]> git.lizzy.rs Git - rust.git/blob - src/librustc_lint/builtin.rs
Rename `Stmt.node` to `Stmt.kind`
[rust.git] / src / librustc_lint / builtin.rs
1 //! Lints in the Rust compiler.
2 //!
3 //! This contains lints which can feasibly be implemented as their own
4 //! AST visitor. Also see `rustc::lint::builtin`, which contains the
5 //! definitions of lints that are emitted directly inside the main
6 //! compiler.
7 //!
8 //! To add a new lint to rustc, declare it here using `declare_lint!()`.
9 //! Then add code to emit the new lint in the appropriate circumstances.
10 //! You can do that in an existing `LintPass` if it makes sense, or in a
11 //! new `LintPass`, or using `Session::add_lint` elsewhere in the
12 //! compiler. Only do the latter if the check can't be written cleanly as a
13 //! `LintPass` (also, note that such lints will need to be defined in
14 //! `rustc::lint::builtin`, not here).
15 //!
16 //! If you define a new `EarlyLintPass`, you will also need to add it to the
17 //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in
18 //! `lib.rs`. Use the former for unit-like structs and the latter for structs
19 //! with a `pub fn new()`.
20 //!
21 //! If you define a new `LateLintPass`, you will also need to add it to the
22 //! `late_lint_methods!` invocation in `lib.rs`.
23
24 use std::fmt::Write;
25
26 use rustc::hir::def::{Res, DefKind};
27 use rustc::hir::def_id::{DefId, LOCAL_CRATE};
28 use rustc::ty::{self, Ty, TyCtxt, layout::VariantIdx};
29 use rustc::{lint, util};
30 use hir::Node;
31 use util::nodemap::HirIdSet;
32 use lint::{LateContext, LintContext, LintArray};
33 use lint::{LintPass, LateLintPass, EarlyLintPass, EarlyContext};
34
35 use rustc::util::nodemap::FxHashSet;
36
37 use syntax::tokenstream::{TokenTree, TokenStream};
38 use syntax::ast::{self, Expr};
39 use syntax::ptr::P;
40 use syntax::attr::{self, HasAttrs, AttributeTemplate};
41 use syntax::source_map::Spanned;
42 use syntax::edition::Edition;
43 use syntax::feature_gate::{self, AttributeGate, AttributeType};
44 use syntax::feature_gate::{Stability, deprecated_attributes};
45 use syntax_pos::{BytePos, Span};
46 use syntax::symbol::{Symbol, kw, sym};
47 use syntax::errors::{Applicability, DiagnosticBuilder};
48 use syntax::print::pprust::expr_to_string;
49 use syntax::visit::FnKind;
50
51 use rustc::hir::{self, GenericParamKind, PatKind};
52
53 use crate::nonstandard_style::{MethodLateContext, method_context};
54
55 use log::debug;
56
57 // hardwired lints from librustc
58 pub use lint::builtin::*;
59
60 declare_lint! {
61     WHILE_TRUE,
62     Warn,
63     "suggest using `loop { }` instead of `while true { }`"
64 }
65
66 declare_lint_pass!(WhileTrue => [WHILE_TRUE]);
67
68 /// Traverse through any amount of parenthesis and return the first non-parens expression.
69 fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr {
70     while let ast::ExprKind::Paren(sub) = &expr.kind {
71         expr = sub;
72     }
73     expr
74 }
75
76 impl EarlyLintPass for WhileTrue {
77     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
78         if let ast::ExprKind::While(cond, ..) = &e.kind {
79             if let ast::ExprKind::Lit(ref lit) = pierce_parens(cond).kind {
80                 if let ast::LitKind::Bool(true) = lit.kind {
81                     if !lit.span.from_expansion() {
82                         let msg = "denote infinite loops with `loop { ... }`";
83                         let condition_span = cx.sess.source_map().def_span(e.span);
84                         cx.struct_span_lint(WHILE_TRUE, condition_span, msg)
85                             .span_suggestion_short(
86                                 condition_span,
87                                 "use `loop`",
88                                 "loop".to_owned(),
89                                 Applicability::MachineApplicable
90                             )
91                             .emit();
92                     }
93                 }
94             }
95         }
96     }
97 }
98
99 declare_lint! {
100     BOX_POINTERS,
101     Allow,
102     "use of owned (Box type) heap memory"
103 }
104
105 declare_lint_pass!(BoxPointers => [BOX_POINTERS]);
106
107 impl BoxPointers {
108     fn check_heap_type(&self, cx: &LateContext<'_, '_>, span: Span, ty: Ty<'_>) {
109         for leaf_ty in ty.walk() {
110             if leaf_ty.is_box() {
111                 let m = format!("type uses owned (Box type) pointers: {}", ty);
112                 cx.span_lint(BOX_POINTERS, span, &m);
113             }
114         }
115     }
116 }
117
118 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for BoxPointers {
119     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
120         match it.node {
121             hir::ItemKind::Fn(..) |
122             hir::ItemKind::TyAlias(..) |
123             hir::ItemKind::Enum(..) |
124             hir::ItemKind::Struct(..) |
125             hir::ItemKind::Union(..) => {
126                 let def_id = cx.tcx.hir().local_def_id(it.hir_id);
127                 self.check_heap_type(cx, it.span, cx.tcx.type_of(def_id))
128             }
129             _ => ()
130         }
131
132         // If it's a struct, we also have to check the fields' types
133         match it.node {
134             hir::ItemKind::Struct(ref struct_def, _) |
135             hir::ItemKind::Union(ref struct_def, _) => {
136                 for struct_field in struct_def.fields() {
137                     let def_id = cx.tcx.hir().local_def_id(struct_field.hir_id);
138                     self.check_heap_type(cx, struct_field.span,
139                                          cx.tcx.type_of(def_id));
140                 }
141             }
142             _ => (),
143         }
144     }
145
146     fn check_expr(&mut self, cx: &LateContext<'_, '_>, e: &hir::Expr) {
147         let ty = cx.tables.node_type(e.hir_id);
148         self.check_heap_type(cx, e.span, ty);
149     }
150 }
151
152 declare_lint! {
153     NON_SHORTHAND_FIELD_PATTERNS,
154     Warn,
155     "using `Struct { x: x }` instead of `Struct { x }` in a pattern"
156 }
157
158 declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]);
159
160 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for NonShorthandFieldPatterns {
161     fn check_pat(&mut self, cx: &LateContext<'_, '_>, pat: &hir::Pat) {
162         if let PatKind::Struct(ref qpath, ref field_pats, _) = pat.kind {
163             let variant = cx.tables.pat_ty(pat).ty_adt_def()
164                                    .expect("struct pattern type is not an ADT")
165                                    .variant_of_res(cx.tables.qpath_res(qpath, pat.hir_id));
166             for fieldpat in field_pats {
167                 if fieldpat.is_shorthand {
168                     continue;
169                 }
170                 if fieldpat.span.from_expansion() {
171                     // Don't lint if this is a macro expansion: macro authors
172                     // shouldn't have to worry about this kind of style issue
173                     // (Issue #49588)
174                     continue;
175                 }
176                 if let PatKind::Binding(_, _, ident, None) = fieldpat.pat.kind {
177                     if cx.tcx.find_field_index(ident, &variant) ==
178                        Some(cx.tcx.field_index(fieldpat.hir_id, cx.tables)) {
179                         let mut err = cx.struct_span_lint(NON_SHORTHAND_FIELD_PATTERNS,
180                                      fieldpat.span,
181                                      &format!("the `{}:` in this pattern is redundant", ident));
182                         let subspan = cx.tcx.sess.source_map().span_through_char(fieldpat.span,
183                                                                                  ':');
184                         err.span_suggestion_short(
185                             subspan,
186                             "remove this",
187                             ident.to_string(),
188                             Applicability::MachineApplicable
189                         );
190                         err.emit();
191                     }
192                 }
193             }
194         }
195     }
196 }
197
198 declare_lint! {
199     UNSAFE_CODE,
200     Allow,
201     "usage of `unsafe` code"
202 }
203
204 declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]);
205
206 impl UnsafeCode {
207     fn report_unsafe(&self, cx: &EarlyContext<'_>, span: Span, desc: &'static str) {
208         // This comes from a macro that has `#[allow_internal_unsafe]`.
209         if span.allows_unsafe() {
210             return;
211         }
212
213         cx.span_lint(UNSAFE_CODE, span, desc);
214     }
215 }
216
217 impl EarlyLintPass for UnsafeCode {
218     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
219         if attr.check_name(sym::allow_internal_unsafe) {
220             self.report_unsafe(cx, attr.span, "`allow_internal_unsafe` allows defining \
221                                                macros using unsafe without triggering \
222                                                the `unsafe_code` lint at their call site");
223         }
224     }
225
226     fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) {
227         if let ast::ExprKind::Block(ref blk, _) = e.kind {
228             // Don't warn about generated blocks; that'll just pollute the output.
229             if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) {
230                 self.report_unsafe(cx, blk.span, "usage of an `unsafe` block");
231             }
232         }
233     }
234
235     fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) {
236         match it.node {
237             ast::ItemKind::Trait(_, ast::Unsafety::Unsafe, ..) => {
238                 self.report_unsafe(cx, it.span, "declaration of an `unsafe` trait")
239             }
240
241             ast::ItemKind::Impl(ast::Unsafety::Unsafe, ..) => {
242                 self.report_unsafe(cx, it.span, "implementation of an `unsafe` trait")
243             }
244
245             _ => return,
246         }
247     }
248
249     fn check_fn(&mut self,
250                 cx: &EarlyContext<'_>,
251                 fk: FnKind<'_>,
252                 _: &ast::FnDecl,
253                 span: Span,
254                 _: ast::NodeId) {
255         match fk {
256             FnKind::ItemFn(_, ast::FnHeader { unsafety: ast::Unsafety::Unsafe, .. }, ..) => {
257                 self.report_unsafe(cx, span, "declaration of an `unsafe` function")
258             }
259
260             FnKind::Method(_, sig, ..) => {
261                 if sig.header.unsafety == ast::Unsafety::Unsafe {
262                     self.report_unsafe(cx, span, "implementation of an `unsafe` method")
263                 }
264             }
265
266             _ => (),
267         }
268     }
269
270     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, item: &ast::TraitItem) {
271         if let ast::TraitItemKind::Method(ref sig, None) = item.kind {
272             if sig.header.unsafety == ast::Unsafety::Unsafe {
273                 self.report_unsafe(cx, item.span, "declaration of an `unsafe` method")
274             }
275         }
276     }
277 }
278
279 declare_lint! {
280     pub MISSING_DOCS,
281     Allow,
282     "detects missing documentation for public members",
283     report_in_external_macro: true
284 }
285
286 pub struct MissingDoc {
287     /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes.
288     doc_hidden_stack: Vec<bool>,
289
290     /// Private traits or trait items that leaked through. Don't check their methods.
291     private_traits: FxHashSet<hir::HirId>,
292 }
293
294 impl_lint_pass!(MissingDoc => [MISSING_DOCS]);
295
296 fn has_doc(attr: &ast::Attribute) -> bool {
297     if !attr.check_name(sym::doc) {
298         return false;
299     }
300
301     if attr.is_value_str() {
302         return true;
303     }
304
305     if let Some(list) = attr.meta_item_list() {
306         for meta in list {
307             if meta.check_name(sym::include) || meta.check_name(sym::hidden) {
308                 return true;
309             }
310         }
311     }
312
313     false
314 }
315
316 impl MissingDoc {
317     pub fn new() -> MissingDoc {
318         MissingDoc {
319             doc_hidden_stack: vec![false],
320             private_traits: FxHashSet::default(),
321         }
322     }
323
324     fn doc_hidden(&self) -> bool {
325         *self.doc_hidden_stack.last().expect("empty doc_hidden_stack")
326     }
327
328     fn check_missing_docs_attrs(&self,
329                                 cx: &LateContext<'_, '_>,
330                                 id: Option<hir::HirId>,
331                                 attrs: &[ast::Attribute],
332                                 sp: Span,
333                                 desc: &'static str) {
334         // If we're building a test harness, then warning about
335         // documentation is probably not really relevant right now.
336         if cx.sess().opts.test {
337             return;
338         }
339
340         // `#[doc(hidden)]` disables missing_docs check.
341         if self.doc_hidden() {
342             return;
343         }
344
345         // Only check publicly-visible items, using the result from the privacy pass.
346         // It's an option so the crate root can also use this function (it doesn't
347         // have a `NodeId`).
348         if let Some(id) = id {
349             if !cx.access_levels.is_exported(id) {
350                 return;
351             }
352         }
353
354         let has_doc = attrs.iter().any(|a| has_doc(a));
355         if !has_doc {
356             cx.span_lint(MISSING_DOCS,
357                          cx.tcx.sess.source_map().def_span(sp),
358                          &format!("missing documentation for {}", desc));
359         }
360     }
361 }
362
363 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingDoc {
364     fn enter_lint_attrs(&mut self, _: &LateContext<'_, '_>, attrs: &[ast::Attribute]) {
365         let doc_hidden = self.doc_hidden() ||
366                          attrs.iter().any(|attr| {
367             attr.check_name(sym::doc) &&
368             match attr.meta_item_list() {
369                 None => false,
370                 Some(l) => attr::list_contains_name(&l, sym::hidden),
371             }
372         });
373         self.doc_hidden_stack.push(doc_hidden);
374     }
375
376     fn exit_lint_attrs(&mut self, _: &LateContext<'_, '_>, _attrs: &[ast::Attribute]) {
377         self.doc_hidden_stack.pop().expect("empty doc_hidden_stack");
378     }
379
380     fn check_crate(&mut self, cx: &LateContext<'_, '_>, krate: &hir::Crate) {
381         self.check_missing_docs_attrs(cx, None, &krate.attrs, krate.span, "crate");
382
383         for macro_def in &krate.exported_macros {
384             let has_doc = macro_def.attrs.iter().any(|a| has_doc(a));
385             if !has_doc {
386                 cx.span_lint(MISSING_DOCS,
387                              cx.tcx.sess.source_map().def_span(macro_def.span),
388                              "missing documentation for macro");
389             }
390         }
391     }
392
393     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
394         let desc = match it.node {
395             hir::ItemKind::Fn(..) => "a function",
396             hir::ItemKind::Mod(..) => "a module",
397             hir::ItemKind::Enum(..) => "an enum",
398             hir::ItemKind::Struct(..) => "a struct",
399             hir::ItemKind::Union(..) => "a union",
400             hir::ItemKind::Trait(.., ref trait_item_refs) => {
401                 // Issue #11592: traits are always considered exported, even when private.
402                 if let hir::VisibilityKind::Inherited = it.vis.node {
403                     self.private_traits.insert(it.hir_id);
404                     for trait_item_ref in trait_item_refs {
405                         self.private_traits.insert(trait_item_ref.id.hir_id);
406                     }
407                     return;
408                 }
409                 "a trait"
410             }
411             hir::ItemKind::TyAlias(..) => "a type alias",
412             hir::ItemKind::Impl(.., Some(ref trait_ref), _, ref impl_item_refs) => {
413                 // If the trait is private, add the impl items to `private_traits` so they don't get
414                 // reported for missing docs.
415                 let real_trait = trait_ref.path.res.def_id();
416                 if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(real_trait) {
417                     match cx.tcx.hir().find(hir_id) {
418                         Some(Node::Item(item)) => {
419                             if let hir::VisibilityKind::Inherited = item.vis.node {
420                                 for impl_item_ref in impl_item_refs {
421                                     self.private_traits.insert(impl_item_ref.id.hir_id);
422                                 }
423                             }
424                         }
425                         _ => {}
426                     }
427                 }
428                 return;
429             }
430             hir::ItemKind::Const(..) => "a constant",
431             hir::ItemKind::Static(..) => "a static",
432             _ => return,
433         };
434
435         self.check_missing_docs_attrs(cx, Some(it.hir_id), &it.attrs, it.span, desc);
436     }
437
438     fn check_trait_item(&mut self, cx: &LateContext<'_, '_>, trait_item: &hir::TraitItem) {
439         if self.private_traits.contains(&trait_item.hir_id) {
440             return;
441         }
442
443         let desc = match trait_item.kind {
444             hir::TraitItemKind::Const(..) => "an associated constant",
445             hir::TraitItemKind::Method(..) => "a trait method",
446             hir::TraitItemKind::Type(..) => "an associated type",
447         };
448
449         self.check_missing_docs_attrs(cx,
450                                       Some(trait_item.hir_id),
451                                       &trait_item.attrs,
452                                       trait_item.span,
453                                       desc);
454     }
455
456     fn check_impl_item(&mut self, cx: &LateContext<'_, '_>, impl_item: &hir::ImplItem) {
457         // If the method is an impl for a trait, don't doc.
458         if method_context(cx, impl_item.hir_id) == MethodLateContext::TraitImpl {
459             return;
460         }
461
462         let desc = match impl_item.kind {
463             hir::ImplItemKind::Const(..) => "an associated constant",
464             hir::ImplItemKind::Method(..) => "a method",
465             hir::ImplItemKind::TyAlias(_) => "an associated type",
466             hir::ImplItemKind::OpaqueTy(_) => "an associated `impl Trait` type",
467         };
468         self.check_missing_docs_attrs(cx,
469                                       Some(impl_item.hir_id),
470                                       &impl_item.attrs,
471                                       impl_item.span,
472                                       desc);
473     }
474
475     fn check_struct_field(&mut self, cx: &LateContext<'_, '_>, sf: &hir::StructField) {
476         if !sf.is_positional() {
477             self.check_missing_docs_attrs(cx,
478                                           Some(sf.hir_id),
479                                           &sf.attrs,
480                                           sf.span,
481                                           "a struct field")
482         }
483     }
484
485     fn check_variant(&mut self, cx: &LateContext<'_, '_>, v: &hir::Variant) {
486         self.check_missing_docs_attrs(cx,
487                                       Some(v.id),
488                                       &v.attrs,
489                                       v.span,
490                                       "a variant");
491     }
492 }
493
494 declare_lint! {
495     pub MISSING_COPY_IMPLEMENTATIONS,
496     Allow,
497     "detects potentially-forgotten implementations of `Copy`"
498 }
499
500 declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]);
501
502 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingCopyImplementations {
503     fn check_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::Item) {
504         if !cx.access_levels.is_reachable(item.hir_id) {
505             return;
506         }
507         let (def, ty) = match item.node {
508             hir::ItemKind::Struct(_, ref ast_generics) => {
509                 if !ast_generics.params.is_empty() {
510                     return;
511                 }
512                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
513                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
514             }
515             hir::ItemKind::Union(_, ref ast_generics) => {
516                 if !ast_generics.params.is_empty() {
517                     return;
518                 }
519                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
520                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
521             }
522             hir::ItemKind::Enum(_, ref ast_generics) => {
523                 if !ast_generics.params.is_empty() {
524                     return;
525                 }
526                 let def = cx.tcx.adt_def(cx.tcx.hir().local_def_id(item.hir_id));
527                 (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[])))
528             }
529             _ => return,
530         };
531         if def.has_dtor(cx.tcx) {
532             return;
533         }
534         let param_env = ty::ParamEnv::empty();
535         if ty.is_copy_modulo_regions(cx.tcx, param_env, item.span) {
536             return;
537         }
538         if param_env.can_type_implement_copy(cx.tcx, ty).is_ok() {
539             cx.span_lint(MISSING_COPY_IMPLEMENTATIONS,
540                          item.span,
541                          "type could implement `Copy`; consider adding `impl \
542                           Copy`")
543         }
544     }
545 }
546
547 declare_lint! {
548     MISSING_DEBUG_IMPLEMENTATIONS,
549     Allow,
550     "detects missing implementations of fmt::Debug"
551 }
552
553 #[derive(Default)]
554 pub struct MissingDebugImplementations {
555     impling_types: Option<HirIdSet>,
556 }
557
558 impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]);
559
560 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MissingDebugImplementations {
561     fn check_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::Item) {
562         if !cx.access_levels.is_reachable(item.hir_id) {
563             return;
564         }
565
566         match item.node {
567             hir::ItemKind::Struct(..) |
568             hir::ItemKind::Union(..) |
569             hir::ItemKind::Enum(..) => {}
570             _ => return,
571         }
572
573         let debug = match cx.tcx.get_diagnostic_item(sym::debug_trait) {
574             Some(debug) => debug,
575             None => return,
576         };
577
578         if self.impling_types.is_none() {
579             let mut impls = HirIdSet::default();
580             cx.tcx.for_each_impl(debug, |d| {
581                 if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() {
582                     if let Some(hir_id) = cx.tcx.hir().as_local_hir_id(ty_def.did) {
583                         impls.insert(hir_id);
584                     }
585                 }
586             });
587
588             self.impling_types = Some(impls);
589             debug!("{:?}", self.impling_types);
590         }
591
592         if !self.impling_types.as_ref().unwrap().contains(&item.hir_id) {
593             cx.span_lint(MISSING_DEBUG_IMPLEMENTATIONS,
594                          item.span,
595                          "type does not implement `fmt::Debug`; consider adding `#[derive(Debug)]` \
596                           or a manual implementation")
597         }
598     }
599 }
600
601 declare_lint! {
602     pub ANONYMOUS_PARAMETERS,
603     Allow,
604     "detects anonymous parameters"
605 }
606
607 declare_lint_pass!(
608     /// Checks for use of anonymous parameters (RFC 1685).
609     AnonymousParameters => [ANONYMOUS_PARAMETERS]
610 );
611
612 impl EarlyLintPass for AnonymousParameters {
613     fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::TraitItem) {
614         match it.kind {
615             ast::TraitItemKind::Method(ref sig, _) => {
616                 for arg in sig.decl.inputs.iter() {
617                     match arg.pat.kind {
618                         ast::PatKind::Ident(_, ident, None) => {
619                             if ident.name == kw::Invalid {
620                                 let ty_snip = cx
621                                     .sess
622                                     .source_map()
623                                     .span_to_snippet(arg.ty.span);
624
625                                 let (ty_snip, appl) = if let Ok(snip) = ty_snip {
626                                     (snip, Applicability::MachineApplicable)
627                                 } else {
628                                     ("<type>".to_owned(), Applicability::HasPlaceholders)
629                                 };
630
631                                 cx.struct_span_lint(
632                                     ANONYMOUS_PARAMETERS,
633                                     arg.pat.span,
634                                     "anonymous parameters are deprecated and will be \
635                                      removed in the next edition."
636                                 ).span_suggestion(
637                                     arg.pat.span,
638                                     "Try naming the parameter or explicitly \
639                                     ignoring it",
640                                     format!("_: {}", ty_snip),
641                                     appl
642                                 ).emit();
643                             }
644                         }
645                         _ => (),
646                     }
647                 }
648             },
649             _ => (),
650         }
651     }
652 }
653
654 /// Check for use of attributes which have been deprecated.
655 #[derive(Clone)]
656 pub struct DeprecatedAttr {
657     // This is not free to compute, so we want to keep it around, rather than
658     // compute it for every attribute.
659     depr_attrs: Vec<&'static (Symbol, AttributeType, AttributeTemplate, AttributeGate)>,
660 }
661
662 impl_lint_pass!(DeprecatedAttr => []);
663
664 impl DeprecatedAttr {
665     pub fn new() -> DeprecatedAttr {
666         DeprecatedAttr {
667             depr_attrs: deprecated_attributes(),
668         }
669     }
670 }
671
672 fn lint_deprecated_attr(
673     cx: &EarlyContext<'_>,
674     attr: &ast::Attribute,
675     msg: &str,
676     suggestion: Option<&str>,
677 ) {
678     cx.struct_span_lint(DEPRECATED, attr.span, &msg)
679         .span_suggestion_short(
680             attr.span,
681             suggestion.unwrap_or("remove this attribute"),
682             String::new(),
683             Applicability::MachineApplicable
684         )
685         .emit();
686 }
687
688 impl EarlyLintPass for DeprecatedAttr {
689     fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) {
690         for &&(n, _, _, ref g) in &self.depr_attrs {
691             if attr.ident().map(|ident| ident.name) == Some(n) {
692                 if let &AttributeGate::Gated(Stability::Deprecated(link, suggestion),
693                                              ref name,
694                                              ref reason,
695                                              _) = g {
696                     let msg = format!("use of deprecated attribute `{}`: {}. See {}",
697                                       name, reason, link);
698                     lint_deprecated_attr(cx, attr, &msg, suggestion);
699                 }
700                 return;
701             }
702         }
703         if attr.check_name(sym::no_start) || attr.check_name(sym::crate_id) {
704             let msg = format!("use of deprecated attribute `{}`: no longer used.", attr.path);
705             lint_deprecated_attr(cx, attr, &msg, None);
706         }
707     }
708 }
709
710 declare_lint! {
711     pub UNUSED_DOC_COMMENTS,
712     Warn,
713     "detects doc comments that aren't used by rustdoc"
714 }
715
716 declare_lint_pass!(UnusedDocComment => [UNUSED_DOC_COMMENTS]);
717
718 impl UnusedDocComment {
719     fn warn_if_doc(
720         &self,
721         cx: &EarlyContext<'_>,
722         node_span: Span,
723         node_kind: &str,
724         is_macro_expansion: bool,
725         attrs: &[ast::Attribute]
726     ) {
727         let mut attrs = attrs.into_iter().peekable();
728
729         // Accumulate a single span for sugared doc comments.
730         let mut sugared_span: Option<Span> = None;
731
732         while let Some(attr) = attrs.next() {
733             if attr.is_sugared_doc {
734                 sugared_span = Some(
735                     sugared_span.map_or_else(
736                         || attr.span,
737                         |span| span.with_hi(attr.span.hi()),
738                     ),
739                 );
740             }
741
742             if attrs.peek().map(|next_attr| next_attr.is_sugared_doc).unwrap_or_default() {
743                 continue;
744             }
745
746             let span = sugared_span.take().unwrap_or_else(|| attr.span);
747
748             if attr.check_name(sym::doc) {
749                 let mut err = cx.struct_span_lint(UNUSED_DOC_COMMENTS, span, "unused doc comment");
750
751                 err.span_label(
752                     node_span,
753                     format!("rustdoc does not generate documentation for {}", node_kind)
754                 );
755
756                 if is_macro_expansion {
757                     err.help("to document an item produced by a macro, \
758                               the macro must produce the documentation as part of its expansion");
759                 }
760
761                 err.emit();
762             }
763         }
764     }
765 }
766
767 impl EarlyLintPass for UnusedDocComment {
768     fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
769         if let ast::ItemKind::Mac(..) = item.node {
770             self.warn_if_doc(cx, item.span, "macro expansions", true, &item.attrs);
771         }
772     }
773
774     fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) {
775         let (kind, is_macro_expansion) = match stmt.kind {
776             ast::StmtKind::Local(..) => ("statements", false),
777             ast::StmtKind::Item(..) => ("inner items", false),
778             ast::StmtKind::Mac(..) => ("macro expansions", true),
779             // expressions will be reported by `check_expr`.
780             ast::StmtKind::Semi(..) |
781             ast::StmtKind::Expr(..) => return,
782         };
783
784         self.warn_if_doc(cx, stmt.span, kind, is_macro_expansion, stmt.kind.attrs());
785     }
786
787     fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) {
788         let arm_span = arm.pat.span.with_hi(arm.body.span.hi());
789         self.warn_if_doc(cx, arm_span, "match arms", false, &arm.attrs);
790     }
791
792     fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) {
793         self.warn_if_doc(cx, expr.span, "expressions", false, &expr.attrs);
794     }
795 }
796
797 declare_lint! {
798     PLUGIN_AS_LIBRARY,
799     Warn,
800     "compiler plugin used as ordinary library in non-plugin crate"
801 }
802
803 declare_lint_pass!(PluginAsLibrary => [PLUGIN_AS_LIBRARY]);
804
805 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for PluginAsLibrary {
806     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
807         if cx.tcx.plugin_registrar_fn(LOCAL_CRATE).is_some() {
808             // We're compiling a plugin; it's fine to link other plugins.
809             return;
810         }
811
812         match it.node {
813             hir::ItemKind::ExternCrate(..) => (),
814             _ => return,
815         };
816
817         let def_id = cx.tcx.hir().local_def_id(it.hir_id);
818         let prfn = match cx.tcx.extern_mod_stmt_cnum(def_id) {
819             Some(cnum) => cx.tcx.plugin_registrar_fn(cnum),
820             None => {
821                 // Probably means we aren't linking the crate for some reason.
822                 //
823                 // Not sure if / when this could happen.
824                 return;
825             }
826         };
827
828         if prfn.is_some() {
829             cx.span_lint(PLUGIN_AS_LIBRARY,
830                          it.span,
831                          "compiler plugin used as an ordinary library");
832         }
833     }
834 }
835
836 declare_lint! {
837     NO_MANGLE_CONST_ITEMS,
838     Deny,
839     "const items will not have their symbols exported"
840 }
841
842 declare_lint! {
843     NO_MANGLE_GENERIC_ITEMS,
844     Warn,
845     "generic items must be mangled"
846 }
847
848 declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]);
849
850 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InvalidNoMangleItems {
851     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
852         match it.node {
853             hir::ItemKind::Fn(.., ref generics, _) => {
854                 if let Some(no_mangle_attr) = attr::find_by_name(&it.attrs, sym::no_mangle) {
855                     for param in &generics.params {
856                         match param.kind {
857                             GenericParamKind::Lifetime { .. } => {}
858                             GenericParamKind::Type { .. } |
859                             GenericParamKind::Const { .. } => {
860                                 let mut err = cx.struct_span_lint(
861                                     NO_MANGLE_GENERIC_ITEMS,
862                                     it.span,
863                                     "functions generic over types or consts must be mangled",
864                                 );
865                                 err.span_suggestion_short(
866                                     no_mangle_attr.span,
867                                     "remove this attribute",
868                                     String::new(),
869                                     // Use of `#[no_mangle]` suggests FFI intent; correct
870                                     // fix may be to monomorphize source by hand
871                                     Applicability::MaybeIncorrect
872                                 );
873                                 err.emit();
874                                 break;
875                             }
876                         }
877                     }
878                 }
879             }
880             hir::ItemKind::Const(..) => {
881                 if attr::contains_name(&it.attrs, sym::no_mangle) {
882                     // Const items do not refer to a particular location in memory, and therefore
883                     // don't have anything to attach a symbol to
884                     let msg = "const items should never be `#[no_mangle]`";
885                     let mut err = cx.struct_span_lint(NO_MANGLE_CONST_ITEMS, it.span, msg);
886
887                     // account for "pub const" (#45562)
888                     let start = cx.tcx.sess.source_map().span_to_snippet(it.span)
889                         .map(|snippet| snippet.find("const").unwrap_or(0))
890                         .unwrap_or(0) as u32;
891                     // `const` is 5 chars
892                     let const_span = it.span.with_hi(BytePos(it.span.lo().0 + start + 5));
893                     err.span_suggestion(
894                         const_span,
895                         "try a static value",
896                         "pub static".to_owned(),
897                         Applicability::MachineApplicable
898                     );
899                     err.emit();
900                 }
901             }
902             _ => {}
903         }
904     }
905 }
906
907 declare_lint! {
908     MUTABLE_TRANSMUTES,
909     Deny,
910     "mutating transmuted &mut T from &T may cause undefined behavior"
911 }
912
913 declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]);
914
915 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for MutableTransmutes {
916     fn check_expr(&mut self, cx: &LateContext<'_, '_>, expr: &hir::Expr) {
917         use rustc_target::spec::abi::Abi::RustIntrinsic;
918
919         let msg = "mutating transmuted &mut T from &T may cause undefined behavior, \
920                    consider instead using an UnsafeCell";
921         match get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (&ty1.kind, &ty2.kind)) {
922             Some((&ty::Ref(_, _, from_mt), &ty::Ref(_, _, to_mt))) => {
923                 if to_mt == hir::Mutability::MutMutable &&
924                    from_mt == hir::Mutability::MutImmutable {
925                     cx.span_lint(MUTABLE_TRANSMUTES, expr.span, msg);
926                 }
927             }
928             _ => (),
929         }
930
931         fn get_transmute_from_to<'a, 'tcx>
932             (cx: &LateContext<'a, 'tcx>,
933              expr: &hir::Expr)
934              -> Option<(Ty<'tcx>, Ty<'tcx>)> {
935             let def = if let hir::ExprKind::Path(ref qpath) = expr.kind {
936                 cx.tables.qpath_res(qpath, expr.hir_id)
937             } else {
938                 return None;
939             };
940             if let Res::Def(DefKind::Fn, did) = def {
941                 if !def_id_is_transmute(cx, did) {
942                     return None;
943                 }
944                 let sig = cx.tables.node_type(expr.hir_id).fn_sig(cx.tcx);
945                 let from = sig.inputs().skip_binder()[0];
946                 let to = *sig.output().skip_binder();
947                 return Some((from, to));
948             }
949             None
950         }
951
952         fn def_id_is_transmute(cx: &LateContext<'_, '_>, def_id: DefId) -> bool {
953             cx.tcx.fn_sig(def_id).abi() == RustIntrinsic &&
954             cx.tcx.item_name(def_id) == sym::transmute
955         }
956     }
957 }
958
959 declare_lint! {
960     UNSTABLE_FEATURES,
961     Allow,
962     "enabling unstable features (deprecated. do not use)"
963 }
964
965 declare_lint_pass!(
966     /// Forbids using the `#[feature(...)]` attribute
967     UnstableFeatures => [UNSTABLE_FEATURES]
968 );
969
970 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnstableFeatures {
971     fn check_attribute(&mut self, ctx: &LateContext<'_, '_>, attr: &ast::Attribute) {
972         if attr.check_name(sym::feature) {
973             if let Some(items) = attr.meta_item_list() {
974                 for item in items {
975                     ctx.span_lint(UNSTABLE_FEATURES, item.span(), "unstable feature");
976                 }
977             }
978         }
979     }
980 }
981
982 declare_lint! {
983     UNIONS_WITH_DROP_FIELDS,
984     Warn,
985     "use of unions that contain fields with possibly non-trivial drop code"
986 }
987
988 declare_lint_pass!(
989     /// Lint for unions that contain fields with possibly non-trivial destructors.
990     UnionsWithDropFields => [UNIONS_WITH_DROP_FIELDS]
991 );
992
993 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnionsWithDropFields {
994     fn check_item(&mut self, ctx: &LateContext<'_, '_>, item: &hir::Item) {
995         if let hir::ItemKind::Union(ref vdata, _) = item.node {
996             for field in vdata.fields() {
997                 let field_ty = ctx.tcx.type_of(
998                     ctx.tcx.hir().local_def_id(field.hir_id));
999                 if field_ty.needs_drop(ctx.tcx, ctx.param_env) {
1000                     ctx.span_lint(UNIONS_WITH_DROP_FIELDS,
1001                                   field.span,
1002                                   "union contains a field with possibly non-trivial drop code, \
1003                                    drop code of union fields is ignored when dropping the union");
1004                     return;
1005                 }
1006             }
1007         }
1008     }
1009 }
1010
1011 declare_lint! {
1012     pub UNREACHABLE_PUB,
1013     Allow,
1014     "`pub` items not reachable from crate root"
1015 }
1016
1017 declare_lint_pass!(
1018     /// Lint for items marked `pub` that aren't reachable from other crates.
1019     UnreachablePub => [UNREACHABLE_PUB]
1020 );
1021
1022 impl UnreachablePub {
1023     fn perform_lint(&self, cx: &LateContext<'_, '_>, what: &str, id: hir::HirId,
1024                     vis: &hir::Visibility, span: Span, exportable: bool) {
1025         let mut applicability = Applicability::MachineApplicable;
1026         match vis.node {
1027             hir::VisibilityKind::Public if !cx.access_levels.is_reachable(id) => {
1028                 if span.from_expansion() {
1029                     applicability = Applicability::MaybeIncorrect;
1030                 }
1031                 let def_span = cx.tcx.sess.source_map().def_span(span);
1032                 let mut err = cx.struct_span_lint(UNREACHABLE_PUB, def_span,
1033                                                   &format!("unreachable `pub` {}", what));
1034                 let replacement = if cx.tcx.features().crate_visibility_modifier {
1035                     "crate"
1036                 } else {
1037                     "pub(crate)"
1038                 }.to_owned();
1039
1040                 err.span_suggestion(
1041                     vis.span,
1042                     "consider restricting its visibility",
1043                     replacement,
1044                     applicability,
1045                 );
1046                 if exportable {
1047                     err.help("or consider exporting it for use by other crates");
1048                 }
1049                 err.emit();
1050             },
1051             _ => {}
1052         }
1053     }
1054 }
1055
1056 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnreachablePub {
1057     fn check_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::Item) {
1058         self.perform_lint(cx, "item", item.hir_id, &item.vis, item.span, true);
1059     }
1060
1061     fn check_foreign_item(&mut self, cx: &LateContext<'_, '_>, foreign_item: &hir::ForeignItem) {
1062         self.perform_lint(cx, "item", foreign_item.hir_id, &foreign_item.vis,
1063                           foreign_item.span, true);
1064     }
1065
1066     fn check_struct_field(&mut self, cx: &LateContext<'_, '_>, field: &hir::StructField) {
1067         self.perform_lint(cx, "field", field.hir_id, &field.vis, field.span, false);
1068     }
1069
1070     fn check_impl_item(&mut self, cx: &LateContext<'_, '_>, impl_item: &hir::ImplItem) {
1071         self.perform_lint(cx, "item", impl_item.hir_id, &impl_item.vis, impl_item.span, false);
1072     }
1073 }
1074
1075 declare_lint! {
1076     TYPE_ALIAS_BOUNDS,
1077     Warn,
1078     "bounds in type aliases are not enforced"
1079 }
1080
1081 declare_lint_pass!(
1082     /// Lint for trait and lifetime bounds in type aliases being mostly ignored.
1083     /// They are relevant when using associated types, but otherwise neither checked
1084     /// at definition site nor enforced at use site.
1085     TypeAliasBounds => [TYPE_ALIAS_BOUNDS]
1086 );
1087
1088 impl TypeAliasBounds {
1089     fn is_type_variable_assoc(qpath: &hir::QPath) -> bool {
1090         match *qpath {
1091             hir::QPath::TypeRelative(ref ty, _) => {
1092                 // If this is a type variable, we found a `T::Assoc`.
1093                 match ty.kind {
1094                     hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => {
1095                         match path.res {
1096                             Res::Def(DefKind::TyParam, _) => true,
1097                             _ => false
1098                         }
1099                     }
1100                     _ => false
1101                 }
1102             }
1103             hir::QPath::Resolved(..) => false,
1104         }
1105     }
1106
1107     fn suggest_changing_assoc_types(ty: &hir::Ty, err: &mut DiagnosticBuilder<'_>) {
1108         // Access to associates types should use `<T as Bound>::Assoc`, which does not need a
1109         // bound.  Let's see if this type does that.
1110
1111         // We use a HIR visitor to walk the type.
1112         use rustc::hir::intravisit::{self, Visitor};
1113         struct WalkAssocTypes<'a, 'db> {
1114             err: &'a mut DiagnosticBuilder<'db>
1115         }
1116         impl<'a, 'db, 'v> Visitor<'v> for WalkAssocTypes<'a, 'db> {
1117             fn nested_visit_map<'this>(&'this mut self) -> intravisit::NestedVisitorMap<'this, 'v>
1118             {
1119                 intravisit::NestedVisitorMap::None
1120             }
1121
1122             fn visit_qpath(&mut self, qpath: &'v hir::QPath, id: hir::HirId, span: Span) {
1123                 if TypeAliasBounds::is_type_variable_assoc(qpath) {
1124                     self.err.span_help(span,
1125                         "use fully disambiguated paths (i.e., `<T as Trait>::Assoc`) to refer to \
1126                          associated types in type aliases");
1127                 }
1128                 intravisit::walk_qpath(self, qpath, id, span)
1129             }
1130         }
1131
1132         // Let's go for a walk!
1133         let mut visitor = WalkAssocTypes { err };
1134         visitor.visit_ty(ty);
1135     }
1136 }
1137
1138 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TypeAliasBounds {
1139     fn check_item(&mut self, cx: &LateContext<'_, '_>, item: &hir::Item) {
1140         let (ty, type_alias_generics) = match item.node {
1141             hir::ItemKind::TyAlias(ref ty, ref generics) => (&*ty, generics),
1142             _ => return,
1143         };
1144         let mut suggested_changing_assoc_types = false;
1145         // There must not be a where clause
1146         if !type_alias_generics.where_clause.predicates.is_empty() {
1147             let spans : Vec<_> = type_alias_generics.where_clause.predicates.iter()
1148                 .map(|pred| pred.span()).collect();
1149             let mut err = cx.struct_span_lint(TYPE_ALIAS_BOUNDS, spans,
1150                 "where clauses are not enforced in type aliases");
1151             err.help("the clause will not be checked when the type alias is used, \
1152                       and should be removed");
1153             if !suggested_changing_assoc_types {
1154                 TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1155                 suggested_changing_assoc_types = true;
1156             }
1157             err.emit();
1158         }
1159         // The parameters must not have bounds
1160         for param in type_alias_generics.params.iter() {
1161             let spans: Vec<_> = param.bounds.iter().map(|b| b.span()).collect();
1162             if !spans.is_empty() {
1163                 let mut err = cx.struct_span_lint(
1164                     TYPE_ALIAS_BOUNDS,
1165                     spans,
1166                     "bounds on generic parameters are not enforced in type aliases",
1167                 );
1168                 err.help("the bound will not be checked when the type alias is used, \
1169                           and should be removed");
1170                 if !suggested_changing_assoc_types {
1171                     TypeAliasBounds::suggest_changing_assoc_types(ty, &mut err);
1172                     suggested_changing_assoc_types = true;
1173                 }
1174                 err.emit();
1175             }
1176         }
1177     }
1178 }
1179
1180 declare_lint_pass!(
1181     /// Lint constants that are erroneous.
1182     /// Without this lint, we might not get any diagnostic if the constant is
1183     /// unused within this crate, even though downstream crates can't use it
1184     /// without producing an error.
1185     UnusedBrokenConst => []
1186 );
1187
1188 fn check_const(cx: &LateContext<'_, '_>, body_id: hir::BodyId) {
1189     let def_id = cx.tcx.hir().body_owner_def_id(body_id);
1190     let param_env = if cx.tcx.is_static(def_id) {
1191         // Use the same param_env as `codegen_static_initializer`, to reuse the cache.
1192         ty::ParamEnv::reveal_all()
1193     } else {
1194         cx.tcx.param_env(def_id)
1195     };
1196     let cid = ::rustc::mir::interpret::GlobalId {
1197         instance: ty::Instance::mono(cx.tcx, def_id),
1198         promoted: None
1199     };
1200     // trigger the query once for all constants since that will already report the errors
1201     // FIXME: Use ensure here
1202     let _ = cx.tcx.const_eval(param_env.and(cid));
1203 }
1204
1205 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnusedBrokenConst {
1206     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
1207         match it.node {
1208             hir::ItemKind::Const(_, body_id) => {
1209                 check_const(cx, body_id);
1210             },
1211             hir::ItemKind::Static(_, _, body_id) => {
1212                 check_const(cx, body_id);
1213             },
1214             _ => {},
1215         }
1216     }
1217 }
1218
1219 declare_lint! {
1220     TRIVIAL_BOUNDS,
1221     Warn,
1222     "these bounds don't depend on an type parameters"
1223 }
1224
1225 declare_lint_pass!(
1226     /// Lint for trait and lifetime bounds that don't depend on type parameters
1227     /// which either do nothing, or stop the item from being used.
1228     TrivialConstraints => [TRIVIAL_BOUNDS]
1229 );
1230
1231 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for TrivialConstraints {
1232     fn check_item(
1233         &mut self,
1234         cx: &LateContext<'a, 'tcx>,
1235         item: &'tcx hir::Item,
1236     ) {
1237         use rustc::ty::fold::TypeFoldable;
1238         use rustc::ty::Predicate::*;
1239
1240         if cx.tcx.features().trivial_bounds {
1241             let def_id = cx.tcx.hir().local_def_id(item.hir_id);
1242             let predicates = cx.tcx.predicates_of(def_id);
1243             for &(predicate, span) in &predicates.predicates {
1244                 let predicate_kind_name = match predicate {
1245                     Trait(..) => "Trait",
1246                     TypeOutlives(..) |
1247                     RegionOutlives(..) => "Lifetime",
1248
1249                     // Ignore projections, as they can only be global
1250                     // if the trait bound is global
1251                     Projection(..) |
1252                     // Ignore bounds that a user can't type
1253                     WellFormed(..) |
1254                     ObjectSafe(..) |
1255                     ClosureKind(..) |
1256                     Subtype(..) |
1257                     ConstEvaluatable(..) => continue,
1258                 };
1259                 if predicate.is_global() {
1260                     cx.span_lint(
1261                         TRIVIAL_BOUNDS,
1262                         span,
1263                         &format!("{} bound {} does not depend on any type \
1264                                 or lifetime parameters", predicate_kind_name, predicate),
1265                     );
1266                 }
1267             }
1268         }
1269     }
1270 }
1271
1272 declare_lint_pass!(
1273     /// Does nothing as a lint pass, but registers some `Lint`s
1274     /// which are used by other parts of the compiler.
1275     SoftLints => [
1276         WHILE_TRUE,
1277         BOX_POINTERS,
1278         NON_SHORTHAND_FIELD_PATTERNS,
1279         UNSAFE_CODE,
1280         MISSING_DOCS,
1281         MISSING_COPY_IMPLEMENTATIONS,
1282         MISSING_DEBUG_IMPLEMENTATIONS,
1283         ANONYMOUS_PARAMETERS,
1284         UNUSED_DOC_COMMENTS,
1285         PLUGIN_AS_LIBRARY,
1286         NO_MANGLE_CONST_ITEMS,
1287         NO_MANGLE_GENERIC_ITEMS,
1288         MUTABLE_TRANSMUTES,
1289         UNSTABLE_FEATURES,
1290         UNIONS_WITH_DROP_FIELDS,
1291         UNREACHABLE_PUB,
1292         TYPE_ALIAS_BOUNDS,
1293         TRIVIAL_BOUNDS
1294     ]
1295 );
1296
1297 declare_lint! {
1298     pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS,
1299     Warn,
1300     "`...` range patterns are deprecated"
1301 }
1302
1303 #[derive(Default)]
1304 pub struct EllipsisInclusiveRangePatterns {
1305     /// If `Some(_)`, suppress all subsequent pattern
1306     /// warnings for better diagnostics.
1307     node_id: Option<ast::NodeId>,
1308 }
1309
1310 impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]);
1311
1312 impl EarlyLintPass for EllipsisInclusiveRangePatterns {
1313     fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) {
1314         if self.node_id.is_some() {
1315             // Don't recursively warn about patterns inside range endpoints.
1316             return
1317         }
1318
1319         use self::ast::{PatKind, RangeEnd, RangeSyntax::DotDotDot};
1320
1321         /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span
1322         /// corresponding to the ellipsis.
1323         fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(&P<Expr>, &P<Expr>, Span)> {
1324             match &pat.kind {
1325                 PatKind::Range(a, b, Spanned { span, node: RangeEnd::Included(DotDotDot), .. }) => {
1326                     Some((a, b, *span))
1327                 }
1328                 _ => None,
1329             }
1330         }
1331
1332         let (parenthesise, endpoints) = match &pat.kind {
1333             PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)),
1334             _ => (false, matches_ellipsis_pat(pat)),
1335         };
1336
1337         if let Some((start, end, join)) = endpoints {
1338             let msg = "`...` range patterns are deprecated";
1339             let suggestion = "use `..=` for an inclusive range";
1340             if parenthesise {
1341                 self.node_id = Some(pat.id);
1342                 let mut err = cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, msg);
1343                 err.span_suggestion(
1344                     pat.span,
1345                     suggestion,
1346                     format!("&({}..={})", expr_to_string(&start), expr_to_string(&end)),
1347                     Applicability::MachineApplicable,
1348                 );
1349                 err.emit();
1350             } else {
1351                 let mut err = cx.struct_span_lint(ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, msg);
1352                 err.span_suggestion_short(
1353                     join,
1354                     suggestion,
1355                     "..=".to_owned(),
1356                     Applicability::MachineApplicable,
1357                 );
1358                 err.emit();
1359             };
1360         }
1361     }
1362
1363     fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) {
1364         if let Some(node_id) = self.node_id {
1365             if pat.id == node_id {
1366                 self.node_id = None
1367             }
1368         }
1369     }
1370 }
1371
1372 declare_lint! {
1373     UNNAMEABLE_TEST_ITEMS,
1374     Warn,
1375     "detects an item that cannot be named being marked as `#[test_case]`",
1376     report_in_external_macro: true
1377 }
1378
1379 pub struct UnnameableTestItems {
1380     boundary: hir::HirId, // HirId of the item under which things are not nameable
1381     items_nameable: bool,
1382 }
1383
1384 impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]);
1385
1386 impl UnnameableTestItems {
1387     pub fn new() -> Self {
1388         Self {
1389             boundary: hir::DUMMY_HIR_ID,
1390             items_nameable: true
1391         }
1392     }
1393 }
1394
1395 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for UnnameableTestItems {
1396     fn check_item(&mut self, cx: &LateContext<'_, '_>, it: &hir::Item) {
1397         if self.items_nameable {
1398             if let hir::ItemKind::Mod(..) = it.node {}
1399             else {
1400                 self.items_nameable = false;
1401                 self.boundary = it.hir_id;
1402             }
1403             return;
1404         }
1405
1406         if let Some(attr) = attr::find_by_name(&it.attrs, sym::rustc_test_marker) {
1407             cx.struct_span_lint(
1408                 UNNAMEABLE_TEST_ITEMS,
1409                 attr.span,
1410                 "cannot test inner items",
1411             ).emit();
1412         }
1413     }
1414
1415     fn check_item_post(&mut self, _cx: &LateContext<'_, '_>, it: &hir::Item) {
1416         if !self.items_nameable && self.boundary == it.hir_id {
1417             self.items_nameable = true;
1418         }
1419     }
1420 }
1421
1422 declare_lint! {
1423     pub KEYWORD_IDENTS,
1424     Allow,
1425     "detects edition keywords being used as an identifier"
1426 }
1427
1428 declare_lint_pass!(
1429     /// Check for uses of edition keywords used as an identifier.
1430     KeywordIdents => [KEYWORD_IDENTS]
1431 );
1432
1433 struct UnderMacro(bool);
1434
1435 impl KeywordIdents {
1436     fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) {
1437         for tt in tokens.into_trees() {
1438             match tt {
1439                 // Only report non-raw idents.
1440                 TokenTree::Token(token) => if let Some((ident, false)) = token.ident() {
1441                     self.check_ident_token(cx, UnderMacro(true), ident);
1442                 }
1443                 TokenTree::Delimited(_, _, tts) => {
1444                     self.check_tokens(cx, tts)
1445                 },
1446             }
1447         }
1448     }
1449
1450     fn check_ident_token(&mut self,
1451                          cx: &EarlyContext<'_>,
1452                          UnderMacro(under_macro): UnderMacro,
1453                          ident: ast::Ident)
1454     {
1455         let next_edition = match cx.sess.edition() {
1456             Edition::Edition2015 => {
1457                 match ident.name {
1458                     kw::Async | kw::Await | kw::Try => Edition::Edition2018,
1459
1460                     // rust-lang/rust#56327: Conservatively do not
1461                     // attempt to report occurrences of `dyn` within
1462                     // macro definitions or invocations, because `dyn`
1463                     // can legitimately occur as a contextual keyword
1464                     // in 2015 code denoting its 2018 meaning, and we
1465                     // do not want rustfix to inject bugs into working
1466                     // code by rewriting such occurrences.
1467                     //
1468                     // But if we see `dyn` outside of a macro, we know
1469                     // its precise role in the parsed AST and thus are
1470                     // assured this is truly an attempt to use it as
1471                     // an identifier.
1472                     kw::Dyn if !under_macro => Edition::Edition2018,
1473
1474                     _ => return,
1475                 }
1476             }
1477
1478             // There are no new keywords yet for the 2018 edition and beyond.
1479             _ => return,
1480         };
1481
1482         // Don't lint `r#foo`.
1483         if cx.sess.parse_sess.raw_identifier_spans.borrow().contains(&ident.span) {
1484             return;
1485         }
1486
1487         let mut lint = cx.struct_span_lint(
1488             KEYWORD_IDENTS,
1489             ident.span,
1490             &format!("`{}` is a keyword in the {} edition",
1491                      ident.as_str(),
1492                      next_edition),
1493         );
1494         lint.span_suggestion(
1495             ident.span,
1496             "you can use a raw identifier to stay compatible",
1497             format!("r#{}", ident.as_str()),
1498             Applicability::MachineApplicable,
1499         );
1500         lint.emit()
1501     }
1502 }
1503
1504 impl EarlyLintPass for KeywordIdents {
1505     fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef, _id: ast::NodeId) {
1506         self.check_tokens(cx, mac_def.stream());
1507     }
1508     fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::Mac) {
1509         self.check_tokens(cx, mac.tts.clone().into());
1510     }
1511     fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: ast::Ident) {
1512         self.check_ident_token(cx, UnderMacro(false), ident);
1513     }
1514 }
1515
1516 declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]);
1517
1518 impl ExplicitOutlivesRequirements {
1519     fn lifetimes_outliving_lifetime<'tcx>(
1520         inferred_outlives: &'tcx [ty::Predicate<'tcx>],
1521         index: u32,
1522     ) -> Vec<ty::Region<'tcx>> {
1523         inferred_outlives.iter().filter_map(|pred| {
1524             match pred {
1525                 ty::Predicate::RegionOutlives(outlives) => {
1526                     let outlives = outlives.skip_binder();
1527                     match outlives.0 {
1528                         ty::ReEarlyBound(ebr) if ebr.index == index => {
1529                             Some(outlives.1)
1530                         }
1531                         _ => None,
1532                     }
1533                 }
1534                 _ => None
1535             }
1536         }).collect()
1537     }
1538
1539     fn lifetimes_outliving_type<'tcx>(
1540         inferred_outlives: &'tcx [ty::Predicate<'tcx>],
1541         index: u32,
1542     ) -> Vec<ty::Region<'tcx>> {
1543         inferred_outlives.iter().filter_map(|pred| {
1544             match pred {
1545                 ty::Predicate::TypeOutlives(outlives) => {
1546                     let outlives = outlives.skip_binder();
1547                     if outlives.0.is_param(index) {
1548                         Some(outlives.1)
1549                     } else {
1550                         None
1551                     }
1552                 }
1553                 _ => None
1554             }
1555         }).collect()
1556     }
1557
1558     fn collect_outlived_lifetimes<'tcx>(
1559         &self,
1560         param: &'tcx hir::GenericParam,
1561         tcx: TyCtxt<'tcx>,
1562         inferred_outlives: &'tcx [ty::Predicate<'tcx>],
1563         ty_generics: &'tcx ty::Generics,
1564     ) -> Vec<ty::Region<'tcx>> {
1565         let index = ty_generics.param_def_id_to_index[
1566             &tcx.hir().local_def_id(param.hir_id)];
1567
1568         match param.kind {
1569             hir::GenericParamKind::Lifetime { .. } => {
1570                 Self::lifetimes_outliving_lifetime(inferred_outlives, index)
1571             }
1572             hir::GenericParamKind::Type { .. } => {
1573                 Self::lifetimes_outliving_type(inferred_outlives, index)
1574             }
1575             hir::GenericParamKind::Const { .. } => Vec::new(),
1576         }
1577     }
1578
1579
1580     fn collect_outlives_bound_spans<'tcx>(
1581         &self,
1582         tcx: TyCtxt<'tcx>,
1583         bounds: &hir::GenericBounds,
1584         inferred_outlives: &[ty::Region<'tcx>],
1585         infer_static: bool,
1586     ) -> Vec<(usize, Span)> {
1587         use rustc::middle::resolve_lifetime::Region;
1588
1589         bounds
1590             .iter()
1591             .enumerate()
1592             .filter_map(|(i, bound)| {
1593                 if let hir::GenericBound::Outlives(lifetime) = bound {
1594                     let is_inferred = match tcx.named_region(lifetime.hir_id) {
1595                         Some(Region::Static) if infer_static => {
1596                             inferred_outlives.iter()
1597                                 .any(|r| if let ty::ReStatic = r { true } else { false })
1598                         }
1599                         Some(Region::EarlyBound(index, ..)) => inferred_outlives
1600                             .iter()
1601                             .any(|r| {
1602                                 if let ty::ReEarlyBound(ebr) = r {
1603                                     ebr.index == index
1604                                 } else {
1605                                     false
1606                                 }
1607                             }),
1608                         _ => false,
1609                     };
1610                     if is_inferred {
1611                         Some((i, bound.span()))
1612                     } else {
1613                         None
1614                     }
1615                 } else {
1616                     None
1617                 }
1618             })
1619             .collect()
1620     }
1621
1622     fn consolidate_outlives_bound_spans(
1623         &self,
1624         lo: Span,
1625         bounds: &hir::GenericBounds,
1626         bound_spans: Vec<(usize, Span)>
1627     ) -> Vec<Span> {
1628         if bounds.is_empty() {
1629             return Vec::new();
1630         }
1631         if bound_spans.len() == bounds.len() {
1632             let (_, last_bound_span) = bound_spans[bound_spans.len()-1];
1633             // If all bounds are inferable, we want to delete the colon, so
1634             // start from just after the parameter (span passed as argument)
1635             vec![lo.to(last_bound_span)]
1636         } else {
1637             let mut merged = Vec::new();
1638             let mut last_merged_i = None;
1639
1640             let mut from_start = true;
1641             for (i, bound_span) in bound_spans {
1642                 match last_merged_i {
1643                     // If the first bound is inferable, our span should also eat the leading `+`.
1644                     None if i == 0 => {
1645                         merged.push(bound_span.to(bounds[1].span().shrink_to_lo()));
1646                         last_merged_i = Some(0);
1647                     },
1648                     // If consecutive bounds are inferable, merge their spans
1649                     Some(h) if i == h+1 => {
1650                         if let Some(tail) = merged.last_mut() {
1651                             // Also eat the trailing `+` if the first
1652                             // more-than-one bound is inferable
1653                             let to_span = if from_start && i < bounds.len() {
1654                                 bounds[i+1].span().shrink_to_lo()
1655                             } else {
1656                                 bound_span
1657                             };
1658                             *tail = tail.to(to_span);
1659                             last_merged_i = Some(i);
1660                         } else {
1661                             bug!("another bound-span visited earlier");
1662                         }
1663                     },
1664                     _ => {
1665                         // When we find a non-inferable bound, subsequent inferable bounds
1666                         // won't be consecutive from the start (and we'll eat the leading
1667                         // `+` rather than the trailing one)
1668                         from_start = false;
1669                         merged.push(bounds[i-1].span().shrink_to_hi().to(bound_span));
1670                         last_merged_i = Some(i);
1671                     }
1672                 }
1673             }
1674             merged
1675         }
1676     }
1677 }
1678
1679 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for ExplicitOutlivesRequirements {
1680     fn check_item(&mut self, cx: &LateContext<'a, 'tcx>, item: &'tcx hir::Item) {
1681         use rustc::middle::resolve_lifetime::Region;
1682
1683         let infer_static = cx.tcx.features().infer_static_outlives_requirements;
1684         let def_id = cx.tcx.hir().local_def_id(item.hir_id);
1685         if let hir::ItemKind::Struct(_, ref hir_generics)
1686             | hir::ItemKind::Enum(_, ref hir_generics)
1687             | hir::ItemKind::Union(_, ref hir_generics) = item.node
1688         {
1689             let inferred_outlives = cx.tcx.inferred_outlives_of(def_id);
1690             if inferred_outlives.is_empty() {
1691                 return;
1692             }
1693
1694             let ty_generics = cx.tcx.generics_of(def_id);
1695
1696             let mut bound_count = 0;
1697             let mut lint_spans = Vec::new();
1698
1699             for param in &hir_generics.params {
1700                 let has_lifetime_bounds = param.bounds.iter().any(|bound| {
1701                     if let hir::GenericBound::Outlives(_) = bound {
1702                         true
1703                     } else {
1704                         false
1705                     }
1706                 });
1707                 if !has_lifetime_bounds {
1708                     continue;
1709                 }
1710
1711                 let relevant_lifetimes = self.collect_outlived_lifetimes(
1712                     param,
1713                     cx.tcx,
1714                     inferred_outlives,
1715                     ty_generics,
1716                 );
1717                 if relevant_lifetimes.is_empty() {
1718                     continue;
1719                 }
1720
1721                 let bound_spans = self.collect_outlives_bound_spans(
1722                     cx.tcx, &param.bounds, &relevant_lifetimes, infer_static,
1723                 );
1724                 bound_count += bound_spans.len();
1725                 lint_spans.extend(
1726                     self.consolidate_outlives_bound_spans(
1727                         param.span.shrink_to_hi(), &param.bounds, bound_spans
1728                     )
1729                 );
1730             }
1731
1732             let mut where_lint_spans = Vec::new();
1733             let mut dropped_predicate_count = 0;
1734             let num_predicates = hir_generics.where_clause.predicates.len();
1735             for (i, where_predicate) in hir_generics.where_clause.predicates.iter().enumerate() {
1736                 let (relevant_lifetimes, bounds, span) = match where_predicate {
1737                     hir::WherePredicate::RegionPredicate(predicate) => {
1738                         if let Some(Region::EarlyBound(index, ..))
1739                             = cx.tcx.named_region(predicate.lifetime.hir_id)
1740                         {
1741                             (
1742                                 Self::lifetimes_outliving_lifetime(inferred_outlives, index),
1743                                 &predicate.bounds,
1744                                 predicate.span,
1745                             )
1746                         } else {
1747                             continue;
1748                         }
1749                     }
1750                     hir::WherePredicate::BoundPredicate(predicate) => {
1751                         // FIXME we can also infer bounds on associated types,
1752                         // and should check for them here.
1753                         match predicate.bounded_ty.kind {
1754                             hir::TyKind::Path(hir::QPath::Resolved(
1755                                 None,
1756                                 ref path,
1757                             )) => {
1758                                 if let Res::Def(DefKind::TyParam, def_id) = path.res {
1759                                     let index = ty_generics.param_def_id_to_index[&def_id];
1760                                     (
1761                                         Self::lifetimes_outliving_type(inferred_outlives, index),
1762                                         &predicate.bounds,
1763                                         predicate.span,
1764                                     )
1765                                 } else {
1766                                     continue;
1767                                 }
1768                             },
1769                             _ => { continue; }
1770                         }
1771                     }
1772                     _ => continue,
1773                 };
1774                 if relevant_lifetimes.is_empty() {
1775                     continue;
1776                 }
1777
1778                 let bound_spans = self.collect_outlives_bound_spans(
1779                     cx.tcx, bounds, &relevant_lifetimes, infer_static,
1780                 );
1781                 bound_count += bound_spans.len();
1782
1783                 let drop_predicate = bound_spans.len() == bounds.len();
1784                 if drop_predicate {
1785                     dropped_predicate_count += 1;
1786                 }
1787
1788                 // If all the bounds on a predicate were inferable and there are
1789                 // further predicates, we want to eat the trailing comma.
1790                 if drop_predicate && i + 1 < num_predicates {
1791                     let next_predicate_span = hir_generics.where_clause.predicates[i + 1].span();
1792                     where_lint_spans.push(
1793                         span.to(next_predicate_span.shrink_to_lo())
1794                     );
1795                 } else {
1796                     where_lint_spans.extend(
1797                         self.consolidate_outlives_bound_spans(
1798                             span.shrink_to_lo(),
1799                             bounds,
1800                             bound_spans
1801                         )
1802                     );
1803                 }
1804             }
1805
1806             // If all predicates are inferable, drop the entire clause
1807             // (including the `where`)
1808             if num_predicates > 0 && dropped_predicate_count == num_predicates {
1809                 let where_span = hir_generics.where_clause.span()
1810                     .expect("span of (nonempty) where clause should exist");
1811                 // Extend the where clause back to the closing `>` of the
1812                 // generics, except for tuple struct, which have the `where`
1813                 // after the fields of the struct.
1814                 let full_where_span = if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _)
1815                         = item.node
1816                 {
1817                     where_span
1818                 } else {
1819                     hir_generics.span.shrink_to_hi().to(where_span)
1820                 };
1821                 lint_spans.push(
1822                     full_where_span
1823                 );
1824             } else {
1825                 lint_spans.extend(where_lint_spans);
1826             }
1827
1828             if !lint_spans.is_empty() {
1829                 let mut err = cx.struct_span_lint(
1830                     EXPLICIT_OUTLIVES_REQUIREMENTS,
1831                     lint_spans.clone(),
1832                     "outlives requirements can be inferred"
1833                 );
1834                 err.multipart_suggestion(
1835                     if bound_count == 1 {
1836                         "remove this bound"
1837                     } else {
1838                         "remove these bounds"
1839                     },
1840                     lint_spans.into_iter().map(|span| (span, "".to_owned())).collect::<Vec<_>>(),
1841                     Applicability::MachineApplicable
1842                 );
1843                 err.emit();
1844             }
1845         }
1846     }
1847 }
1848
1849 declare_lint! {
1850     pub INCOMPLETE_FEATURES,
1851     Warn,
1852     "incomplete features that may function improperly in some or all cases"
1853 }
1854
1855 declare_lint_pass!(
1856     /// Check for used feature gates in `INCOMPLETE_FEATURES` in `feature_gate.rs`.
1857     IncompleteFeatures => [INCOMPLETE_FEATURES]
1858 );
1859
1860 impl EarlyLintPass for IncompleteFeatures {
1861     fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) {
1862         let features = cx.sess.features_untracked();
1863         features.declared_lang_features
1864             .iter().map(|(name, span, _)| (name, span))
1865             .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span)))
1866             .filter(|(name, _)| feature_gate::INCOMPLETE_FEATURES.iter().any(|f| name == &f))
1867             .for_each(|(name, &span)| {
1868                 cx.struct_span_lint(
1869                     INCOMPLETE_FEATURES,
1870                     span,
1871                     &format!(
1872                         "the feature `{}` is incomplete and may cause the compiler to crash",
1873                         name,
1874                     )
1875                 )
1876                 .emit();
1877             });
1878     }
1879 }
1880
1881 declare_lint! {
1882     pub INVALID_VALUE,
1883     Warn,
1884     "an invalid value is being created (such as a NULL reference)"
1885 }
1886
1887 declare_lint_pass!(InvalidValue => [INVALID_VALUE]);
1888
1889 impl<'a, 'tcx> LateLintPass<'a, 'tcx> for InvalidValue {
1890     fn check_expr(&mut self, cx: &LateContext<'a, 'tcx>, expr: &hir::Expr) {
1891
1892         #[derive(Debug, Copy, Clone, PartialEq)]
1893         enum InitKind { Zeroed, Uninit };
1894
1895         /// Information about why a type cannot be initialized this way.
1896         /// Contains an error message and optionally a span to point at.
1897         type InitError = (String, Option<Span>);
1898
1899         /// Test if this constant is all-0.
1900         fn is_zero(expr: &hir::Expr) -> bool {
1901             use hir::ExprKind::*;
1902             use syntax::ast::LitKind::*;
1903             match &expr.kind {
1904                 Lit(lit) =>
1905                     if let Int(i, _) = lit.node {
1906                         i == 0
1907                     } else {
1908                         false
1909                     },
1910                 Tup(tup) =>
1911                     tup.iter().all(is_zero),
1912                 _ =>
1913                     false
1914             }
1915         }
1916
1917         /// Determine if this expression is a "dangerous initialization".
1918         fn is_dangerous_init(cx: &LateContext<'_, '_>, expr: &hir::Expr) -> Option<InitKind> {
1919             const ZEROED_PATH: &[Symbol] = &[sym::core, sym::mem, sym::zeroed];
1920             const UININIT_PATH: &[Symbol] = &[sym::core, sym::mem, sym::uninitialized];
1921             // `transmute` is inside an anonymous module (the `extern` block?);
1922             // `Invalid` represents the empty string and matches that.
1923             const TRANSMUTE_PATH: &[Symbol] =
1924                 &[sym::core, sym::intrinsics, kw::Invalid, sym::transmute];
1925
1926             if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind {
1927                 if let hir::ExprKind::Path(ref qpath) = path_expr.kind {
1928                     let def_id = cx.tables.qpath_res(qpath, path_expr.hir_id).opt_def_id()?;
1929
1930                     if cx.match_def_path(def_id, ZEROED_PATH) {
1931                         return Some(InitKind::Zeroed);
1932                     }
1933                     if cx.match_def_path(def_id, UININIT_PATH) {
1934                         return Some(InitKind::Uninit);
1935                     }
1936                     if cx.match_def_path(def_id, TRANSMUTE_PATH) {
1937                         if is_zero(&args[0]) {
1938                             return Some(InitKind::Zeroed);
1939                         }
1940                     }
1941                     // FIXME: Also detect `MaybeUninit::zeroed().assume_init()` and
1942                     // `MaybeUninit::uninit().assume_init()`.
1943                 }
1944             }
1945
1946             None
1947         }
1948
1949         /// Return `Some` only if we are sure this type does *not*
1950         /// allow zero initialization.
1951         fn ty_find_init_error<'tcx>(
1952             tcx: TyCtxt<'tcx>,
1953             ty: Ty<'tcx>,
1954             init: InitKind,
1955         ) -> Option<InitError> {
1956             use rustc::ty::TyKind::*;
1957             match ty.kind {
1958                 // Primitive types that don't like 0 as a value.
1959                 Ref(..) => Some((format!("References must be non-null"), None)),
1960                 Adt(..) if ty.is_box() => Some((format!("`Box` must be non-null"), None)),
1961                 FnPtr(..) => Some((format!("Function pointers must be non-null"), None)),
1962                 Never => Some((format!("The never type (`!`) has no valid value"), None)),
1963                 // Primitive types with other constraints.
1964                 Bool if init == InitKind::Uninit =>
1965                     Some((format!("Booleans must be `true` or `false`"), None)),
1966                 Char if init == InitKind::Uninit =>
1967                     Some((format!("Characters must be a valid unicode codepoint"), None)),
1968                 // Recurse and checks for some compound types.
1969                 Adt(adt_def, substs) if !adt_def.is_union() => {
1970                     // First check f this ADT has a layout attribute (like `NonNull` and friends).
1971                     use std::ops::Bound;
1972                     match tcx.layout_scalar_valid_range(adt_def.did) {
1973                         // We exploit here that `layout_scalar_valid_range` will never
1974                         // return `Bound::Excluded`.  (And we have tests checking that we
1975                         // handle the attribute correctly.)
1976                         (Bound::Included(lo), _) if lo > 0 =>
1977                             return Some((format!("{} must be non-null", ty), None)),
1978                         (Bound::Included(_), _) | (_, Bound::Included(_))
1979                         if init == InitKind::Uninit =>
1980                             return Some((
1981                                 format!("{} must be initialized inside its custom valid range", ty),
1982                                 None,
1983                             )),
1984                         _ => {}
1985                     }
1986                     // Now, recurse.
1987                     match adt_def.variants.len() {
1988                         0 => Some((format!("0-variant enums have no valid value"), None)),
1989                         1 => {
1990                             // Struct, or enum with exactly one variant.
1991                             // Proceed recursively, check all fields.
1992                             let variant = &adt_def.variants[VariantIdx::from_u32(0)];
1993                             variant.fields.iter().find_map(|field| {
1994                                 ty_find_init_error(
1995                                     tcx,
1996                                     field.ty(tcx, substs),
1997                                     init,
1998                                 ).map(|(mut msg, span)| if span.is_none() {
1999                                     // Point to this field, should be helpful for figuring
2000                                     // out where the source of the error is.
2001                                     let span = tcx.def_span(field.did);
2002                                     write!(&mut msg, " (in this {} field)", adt_def.descr())
2003                                         .unwrap();
2004                                     (msg, Some(span))
2005                                 } else {
2006                                     // Just forward.
2007                                     (msg, span)
2008                                 })
2009                             })
2010                         }
2011                         // Multi-variant enums are tricky: if all but one variant are
2012                         // uninhabited, we might actually do layout like for a single-variant
2013                         // enum, and then even leaving them uninitialized could be okay.
2014                         _ => None, // Conservative fallback for multi-variant enum.
2015                     }
2016                 }
2017                 Tuple(..) => {
2018                     // Proceed recursively, check all fields.
2019                     ty.tuple_fields().find_map(|field| ty_find_init_error(tcx, field, init))
2020                 }
2021                 // Conservative fallback.
2022                 _ => None,
2023             }
2024         }
2025
2026         if let Some(init) = is_dangerous_init(cx, expr) {
2027             // This conjures an instance of a type out of nothing,
2028             // using zeroed or uninitialized memory.
2029             // We are extremely conservative with what we warn about.
2030             let conjured_ty = cx.tables.expr_ty(expr);
2031             if let Some((msg, span)) = ty_find_init_error(cx.tcx, conjured_ty, init) {
2032                 let mut err = cx.struct_span_lint(
2033                     INVALID_VALUE,
2034                     expr.span,
2035                     &format!(
2036                         "the type `{}` does not permit {}",
2037                         conjured_ty,
2038                         match init {
2039                             InitKind::Zeroed => "zero-initialization",
2040                             InitKind::Uninit => "being left uninitialized",
2041                         },
2042                     ),
2043                 );
2044                 err.span_label(expr.span,
2045                     "this code causes undefined behavior when executed");
2046                 err.span_label(expr.span, "help: use `MaybeUninit<T>` instead");
2047                 if let Some(span) = span {
2048                     err.span_note(span, &msg);
2049                 } else {
2050                     err.note(&msg);
2051                 }
2052                 err.emit();
2053             }
2054         }
2055     }
2056 }