]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/builtin.rs
Rollup merge of #67666 - lzutao:ptr-null-cmp, r=dtolnay
[rust.git] / src / librustc_lint / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main
6 //! compiler.
7 //!
8 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
9 //! Then add code to emit the new lint in the appropriate circumstances.
10 //! You can do that in an existing `LintPass` if it makes sense, or in a
11 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
12 //! compiler. Only do the latter if the check can't be written cleanly as a
13 //! `LintPass` (also, note that such lints will need to be defined in
14 //! `rustc::lint::builtin`, not here).
15 //!
16 //! If you define a new `EarlyLintPass`, you will also need to add it to the
17 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
18 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
19 //! with a `pub fn new()`.
20 //!
21 //! If you define a new `LateLintPass`, you will also need to add it to the
22 //! `late_lint_methods!` invocation in `lib.rs`.
23
24 use std::fmt::Write;
25
26 use lint::{EarlyContext, EarlyLintPass, LateLintPass, LintPass};
27 use lint::{LateContext, LintArray, LintContext};
28 use rustc::hir::map::Map;
29 use rustc::lint;
30 use rustc::lint::FutureIncompatibleInfo;
31 use rustc::traits::misc::can_type_implement_copy;
32 use rustc::ty::{self, layout::VariantIdx, Ty, TyCtxt};
33 use rustc_data_structures::fx::FxHashSet;
34 use rustc_errors::{Applicability, DiagnosticBuilder};
35 use rustc_feature::Stability;
36 use rustc_feature::{deprecated_attributes, AttributeGate, AttributeTemplate, AttributeType};
37 use rustc_hir as hir;
38 use rustc_hir::def::{DefKind, Res};
39 use rustc_hir::def_id::DefId;
40 use rustc_hir::{GenericParamKind, PatKind};
41 use rustc_hir::{HirIdSet, Node};
42 use rustc_span::edition::Edition;
43 use rustc_span::source_map::Spanned;
44 use rustc_span::symbol::{kw, sym, Symbol};
45 use rustc_span::{BytePos, Span};
46 use syntax::ast::{self, Expr};
47 use syntax::attr::{self, HasAttrs};
48 use syntax::print::pprust::{self, expr_to_string};
49 use syntax::tokenstream::{TokenStream, TokenTree};
50 use syntax::visit::FnKind;
51
52 use crate::nonstandard_style::{method_context, MethodLateContext};
53
54 use log::debug;
55
56 // hardwired lints from librustc
57 pub use lint::builtin::*;
58
59 declare_lint! {
60     WHILE_TRUE,
61     Warn,
62     "suggest using `loop { }` instead of `while true { }`"
63 }
64
65 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
66
67 /// Traverse through any amount of parenthesis and return the first non-parens expression.
68 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
69     while let ast::ExprKind::Paren(sub) = &expr.kind {
70         expr = sub;
71     }
72     expr
73 }
74
75 impl EarlyLintPass for WhileTrue {
76     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
77         if let ast::ExprKind::While(cond, ..) = &e.kind {
78             if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
79                 if let ast::LitKind::Bool(true) = lit.kind {
80                     if !lit.span.from_expansion() {
81                         let msg = "denote infinite loops with `loop { ... }`";
82                         let condition_span = cx.sess.source_map().def_span(e.span);
83                         cx.struct_span_lint(WHILE_TRUE, condition_span, msg)
84                             .span_suggestion_short(
85                                 condition_span,
86                                 "use `loop`",
87                                 "loop".to_owned(),
88                                 Applicability::MachineApplicable,
89                             )
90                             .emit();
91                     }
92                 }
93             }
94         }
95     }
96 }
97
98 declare_lint! {
99     BOX_POINTERS,
100     Allow,
101     "use of owned (Box type) heap memory"
102 }
103
104 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
105
106 impl BoxPointers {
107     fn check_heap_type(&self, cx: &LateContext<'_, '_>, span: Span, ty: Ty<'_>) {
108         for leaf_ty in ty.walk() {
109             if leaf_ty.is_box() {
110                 let m = format!("type uses owned (Box type) pointers: {}", ty);
111                 cx.span_lint(BOX_POINTERS, span, &m);
112             }
113         }
114     }
115 }
116
117 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for BoxPointers {
118     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
119         match it.kind {
120             hir::ItemKind::Fn(..)
121             | hir::ItemKind::TyAlias(..)
122             | hir::ItemKind::Enum(..)
123             | hir::ItemKind::Struct(..)
124             | hir::ItemKind::Union(..) => {
125                 let def_id = cx.tcx.hir().local_def_id(it.hir_id);
126                 self.check_heap_type(cx, it.span, cx.tcx.type_of(def_id))
127             }
128             _ => (),
129         }
130
131         // If it's a struct, we also have to check the fields' types
132         match it.kind {
133             hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => {
134                 for struct_field in struct_def.fields() {
135                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
136                     self.check_heap_type(cx, struct_field.span, cx.tcx.type_of(def_id));
137                 }
138             }
139             _ => (),
140         }
141     }
142
143     fn check_expr(&mut self, cx: &LateContext<'_, '_>, e: &hir::Expr<'_>) {
144         let ty = cx.tables.node_type(e.hir_id);
145         self.check_heap_type(cx, e.span, ty);
146     }
147 }
148
149 declare_lint! {
150     NON_SHORTHAND_FIELD_PATTERNS,
151     Warn,
152     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
153 }
154
155 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
156
157 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonShorthandFieldPatterns {
158     fn check_pat(&mut self, cx: &LateContext<'_, '_>, pat: &hir::Pat<'_>) {
159         if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind {
160             let variant = cx
161                 .tables
162                 .pat_ty(pat)
163                 .ty_adt_def()
164                 .expect("struct pattern type is not an ADT")
165                 .variant_of_res(cx.tables.qpath_res(qpath, pat.hir_id));
166             for fieldpat in field_pats {
167                 if fieldpat.is_shorthand {
168                     continue;
169                 }
170                 if fieldpat.span.from_expansion() {
171                     // Don't lint if this is a macro expansion: macro authors
172                     // shouldn't have to worry about this kind of style issue
173                     // (Issue #49588)
174                     continue;
175                 }
176                 if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind {
177                     if cx.tcx.find_field_index(ident, &variant)
178                         == Some(cx.tcx.field_index(fieldpat.hir_id, cx.tables))
179                     {
180                         let mut err = cx.struct_span_lint(
181                             NON_SHORTHAND_FIELD_PATTERNS,
182                             fieldpat.span,
183                             &format!("the `{}:` in this pattern is redundant", ident),
184                         );
185                         let binding = match binding_annot {
186                             hir::BindingAnnotation::Unannotated => None,
187                             hir::BindingAnnotation::Mutable => Some("mut"),
188                             hir::BindingAnnotation::Ref => Some("ref"),
189                             hir::BindingAnnotation::RefMut => Some("ref mut"),
190                         };
191                         let ident = if let Some(binding) = binding {
192                             format!("{} {}", binding, ident)
193                         } else {
194                             ident.to_string()
195                         };
196                         err.span_suggestion(
197                             fieldpat.span,
198                             "use shorthand field pattern",
199                             ident,
200                             Applicability::MachineApplicable,
201                         );
202                         err.emit();
203                     }
204                 }
205             }
206         }
207     }
208 }
209
210 declare_lint! {
211     UNSAFE_CODE,
212     Allow,
213     "usage of `unsafe` code"
214 }
215
216 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
217
218 impl UnsafeCode {
219     fn report_unsafe(&self, cx: &EarlyContext<'_>, span: Span, desc: &'static str) {
220         // This comes from a macro that has `#[allow_internal_unsafe]`.
221         if span.allows_unsafe() {
222             return;
223         }
224
225         cx.span_lint(UNSAFE_CODE, span, desc);
226     }
227 }
228
229 impl EarlyLintPass for UnsafeCode {
230     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
231         if attr.check_name(sym::allow_internal_unsafe) {
232             self.report_unsafe(
233                 cx,
234                 attr.span,
235                 "`allow_internal_unsafe` allows defining \
236                                                macros using unsafe without triggering \
237                                                the `unsafe_code` lint at their call site",
238             );
239         }
240     }
241
242     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
243         if let ast::ExprKind::Block(ref blk, _) = e.kind {
244             // Don't warn about generated blocks; that'll just pollute the output.
245             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
246                 self.report_unsafe(cx, blk.span, "usage of an `unsafe` block");
247             }
248         }
249     }
250
251     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
252         match it.kind {
253             ast::ItemKind::Trait(_, ast::Unsafety::Unsafe, ..) => {
254                 self.report_unsafe(cx, it.span, "declaration of an `unsafe` trait")
255             }
256
257             ast::ItemKind::Impl(ast::Unsafety::Unsafe, ..) => {
258                 self.report_unsafe(cx, it.span, "implementation of an `unsafe` trait")
259             }
260
261             _ => return,
262         }
263     }
264
265     fn check_fn(
266         &mut self,
267         cx: &EarlyContext<'_>,
268         fk: FnKind<'_>,
269         _: &ast::FnDecl,
270         span: Span,
271         _: ast::NodeId,
272     ) {
273         match fk {
274             FnKind::ItemFn(_, ast::FnHeader { unsafety: ast::Unsafety::Unsafe, .. }, ..) => {
275                 self.report_unsafe(cx, span, "declaration of an `unsafe` function")
276             }
277
278             FnKind::Method(_, sig, ..) => {
279                 if sig.header.unsafety == ast::Unsafety::Unsafe {
280                     self.report_unsafe(cx, span, "implementation of an `unsafe` method")
281                 }
282             }
283
284             _ => (),
285         }
286     }
287
288     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, item: &ast::AssocItem) {
289         if let ast::AssocItemKind::Fn(ref sig, None) = item.kind {
290             if sig.header.unsafety == ast::Unsafety::Unsafe {
291                 self.report_unsafe(cx, item.span, "declaration of an `unsafe` method")
292             }
293         }
294     }
295 }
296
297 declare_lint! {
298     pub MISSING_DOCS,
299     Allow,
300     "detects missing documentation for public members",
301     report_in_external_macro
302 }
303
304 pub struct MissingDoc {
305     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
306     doc_hidden_stack: Vec<bool>,
307
308     /// Private traits or trait items that leaked through. Don't check their methods.
309     private_traits: FxHashSet<hir::HirId>,
310 }
311
312 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
313
314 fn has_doc(attr: &ast::Attribute) -> bool {
315     if attr.is_doc_comment() {
316         return true;
317     }
318
319     if !attr.check_name(sym::doc) {
320         return false;
321     }
322
323     if attr.is_value_str() {
324         return true;
325     }
326
327     if let Some(list) = attr.meta_item_list() {
328         for meta in list {
329             if meta.check_name(sym::include) || meta.check_name(sym::hidden) {
330                 return true;
331             }
332         }
333     }
334
335     false
336 }
337
338 impl MissingDoc {
339     pub fn new() -> MissingDoc {
340         MissingDoc { doc_hidden_stack: vec![false], private_traits: FxHashSet::default() }
341     }
342
343     fn doc_hidden(&self) -> bool {
344         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
345     }
346
347     fn check_missing_docs_attrs(
348         &self,
349         cx: &LateContext<'_, '_>,
350         id: Option<hir::HirId>,
351         attrs: &[ast::Attribute],
352         sp: Span,
353         desc: &'static str,
354     ) {
355         // If we're building a test harness, then warning about
356         // documentation is probably not really relevant right now.
357         if cx.sess().opts.test {
358             return;
359         }
360
361         // `#[doc(hidden)]` disables missing_docs check.
362         if self.doc_hidden() {
363             return;
364         }
365
366         // Only check publicly-visible items, using the result from the privacy pass.
367         // It's an option so the crate root can also use this function (it doesn't
368         // have a `NodeId`).
369         if let Some(id) = id {
370             if !cx.access_levels.is_exported(id) {
371                 return;
372             }
373         }
374
375         let has_doc = attrs.iter().any(|a| has_doc(a));
376         if !has_doc {
377             cx.span_lint(
378                 MISSING_DOCS,
379                 cx.tcx.sess.source_map().def_span(sp),
380                 &format!("missing documentation for {}", desc),
381             );
382         }
383     }
384 }
385
386 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingDoc {
387     fn enter_lint_attrs(&mut self, _: &LateContext<'_, '_>, attrs: &[ast::Attribute]) {
388         let doc_hidden = self.doc_hidden()
389             || attrs.iter().any(|attr| {
390                 attr.check_name(sym::doc)
391                     && match attr.meta_item_list() {
392                         None => false,
393                         Some(l) => attr::list_contains_name(&l, sym::hidden),
394                     }
395             });
396         self.doc_hidden_stack.push(doc_hidden);
397     }
398
399     fn exit_lint_attrs(&mut self, _: &LateContext<'_, '_>, _attrs: &[ast::Attribute]) {
400         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
401     }
402
403     fn check_crate(&mut self, cx: &LateContext<'_, '_>, krate: &hir::Crate<'_>) {
404         self.check_missing_docs_attrs(cx, None, &krate.attrs, krate.span, "crate");
405
406         for macro_def in krate.exported_macros {
407             let has_doc = macro_def.attrs.iter().any(|a| has_doc(a));
408             if !has_doc {
409                 cx.span_lint(
410                     MISSING_DOCS,
411                     cx.tcx.sess.source_map().def_span(macro_def.span),
412                     "missing documentation for macro",
413                 );
414             }
415         }
416     }
417
418     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
419         let desc = match it.kind {
420             hir::ItemKind::Fn(..) => "a function",
421             hir::ItemKind::Mod(..) => "a module",
422             hir::ItemKind::Enum(..) => "an enum",
423             hir::ItemKind::Struct(..) => "a struct",
424             hir::ItemKind::Union(..) => "a union",
425             hir::ItemKind::Trait(.., trait_item_refs) => {
426                 // Issue #11592: traits are always considered exported, even when private.
427                 if let hir::VisibilityKind::Inherited = it.vis.node {
428                     self.private_traits.insert(it.hir_id);
429                     for trait_item_ref in trait_item_refs {
430                         self.private_traits.insert(trait_item_ref.id.hir_id);
431                     }
432                     return;
433                 }
434                 "a trait"
435             }
436             hir::ItemKind::TyAlias(..) => "a type alias",
437             hir::ItemKind::Impl(.., Some(ref trait_ref), _, impl_item_refs) => {
438                 // If the trait is private, add the impl items to `private_traits` so they don't get
439                 // reported for missing docs.
440                 let real_trait = trait_ref.path.res.def_id();
441                 if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(real_trait) {
442                     match cx.tcx.hir().find(hir_id) {
443                         Some(Node::Item(item)) => {
444                             if let hir::VisibilityKind::Inherited = item.vis.node {
445                                 for impl_item_ref in impl_item_refs {
446                                     self.private_traits.insert(impl_item_ref.id.hir_id);
447                                 }
448                             }
449                         }
450                         _ => {}
451                     }
452                 }
453                 return;
454             }
455             hir::ItemKind::Const(..) => "a constant",
456             hir::ItemKind::Static(..) => "a static",
457             _ => return,
458         };
459
460         self.check_missing_docs_attrs(cx, Some(it.hir_id), &it.attrs, it.span, desc);
461     }
462
463     fn check_trait_item(&mut self, cx: &LateContext<'_, '_>, trait_item: &hir::TraitItem<'_>) {
464         if self.private_traits.contains(&trait_item.hir_id) {
465             return;
466         }
467
468         let desc = match trait_item.kind {
469             hir::TraitItemKind::Const(..) => "an associated constant",
470             hir::TraitItemKind::Method(..) => "a trait method",
471             hir::TraitItemKind::Type(..) => "an associated type",
472         };
473
474         self.check_missing_docs_attrs(
475             cx,
476             Some(trait_item.hir_id),
477             &trait_item.attrs,
478             trait_item.span,
479             desc,
480         );
481     }
482
483     fn check_impl_item(&mut self, cx: &LateContext<'_, '_>, impl_item: &hir::ImplItem<'_>) {
484         // If the method is an impl for a trait, don't doc.
485         if method_context(cx, impl_item.hir_id) == MethodLateContext::TraitImpl {
486             return;
487         }
488
489         let desc = match impl_item.kind {
490             hir::ImplItemKind::Const(..) => "an associated constant",
491             hir::ImplItemKind::Method(..) => "a method",
492             hir::ImplItemKind::TyAlias(_) => "an associated type",
493             hir::ImplItemKind::OpaqueTy(_) => "an associated `impl Trait` type",
494         };
495         self.check_missing_docs_attrs(
496             cx,
497             Some(impl_item.hir_id),
498             &impl_item.attrs,
499             impl_item.span,
500             desc,
501         );
502     }
503
504     fn check_struct_field(&mut self, cx: &LateContext<'_, '_>, sf: &hir::StructField<'_>) {
505         if !sf.is_positional() {
506             self.check_missing_docs_attrs(cx, Some(sf.hir_id), &sf.attrs, sf.span, "a struct field")
507         }
508     }
509
510     fn check_variant(&mut self, cx: &LateContext<'_, '_>, v: &hir::Variant<'_>) {
511         self.check_missing_docs_attrs(cx, Some(v.id), &v.attrs, v.span, "a variant");
512     }
513 }
514
515 declare_lint! {
516     pub MISSING_COPY_IMPLEMENTATIONS,
517     Allow,
518     "detects potentially-forgotten implementations of `Copy`"
519 }
520
521 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
522
523 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingCopyImplementations {
524     fn check_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::Item<'_>) {
525         if !cx.access_levels.is_reachable(item.hir_id) {
526             return;
527         }
528         let (def, ty) = match item.kind {
529             hir::ItemKind::Struct(_, ref ast_generics) => {
530                 if !ast_generics.params.is_empty() {
531                     return;
532                 }
533                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
534                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
535             }
536             hir::ItemKind::Union(_, ref ast_generics) => {
537                 if !ast_generics.params.is_empty() {
538                     return;
539                 }
540                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
541                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
542             }
543             hir::ItemKind::Enum(_, ref ast_generics) => {
544                 if !ast_generics.params.is_empty() {
545                     return;
546                 }
547                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
548                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
549             }
550             _ => return,
551         };
552         if def.has_dtor(cx.tcx) {
553             return;
554         }
555         let param_env = ty::ParamEnv::empty();
556         if ty.is_copy_modulo_regions(cx.tcx, param_env, item.span) {
557             return;
558         }
559         if can_type_implement_copy(cx.tcx, param_env, ty).is_ok() {
560             cx.span_lint(
561                 MISSING_COPY_IMPLEMENTATIONS,
562                 item.span,
563                 "type could implement `Copy`; consider adding `impl \
564                           Copy`",
565             )
566         }
567     }
568 }
569
570 declare_lint! {
571     MISSING_DEBUG_IMPLEMENTATIONS,
572     Allow,
573     "detects missing implementations of fmt::Debug"
574 }
575
576 #[derive(Default)]
577 pub struct MissingDebugImplementations {
578     impling_types: Option<HirIdSet>,
579 }
580
581 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
582
583 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingDebugImplementations {
584     fn check_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::Item<'_>) {
585         if !cx.access_levels.is_reachable(item.hir_id) {
586             return;
587         }
588
589         match item.kind {
590             hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {}
591             _ => return,
592         }
593
594         let debug = match cx.tcx.get_diagnostic_item(sym::debug_trait) {
595             Some(debug) => debug,
596             None => return,
597         };
598
599         if self.impling_types.is_none() {
600             let mut impls = HirIdSet::default();
601             cx.tcx.for_each_impl(debug, |d| {
602                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
603                     if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(ty_def.did) {
604                         impls.insert(hir_id);
605                     }
606                 }
607             });
608
609             self.impling_types = Some(impls);
610             debug!("{:?}", self.impling_types);
611         }
612
613         if !self.impling_types.as_ref().unwrap().contains(&item.hir_id) {
614             cx.span_lint(
615                 MISSING_DEBUG_IMPLEMENTATIONS,
616                 item.span,
617                 "type does not implement `fmt::Debug`; consider adding `#[derive(Debug)]` \
618                           or a manual implementation",
619             )
620         }
621     }
622 }
623
624 declare_lint! {
625     pub ANONYMOUS_PARAMETERS,
626     Allow,
627     "detects anonymous parameters",
628     @future_incompatible = FutureIncompatibleInfo {
629         reference: "issue #41686 <https://github.com/rust-lang/rust/issues/41686>",
630         edition: Some(Edition::Edition2018),
631     };
632 }
633
634 declare_lint_pass!(
635     /// Checks for use of anonymous parameters (RFC 1685).
636     AnonymousParameters => [ANONYMOUS_PARAMETERS]
637 );
638
639 impl EarlyLintPass for AnonymousParameters {
640     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) {
641         match it.kind {
642             ast::AssocItemKind::Fn(ref sig, _) => {
643                 for arg in sig.decl.inputs.iter() {
644                     match arg.pat.kind {
645                         ast::PatKind::Ident(_, ident, None) => {
646                             if ident.name == kw::Invalid {
647                                 let ty_snip = cx.sess.source_map().span_to_snippet(arg.ty.span);
648
649                                 let (ty_snip, appl) = if let Ok(snip) = ty_snip {
650                                     (snip, Applicability::MachineApplicable)
651                                 } else {
652                                     ("<type>".to_owned(), Applicability::HasPlaceholders)
653                                 };
654
655                                 cx.struct_span_lint(
656                                     ANONYMOUS_PARAMETERS,
657                                     arg.pat.span,
658                                     "anonymous parameters are deprecated and will be \
659                                      removed in the next edition.",
660                                 )
661                                 .span_suggestion(
662                                     arg.pat.span,
663                                     "Try naming the parameter or explicitly \
664                                     ignoring it",
665                                     format!("_: {}", ty_snip),
666                                     appl,
667                                 )
668                                 .emit();
669                             }
670                         }
671                         _ => (),
672                     }
673                 }
674             }
675             _ => (),
676         }
677     }
678 }
679
680 /// Check for use of attributes which have been deprecated.
681 #[derive(Clone)]
682 pub struct DeprecatedAttr {
683     // This is not free to compute, so we want to keep it around, rather than
684     // compute it for every attribute.
685     depr_attrs: Vec<&'static (Symbol, AttributeType, AttributeTemplate, AttributeGate)>,
686 }
687
688 impl_lint_pass!(DeprecatedAttr => []);
689
690 impl DeprecatedAttr {
691     pub fn new() -> DeprecatedAttr {
692         DeprecatedAttr { depr_attrs: deprecated_attributes() }
693     }
694 }
695
696 fn lint_deprecated_attr(
697     cx: &EarlyContext<'_>,
698     attr: &ast::Attribute,
699     msg: &str,
700     suggestion: Option<&str>,
701 ) {
702     cx.struct_span_lint(DEPRECATED, attr.span, &msg)
703         .span_suggestion_short(
704             attr.span,
705             suggestion.unwrap_or("remove this attribute"),
706             String::new(),
707             Applicability::MachineApplicable,
708         )
709         .emit();
710 }
711
712 impl EarlyLintPass for DeprecatedAttr {
713     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
714         for &&(n, _, _, ref g) in &self.depr_attrs {
715             if attr.ident().map(|ident| ident.name) == Some(n) {
716                 if let &AttributeGate::Gated(
717                     Stability::Deprecated(link, suggestion),
718                     ref name,
719                     ref reason,
720                     _,
721                 ) = g
722                 {
723                     let msg =
724                         format!("use of deprecated attribute `{}`: {}. See {}", name, reason, link);
725                     lint_deprecated_attr(cx, attr, &msg, suggestion);
726                 }
727                 return;
728             }
729         }
730         if attr.check_name(sym::no_start) || attr.check_name(sym::crate_id) {
731             let path_str = pprust::path_to_string(&attr.get_normal_item().path);
732             let msg = format!("use of deprecated attribute `{}`: no longer used.", path_str);
733             lint_deprecated_attr(cx, attr, &msg, None);
734         }
735     }
736 }
737
738 declare_lint! {
739     pub UNUSED_DOC_COMMENTS,
740     Warn,
741     "detects doc comments that aren't used by rustdoc"
742 }
743
744 declare_lint_pass!(UnusedDocComment => [UNUSED_DOC_COMMENTS]);
745
746 impl UnusedDocComment {
747     fn warn_if_doc(
748         &self,
749         cx: &EarlyContext<'_>,
750         node_span: Span,
751         node_kind: &str,
752         is_macro_expansion: bool,
753         attrs: &[ast::Attribute],
754     ) {
755         let mut attrs = attrs.into_iter().peekable();
756
757         // Accumulate a single span for sugared doc comments.
758         let mut sugared_span: Option<Span> = None;
759
760         while let Some(attr) = attrs.next() {
761             if attr.is_doc_comment() {
762                 sugared_span = Some(
763                     sugared_span.map_or_else(|| attr.span, |span| span.with_hi(attr.span.hi())),
764                 );
765             }
766
767             if attrs.peek().map(|next_attr| next_attr.is_doc_comment()).unwrap_or_default() {
768                 continue;
769             }
770
771             let span = sugared_span.take().unwrap_or_else(|| attr.span);
772
773             if attr.is_doc_comment() || attr.check_name(sym::doc) {
774                 let mut err = cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, "unused doc comment");
775
776                 err.span_label(
777                     node_span,
778                     format!("rustdoc does not generate documentation for {}", node_kind),
779                 );
780
781                 if is_macro_expansion {
782                     err.help(
783                         "to document an item produced by a macro, \
784                               the macro must produce the documentation as part of its expansion",
785                     );
786                 }
787
788                 err.emit();
789             }
790         }
791     }
792 }
793
794 impl EarlyLintPass for UnusedDocComment {
795     fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
796         if let ast::ItemKind::Mac(..) = item.kind {
797             self.warn_if_doc(cx, item.span, "macro expansions", true, &item.attrs);
798         }
799     }
800
801     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
802         let (kind, is_macro_expansion) = match stmt.kind {
803             ast::StmtKind::Local(..) => ("statements", false),
804             ast::StmtKind::Item(..) => ("inner items", false),
805             ast::StmtKind::Mac(..) => ("macro expansions", true),
806             // expressions will be reported by `check_expr`.
807             ast::StmtKind::Semi(..) | ast::StmtKind::Expr(..) => return,
808         };
809
810         self.warn_if_doc(cx, stmt.span, kind, is_macro_expansion, stmt.kind.attrs());
811     }
812
813     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
814         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
815         self.warn_if_doc(cx, arm_span, "match arms", false, &arm.attrs);
816     }
817
818     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
819         self.warn_if_doc(cx, expr.span, "expressions", false, &expr.attrs);
820     }
821 }
822
823 declare_lint! {
824     NO_MANGLE_CONST_ITEMS,
825     Deny,
826     "const items will not have their symbols exported"
827 }
828
829 declare_lint! {
830     NO_MANGLE_GENERIC_ITEMS,
831     Warn,
832     "generic items must be mangled"
833 }
834
835 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
836
837 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InvalidNoMangleItems {
838     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
839         match it.kind {
840             hir::ItemKind::Fn(.., ref generics, _) => {
841                 if let Some(no_mangle_attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
842                     for param in generics.params {
843                         match param.kind {
844                             GenericParamKind::Lifetime { .. } => {}
845                             GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => {
846                                 let mut err = cx.struct_span_lint(
847                                     NO_MANGLE_GENERIC_ITEMS,
848                                     it.span,
849                                     "functions generic over types or consts must be mangled",
850                                 );
851                                 err.span_suggestion_short(
852                                     no_mangle_attr.span,
853                                     "remove this attribute",
854                                     String::new(),
855                                     // Use of `#[no_mangle]` suggests FFI intent; correct
856                                     // fix may be to monomorphize source by hand
857                                     Applicability::MaybeIncorrect,
858                                 );
859                                 err.emit();
860                                 break;
861                             }
862                         }
863                     }
864                 }
865             }
866             hir::ItemKind::Const(..) => {
867                 if attr::contains_name(&it.attrs, sym::no_mangle) {
868                     // Const items do not refer to a particular location in memory, and therefore
869                     // don't have anything to attach a symbol to
870                     let msg = "const items should never be `#[no_mangle]`";
871                     let mut err = cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg);
872
873                     // account for "pub const" (#45562)
874                     let start = cx
875                         .tcx
876                         .sess
877                         .source_map()
878                         .span_to_snippet(it.span)
879                         .map(|snippet| snippet.find("const").unwrap_or(0))
880                         .unwrap_or(0) as u32;
881                     // `const` is 5 chars
882                     let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
883                     err.span_suggestion(
884                         const_span,
885                         "try a static value",
886                         "pub static".to_owned(),
887                         Applicability::MachineApplicable,
888                     );
889                     err.emit();
890                 }
891             }
892             _ => {}
893         }
894     }
895 }
896
897 declare_lint! {
898     MUTABLE_TRANSMUTES,
899     Deny,
900     "mutating transmuted &mut T from &T may cause undefined behavior"
901 }
902
903 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
904
905 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MutableTransmutes {
906     fn check_expr(&mut self, cx: &LateContext<'_, '_>, expr: &hir::Expr<'_>) {
907         use rustc_target::spec::abi::Abi::RustIntrinsic;
908
909         let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \
910                    consider instead using an UnsafeCell";
911         match get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (&ty1.kind, &ty2.kind)) {
912             Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) => {
913                 if to_mt == hir::Mutability::Mut && from_mt == hir::Mutability::Not {
914                     cx.span_lint(MUTABLE_TRANSMUTES, expr.span, msg);
915                 }
916             }
917             _ => (),
918         }
919
920         fn get_transmute_from_to<'a, 'tcx>(
921             cx: &LateContext<'a, 'tcx>,
922             expr: &hir::Expr<'_>,
923         ) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
924             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
925                 cx.tables.qpath_res(qpath, expr.hir_id)
926             } else {
927                 return None;
928             };
929             if let Res::Def(DefKind::Fn, did) = def {
930                 if !def_id_is_transmute(cx, did) {
931                     return None;
932                 }
933                 let sig = cx.tables.node_type(expr.hir_id).fn_sig(cx.tcx);
934                 let from = sig.inputs().skip_binder()[0];
935                 let to = *sig.output().skip_binder();
936                 return Some((from, to));
937             }
938             None
939         }
940
941         fn def_id_is_transmute(cx: &LateContext<'_, '_>, def_id: DefId) -> bool {
942             cx.tcx.fn_sig(def_id).abi() == RustIntrinsic
943                 && cx.tcx.item_name(def_id) == sym::transmute
944         }
945     }
946 }
947
948 declare_lint! {
949     UNSTABLE_FEATURES,
950     Allow,
951     "enabling unstable features (deprecated. do not use)"
952 }
953
954 declare_lint_pass!(
955     /// Forbids using the `#[feature(...)]` attribute
956     UnstableFeatures => [UNSTABLE_FEATURES]
957 );
958
959 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnstableFeatures {
960     fn check_attribute(&mut self, ctx: &LateContext<'_, '_>, attr: &ast::Attribute) {
961         if attr.check_name(sym::feature) {
962             if let Some(items) = attr.meta_item_list() {
963                 for item in items {
964                     ctx.span_lint(UNSTABLE_FEATURES, item.span(), "unstable feature");
965                 }
966             }
967         }
968     }
969 }
970
971 declare_lint! {
972     pub UNREACHABLE_PUB,
973     Allow,
974     "`pub` items not reachable from crate root"
975 }
976
977 declare_lint_pass!(
978     /// Lint for items marked `pub` that aren't reachable from other crates.
979     UnreachablePub => [UNREACHABLE_PUB]
980 );
981
982 impl UnreachablePub {
983     fn perform_lint(
984         &self,
985         cx: &LateContext<'_, '_>,
986         what: &str,
987         id: hir::HirId,
988         vis: &hir::Visibility<'_>,
989         span: Span,
990         exportable: bool,
991     ) {
992         let mut applicability = Applicability::MachineApplicable;
993         match vis.node {
994             hir::VisibilityKind::Public if !cx.access_levels.is_reachable(id) => {
995                 if span.from_expansion() {
996                     applicability = Applicability::MaybeIncorrect;
997                 }
998                 let def_span = cx.tcx.sess.source_map().def_span(span);
999                 let mut err = cx.struct_span_lint(
1000                     UNREACHABLE_PUB,
1001                     def_span,
1002                     &format!("unreachable `pub` {}", what),
1003                 );
1004                 let replacement = if cx.tcx.features().crate_visibility_modifier {
1005                     "crate"
1006                 } else {
1007                     "pub(crate)"
1008                 }
1009                 .to_owned();
1010
1011                 err.span_suggestion(
1012                     vis.span,
1013                     "consider restricting its visibility",
1014                     replacement,
1015                     applicability,
1016                 );
1017                 if exportable {
1018                     err.help("or consider exporting it for use by other crates");
1019                 }
1020                 err.emit();
1021             }
1022             _ => {}
1023         }
1024     }
1025 }
1026
1027 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnreachablePub {
1028     fn check_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::Item<'_>) {
1029         self.perform_lint(cx, "item", item.hir_id, &item.vis, item.span, true);
1030     }
1031
1032     fn check_foreign_item(
1033         &mut self,
1034         cx: &LateContext<'_, '_>,
1035         foreign_item: &hir::ForeignItem<'tcx>,
1036     ) {
1037         self.perform_lint(
1038             cx,
1039             "item",
1040             foreign_item.hir_id,
1041             &foreign_item.vis,
1042             foreign_item.span,
1043             true,
1044         );
1045     }
1046
1047     fn check_struct_field(&mut self, cx: &LateContext<'_, '_>, field: &hir::StructField<'_>) {
1048         self.perform_lint(cx, "field", field.hir_id, &field.vis, field.span, false);
1049     }
1050
1051     fn check_impl_item(&mut self, cx: &LateContext<'_, '_>, impl_item: &hir::ImplItem<'_>) {
1052         self.perform_lint(cx, "item", impl_item.hir_id, &impl_item.vis, impl_item.span, false);
1053     }
1054 }
1055
1056 declare_lint! {
1057     TYPE_ALIAS_BOUNDS,
1058     Warn,
1059     "bounds in type aliases are not enforced"
1060 }
1061
1062 declare_lint_pass!(
1063     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1064     /// They are relevant when using associated types, but otherwise neither checked
1065     /// at definition site nor enforced at use site.
1066     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1067 );
1068
1069 impl TypeAliasBounds {
1070     fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool {
1071         match *qpath {
1072             hir::QPath::TypeRelative(ref ty, _) => {
1073                 // If this is a type variable, we found a `T::Assoc`.
1074                 match ty.kind {
1075                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => match path.res {
1076                         Res::Def(DefKind::TyParam, _) => true,
1077                         _ => false,
1078                     },
1079                     _ => false,
1080                 }
1081             }
1082             hir::QPath::Resolved(..) => false,
1083         }
1084     }
1085
1086     fn suggest_changing_assoc_types(ty: &hir::Ty<'_>, err: &mut DiagnosticBuilder<'_>) {
1087         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1088         // bound.  Let's see if this type does that.
1089
1090         // We use a HIR visitor to walk the type.
1091         use rustc_hir::intravisit::{self, Visitor};
1092         struct WalkAssocTypes<'a, 'db> {
1093             err: &'a mut DiagnosticBuilder<'db>,
1094         }
1095         impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> {
1096             type Map = Map<'v>;
1097
1098             fn nested_visit_map(&mut self) -> intravisit::NestedVisitorMap<'_, Self::Map> {
1099                 intravisit::NestedVisitorMap::None
1100             }
1101
1102             fn visit_qpath(&mut self, qpath: &'v hir::QPath<'v>, id: hir::HirId, span: Span) {
1103                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1104                     self.err.span_help(
1105                         span,
1106                         "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
1107                          associated types in type aliases",
1108                     );
1109                 }
1110                 intravisit::walk_qpath(self, qpath, id, span)
1111             }
1112         }
1113
1114         // Let's go for a walk!
1115         let mut visitor = WalkAssocTypes { err };
1116         visitor.visit_ty(ty);
1117     }
1118 }
1119
1120 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeAliasBounds {
1121     fn check_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::Item<'_>) {
1122         let (ty, type_alias_generics) = match item.kind {
1123             hir::ItemKind::TyAlias(ref ty, ref generics) => (&*ty, generics),
1124             _ => return,
1125         };
1126         let mut suggested_changing_assoc_types = false;
1127         // There must not be a where clause
1128         if !type_alias_generics.where_clause.predicates.is_empty() {
1129             let spans: Vec<_> = type_alias_generics
1130                 .where_clause
1131                 .predicates
1132                 .iter()
1133                 .map(|pred| pred.span())
1134                 .collect();
1135             let mut err = cx.struct_span_lint(
1136                 TYPE_ALIAS_BOUNDS,
1137                 spans,
1138                 "where clauses are not enforced in type aliases",
1139             );
1140             err.span_suggestion(
1141                 type_alias_generics.where_clause.span_for_predicates_or_empty_place(),
1142                 "the clause will not be checked when the type alias is used, and should be removed",
1143                 String::new(),
1144                 Applicability::MachineApplicable,
1145             );
1146             if !suggested_changing_assoc_types {
1147                 TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1148                 suggested_changing_assoc_types = true;
1149             }
1150             err.emit();
1151         }
1152         // The parameters must not have bounds
1153         for param in type_alias_generics.params.iter() {
1154             let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
1155             let suggestion = spans
1156                 .iter()
1157                 .map(|sp| {
1158                     let start = param.span.between(*sp); // Include the `:` in `T: Bound`.
1159                     (start.to(*sp), String::new())
1160                 })
1161                 .collect();
1162             if !spans.is_empty() {
1163                 let mut err = cx.struct_span_lint(
1164                     TYPE_ALIAS_BOUNDS,
1165                     spans,
1166                     "bounds on generic parameters are not enforced in type aliases",
1167                 );
1168                 let msg = "the bound will not be checked when the type alias is used, \
1169                            and should be removed";
1170                 err.multipart_suggestion(&msg, suggestion, Applicability::MachineApplicable);
1171                 if !suggested_changing_assoc_types {
1172                     TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1173                     suggested_changing_assoc_types = true;
1174                 }
1175                 err.emit();
1176             }
1177         }
1178     }
1179 }
1180
1181 declare_lint_pass!(
1182     /// Lint constants that are erroneous.
1183     /// Without this lint, we might not get any diagnostic if the constant is
1184     /// unused within this crate, even though downstream crates can't use it
1185     /// without producing an error.
1186     UnusedBrokenConst => []
1187 );
1188
1189 fn check_const(cx: &LateContext<'_, '_>, body_id: hir::BodyId) {
1190     let def_id = cx.tcx.hir().body_owner_def_id(body_id);
1191     // trigger the query once for all constants since that will already report the errors
1192     // FIXME: Use ensure here
1193     let _ = cx.tcx.const_eval_poly(def_id);
1194 }
1195
1196 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedBrokenConst {
1197     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
1198         match it.kind {
1199             hir::ItemKind::Const(_, body_id) => {
1200                 check_const(cx, body_id);
1201             }
1202             hir::ItemKind::Static(_, _, body_id) => {
1203                 check_const(cx, body_id);
1204             }
1205             _ => {}
1206         }
1207     }
1208 }
1209
1210 declare_lint! {
1211     TRIVIAL_BOUNDS,
1212     Warn,
1213     "these bounds don't depend on an type parameters"
1214 }
1215
1216 declare_lint_pass!(
1217     /// Lint for trait and lifetime bounds that don't depend on type parameters
1218     /// which either do nothing, or stop the item from being used.
1219     TrivialConstraints => [TRIVIAL_BOUNDS]
1220 );
1221
1222 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TrivialConstraints {
1223     fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx hir::Item<'tcx>) {
1224         use rustc::ty::fold::TypeFoldable;
1225         use rustc::ty::Predicate::*;
1226
1227         if cx.tcx.features().trivial_bounds {
1228             let def_id = cx.tcx.hir().local_def_id(item.hir_id);
1229             let predicates = cx.tcx.predicates_of(def_id);
1230             for &(predicate, span) in predicates.predicates {
1231                 let predicate_kind_name = match predicate {
1232                     Trait(..) => "Trait",
1233                     TypeOutlives(..) |
1234                     RegionOutlives(..) => "Lifetime",
1235
1236                     // Ignore projections, as they can only be global
1237                     // if the trait bound is global
1238                     Projection(..) |
1239                     // Ignore bounds that a user can't type
1240                     WellFormed(..) |
1241                     ObjectSafe(..) |
1242                     ClosureKind(..) |
1243                     Subtype(..) |
1244                     ConstEvaluatable(..) => continue,
1245                 };
1246                 if predicate.is_global() {
1247                     cx.span_lint(
1248                         TRIVIAL_BOUNDS,
1249                         span,
1250                         &format!(
1251                             "{} bound {} does not depend on any type \
1252                                 or lifetime parameters",
1253                             predicate_kind_name, predicate
1254                         ),
1255                     );
1256                 }
1257             }
1258         }
1259     }
1260 }
1261
1262 declare_lint_pass!(
1263     /// Does nothing as a lint pass, but registers some `Lint`s
1264     /// which are used by other parts of the compiler.
1265     SoftLints => [
1266         WHILE_TRUE,
1267         BOX_POINTERS,
1268         NON_SHORTHAND_FIELD_PATTERNS,
1269         UNSAFE_CODE,
1270         MISSING_DOCS,
1271         MISSING_COPY_IMPLEMENTATIONS,
1272         MISSING_DEBUG_IMPLEMENTATIONS,
1273         ANONYMOUS_PARAMETERS,
1274         UNUSED_DOC_COMMENTS,
1275         NO_MANGLE_CONST_ITEMS,
1276         NO_MANGLE_GENERIC_ITEMS,
1277         MUTABLE_TRANSMUTES,
1278         UNSTABLE_FEATURES,
1279         UNREACHABLE_PUB,
1280         TYPE_ALIAS_BOUNDS,
1281         TRIVIAL_BOUNDS
1282     ]
1283 );
1284
1285 declare_lint! {
1286     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1287     Warn,
1288     "`...` range patterns are deprecated"
1289 }
1290
1291 #[derive(Default)]
1292 pub struct EllipsisInclusiveRangePatterns {
1293     /// If `Some(_)`, suppress all subsequent pattern
1294     /// warnings for better diagnostics.
1295     node_id: Option<ast::NodeId>,
1296 }
1297
1298 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1299
1300 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1301     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1302         if self.node_id.is_some() {
1303             // Don't recursively warn about patterns inside range endpoints.
1304             return;
1305         }
1306
1307         use self::ast::{PatKind, RangeEnd, RangeSyntax::DotDotDot};
1308
1309         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1310         /// corresponding to the ellipsis.
1311         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> {
1312             match &pat.kind {
1313                 PatKind::Range(
1314                     a,
1315                     Some(b),
1316                     Spanned { span, node: RangeEnd::Included(DotDotDot) },
1317                 ) => Some((a.as_deref(), b, *span)),
1318                 _ => None,
1319             }
1320         }
1321
1322         let (parenthesise, endpoints) = match &pat.kind {
1323             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1324             _ => (false, matches_ellipsis_pat(pat)),
1325         };
1326
1327         if let Some((start, end, join)) = endpoints {
1328             let msg = "`...` range patterns are deprecated";
1329             let suggestion = "use `..=` for an inclusive range";
1330             if parenthesise {
1331                 self.node_id = Some(pat.id);
1332                 let end = expr_to_string(&end);
1333                 let replace = match start {
1334                     Some(start) => format!("&({}..={})", expr_to_string(&start), end),
1335                     None => format!("&(..={})", end),
1336                 };
1337                 let mut err = cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, msg);
1338                 err.span_suggestion(
1339                     pat.span,
1340                     suggestion,
1341                     replace,
1342                     Applicability::MachineApplicable,
1343                 );
1344                 err.emit();
1345             } else {
1346                 let mut err = cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, msg);
1347                 err.span_suggestion_short(
1348                     join,
1349                     suggestion,
1350                     "..=".to_owned(),
1351                     Applicability::MachineApplicable,
1352                 );
1353                 err.emit();
1354             };
1355         }
1356     }
1357
1358     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1359         if let Some(node_id) = self.node_id {
1360             if pat.id == node_id {
1361                 self.node_id = None
1362             }
1363         }
1364     }
1365 }
1366
1367 declare_lint! {
1368     UNNAMEABLE_TEST_ITEMS,
1369     Warn,
1370     "detects an item that cannot be named being marked as `#[test_case]`",
1371     report_in_external_macro
1372 }
1373
1374 pub struct UnnameableTestItems {
1375     boundary: hir::HirId, // HirId of the item under which things are not nameable
1376     items_nameable: bool,
1377 }
1378
1379 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1380
1381 impl UnnameableTestItems {
1382     pub fn new() -> Self {
1383         Self { boundary: hir::DUMMY_HIR_ID, items_nameable: true }
1384     }
1385 }
1386
1387 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnnameableTestItems {
1388     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
1389         if self.items_nameable {
1390             if let hir::ItemKind::Mod(..) = it.kind {
1391             } else {
1392                 self.items_nameable = false;
1393                 self.boundary = it.hir_id;
1394             }
1395             return;
1396         }
1397
1398         if let Some(attr) = attr::find_by_name(&it.attrs, sym::rustc_test_marker) {
1399             cx.struct_span_lint(UNNAMEABLE_TEST_ITEMS, attr.span, "cannot test inner items").emit();
1400         }
1401     }
1402
1403     fn check_item_post(&mut self, _cx: &LateContext<'_, '_>, it: &hir::Item<'_>) {
1404         if !self.items_nameable && self.boundary == it.hir_id {
1405             self.items_nameable = true;
1406         }
1407     }
1408 }
1409
1410 declare_lint! {
1411     pub KEYWORD_IDENTS,
1412     Allow,
1413     "detects edition keywords being used as an identifier",
1414     @future_incompatible = FutureIncompatibleInfo {
1415         reference: "issue #49716 <https://github.com/rust-lang/rust/issues/49716>",
1416         edition: Some(Edition::Edition2018),
1417     };
1418 }
1419
1420 declare_lint_pass!(
1421     /// Check for uses of edition keywords used as an identifier.
1422     KeywordIdents => [KEYWORD_IDENTS]
1423 );
1424
1425 struct UnderMacro(bool);
1426
1427 impl KeywordIdents {
1428     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1429         for tt in tokens.into_trees() {
1430             match tt {
1431                 // Only report non-raw idents.
1432                 TokenTree::Token(token) => {
1433                     if let Some((ident, false)) = token.ident() {
1434                         self.check_ident_token(cx, UnderMacro(true), ident);
1435                     }
1436                 }
1437                 TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts),
1438             }
1439         }
1440     }
1441
1442     fn check_ident_token(
1443         &mut self,
1444         cx: &EarlyContext<'_>,
1445         UnderMacro(under_macro): UnderMacro,
1446         ident: ast::Ident,
1447     ) {
1448         let next_edition = match cx.sess.edition() {
1449             Edition::Edition2015 => {
1450                 match ident.name {
1451                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1452
1453                     // rust-lang/rust#56327: Conservatively do not
1454                     // attempt to report occurrences of `dyn` within
1455                     // macro definitions or invocations, because `dyn`
1456                     // can legitimately occur as a contextual keyword
1457                     // in 2015 code denoting its 2018 meaning, and we
1458                     // do not want rustfix to inject bugs into working
1459                     // code by rewriting such occurrences.
1460                     //
1461                     // But if we see `dyn` outside of a macro, we know
1462                     // its precise role in the parsed AST and thus are
1463                     // assured this is truly an attempt to use it as
1464                     // an identifier.
1465                     kw::Dyn if !under_macro => Edition::Edition2018,
1466
1467                     _ => return,
1468                 }
1469             }
1470
1471             // There are no new keywords yet for the 2018 edition and beyond.
1472             _ => return,
1473         };
1474
1475         // Don't lint `r#foo`.
1476         if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1477             return;
1478         }
1479
1480         let mut lint = cx.struct_span_lint(
1481             KEYWORD_IDENTS,
1482             ident.span,
1483             &format!("`{}` is a keyword in the {} edition", ident, next_edition),
1484         );
1485         lint.span_suggestion(
1486             ident.span,
1487             "you can use a raw identifier to stay compatible",
1488             format!("r#{}", ident),
1489             Applicability::MachineApplicable,
1490         );
1491         lint.emit()
1492     }
1493 }
1494
1495 impl EarlyLintPass for KeywordIdents {
1496     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
1497         self.check_tokens(cx, mac_def.body.inner_tokens());
1498     }
1499     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::Mac) {
1500         self.check_tokens(cx, mac.args.inner_tokens());
1501     }
1502     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: ast::Ident) {
1503         self.check_ident_token(cx, UnderMacro(false), ident);
1504     }
1505 }
1506
1507 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1508
1509 impl ExplicitOutlivesRequirements {
1510     fn lifetimes_outliving_lifetime<'tcx>(
1511         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1512         index: u32,
1513     ) -> Vec<ty::Region<'tcx>> {
1514         inferred_outlives
1515             .iter()
1516             .filter_map(|(pred, _)| match pred {
1517                 ty::Predicate::RegionOutlives(outlives) => {
1518                     let outlives = outlives.skip_binder();
1519                     match outlives.0 {
1520                         ty::ReEarlyBound(ebr) if ebr.index == index => Some(outlives.1),
1521                         _ => None,
1522                     }
1523                 }
1524                 _ => None,
1525             })
1526             .collect()
1527     }
1528
1529     fn lifetimes_outliving_type<'tcx>(
1530         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1531         index: u32,
1532     ) -> Vec<ty::Region<'tcx>> {
1533         inferred_outlives
1534             .iter()
1535             .filter_map(|(pred, _)| match pred {
1536                 ty::Predicate::TypeOutlives(outlives) => {
1537                     let outlives = outlives.skip_binder();
1538                     outlives.0.is_param(index).then_some(outlives.1)
1539                 }
1540                 _ => None,
1541             })
1542             .collect()
1543     }
1544
1545     fn collect_outlived_lifetimes<'tcx>(
1546         &self,
1547         param: &'tcx hir::GenericParam<'tcx>,
1548         tcx: TyCtxt<'tcx>,
1549         inferred_outlives: &'tcx [(ty::Predicate<'tcx>, Span)],
1550         ty_generics: &'tcx ty::Generics,
1551     ) -> Vec<ty::Region<'tcx>> {
1552         let index = ty_generics.param_def_id_to_index[&tcx.hir().local_def_id(param.hir_id)];
1553
1554         match param.kind {
1555             hir::GenericParamKind::Lifetime { .. } => {
1556                 Self::lifetimes_outliving_lifetime(inferred_outlives, index)
1557             }
1558             hir::GenericParamKind::Type { .. } => {
1559                 Self::lifetimes_outliving_type(inferred_outlives, index)
1560             }
1561             hir::GenericParamKind::Const { .. } => Vec::new(),
1562         }
1563     }
1564
1565     fn collect_outlives_bound_spans<'tcx>(
1566         &self,
1567         tcx: TyCtxt<'tcx>,
1568         bounds: &hir::GenericBounds<'_>,
1569         inferred_outlives: &[ty::Region<'tcx>],
1570         infer_static: bool,
1571     ) -> Vec<(usize, Span)> {
1572         use rustc::middle::resolve_lifetime::Region;
1573
1574         bounds
1575             .iter()
1576             .enumerate()
1577             .filter_map(|(i, bound)| {
1578                 if let hir::GenericBound::Outlives(lifetime) = bound {
1579                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
1580                         Some(Region::Static) if infer_static => inferred_outlives
1581                             .iter()
1582                             .any(|r| if let ty::ReStatic = r { true } else { false }),
1583                         Some(Region::EarlyBound(index, ..)) => inferred_outlives.iter().any(|r| {
1584                             if let ty::ReEarlyBound(ebr) = r { ebr.index == index } else { false }
1585                         }),
1586                         _ => false,
1587                     };
1588                     is_inferred.then_some((i, bound.span()))
1589                 } else {
1590                     None
1591                 }
1592             })
1593             .collect()
1594     }
1595
1596     fn consolidate_outlives_bound_spans(
1597         &self,
1598         lo: Span,
1599         bounds: &hir::GenericBounds<'_>,
1600         bound_spans: Vec<(usize, Span)>,
1601     ) -> Vec<Span> {
1602         if bounds.is_empty() {
1603             return Vec::new();
1604         }
1605         if bound_spans.len() == bounds.len() {
1606             let (_, last_bound_span) = bound_spans[bound_spans.len() - 1];
1607             // If all bounds are inferable, we want to delete the colon, so
1608             // start from just after the parameter (span passed as argument)
1609             vec![lo.to(last_bound_span)]
1610         } else {
1611             let mut merged = Vec::new();
1612             let mut last_merged_i = None;
1613
1614             let mut from_start = true;
1615             for (i, bound_span) in bound_spans {
1616                 match last_merged_i {
1617                     // If the first bound is inferable, our span should also eat the leading `+`.
1618                     None if i == 0 => {
1619                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
1620                         last_merged_i = Some(0);
1621                     }
1622                     // If consecutive bounds are inferable, merge their spans
1623                     Some(h) if i == h + 1 => {
1624                         if let Some(tail) = merged.last_mut() {
1625                             // Also eat the trailing `+` if the first
1626                             // more-than-one bound is inferable
1627                             let to_span = if from_start && i < bounds.len() {
1628                                 bounds[i + 1].span().shrink_to_lo()
1629                             } else {
1630                                 bound_span
1631                             };
1632                             *tail = tail.to(to_span);
1633                             last_merged_i = Some(i);
1634                         } else {
1635                             bug!("another bound-span visited earlier");
1636                         }
1637                     }
1638                     _ => {
1639                         // When we find a non-inferable bound, subsequent inferable bounds
1640                         // won't be consecutive from the start (and we'll eat the leading
1641                         // `+` rather than the trailing one)
1642                         from_start = false;
1643                         merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span));
1644                         last_merged_i = Some(i);
1645                     }
1646                 }
1647             }
1648             merged
1649         }
1650     }
1651 }
1652
1653 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ExplicitOutlivesRequirements {
1654     fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx hir::Item<'_>) {
1655         use rustc::middle::resolve_lifetime::Region;
1656
1657         let infer_static = cx.tcx.features().infer_static_outlives_requirements;
1658         let def_id = cx.tcx.hir().local_def_id(item.hir_id);
1659         if let hir::ItemKind::Struct(_, ref hir_generics)
1660         | hir::ItemKind::Enum(_, ref hir_generics)
1661         | hir::ItemKind::Union(_, ref hir_generics) = item.kind
1662         {
1663             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
1664             if inferred_outlives.is_empty() {
1665                 return;
1666             }
1667
1668             let ty_generics = cx.tcx.generics_of(def_id);
1669
1670             let mut bound_count = 0;
1671             let mut lint_spans = Vec::new();
1672
1673             for param in hir_generics.params {
1674                 let has_lifetime_bounds = param.bounds.iter().any(|bound| {
1675                     if let hir::GenericBound::Outlives(_) = bound { true } else { false }
1676                 });
1677                 if !has_lifetime_bounds {
1678                     continue;
1679                 }
1680
1681                 let relevant_lifetimes =
1682                     self.collect_outlived_lifetimes(param, cx.tcx, inferred_outlives, ty_generics);
1683                 if relevant_lifetimes.is_empty() {
1684                     continue;
1685                 }
1686
1687                 let bound_spans = self.collect_outlives_bound_spans(
1688                     cx.tcx,
1689                     &param.bounds,
1690                     &relevant_lifetimes,
1691                     infer_static,
1692                 );
1693                 bound_count += bound_spans.len();
1694                 lint_spans.extend(self.consolidate_outlives_bound_spans(
1695                     param.span.shrink_to_hi(),
1696                     &param.bounds,
1697                     bound_spans,
1698                 ));
1699             }
1700
1701             let mut where_lint_spans = Vec::new();
1702             let mut dropped_predicate_count = 0;
1703             let num_predicates = hir_generics.where_clause.predicates.len();
1704             for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() {
1705                 let (relevant_lifetimes, bounds, span) = match where_predicate {
1706                     hir::WherePredicate::RegionPredicate(predicate) => {
1707                         if let Some(Region::EarlyBound(index, ..)) =
1708                             cx.tcx.named_region(predicate.lifetime.hir_id)
1709                         {
1710                             (
1711                                 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
1712                                 &predicate.bounds,
1713                                 predicate.span,
1714                             )
1715                         } else {
1716                             continue;
1717                         }
1718                     }
1719                     hir::WherePredicate::BoundPredicate(predicate) => {
1720                         // FIXME we can also infer bounds on associated types,
1721                         // and should check for them here.
1722                         match predicate.bounded_ty.kind {
1723                             hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1724                                 if let Res::Def(DefKind::TyParam, def_id) = path.res {
1725                                     let index = ty_generics.param_def_id_to_index[&def_id];
1726                                     (
1727                                         Self::lifetimes_outliving_type(inferred_outlives, index),
1728                                         &predicate.bounds,
1729                                         predicate.span,
1730                                     )
1731                                 } else {
1732                                     continue;
1733                                 }
1734                             }
1735                             _ => {
1736                                 continue;
1737                             }
1738                         }
1739                     }
1740                     _ => continue,
1741                 };
1742                 if relevant_lifetimes.is_empty() {
1743                     continue;
1744                 }
1745
1746                 let bound_spans = self.collect_outlives_bound_spans(
1747                     cx.tcx,
1748                     bounds,
1749                     &relevant_lifetimes,
1750                     infer_static,
1751                 );
1752                 bound_count += bound_spans.len();
1753
1754                 let drop_predicate = bound_spans.len() == bounds.len();
1755                 if drop_predicate {
1756                     dropped_predicate_count += 1;
1757                 }
1758
1759                 // If all the bounds on a predicate were inferable and there are
1760                 // further predicates, we want to eat the trailing comma.
1761                 if drop_predicate && i + 1 < num_predicates {
1762                     let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span();
1763                     where_lint_spans.push(span.to(next_predicate_span.shrink_to_lo()));
1764                 } else {
1765                     where_lint_spans.extend(self.consolidate_outlives_bound_spans(
1766                         span.shrink_to_lo(),
1767                         bounds,
1768                         bound_spans,
1769                     ));
1770                 }
1771             }
1772
1773             // If all predicates are inferable, drop the entire clause
1774             // (including the `where`)
1775             if num_predicates > 0 && dropped_predicate_count == num_predicates {
1776                 let where_span = hir_generics
1777                     .where_clause
1778                     .span()
1779                     .expect("span of (nonempty) where clause should exist");
1780                 // Extend the where clause back to the closing `>` of the
1781                 // generics, except for tuple struct, which have the `where`
1782                 // after the fields of the struct.
1783                 let full_where_span =
1784                     if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind {
1785                         where_span
1786                     } else {
1787                         hir_generics.span.shrink_to_hi().to(where_span)
1788                     };
1789                 lint_spans.push(full_where_span);
1790             } else {
1791                 lint_spans.extend(where_lint_spans);
1792             }
1793
1794             if !lint_spans.is_empty() {
1795                 let mut err = cx.struct_span_lint(
1796                     EXPLICIT_OUTLIVES_REQUIREMENTS,
1797                     lint_spans.clone(),
1798                     "outlives requirements can be inferred",
1799                 );
1800                 err.multipart_suggestion(
1801                     if bound_count == 1 { "remove this bound" } else { "remove these bounds" },
1802                     lint_spans.into_iter().map(|span| (span, "".to_owned())).collect::<Vec<_>>(),
1803                     Applicability::MachineApplicable,
1804                 );
1805                 err.emit();
1806             }
1807         }
1808     }
1809 }
1810
1811 declare_lint! {
1812     pub INCOMPLETE_FEATURES,
1813     Warn,
1814     "incomplete features that may function improperly in some or all cases"
1815 }
1816
1817 declare_lint_pass!(
1818     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `feature_gate.rs`.
1819     IncompleteFeatures => [INCOMPLETE_FEATURES]
1820 );
1821
1822 impl EarlyLintPass for IncompleteFeatures {
1823     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
1824         let features = cx.sess.features_untracked();
1825         features
1826             .declared_lang_features
1827             .iter()
1828             .map(|(name, span, _)| (name, span))
1829             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
1830             .filter(|(name, _)| rustc_feature::INCOMPLETE_FEATURES.iter().any(|f| name == &f))
1831             .for_each(|(name, &span)| {
1832                 cx.struct_span_lint(
1833                     INCOMPLETE_FEATURES,
1834                     span,
1835                     &format!(
1836                         "the feature `{}` is incomplete and may cause the compiler to crash",
1837                         name,
1838                     ),
1839                 )
1840                 .emit();
1841             });
1842     }
1843 }
1844
1845 declare_lint! {
1846     pub INVALID_VALUE,
1847     Warn,
1848     "an invalid value is being created (such as a NULL reference)"
1849 }
1850
1851 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
1852
1853 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InvalidValue {
1854     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &hir::Expr<'_>) {
1855         #[derive(Debug, Copy, Clone, PartialEq)]
1856         enum InitKind {
1857             Zeroed,
1858             Uninit,
1859         };
1860
1861         /// Information about why a type cannot be initialized this way.
1862         /// Contains an error message and optionally a span to point at.
1863         type InitError = (String, Option<Span>);
1864
1865         /// Test if this constant is all-0.
1866         fn is_zero(expr: &hir::Expr<'_>) -> bool {
1867             use hir::ExprKind::*;
1868             use syntax::ast::LitKind::*;
1869             match &expr.kind {
1870                 Lit(lit) => {
1871                     if let Int(i, _) = lit.node {
1872                         i == 0
1873                     } else {
1874                         false
1875                     }
1876                 }
1877                 Tup(tup) => tup.iter().all(is_zero),
1878                 _ => false,
1879             }
1880         }
1881
1882         /// Determine if this expression is a "dangerous initialization".
1883         fn is_dangerous_init(cx: &LateContext<'_, '_>, expr: &hir::Expr<'_>) -> Option<InitKind> {
1884             // `transmute` is inside an anonymous module (the `extern` block?);
1885             // `Invalid` represents the empty string and matches that.
1886             // FIXME(#66075): use diagnostic items.  Somehow, that does not seem to work
1887             // on intrinsics right now.
1888             const TRANSMUTE_PATH: &[Symbol] =
1889                 &[sym::core, sym::intrinsics, kw::Invalid, sym::transmute];
1890
1891             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
1892                 // Find calls to `mem::{uninitialized,zeroed}` methods.
1893                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
1894                     let def_id = cx.tables.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
1895
1896                     if cx.tcx.is_diagnostic_item(sym::mem_zeroed, def_id) {
1897                         return Some(InitKind::Zeroed);
1898                     } else if cx.tcx.is_diagnostic_item(sym::mem_uninitialized, def_id) {
1899                         return Some(InitKind::Uninit);
1900                     } else if cx.match_def_path(def_id, TRANSMUTE_PATH) {
1901                         if is_zero(&args[0]) {
1902                             return Some(InitKind::Zeroed);
1903                         }
1904                     }
1905                 }
1906             } else if let hir::ExprKind::MethodCall(_, _, ref args) = expr.kind {
1907                 // Find problematic calls to `MaybeUninit::assume_init`.
1908                 let def_id = cx.tables.type_dependent_def_id(expr.hir_id)?;
1909                 if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) {
1910                     // This is a call to *some* method named `assume_init`.
1911                     // See if the `self` parameter is one of the dangerous constructors.
1912                     if let hir::ExprKind::Call(ref path_expr, _) = args[0].kind {
1913                         if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
1914                             let def_id =
1915                                 cx.tables.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
1916
1917                             if cx.tcx.is_diagnostic_item(sym::maybe_uninit_zeroed, def_id) {
1918                                 return Some(InitKind::Zeroed);
1919                             } else if cx.tcx.is_diagnostic_item(sym::maybe_uninit_uninit, def_id) {
1920                                 return Some(InitKind::Uninit);
1921                             }
1922                         }
1923                     }
1924                 }
1925             }
1926
1927             None
1928         }
1929
1930         /// Return `Some` only if we are sure this type does *not*
1931         /// allow zero initialization.
1932         fn ty_find_init_error<'tcx>(
1933             tcx: TyCtxt<'tcx>,
1934             ty: Ty<'tcx>,
1935             init: InitKind,
1936         ) -> Option<InitError> {
1937             use rustc::ty::TyKind::*;
1938             match ty.kind {
1939                 // Primitive types that don't like 0 as a value.
1940                 Ref(..) => Some((format!("References must be non-null"), None)),
1941                 Adt(..) if ty.is_box() => Some((format!("`Box` must be non-null"), None)),
1942                 FnPtr(..) => Some((format!("Function pointers must be non-null"), None)),
1943                 Never => Some((format!("The never type (`!`) has no valid value"), None)),
1944                 RawPtr(tm) if matches!(tm.ty.kind, Dynamic(..)) =>
1945                 // raw ptr to dyn Trait
1946                 {
1947                     Some((format!("The vtable of a wide raw pointer must be non-null"), None))
1948                 }
1949                 // Primitive types with other constraints.
1950                 Bool if init == InitKind::Uninit => {
1951                     Some((format!("Booleans must be `true` or `false`"), None))
1952                 }
1953                 Char if init == InitKind::Uninit => {
1954                     Some((format!("Characters must be a valid unicode codepoint"), None))
1955                 }
1956                 // Recurse and checks for some compound types.
1957                 Adt(adt_def, substs) if !adt_def.is_union() => {
1958                     // First check f this ADT has a layout attribute (like `NonNull` and friends).
1959                     use std::ops::Bound;
1960                     match tcx.layout_scalar_valid_range(adt_def.did) {
1961                         // We exploit here that `layout_scalar_valid_range` will never
1962                         // return `Bound::Excluded`.  (And we have tests checking that we
1963                         // handle the attribute correctly.)
1964                         (Bound::Included(lo), _) if lo > 0 => {
1965                             return Some((format!("{} must be non-null", ty), None));
1966                         }
1967                         (Bound::Included(_), _) | (_, Bound::Included(_))
1968                             if init == InitKind::Uninit =>
1969                         {
1970                             return Some((
1971                                 format!("{} must be initialized inside its custom valid range", ty),
1972                                 None,
1973                             ));
1974                         }
1975                         _ => {}
1976                     }
1977                     // Now, recurse.
1978                     match adt_def.variants.len() {
1979                         0 => Some((format!("0-variant enums have no valid value"), None)),
1980                         1 => {
1981                             // Struct, or enum with exactly one variant.
1982                             // Proceed recursively, check all fields.
1983                             let variant = &adt_def.variants[VariantIdx::from_u32(0)];
1984                             variant.fields.iter().find_map(|field| {
1985                                 ty_find_init_error(tcx, field.ty(tcx, substs), init).map(
1986                                     |(mut msg, span)| {
1987                                         if span.is_none() {
1988                                             // Point to this field, should be helpful for figuring
1989                                             // out where the source of the error is.
1990                                             let span = tcx.def_span(field.did);
1991                                             write!(
1992                                                 &mut msg,
1993                                                 " (in this {} field)",
1994                                                 adt_def.descr()
1995                                             )
1996                                             .unwrap();
1997                                             (msg, Some(span))
1998                                         } else {
1999                                             // Just forward.
2000                                             (msg, span)
2001                                         }
2002                                     },
2003                                 )
2004                             })
2005                         }
2006                         // Multi-variant enums are tricky: if all but one variant are
2007                         // uninhabited, we might actually do layout like for a single-variant
2008                         // enum, and then even leaving them uninitialized could be okay.
2009                         _ => None, // Conservative fallback for multi-variant enum.
2010                     }
2011                 }
2012                 Tuple(..) => {
2013                     // Proceed recursively, check all fields.
2014                     ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init))
2015                 }
2016                 // Conservative fallback.
2017                 _ => None,
2018             }
2019         }
2020
2021         if let Some(init) = is_dangerous_init(cx, expr) {
2022             // This conjures an instance of a type out of nothing,
2023             // using zeroed or uninitialized memory.
2024             // We are extremely conservative with what we warn about.
2025             let conjured_ty = cx.tables.expr_ty(expr);
2026             if let Some((msg, span)) = ty_find_init_error(cx.tcx, conjured_ty, init) {
2027                 let mut err = cx.struct_span_lint(
2028                     INVALID_VALUE,
2029                     expr.span,
2030                     &format!(
2031                         "the type `{}` does not permit {}",
2032                         conjured_ty,
2033                         match init {
2034                             InitKind::Zeroed => "zero-initialization",
2035                             InitKind::Uninit => "being left uninitialized",
2036                         },
2037                     ),
2038                 );
2039                 err.span_label(expr.span, "this code causes undefined behavior when executed");
2040                 err.span_label(
2041                     expr.span,
2042                     "help: use `MaybeUninit<T>` instead, \
2043                     and only call `assume_init` after initialization is done",
2044                 );
2045                 if let Some(span) = span {
2046                     err.span_note(span, &msg);
2047                 } else {
2048                     err.note(&msg);
2049                 }
2050                 err.emit();
2051             }
2052         }
2053     }
2054 }