())
166         }
167     };
168     cx.struct_span_lint(
169         OVERFLOWING_LITERALS,
170         expr.span,
171         |lint| {
172             let mut err = lint.build(&format!("literal out of range for {}", t));
173             err.note(&format!(
174                 "the literal `{}` (decimal `{}`) does not fit into \
175                     an `{}` and will become `{}{}`",
176                 repr_str, val, t, actually, t
177             ));
178             if let Some(sugg_ty) = get_type_suggestion(&cx.tables.node_type(expr.hir_id), val, negative) {
179                 if let Some(pos) = repr_str.chars().position(|c| c == 'i' || c == 'u') {
180                     let (sans_suffix, _) = repr_str.split_at(pos);
181                     err.span_suggestion(
182                         expr.span,
183                         &format!("consider using `{}` instead", sugg_ty),
184                         format!("{}{}", sans_suffix, sugg_ty),
185                         Applicability::MachineApplicable,
186                     );
187                 } else {
188                     err.help(&format!("consider using `{}` instead", sugg_ty));
189                 }
190             }
191             err.emit();
192         },
193     );
194 }
195
196 // This function finds the next fitting type and generates a suggestion string.
197 // It searches for fitting types in the following way (`X < Y`):
198 //  - `iX`: if literal fits in `uX` => `uX`, else => `iY`
199 //  - `-iX` => `iY`
200 //  - `uX` => `uY`
201 //
202 // No suggestion for: `isize`, `usize`.
203 fn get_type_suggestion(t: Ty<'_>, val: u128, negative: bool) -> Option<&'static str> {
204     use syntax::ast::IntTy::*;
205     use syntax::ast::UintTy::*;
206     macro_rules! find_fit {
207         ($ty:expr, $val:expr, $negative:expr,
208          $($type:ident => [$($utypes:expr),*] => [$($itypes:expr),*]),+) => {
209             {
210                 let _neg = if negative { 1 } else { 0 };
211                 match $ty {
212                     $($type => {
213                         $(if !negative && val <= uint_ty_range($utypes).1 {
214                             return Some($utypes.name_str())
215                         })*
216                         $(if val <= int_ty_range($itypes).1 as u128 + _neg {
217                             return Some($itypes.name_str())
218                         })*
219                         None
220                     },)+
221                     _ => None
222                 }
223             }
224         }
225     }
226     match t.kind {
227         ty::Int(i) => find_fit!(i, val, negative,
228                       I8 => [U8] => [I16, I32, I64, I128],
229                       I16 => [U16] => [I32, I64, I128],
230                       I32 => [U32] => [I64, I128],
231                       I64 => [U64] => [I128],
232                       I128 => [U128] => []),
233         ty::Uint(u) => find_fit!(u, val, negative,
234                       U8 => [U8, U16, U32, U64, U128] => [],
235                       U16 => [U16, U32, U64, U128] => [],
236                       U32 => [U32, U64, U128] => [],
237                       U64 => [U64, U128] => [],
238                       U128 => [U128] => []),
239         _ => None,
240     }
241 }
242
243 fn lint_int_literal<'a, 'tcx>(
244     cx: &LateContext<'a, 'tcx>,
245     type_limits: &TypeLimits,
246     e: &'tcx hir::Expr<'tcx>,
247     lit: &hir::Lit,
248     t: ast::IntTy,
249     v: u128,
250 ) {
251     let int_type = t.normalize(cx.sess().target.ptr_width);
252     let (_, max) = int_ty_range(int_type);
253     let max = max as u128;
254     let negative = type_limits.negated_expr_id == e.hir_id;
255
256     // Detect literal value out of range [min, max] inclusive
257     // avoiding use of -min to prevent overflow/panic
258     if (negative && v > max + 1) || (!negative && v > max) {
259         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
260             report_bin_hex_error(cx, e, attr::IntType::SignedInt(t), repr_str, v, negative);
261             return;
262         }
263
264         let par_id = cx.tcx.hir().get_parent_node(e.hir_id);
265         if let Node::Expr(par_e) = cx.tcx.hir().get(par_id) {
266             if let hir::ExprKind::Struct(..) = par_e.kind {
267                 if is_range_literal(cx.sess().source_map(), par_e)
268                     && lint_overflowing_range_endpoint(cx, lit, v, max, e, par_e, t.name_str())
269                 {
270                     // The overflowing literal lint was overridden.
271                     return;
272                 }
273             }
274         }
275
276         cx.span_lint(
277             OVERFLOWING_LITERALS,
278             e.span,
279             &format!("literal out of range for `{}`", t.name_str()),
280         );
281     }
282 }
283
284 fn lint_uint_literal<'a, 'tcx>(
285     cx: &LateContext<'a, 'tcx>,
286     e: &'tcx hir::Expr<'tcx>,
287     lit: &hir::Lit,
288     t: ast::UintTy,
289 ) {
290     let uint_type = t.normalize(cx.sess().target.ptr_width);
291     let (min, max) = uint_ty_range(uint_type);
292     let lit_val: u128 = match lit.node {
293         // _v is u8, within range by definition
294         ast::LitKind::Byte(_v) => return,
295         ast::LitKind::Int(v, _) => v,
296         _ => bug!(),
297     };
298     if lit_val < min || lit_val > max {
299         let parent_id = cx.tcx.hir().get_parent_node(e.hir_id);
300         if let Node::Expr(par_e) = cx.tcx.hir().get(parent_id) {
301             match par_e.kind {
302                 hir::ExprKind::Cast(..) => {
303                     if let ty::Char = cx.tables.expr_ty(par_e).kind {
304                         cx.struct_span_lint(OVERFLOWING_LITERALS, par_e.span, |lint| {
305                             lint.build("only `u8` can be cast into `char`")
306                                 .span_suggestion(
307                                     par_e.span,
308                                     &"use a `char` literal instead",
309                                     format!("'\\u{{{:X}}}'", lit_val),
310                                     Applicability::MachineApplicable,
311                                 )
312                                 .emit();
313                         });
314                         return;
315                     }
316                 }
317                 hir::ExprKind::Struct(..) if is_range_literal(cx.sess().source_map(), par_e) => {
318                     let t = t.name_str();
319                     if lint_overflowing_range_endpoint(cx, lit, lit_val, max, e, par_e, t) {
320                         // The overflowing literal lint was overridden.
321                         return;
322                     }
323                 }
324                 _ => {}
325             }
326         }
327         if let Some(repr_str) = get_bin_hex_repr(cx, lit) {
328             report_bin_hex_error(cx, e, attr::IntType::UnsignedInt(t), repr_str, lit_val, false);
329             return;
330         }
331         cx.span_lint(
332             OVERFLOWING_LITERALS,
333             e.span,
334             &format!("literal out of range for `{}`", t.name_str()),
335         );
336     }
337 }
338
339 fn lint_literal<'a, 'tcx>(
340     cx: &LateContext<'a, 'tcx>,
341     type_limits: &TypeLimits,
342     e: &'tcx hir::Expr<'tcx>,
343     lit: &hir::Lit,
344 ) {
345     match cx.tables.node_type(e.hir_id).kind {
346         ty::Int(t) => {
347             match lit.node {
348                 ast::LitKind::Int(v, ast::LitIntType::Signed(_))
349                 | ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => {
350                     lint_int_literal(cx, type_limits, e, lit, t, v)
351                 }
352                 _ => bug!(),
353             };
354         }
355         ty::Uint(t) => lint_uint_literal(cx, e, lit, t),
356         ty::Float(t) => {
357             let is_infinite = match lit.node {
358                 ast::LitKind::Float(v, _) => match t {
359                     ast::FloatTy::F32 => v.as_str().parse().map(f32::is_infinite),
360                     ast::FloatTy::F64 => v.as_str().parse().map(f64::is_infinite),
361                 },
362                 _ => bug!(),
363             };
364             if is_infinite == Ok(true) {
365                 cx.span_lint(
366                     OVERFLOWING_LITERALS,
367                     e.span,
368                     &format!("literal out of range for `{}`", t.name_str()),
369                 );
370             }
371         }
372         _ => {}
373     }
374 }
375
376 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeLimits {
377     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, e: &'tcx hir::Expr<'tcx>) {
378         match e.kind {
379             hir::ExprKind::Unary(hir::UnOp::UnNeg, ref expr) => {
380                 // propagate negation, if the negation itself isn't negated
381                 if self.negated_expr_id != e.hir_id {
382                     self.negated_expr_id = expr.hir_id;
383                 }
384             }
385             hir::ExprKind::Binary(binop, ref l, ref r) => {
386                 if is_comparison(binop) && !check_limits(cx, binop, &l, &r) {
387                     cx.span_lint(
388                         UNUSED_COMPARISONS,
389                         e.span,
390                         "comparison is useless due to type limits",
391                     );
392                 }
393             }
394             hir::ExprKind::Lit(ref lit) => lint_literal(cx, self, e, lit),
395             _ => {}
396         };
397
398         fn is_valid<T: cmp::PartialOrd>(binop: hir::BinOp, v: T, min: T, max: T) -> bool {
399             match binop.node {
400                 hir::BinOpKind::Lt => v > min && v <= max,
401                 hir::BinOpKind::Le => v >= min && v < max,
402                 hir::BinOpKind::Gt => v >= min && v < max,
403                 hir::BinOpKind::Ge => v > min && v <= max,
404                 hir::BinOpKind::Eq | hir::BinOpKind::Ne => v >= min && v <= max,
405                 _ => bug!(),
406             }
407         }
408
409         fn rev_binop(binop: hir::BinOp) -> hir::BinOp {
410             source_map::respan(
411                 binop.span,
412                 match binop.node {
413                     hir::BinOpKind::Lt => hir::BinOpKind::Gt,
414                     hir::BinOpKind::Le => hir::BinOpKind::Ge,
415                     hir::BinOpKind::Gt => hir::BinOpKind::Lt,
416                     hir::BinOpKind::Ge => hir::BinOpKind::Le,
417                     _ => return binop,
418                 },
419             )
420         }
421
422         fn check_limits(
423             cx: &LateContext<'_, '_>,
424             binop: hir::BinOp,
425             l: &hir::Expr<'_>,
426             r: &hir::Expr<'_>,
427         ) -> bool {
428             let (lit, expr, swap) = match (&l.kind, &r.kind) {
429                 (&hir::ExprKind::Lit(_), _) => (l, r, true),
430                 (_, &hir::ExprKind::Lit(_)) => (r, l, false),
431                 _ => return true,
432             };
433             // Normalize the binop so that the literal is always on the RHS in
434             // the comparison
435             let norm_binop = if swap { rev_binop(binop) } else { binop };
436             match cx.tables.node_type(expr.hir_id).kind {
437                 ty::Int(int_ty) => {
438                     let (min, max) = int_ty_range(int_ty);
439                     let lit_val: i128 = match lit.kind {
440                         hir::ExprKind::Lit(ref li) => match li.node {
441                             ast::LitKind::Int(v, ast::LitIntType::Signed(_))
442                             | ast::LitKind::Int(v, ast::LitIntType::Unsuffixed) => v as i128,
443                             _ => return true,
444                         },
445                         _ => bug!(),
446                     };
447                     is_valid(norm_binop, lit_val, min, max)
448                 }
449                 ty::Uint(uint_ty) => {
450                     let (min, max): (u128, u128) = uint_ty_range(uint_ty);
451                     let lit_val: u128 = match lit.kind {
452                         hir::ExprKind::Lit(ref li) => match li.node {
453                             ast::LitKind::Int(v, _) => v,
454                             _ => return true,
455                         },
456                         _ => bug!(),
457                     };
458                     is_valid(norm_binop, lit_val, min, max)
459                 }
460                 _ => true,
461             }
462         }
463
464         fn is_comparison(binop: hir::BinOp) -> bool {
465             match binop.node {
466                 hir::BinOpKind::Eq
467                 | hir::BinOpKind::Lt
468                 | hir::BinOpKind::Le
469                 | hir::BinOpKind::Ne
470                 | hir::BinOpKind::Ge
471                 | hir::BinOpKind::Gt => true,
472                 _ => false,
473             }
474         }
475     }
476 }
477
478 declare_lint! {
479     IMPROPER_CTYPES,
480     Warn,
481     "proper use of libc types in foreign modules"
482 }
483
484 declare_lint_pass!(ImproperCTypes => [IMPROPER_CTYPES]);
485
486 struct ImproperCTypesVisitor<'a, 'tcx> {
487     cx: &'a LateContext<'a, 'tcx>,
488 }
489
490 enum FfiResult<'tcx> {
491     FfiSafe,
492     FfiPhantom(Ty<'tcx>),
493     FfiUnsafe { ty: Ty<'tcx>, reason: &'static str, help: Option<&'static str> },
494 }
495
496 fn is_zst<'tcx>(tcx: TyCtxt<'tcx>, did: DefId, ty: Ty<'tcx>) -> bool {
497     tcx.layout_of(tcx.param_env(did).and(ty)).map(|layout| layout.is_zst()).unwrap_or(false)
498 }
499
500 fn ty_is_known_nonnull<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool {
501     match ty.kind {
502         ty::FnPtr(_) => true,
503         ty::Ref(..) => true,
504         ty::Adt(field_def, substs) if field_def.repr.transparent() && !field_def.is_union() => {
505             for field in field_def.all_fields() {
506                 let field_ty =
507                     tcx.normalize_erasing_regions(ParamEnv::reveal_all(), field.ty(tcx, substs));
508                 if is_zst(tcx, field.did, field_ty) {
509                     continue;
510                 }
511
512                 let attrs = tcx.get_attrs(field_def.did);
513                 if attrs.iter().any(|a| a.check_name(sym::rustc_nonnull_optimization_guaranteed))
514                     || ty_is_known_nonnull(tcx, field_ty)
515                 {
516                     return true;
517                 }
518             }
519
520             false
521         }
522         _ => false,
523     }
524 }
525
526 /// Check if this enum can be safely exported based on the
527 /// "nullable pointer optimization". Currently restricted
528 /// to function pointers, references, core::num::NonZero*,
529 /// core::ptr::NonNull, and #[repr(transparent)] newtypes.
530 /// FIXME: This duplicates code in codegen.
531 fn is_repr_nullable_ptr<'tcx>(
532     tcx: TyCtxt<'tcx>,
533     ty: Ty<'tcx>,
534     ty_def: &'tcx ty::AdtDef,
535     substs: SubstsRef<'tcx>,
536 ) -> bool {
537     if ty_def.variants.len() != 2 {
538         return false;
539     }
540
541     let get_variant_fields = |index| &ty_def.variants[VariantIdx::new(index)].fields;
542     let variant_fields = [get_variant_fields(0), get_variant_fields(1)];
543     let fields = if variant_fields[0].is_empty() {
544         &variant_fields[1]
545     } else if variant_fields[1].is_empty() {
546         &variant_fields[0]
547     } else {
548         return false;
549     };
550
551     if fields.len() != 1 {
552         return false;
553     }
554
555     let field_ty = fields[0].ty(tcx, substs);
556     if !ty_is_known_nonnull(tcx, field_ty) {
557         return false;
558     }
559
560     // At this point, the field's type is known to be nonnull and the parent enum is Option-like.
561     // If the computed size for the field and the enum are different, the nonnull optimization isn't
562     // being applied (and we've got a problem somewhere).
563     let compute_size_skeleton = |t| SizeSkeleton::compute(t, tcx, ParamEnv::reveal_all()).unwrap();
564     if !compute_size_skeleton(ty).same_size(compute_size_skeleton(field_ty)) {
565         bug!("improper_ctypes: Option nonnull optimization not applied?");
566     }
567
568     true
569 }
570
571 impl<'a, 'tcx> ImproperCTypesVisitor<'a, 'tcx> {
572     /// Check if the type is array and emit an unsafe type lint.
573     fn check_for_array_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
574         if let ty::Array(..) = ty.kind {
575             self.emit_ffi_unsafe_type_lint(
576                 ty,
577                 sp,
578                 "passing raw arrays by value is not FFI-safe",
579                 Some("consider passing a pointer to the array"),
580             );
581             true
582         } else {
583             false
584         }
585     }
586
587     /// Checks if the given type is "ffi-safe" (has a stable, well-defined
588     /// representation which can be exported to C code).
589     fn check_type_for_ffi(&self, cache: &mut FxHashSet<Ty<'tcx>>, ty: Ty<'tcx>) -> FfiResult<'tcx> {
590         use FfiResult::*;
591
592         let cx = self.cx.tcx;
593
594         // Protect against infinite recursion, for example
595         // `struct S(*mut S);`.
596         // FIXME: A recursion limit is necessary as well, for irregular
597         // recursive types.
598         if !cache.insert(ty) {
599             return FfiSafe;
600         }
601
602         match ty.kind {
603             ty::Adt(def, substs) => {
604                 if def.is_phantom_data() {
605                     return FfiPhantom(ty);
606                 }
607                 match def.adt_kind() {
608                     AdtKind::Struct => {
609                         if !def.repr.c() && !def.repr.transparent() {
610                             return FfiUnsafe {
611                                 ty,
612                                 reason: "this struct has unspecified layout",
613                                 help: Some(
614                                     "consider adding a `#[repr(C)]` or \
615                                             `#[repr(transparent)]` attribute to this struct",
616                                 ),
617                             };
618                         }
619
620                         let is_non_exhaustive =
621                             def.non_enum_variant().is_field_list_non_exhaustive();
622                         if is_non_exhaustive && !def.did.is_local() {
623                             return FfiUnsafe {
624                                 ty,
625                                 reason: "this struct is non-exhaustive",
626                                 help: None,
627                             };
628                         }
629
630                         if def.non_enum_variant().fields.is_empty() {
631                             return FfiUnsafe {
632                                 ty,
633                                 reason: "this struct has no fields",
634                                 help: Some("consider adding a member to this struct"),
635                             };
636                         }
637
638                         // We can't completely trust repr(C) and repr(transparent) markings;
639                         // make sure the fields are actually safe.
640                         let mut all_phantom = true;
641                         for field in &def.non_enum_variant().fields {
642                             let field_ty = cx.normalize_erasing_regions(
643                                 ParamEnv::reveal_all(),
644                                 field.ty(cx, substs),
645                             );
646                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
647                             // PhantomData -- skip checking all ZST fields
648                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
649                                 continue;
650                             }
651                             let r = self.check_type_for_ffi(cache, field_ty);
652                             match r {
653                                 FfiSafe => {
654                                     all_phantom = false;
655                                 }
656                                 FfiPhantom(..) => {}
657                                 FfiUnsafe { .. } => {
658                                     return r;
659                                 }
660                             }
661                         }
662
663                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
664                     }
665                     AdtKind::Union => {
666                         if !def.repr.c() && !def.repr.transparent() {
667                             return FfiUnsafe {
668                                 ty,
669                                 reason: "this union has unspecified layout",
670                                 help: Some(
671                                     "consider adding a `#[repr(C)]` or \
672                                             `#[repr(transparent)]` attribute to this union",
673                                 ),
674                             };
675                         }
676
677                         if def.non_enum_variant().fields.is_empty() {
678                             return FfiUnsafe {
679                                 ty,
680                                 reason: "this union has no fields",
681                                 help: Some("consider adding a field to this union"),
682                             };
683                         }
684
685                         let mut all_phantom = true;
686                         for field in &def.non_enum_variant().fields {
687                             let field_ty = cx.normalize_erasing_regions(
688                                 ParamEnv::reveal_all(),
689                                 field.ty(cx, substs),
690                             );
691                             // repr(transparent) types are allowed to have arbitrary ZSTs, not just
692                             // PhantomData -- skip checking all ZST fields.
693                             if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
694                                 continue;
695                             }
696                             let r = self.check_type_for_ffi(cache, field_ty);
697                             match r {
698                                 FfiSafe => {
699                                     all_phantom = false;
700                                 }
701                                 FfiPhantom(..) => {}
702                                 FfiUnsafe { .. } => {
703                                     return r;
704                                 }
705                             }
706                         }
707
708                         if all_phantom { FfiPhantom(ty) } else { FfiSafe }
709                     }
710                     AdtKind::Enum => {
711                         if def.variants.is_empty() {
712                             // Empty enums are okay... although sort of useless.
713                             return FfiSafe;
714                         }
715
716                         // Check for a repr() attribute to specify the size of the
717                         // discriminant.
718                         if !def.repr.c() && !def.repr.transparent() && def.repr.int.is_none() {
719                             // Special-case types like `Option<extern fn()>`.
720                             if !is_repr_nullable_ptr(cx, ty, def, substs) {
721                                 return FfiUnsafe {
722                                     ty,
723                                     reason: "enum has no representation hint",
724                                     help: Some(
725                                         "consider adding a `#[repr(C)]`, \
726                                                 `#[repr(transparent)]`, or integer `#[repr(...)]` \
727                                                 attribute to this enum",
728                                     ),
729                                 };
730                             }
731                         }
732
733                         if def.is_variant_list_non_exhaustive() && !def.did.is_local() {
734                             return FfiUnsafe {
735                                 ty,
736                                 reason: "this enum is non-exhaustive",
737                                 help: None,
738                             };
739                         }
740
741                         // Check the contained variants.
742                         for variant in &def.variants {
743                             let is_non_exhaustive = variant.is_field_list_non_exhaustive();
744                             if is_non_exhaustive && !variant.def_id.is_local() {
745                                 return FfiUnsafe {
746                                     ty,
747                                     reason: "this enum has non-exhaustive variants",
748                                     help: None,
749                                 };
750                             }
751
752                             for field in &variant.fields {
753                                 let field_ty = cx.normalize_erasing_regions(
754                                     ParamEnv::reveal_all(),
755                                     field.ty(cx, substs),
756                                 );
757                                 // repr(transparent) types are allowed to have arbitrary ZSTs, not
758                                 // just PhantomData -- skip checking all ZST fields.
759                                 if def.repr.transparent() && is_zst(cx, field.did, field_ty) {
760                                     continue;
761                                 }
762                                 let r = self.check_type_for_ffi(cache, field_ty);
763                                 match r {
764                                     FfiSafe => {}
765                                     FfiUnsafe { .. } => {
766                                         return r;
767                                     }
768                                     FfiPhantom(..) => {
769                                         return FfiUnsafe {
770                                             ty,
771                                             reason: "this enum contains a PhantomData field",
772                                             help: None,
773                                         };
774                                     }
775                                 }
776                             }
777                         }
778                         FfiSafe
779                     }
780                 }
781             }
782
783             ty::Char => FfiUnsafe {
784                 ty,
785                 reason: "the `char` type has no C equivalent",
786                 help: Some("consider using `u32` or `libc::wchar_t` instead"),
787             },
788
789             ty::Int(ast::IntTy::I128) | ty::Uint(ast::UintTy::U128) => FfiUnsafe {
790                 ty,
791                 reason: "128-bit integers don't currently have a known stable ABI",
792                 help: None,
793             },
794
795             // Primitive types with a stable representation.
796             ty::Bool | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Never => FfiSafe,
797
798             ty::Slice(_) => FfiUnsafe {
799                 ty,
800                 reason: "slices have no C equivalent",
801                 help: Some("consider using a raw pointer instead"),
802             },
803
804             ty::Dynamic(..) => {
805                 FfiUnsafe { ty, reason: "trait objects have no C equivalent", help: None }
806             }
807
808             ty::Str => FfiUnsafe {
809                 ty,
810                 reason: "string slices have no C equivalent",
811                 help: Some("consider using `*const u8` and a length instead"),
812             },
813
814             ty::Tuple(..) => FfiUnsafe {
815                 ty,
816                 reason: "tuples have unspecified layout",
817                 help: Some("consider using a struct instead"),
818             },
819
820             ty::RawPtr(ty::TypeAndMut { ty, .. }) | ty::Ref(_, ty, _) => {
821                 self.check_type_for_ffi(cache, ty)
822             }
823
824             ty::Array(inner_ty, _) => self.check_type_for_ffi(cache, inner_ty),
825
826             ty::FnPtr(sig) => {
827                 match sig.abi() {
828                     Abi::Rust | Abi::RustIntrinsic | Abi::PlatformIntrinsic | Abi::RustCall => {
829                         return FfiUnsafe {
830                             ty,
831                             reason: "this function pointer has Rust-specific calling convention",
832                             help: Some(
833                                 "consider using an `extern fn(...) -> ...` \
834                                         function pointer instead",
835                             ),
836                         };
837                     }
838                     _ => {}
839                 }
840
841                 let sig = cx.erase_late_bound_regions(&sig);
842                 if !sig.output().is_unit() {
843                     let r = self.check_type_for_ffi(cache, sig.output());
844                     match r {
845                         FfiSafe => {}
846                         _ => {
847                             return r;
848                         }
849                     }
850                 }
851                 for arg in sig.inputs() {
852                     let r = self.check_type_for_ffi(cache, arg);
853                     match r {
854                         FfiSafe => {}
855                         _ => {
856                             return r;
857                         }
858                     }
859                 }
860                 FfiSafe
861             }
862
863             ty::Foreign(..) => FfiSafe,
864
865             ty::Param(..)
866             | ty::Infer(..)
867             | ty::Bound(..)
868             | ty::Error
869             | ty::Closure(..)
870             | ty::Generator(..)
871             | ty::GeneratorWitness(..)
872             | ty::Placeholder(..)
873             | ty::UnnormalizedProjection(..)
874             | ty::Projection(..)
875             | ty::Opaque(..)
876             | ty::FnDef(..) => bug!("unexpected type in foreign function: {:?}", ty),
877         }
878     }
879
880     fn emit_ffi_unsafe_type_lint(
881         &mut self,
882         ty: Ty<'tcx>,
883         sp: Span,
884         note: &str,
885         help: Option<&str>,
886     ) {
887         self.cx.struct_span_lint(IMPROPER_CTYPES, sp, |lint| {
888             let mut diag =
889                 lint.build(&format!("`extern` block uses type `{}`, which is not FFI-safe", ty));
890             diag.span_label(sp, "not FFI-safe");
891             if let Some(help) = help {
892                 diag.help(help);
893             }
894             diag.note(note);
895             if let ty::Adt(def, _) = ty.kind {
896                 if let Some(sp) = self.cx.tcx.hir().span_if_local(def.did) {
897                     diag.span_note(sp, "the type is defined here");
898                 }
899             }
900             diag.emit();
901         });
902     }
903
904     fn check_for_opaque_ty(&mut self, sp: Span, ty: Ty<'tcx>) -> bool {
905         use crate::rustc::ty::TypeFoldable;
906
907         struct ProhibitOpaqueTypes<'tcx> {
908             ty: Option<Ty<'tcx>>,
909         };
910
911         impl<'tcx> ty::fold::TypeVisitor<'tcx> for ProhibitOpaqueTypes<'tcx> {
912             fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
913                 if let ty::Opaque(..) = ty.kind {
914                     self.ty = Some(ty);
915                     true
916                 } else {
917                     ty.super_visit_with(self)
918                 }
919             }
920         }
921
922         let mut visitor = ProhibitOpaqueTypes { ty: None };
923         ty.visit_with(&mut visitor);
924         if let Some(ty) = visitor.ty {
925             self.emit_ffi_unsafe_type_lint(ty, sp, "opaque types have no C equivalent", None);
926             true
927         } else {
928             false
929         }
930     }
931
932     fn check_type_for_ffi_and_report_errors(&mut self, sp: Span, ty: Ty<'tcx>, is_static: bool) {
933         // We have to check for opaque types before `normalize_erasing_regions`,
934         // which will replace opaque types with their underlying concrete type.
935         if self.check_for_opaque_ty(sp, ty) {
936             // We've already emitted an error due to an opaque type.
937             return;
938         }
939
940         // it is only OK to use this function because extern fns cannot have
941         // any generic types right now:
942         let ty = self.cx.tcx.normalize_erasing_regions(ParamEnv::reveal_all(), ty);
943         // C doesn't really support passing arrays by value.
944         // The only way to pass an array by value is through a struct.
945         // So we first test that the top level isn't an array,
946         // and then recursively check the types inside.
947         if !is_static && self.check_for_array_ty(sp, ty) {
948             return;
949         }
950
951         match self.check_type_for_ffi(&mut FxHashSet::default(), ty) {
952             FfiResult::FfiSafe => {}
953             FfiResult::FfiPhantom(ty) => {
954                 self.emit_ffi_unsafe_type_lint(ty, sp, "composed only of `PhantomData`", None);
955             }
956             FfiResult::FfiUnsafe { ty, reason, help } => {
957                 self.emit_ffi_unsafe_type_lint(ty, sp, reason, help);
958             }
959         }
960     }
961
962     fn check_foreign_fn(&mut self, id: hir::HirId, decl: &hir::FnDecl<'_>) {
963         let def_id = self.cx.tcx.hir().local_def_id(id);
964         let sig = self.cx.tcx.fn_sig(def_id);
965         let sig = self.cx.tcx.erase_late_bound_regions(&sig);
966
967         for (input_ty, input_hir) in sig.inputs().iter().zip(decl.inputs) {
968             self.check_type_for_ffi_and_report_errors(input_hir.span, input_ty, false);
969         }
970
971         if let hir::FunctionRetTy::Return(ref ret_hir) = decl.output {
972             let ret_ty = sig.output();
973             if !ret_ty.is_unit() {
974                 self.check_type_for_ffi_and_report_errors(ret_hir.span, ret_ty, false);
975             }
976         }
977     }
978
979     fn check_foreign_static(&mut self, id: hir::HirId, span: Span) {
980         let def_id = self.cx.tcx.hir().local_def_id(id);
981         let ty = self.cx.tcx.type_of(def_id);
982         self.check_type_for_ffi_and_report_errors(span, ty, true);
983     }
984 }
985
986 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ImproperCTypes {
987     fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::ForeignItem<'_>) {
988         let mut vis = ImproperCTypesVisitor { cx };
989         let abi = cx.tcx.hir().get_foreign_abi(it.hir_id);
990         if let Abi::Rust | Abi::RustCall | Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
991             // Don't worry about types in internal ABIs.
992         } else {
993             match it.kind {
994                 hir::ForeignItemKind::Fn(ref decl, _, _) => {
995                     vis.check_foreign_fn(it.hir_id, decl);
996                 }
997                 hir::ForeignItemKind::Static(ref ty, _) => {
998                     vis.check_foreign_static(it.hir_id, ty.span);
999                 }
1000                 hir::ForeignItemKind::Type => (),
1001             }
1002         }
1003     }
1004 }
1005
1006 declare_lint_pass!(VariantSizeDifferences => [VARIANT_SIZE_DIFFERENCES]);
1007
1008 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for VariantSizeDifferences {
1009     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
1010         if let hir::ItemKind::Enum(ref enum_definition, _) = it.kind {
1011             let item_def_id = cx.tcx.hir().local_def_id(it.hir_id);
1012             let t = cx.tcx.type_of(item_def_id);
1013             let ty = cx.tcx.erase_regions(&t);
1014             let layout = match cx.layout_of(ty) {
1015                 Ok(layout) => layout,
1016                 Err(ty::layout::LayoutError::Unknown(_)) => return,
1017                 Err(err @ ty::layout::LayoutError::SizeOverflow(_)) => {
1018                     bug!("failed to get layout for `{}`: {}", t, err);
1019                 }
1020             };
1021             let (variants, tag) = match layout.variants {
1022                 layout::Variants::Multiple {
1023                     discr_kind: layout::DiscriminantKind::Tag,
1024                     ref discr,
1025                     ref variants,
1026                     ..
1027                 } => (variants, discr),
1028                 _ => return,
1029             };
1030
1031             let discr_size = tag.value.size(&cx.tcx).bytes();
1032
1033             debug!(
1034                 "enum `{}` is {} bytes large with layout:\n{:#?}",
1035                 t,
1036                 layout.size.bytes(),
1037                 layout
1038             );
1039
1040             let (largest, slargest, largest_index) = enum_definition
1041                 .variants
1042                 .iter()
1043                 .zip(variants)
1044                 .map(|(variant, variant_layout)| {
1045                     // Subtract the size of the enum discriminant.
1046                     let bytes = variant_layout.size.bytes().saturating_sub(discr_size);
1047
1048                     debug!("- variant `{}` is {} bytes large", variant.ident, bytes);
1049                     bytes
1050                 })
1051                 .enumerate()
1052                 .fold((0, 0, 0), |(l, s, li), (idx, size)| {
1053                     if size > l {
1054                         (size, l, idx)
1055                     } else if size > s {
1056                         (l, size, li)
1057                     } else {
1058                         (l, s, li)
1059                     }
1060                 });
1061
1062             // We only warn if the largest variant is at least thrice as large as
1063             // the second-largest.
1064             if largest > slargest * 3 && slargest > 0 {
1065                 cx.span_lint(
1066                     VARIANT_SIZE_DIFFERENCES,
1067                     enum_definition.variants[largest_index].span,
1068                     &format!(
1069                         "enum variant is more than three times \
1070                                           larger ({} bytes) than the next largest",
1071                         largest
1072                     ),
1073                 );
1074             }
1075         }
1076     }
1077 }