]> git.lizzy.rs Git - rust.git/blob - src/librustc_expand/expand.rs
Rollup merge of #68764 - Centril:self-semantic, r=petrochenkov
[rust.git] / src / librustc_expand / expand.rs
1 use crate::base::*;
2 use crate::config::StripUnconfigured;
3 use crate::hygiene::{ExpnData, ExpnId, ExpnKind, SyntaxContext};
4 use crate::mbe::macro_rules::annotate_err_with_kind;
5 use crate::placeholders::{placeholder, PlaceholderExpander};
6 use crate::proc_macro::collect_derives;
7
8 use rustc_ast_pretty::pprust;
9 use rustc_attr::{self as attr, is_builtin_attr, HasAttrs};
10 use rustc_data_structures::sync::Lrc;
11 use rustc_errors::{Applicability, FatalError, PResult};
12 use rustc_feature::Features;
13 use rustc_parse::configure;
14 use rustc_parse::parser::Parser;
15 use rustc_parse::validate_attr;
16 use rustc_parse::DirectoryOwnership;
17 use rustc_session::parse::{feature_err, ParseSess};
18 use rustc_span::source_map::respan;
19 use rustc_span::symbol::{sym, Symbol};
20 use rustc_span::{FileName, Span, DUMMY_SP};
21 use syntax::ast::{self, AttrItem, Block, Ident, LitKind, NodeId, PatKind, Path};
22 use syntax::ast::{ItemKind, MacArgs, MacStmtStyle, StmtKind};
23 use syntax::mut_visit::*;
24 use syntax::ptr::P;
25 use syntax::token;
26 use syntax::tokenstream::{TokenStream, TokenTree};
27 use syntax::util::map_in_place::MapInPlace;
28 use syntax::visit::{self, Visitor};
29
30 use smallvec::{smallvec, SmallVec};
31 use std::io::ErrorKind;
32 use std::ops::DerefMut;
33 use std::path::PathBuf;
34 use std::rc::Rc;
35 use std::{iter, mem, slice};
36
37 macro_rules! ast_fragments {
38     (
39         $($Kind:ident($AstTy:ty) {
40             $kind_name:expr;
41             $(one fn $mut_visit_ast:ident; fn $visit_ast:ident;)?
42             $(many fn $flat_map_ast_elt:ident; fn $visit_ast_elt:ident;)?
43             fn $make_ast:ident;
44         })*
45     ) => {
46         /// A fragment of AST that can be produced by a single macro expansion.
47         /// Can also serve as an input and intermediate result for macro expansion operations.
48         pub enum AstFragment {
49             OptExpr(Option<P<ast::Expr>>),
50             $($Kind($AstTy),)*
51         }
52
53         /// "Discriminant" of an AST fragment.
54         #[derive(Copy, Clone, PartialEq, Eq)]
55         pub enum AstFragmentKind {
56             OptExpr,
57             $($Kind,)*
58         }
59
60         impl AstFragmentKind {
61             pub fn name(self) -> &'static str {
62                 match self {
63                     AstFragmentKind::OptExpr => "expression",
64                     $(AstFragmentKind::$Kind => $kind_name,)*
65                 }
66             }
67
68             fn make_from<'a>(self, result: Box<dyn MacResult + 'a>) -> Option<AstFragment> {
69                 match self {
70                     AstFragmentKind::OptExpr =>
71                         result.make_expr().map(Some).map(AstFragment::OptExpr),
72                     $(AstFragmentKind::$Kind => result.$make_ast().map(AstFragment::$Kind),)*
73                 }
74             }
75         }
76
77         impl AstFragment {
78             pub fn add_placeholders(&mut self, placeholders: &[NodeId]) {
79                 if placeholders.is_empty() {
80                     return;
81                 }
82                 match self {
83                     $($(AstFragment::$Kind(ast) => ast.extend(placeholders.iter().flat_map(|id| {
84                         // We are repeating through arguments with `many`, to do that we have to
85                         // mention some macro variable from those arguments even if it's not used.
86                         macro _repeating($flat_map_ast_elt) {}
87                         placeholder(AstFragmentKind::$Kind, *id, None).$make_ast()
88                     })),)?)*
89                     _ => panic!("unexpected AST fragment kind")
90                 }
91             }
92
93             pub fn make_opt_expr(self) -> Option<P<ast::Expr>> {
94                 match self {
95                     AstFragment::OptExpr(expr) => expr,
96                     _ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
97                 }
98             }
99
100             $(pub fn $make_ast(self) -> $AstTy {
101                 match self {
102                     AstFragment::$Kind(ast) => ast,
103                     _ => panic!("AstFragment::make_* called on the wrong kind of fragment"),
104                 }
105             })*
106
107             pub fn mut_visit_with<F: MutVisitor>(&mut self, vis: &mut F) {
108                 match self {
109                     AstFragment::OptExpr(opt_expr) => {
110                         visit_clobber(opt_expr, |opt_expr| {
111                             if let Some(expr) = opt_expr {
112                                 vis.filter_map_expr(expr)
113                             } else {
114                                 None
115                             }
116                         });
117                     }
118                     $($(AstFragment::$Kind(ast) => vis.$mut_visit_ast(ast),)?)*
119                     $($(AstFragment::$Kind(ast) =>
120                         ast.flat_map_in_place(|ast| vis.$flat_map_ast_elt(ast)),)?)*
121                 }
122             }
123
124             pub fn visit_with<'a, V: Visitor<'a>>(&'a self, visitor: &mut V) {
125                 match *self {
126                     AstFragment::OptExpr(Some(ref expr)) => visitor.visit_expr(expr),
127                     AstFragment::OptExpr(None) => {}
128                     $($(AstFragment::$Kind(ref ast) => visitor.$visit_ast(ast),)?)*
129                     $($(AstFragment::$Kind(ref ast) => for ast_elt in &ast[..] {
130                         visitor.$visit_ast_elt(ast_elt);
131                     })?)*
132                 }
133             }
134         }
135
136         impl<'a> MacResult for crate::mbe::macro_rules::ParserAnyMacro<'a> {
137             $(fn $make_ast(self: Box<crate::mbe::macro_rules::ParserAnyMacro<'a>>)
138                            -> Option<$AstTy> {
139                 Some(self.make(AstFragmentKind::$Kind).$make_ast())
140             })*
141         }
142     }
143 }
144
145 ast_fragments! {
146     Expr(P<ast::Expr>) { "expression"; one fn visit_expr; fn visit_expr; fn make_expr; }
147     Pat(P<ast::Pat>) { "pattern"; one fn visit_pat; fn visit_pat; fn make_pat; }
148     Ty(P<ast::Ty>) { "type"; one fn visit_ty; fn visit_ty; fn make_ty; }
149     Stmts(SmallVec<[ast::Stmt; 1]>) {
150         "statement"; many fn flat_map_stmt; fn visit_stmt; fn make_stmts;
151     }
152     Items(SmallVec<[P<ast::Item>; 1]>) {
153         "item"; many fn flat_map_item; fn visit_item; fn make_items;
154     }
155     TraitItems(SmallVec<[P<ast::AssocItem>; 1]>) {
156         "trait item"; many fn flat_map_trait_item; fn visit_trait_item; fn make_trait_items;
157     }
158     ImplItems(SmallVec<[P<ast::AssocItem>; 1]>) {
159         "impl item"; many fn flat_map_impl_item; fn visit_impl_item; fn make_impl_items;
160     }
161     ForeignItems(SmallVec<[P<ast::ForeignItem>; 1]>) {
162         "foreign item";
163         many fn flat_map_foreign_item;
164         fn visit_foreign_item;
165         fn make_foreign_items;
166     }
167     Arms(SmallVec<[ast::Arm; 1]>) {
168         "match arm"; many fn flat_map_arm; fn visit_arm; fn make_arms;
169     }
170     Fields(SmallVec<[ast::Field; 1]>) {
171         "field expression"; many fn flat_map_field; fn visit_field; fn make_fields;
172     }
173     FieldPats(SmallVec<[ast::FieldPat; 1]>) {
174         "field pattern";
175         many fn flat_map_field_pattern;
176         fn visit_field_pattern;
177         fn make_field_patterns;
178     }
179     GenericParams(SmallVec<[ast::GenericParam; 1]>) {
180         "generic parameter";
181         many fn flat_map_generic_param;
182         fn visit_generic_param;
183         fn make_generic_params;
184     }
185     Params(SmallVec<[ast::Param; 1]>) {
186         "function parameter"; many fn flat_map_param; fn visit_param; fn make_params;
187     }
188     StructFields(SmallVec<[ast::StructField; 1]>) {
189         "field";
190         many fn flat_map_struct_field;
191         fn visit_struct_field;
192         fn make_struct_fields;
193     }
194     Variants(SmallVec<[ast::Variant; 1]>) {
195         "variant"; many fn flat_map_variant; fn visit_variant; fn make_variants;
196     }
197 }
198
199 impl AstFragmentKind {
200     fn dummy(self, span: Span) -> AstFragment {
201         self.make_from(DummyResult::any(span)).expect("couldn't create a dummy AST fragment")
202     }
203
204     fn expect_from_annotatables<I: IntoIterator<Item = Annotatable>>(
205         self,
206         items: I,
207     ) -> AstFragment {
208         let mut items = items.into_iter();
209         match self {
210             AstFragmentKind::Arms => {
211                 AstFragment::Arms(items.map(Annotatable::expect_arm).collect())
212             }
213             AstFragmentKind::Fields => {
214                 AstFragment::Fields(items.map(Annotatable::expect_field).collect())
215             }
216             AstFragmentKind::FieldPats => {
217                 AstFragment::FieldPats(items.map(Annotatable::expect_field_pattern).collect())
218             }
219             AstFragmentKind::GenericParams => {
220                 AstFragment::GenericParams(items.map(Annotatable::expect_generic_param).collect())
221             }
222             AstFragmentKind::Params => {
223                 AstFragment::Params(items.map(Annotatable::expect_param).collect())
224             }
225             AstFragmentKind::StructFields => {
226                 AstFragment::StructFields(items.map(Annotatable::expect_struct_field).collect())
227             }
228             AstFragmentKind::Variants => {
229                 AstFragment::Variants(items.map(Annotatable::expect_variant).collect())
230             }
231             AstFragmentKind::Items => {
232                 AstFragment::Items(items.map(Annotatable::expect_item).collect())
233             }
234             AstFragmentKind::ImplItems => {
235                 AstFragment::ImplItems(items.map(Annotatable::expect_impl_item).collect())
236             }
237             AstFragmentKind::TraitItems => {
238                 AstFragment::TraitItems(items.map(Annotatable::expect_trait_item).collect())
239             }
240             AstFragmentKind::ForeignItems => {
241                 AstFragment::ForeignItems(items.map(Annotatable::expect_foreign_item).collect())
242             }
243             AstFragmentKind::Stmts => {
244                 AstFragment::Stmts(items.map(Annotatable::expect_stmt).collect())
245             }
246             AstFragmentKind::Expr => AstFragment::Expr(
247                 items.next().expect("expected exactly one expression").expect_expr(),
248             ),
249             AstFragmentKind::OptExpr => {
250                 AstFragment::OptExpr(items.next().map(Annotatable::expect_expr))
251             }
252             AstFragmentKind::Pat | AstFragmentKind::Ty => {
253                 panic!("patterns and types aren't annotatable")
254             }
255         }
256     }
257 }
258
259 pub struct Invocation {
260     pub kind: InvocationKind,
261     pub fragment_kind: AstFragmentKind,
262     pub expansion_data: ExpansionData,
263 }
264
265 pub enum InvocationKind {
266     Bang {
267         mac: ast::Mac,
268         span: Span,
269     },
270     Attr {
271         attr: ast::Attribute,
272         item: Annotatable,
273         // Required for resolving derive helper attributes.
274         derives: Vec<Path>,
275         // We temporarily report errors for attribute macros placed after derives
276         after_derive: bool,
277     },
278     Derive {
279         path: Path,
280         item: Annotatable,
281     },
282     /// "Invocation" that contains all derives from an item,
283     /// broken into multiple `Derive` invocations when expanded.
284     /// FIXME: Find a way to remove it.
285     DeriveContainer {
286         derives: Vec<Path>,
287         item: Annotatable,
288     },
289 }
290
291 impl InvocationKind {
292     fn placeholder_visibility(&self) -> Option<ast::Visibility> {
293         // HACK: For unnamed fields placeholders should have the same visibility as the actual
294         // fields because for tuple structs/variants resolve determines visibilities of their
295         // constructor using these field visibilities before attributes on them are are expanded.
296         // The assumption is that the attribute expansion cannot change field visibilities,
297         // and it holds because only inert attributes are supported in this position.
298         match self {
299             InvocationKind::Attr { item: Annotatable::StructField(field), .. }
300             | InvocationKind::Derive { item: Annotatable::StructField(field), .. }
301             | InvocationKind::DeriveContainer { item: Annotatable::StructField(field), .. }
302                 if field.ident.is_none() =>
303             {
304                 Some(field.vis.clone())
305             }
306             _ => None,
307         }
308     }
309 }
310
311 impl Invocation {
312     pub fn span(&self) -> Span {
313         match &self.kind {
314             InvocationKind::Bang { span, .. } => *span,
315             InvocationKind::Attr { attr, .. } => attr.span,
316             InvocationKind::Derive { path, .. } => path.span,
317             InvocationKind::DeriveContainer { item, .. } => item.span(),
318         }
319     }
320 }
321
322 pub struct MacroExpander<'a, 'b> {
323     pub cx: &'a mut ExtCtxt<'b>,
324     monotonic: bool, // cf. `cx.monotonic_expander()`
325 }
326
327 impl<'a, 'b> MacroExpander<'a, 'b> {
328     pub fn new(cx: &'a mut ExtCtxt<'b>, monotonic: bool) -> Self {
329         MacroExpander { cx, monotonic }
330     }
331
332     pub fn expand_crate(&mut self, mut krate: ast::Crate) -> ast::Crate {
333         let mut module = ModuleData {
334             mod_path: vec![Ident::from_str(&self.cx.ecfg.crate_name)],
335             directory: match self.cx.source_map().span_to_unmapped_path(krate.span) {
336                 FileName::Real(path) => path,
337                 other => PathBuf::from(other.to_string()),
338             },
339         };
340         module.directory.pop();
341         self.cx.root_path = module.directory.clone();
342         self.cx.current_expansion.module = Rc::new(module);
343
344         let orig_mod_span = krate.module.inner;
345
346         let krate_item = AstFragment::Items(smallvec![P(ast::Item {
347             attrs: krate.attrs,
348             span: krate.span,
349             kind: ast::ItemKind::Mod(krate.module),
350             ident: Ident::invalid(),
351             id: ast::DUMMY_NODE_ID,
352             vis: respan(krate.span.shrink_to_lo(), ast::VisibilityKind::Public),
353             tokens: None,
354         })]);
355
356         match self.fully_expand_fragment(krate_item).make_items().pop().map(P::into_inner) {
357             Some(ast::Item { attrs, kind: ast::ItemKind::Mod(module), .. }) => {
358                 krate.attrs = attrs;
359                 krate.module = module;
360             }
361             None => {
362                 // Resolution failed so we return an empty expansion
363                 krate.attrs = vec![];
364                 krate.module = ast::Mod { inner: orig_mod_span, items: vec![], inline: true };
365             }
366             _ => unreachable!(),
367         };
368         self.cx.trace_macros_diag();
369         krate
370     }
371
372     // Recursively expand all macro invocations in this AST fragment.
373     pub fn fully_expand_fragment(&mut self, input_fragment: AstFragment) -> AstFragment {
374         let orig_expansion_data = self.cx.current_expansion.clone();
375         self.cx.current_expansion.depth = 0;
376
377         // Collect all macro invocations and replace them with placeholders.
378         let (mut fragment_with_placeholders, mut invocations) =
379             self.collect_invocations(input_fragment, &[]);
380
381         // Optimization: if we resolve all imports now,
382         // we'll be able to immediately resolve most of imported macros.
383         self.resolve_imports();
384
385         // Resolve paths in all invocations and produce output expanded fragments for them, but
386         // do not insert them into our input AST fragment yet, only store in `expanded_fragments`.
387         // The output fragments also go through expansion recursively until no invocations are left.
388         // Unresolved macros produce dummy outputs as a recovery measure.
389         invocations.reverse();
390         let mut expanded_fragments = Vec::new();
391         let mut undetermined_invocations = Vec::new();
392         let (mut progress, mut force) = (false, !self.monotonic);
393         loop {
394             let invoc = if let Some(invoc) = invocations.pop() {
395                 invoc
396             } else {
397                 self.resolve_imports();
398                 if undetermined_invocations.is_empty() {
399                     break;
400                 }
401                 invocations = mem::take(&mut undetermined_invocations);
402                 force = !mem::replace(&mut progress, false);
403                 continue;
404             };
405
406             let eager_expansion_root =
407                 if self.monotonic { invoc.expansion_data.id } else { orig_expansion_data.id };
408             let res = match self.cx.resolver.resolve_macro_invocation(
409                 &invoc,
410                 eager_expansion_root,
411                 force,
412             ) {
413                 Ok(res) => res,
414                 Err(Indeterminate) => {
415                     undetermined_invocations.push(invoc);
416                     continue;
417                 }
418             };
419
420             progress = true;
421             let ExpansionData { depth, id: expn_id, .. } = invoc.expansion_data;
422             self.cx.current_expansion = invoc.expansion_data.clone();
423
424             // FIXME(jseyfried): Refactor out the following logic
425             let (expanded_fragment, new_invocations) = match res {
426                 InvocationRes::Single(ext) => {
427                     let fragment = self.expand_invoc(invoc, &ext.kind);
428                     self.collect_invocations(fragment, &[])
429                 }
430                 InvocationRes::DeriveContainer(_exts) => {
431                     // FIXME: Consider using the derive resolutions (`_exts`) immediately,
432                     // instead of enqueuing the derives to be resolved again later.
433                     let (derives, item) = match invoc.kind {
434                         InvocationKind::DeriveContainer { derives, item } => (derives, item),
435                         _ => unreachable!(),
436                     };
437                     if !item.derive_allowed() {
438                         let attr = attr::find_by_name(item.attrs(), sym::derive)
439                             .expect("`derive` attribute should exist");
440                         let span = attr.span;
441                         let mut err = self.cx.struct_span_err(
442                             span,
443                             "`derive` may only be applied to structs, enums and unions",
444                         );
445                         if let ast::AttrStyle::Inner = attr.style {
446                             let trait_list = derives
447                                 .iter()
448                                 .map(|t| pprust::path_to_string(t))
449                                 .collect::<Vec<_>>();
450                             let suggestion = format!("#[derive({})]", trait_list.join(", "));
451                             err.span_suggestion(
452                                 span,
453                                 "try an outer attribute",
454                                 suggestion,
455                                 // We don't 𝑘𝑛𝑜𝑤 that the following item is an ADT
456                                 Applicability::MaybeIncorrect,
457                             );
458                         }
459                         err.emit();
460                     }
461
462                     let mut item = self.fully_configure(item);
463                     item.visit_attrs(|attrs| attrs.retain(|a| !a.has_name(sym::derive)));
464
465                     let mut derive_placeholders = Vec::with_capacity(derives.len());
466                     invocations.reserve(derives.len());
467                     for path in derives {
468                         let expn_id = ExpnId::fresh(None);
469                         derive_placeholders.push(NodeId::placeholder_from_expn_id(expn_id));
470                         invocations.push(Invocation {
471                             kind: InvocationKind::Derive { path, item: item.clone() },
472                             fragment_kind: invoc.fragment_kind,
473                             expansion_data: ExpansionData {
474                                 id: expn_id,
475                                 ..invoc.expansion_data.clone()
476                             },
477                         });
478                     }
479                     let fragment =
480                         invoc.fragment_kind.expect_from_annotatables(::std::iter::once(item));
481                     self.collect_invocations(fragment, &derive_placeholders)
482                 }
483             };
484
485             if expanded_fragments.len() < depth {
486                 expanded_fragments.push(Vec::new());
487             }
488             expanded_fragments[depth - 1].push((expn_id, expanded_fragment));
489             if !self.cx.ecfg.single_step {
490                 invocations.extend(new_invocations.into_iter().rev());
491             }
492         }
493
494         self.cx.current_expansion = orig_expansion_data;
495
496         // Finally incorporate all the expanded macros into the input AST fragment.
497         let mut placeholder_expander = PlaceholderExpander::new(self.cx, self.monotonic);
498         while let Some(expanded_fragments) = expanded_fragments.pop() {
499             for (expn_id, expanded_fragment) in expanded_fragments.into_iter().rev() {
500                 placeholder_expander
501                     .add(NodeId::placeholder_from_expn_id(expn_id), expanded_fragment);
502             }
503         }
504         fragment_with_placeholders.mut_visit_with(&mut placeholder_expander);
505         fragment_with_placeholders
506     }
507
508     fn resolve_imports(&mut self) {
509         if self.monotonic {
510             self.cx.resolver.resolve_imports();
511         }
512     }
513
514     /// Collects all macro invocations reachable at this time in this AST fragment, and replace
515     /// them with "placeholders" - dummy macro invocations with specially crafted `NodeId`s.
516     /// Then call into resolver that builds a skeleton ("reduced graph") of the fragment and
517     /// prepares data for resolving paths of macro invocations.
518     fn collect_invocations(
519         &mut self,
520         mut fragment: AstFragment,
521         extra_placeholders: &[NodeId],
522     ) -> (AstFragment, Vec<Invocation>) {
523         // Resolve `$crate`s in the fragment for pretty-printing.
524         self.cx.resolver.resolve_dollar_crates();
525
526         let invocations = {
527             let mut collector = InvocationCollector {
528                 cfg: StripUnconfigured {
529                     sess: self.cx.parse_sess,
530                     features: self.cx.ecfg.features,
531                 },
532                 cx: self.cx,
533                 invocations: Vec::new(),
534                 monotonic: self.monotonic,
535             };
536             fragment.mut_visit_with(&mut collector);
537             fragment.add_placeholders(extra_placeholders);
538             collector.invocations
539         };
540
541         if self.monotonic {
542             self.cx
543                 .resolver
544                 .visit_ast_fragment_with_placeholders(self.cx.current_expansion.id, &fragment);
545         }
546
547         (fragment, invocations)
548     }
549
550     fn fully_configure(&mut self, item: Annotatable) -> Annotatable {
551         let mut cfg =
552             StripUnconfigured { sess: self.cx.parse_sess, features: self.cx.ecfg.features };
553         // Since the item itself has already been configured by the InvocationCollector,
554         // we know that fold result vector will contain exactly one element
555         match item {
556             Annotatable::Item(item) => Annotatable::Item(cfg.flat_map_item(item).pop().unwrap()),
557             Annotatable::TraitItem(item) => {
558                 Annotatable::TraitItem(cfg.flat_map_trait_item(item).pop().unwrap())
559             }
560             Annotatable::ImplItem(item) => {
561                 Annotatable::ImplItem(cfg.flat_map_impl_item(item).pop().unwrap())
562             }
563             Annotatable::ForeignItem(item) => {
564                 Annotatable::ForeignItem(cfg.flat_map_foreign_item(item).pop().unwrap())
565             }
566             Annotatable::Stmt(stmt) => {
567                 Annotatable::Stmt(stmt.map(|stmt| cfg.flat_map_stmt(stmt).pop().unwrap()))
568             }
569             Annotatable::Expr(mut expr) => Annotatable::Expr({
570                 cfg.visit_expr(&mut expr);
571                 expr
572             }),
573             Annotatable::Arm(arm) => Annotatable::Arm(cfg.flat_map_arm(arm).pop().unwrap()),
574             Annotatable::Field(field) => {
575                 Annotatable::Field(cfg.flat_map_field(field).pop().unwrap())
576             }
577             Annotatable::FieldPat(fp) => {
578                 Annotatable::FieldPat(cfg.flat_map_field_pattern(fp).pop().unwrap())
579             }
580             Annotatable::GenericParam(param) => {
581                 Annotatable::GenericParam(cfg.flat_map_generic_param(param).pop().unwrap())
582             }
583             Annotatable::Param(param) => {
584                 Annotatable::Param(cfg.flat_map_param(param).pop().unwrap())
585             }
586             Annotatable::StructField(sf) => {
587                 Annotatable::StructField(cfg.flat_map_struct_field(sf).pop().unwrap())
588             }
589             Annotatable::Variant(v) => Annotatable::Variant(cfg.flat_map_variant(v).pop().unwrap()),
590         }
591     }
592
593     fn expand_invoc(&mut self, invoc: Invocation, ext: &SyntaxExtensionKind) -> AstFragment {
594         if self.cx.current_expansion.depth > self.cx.ecfg.recursion_limit {
595             let expn_data = self.cx.current_expansion.id.expn_data();
596             let suggested_limit = self.cx.ecfg.recursion_limit * 2;
597             let mut err = self.cx.struct_span_err(
598                 expn_data.call_site,
599                 &format!("recursion limit reached while expanding `{}`", expn_data.kind.descr()),
600             );
601             err.help(&format!(
602                 "consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
603                 suggested_limit
604             ));
605             err.emit();
606             self.cx.trace_macros_diag();
607             FatalError.raise();
608         }
609
610         let (fragment_kind, span) = (invoc.fragment_kind, invoc.span());
611         match invoc.kind {
612             InvocationKind::Bang { mac, .. } => match ext {
613                 SyntaxExtensionKind::Bang(expander) => {
614                     self.gate_proc_macro_expansion_kind(span, fragment_kind);
615                     let tok_result = expander.expand(self.cx, span, mac.args.inner_tokens());
616                     self.parse_ast_fragment(tok_result, fragment_kind, &mac.path, span)
617                 }
618                 SyntaxExtensionKind::LegacyBang(expander) => {
619                     let prev = self.cx.current_expansion.prior_type_ascription;
620                     self.cx.current_expansion.prior_type_ascription = mac.prior_type_ascription;
621                     let tok_result = expander.expand(self.cx, span, mac.args.inner_tokens());
622                     let result = if let Some(result) = fragment_kind.make_from(tok_result) {
623                         result
624                     } else {
625                         let msg = format!(
626                             "non-{kind} macro in {kind} position: {path}",
627                             kind = fragment_kind.name(),
628                             path = pprust::path_to_string(&mac.path),
629                         );
630                         self.cx.span_err(span, &msg);
631                         self.cx.trace_macros_diag();
632                         fragment_kind.dummy(span)
633                     };
634                     self.cx.current_expansion.prior_type_ascription = prev;
635                     result
636                 }
637                 _ => unreachable!(),
638             },
639             InvocationKind::Attr { attr, mut item, .. } => match ext {
640                 SyntaxExtensionKind::Attr(expander) => {
641                     self.gate_proc_macro_input(&item);
642                     self.gate_proc_macro_attr_item(span, &item);
643                     let item_tok = TokenTree::token(
644                         token::Interpolated(Lrc::new(match item {
645                             Annotatable::Item(item) => token::NtItem(item),
646                             Annotatable::TraitItem(item) => token::NtTraitItem(item),
647                             Annotatable::ImplItem(item) => token::NtImplItem(item),
648                             Annotatable::ForeignItem(item) => token::NtForeignItem(item),
649                             Annotatable::Stmt(stmt) => token::NtStmt(stmt.into_inner()),
650                             Annotatable::Expr(expr) => token::NtExpr(expr),
651                             Annotatable::Arm(..)
652                             | Annotatable::Field(..)
653                             | Annotatable::FieldPat(..)
654                             | Annotatable::GenericParam(..)
655                             | Annotatable::Param(..)
656                             | Annotatable::StructField(..)
657                             | Annotatable::Variant(..) => panic!("unexpected annotatable"),
658                         })),
659                         DUMMY_SP,
660                     )
661                     .into();
662                     let item = attr.unwrap_normal_item();
663                     if let MacArgs::Eq(..) = item.args {
664                         self.cx.span_err(span, "key-value macro attributes are not supported");
665                     }
666                     let tok_result =
667                         expander.expand(self.cx, span, item.args.inner_tokens(), item_tok);
668                     self.parse_ast_fragment(tok_result, fragment_kind, &item.path, span)
669                 }
670                 SyntaxExtensionKind::LegacyAttr(expander) => {
671                     match validate_attr::parse_meta(self.cx.parse_sess, &attr) {
672                         Ok(meta) => {
673                             let item = expander.expand(self.cx, span, &meta, item);
674                             fragment_kind.expect_from_annotatables(item)
675                         }
676                         Err(mut err) => {
677                             err.emit();
678                             fragment_kind.dummy(span)
679                         }
680                     }
681                 }
682                 SyntaxExtensionKind::NonMacroAttr { mark_used } => {
683                     attr::mark_known(&attr);
684                     if *mark_used {
685                         attr::mark_used(&attr);
686                     }
687                     item.visit_attrs(|attrs| attrs.push(attr));
688                     fragment_kind.expect_from_annotatables(iter::once(item))
689                 }
690                 _ => unreachable!(),
691             },
692             InvocationKind::Derive { path, item } => match ext {
693                 SyntaxExtensionKind::Derive(expander)
694                 | SyntaxExtensionKind::LegacyDerive(expander) => {
695                     if !item.derive_allowed() {
696                         return fragment_kind.dummy(span);
697                     }
698                     if let SyntaxExtensionKind::Derive(..) = ext {
699                         self.gate_proc_macro_input(&item);
700                     }
701                     let meta = ast::MetaItem { kind: ast::MetaItemKind::Word, span, path };
702                     let items = expander.expand(self.cx, span, &meta, item);
703                     fragment_kind.expect_from_annotatables(items)
704                 }
705                 _ => unreachable!(),
706             },
707             InvocationKind::DeriveContainer { .. } => unreachable!(),
708         }
709     }
710
711     fn gate_proc_macro_attr_item(&self, span: Span, item: &Annotatable) {
712         let kind = match item {
713             Annotatable::Item(_)
714             | Annotatable::TraitItem(_)
715             | Annotatable::ImplItem(_)
716             | Annotatable::ForeignItem(_) => return,
717             Annotatable::Stmt(_) => "statements",
718             Annotatable::Expr(_) => "expressions",
719             Annotatable::Arm(..)
720             | Annotatable::Field(..)
721             | Annotatable::FieldPat(..)
722             | Annotatable::GenericParam(..)
723             | Annotatable::Param(..)
724             | Annotatable::StructField(..)
725             | Annotatable::Variant(..) => panic!("unexpected annotatable"),
726         };
727         if self.cx.ecfg.proc_macro_hygiene() {
728             return;
729         }
730         feature_err(
731             self.cx.parse_sess,
732             sym::proc_macro_hygiene,
733             span,
734             &format!("custom attributes cannot be applied to {}", kind),
735         )
736         .emit();
737     }
738
739     fn gate_proc_macro_input(&self, annotatable: &Annotatable) {
740         struct GateProcMacroInput<'a> {
741             parse_sess: &'a ParseSess,
742         }
743
744         impl<'ast, 'a> Visitor<'ast> for GateProcMacroInput<'a> {
745             fn visit_item(&mut self, item: &'ast ast::Item) {
746                 match &item.kind {
747                     ast::ItemKind::Mod(module) if !module.inline => {
748                         feature_err(
749                             self.parse_sess,
750                             sym::proc_macro_hygiene,
751                             item.span,
752                             "non-inline modules in proc macro input are unstable",
753                         )
754                         .emit();
755                     }
756                     _ => {}
757                 }
758
759                 visit::walk_item(self, item);
760             }
761
762             fn visit_mac(&mut self, _: &'ast ast::Mac) {}
763         }
764
765         if !self.cx.ecfg.proc_macro_hygiene() {
766             annotatable.visit_with(&mut GateProcMacroInput { parse_sess: self.cx.parse_sess });
767         }
768     }
769
770     fn gate_proc_macro_expansion_kind(&self, span: Span, kind: AstFragmentKind) {
771         let kind = match kind {
772             AstFragmentKind::Expr | AstFragmentKind::OptExpr => "expressions",
773             AstFragmentKind::Pat => "patterns",
774             AstFragmentKind::Stmts => "statements",
775             AstFragmentKind::Ty
776             | AstFragmentKind::Items
777             | AstFragmentKind::TraitItems
778             | AstFragmentKind::ImplItems
779             | AstFragmentKind::ForeignItems => return,
780             AstFragmentKind::Arms
781             | AstFragmentKind::Fields
782             | AstFragmentKind::FieldPats
783             | AstFragmentKind::GenericParams
784             | AstFragmentKind::Params
785             | AstFragmentKind::StructFields
786             | AstFragmentKind::Variants => panic!("unexpected AST fragment kind"),
787         };
788         if self.cx.ecfg.proc_macro_hygiene() {
789             return;
790         }
791         feature_err(
792             self.cx.parse_sess,
793             sym::proc_macro_hygiene,
794             span,
795             &format!("procedural macros cannot be expanded to {}", kind),
796         )
797         .emit();
798     }
799
800     fn parse_ast_fragment(
801         &mut self,
802         toks: TokenStream,
803         kind: AstFragmentKind,
804         path: &Path,
805         span: Span,
806     ) -> AstFragment {
807         let mut parser = self.cx.new_parser_from_tts(toks);
808         match parse_ast_fragment(&mut parser, kind, false) {
809             Ok(fragment) => {
810                 ensure_complete_parse(&mut parser, path, kind.name(), span);
811                 fragment
812             }
813             Err(mut err) => {
814                 err.set_span(span);
815                 annotate_err_with_kind(&mut err, kind, span);
816                 err.emit();
817                 self.cx.trace_macros_diag();
818                 kind.dummy(span)
819             }
820         }
821     }
822 }
823
824 pub fn parse_ast_fragment<'a>(
825     this: &mut Parser<'a>,
826     kind: AstFragmentKind,
827     macro_legacy_warnings: bool,
828 ) -> PResult<'a, AstFragment> {
829     Ok(match kind {
830         AstFragmentKind::Items => {
831             let mut items = SmallVec::new();
832             while let Some(item) = this.parse_item()? {
833                 items.push(item);
834             }
835             AstFragment::Items(items)
836         }
837         AstFragmentKind::TraitItems => {
838             let mut items = SmallVec::new();
839             while this.token != token::Eof {
840                 items.push(this.parse_trait_item(&mut false)?);
841             }
842             AstFragment::TraitItems(items)
843         }
844         AstFragmentKind::ImplItems => {
845             let mut items = SmallVec::new();
846             while this.token != token::Eof {
847                 items.push(this.parse_impl_item(&mut false)?);
848             }
849             AstFragment::ImplItems(items)
850         }
851         AstFragmentKind::ForeignItems => {
852             let mut items = SmallVec::new();
853             while this.token != token::Eof {
854                 items.push(this.parse_foreign_item(DUMMY_SP)?);
855             }
856             AstFragment::ForeignItems(items)
857         }
858         AstFragmentKind::Stmts => {
859             let mut stmts = SmallVec::new();
860             while this.token != token::Eof &&
861                     // won't make progress on a `}`
862                     this.token != token::CloseDelim(token::Brace)
863             {
864                 if let Some(stmt) = this.parse_full_stmt(macro_legacy_warnings)? {
865                     stmts.push(stmt);
866                 }
867             }
868             AstFragment::Stmts(stmts)
869         }
870         AstFragmentKind::Expr => AstFragment::Expr(this.parse_expr()?),
871         AstFragmentKind::OptExpr => {
872             if this.token != token::Eof {
873                 AstFragment::OptExpr(Some(this.parse_expr()?))
874             } else {
875                 AstFragment::OptExpr(None)
876             }
877         }
878         AstFragmentKind::Ty => AstFragment::Ty(this.parse_ty()?),
879         AstFragmentKind::Pat => AstFragment::Pat(this.parse_pat(None)?),
880         AstFragmentKind::Arms
881         | AstFragmentKind::Fields
882         | AstFragmentKind::FieldPats
883         | AstFragmentKind::GenericParams
884         | AstFragmentKind::Params
885         | AstFragmentKind::StructFields
886         | AstFragmentKind::Variants => panic!("unexpected AST fragment kind"),
887     })
888 }
889
890 pub fn ensure_complete_parse<'a>(
891     this: &mut Parser<'a>,
892     macro_path: &Path,
893     kind_name: &str,
894     span: Span,
895 ) {
896     if this.token != token::Eof {
897         let token = pprust::token_to_string(&this.token);
898         let msg = format!("macro expansion ignores token `{}` and any following", token);
899         // Avoid emitting backtrace info twice.
900         let def_site_span = this.token.span.with_ctxt(SyntaxContext::root());
901         let mut err = this.struct_span_err(def_site_span, &msg);
902         err.span_label(span, "caused by the macro expansion here");
903         let msg = format!(
904             "the usage of `{}!` is likely invalid in {} context",
905             pprust::path_to_string(macro_path),
906             kind_name,
907         );
908         err.note(&msg);
909         let semi_span = this.sess.source_map().next_point(span);
910
911         let semi_full_span = semi_span.to(this.sess.source_map().next_point(semi_span));
912         match this.sess.source_map().span_to_snippet(semi_full_span) {
913             Ok(ref snippet) if &snippet[..] != ";" && kind_name == "expression" => {
914                 err.span_suggestion(
915                     semi_span,
916                     "you might be missing a semicolon here",
917                     ";".to_owned(),
918                     Applicability::MaybeIncorrect,
919                 );
920             }
921             _ => {}
922         }
923         err.emit();
924     }
925 }
926
927 struct InvocationCollector<'a, 'b> {
928     cx: &'a mut ExtCtxt<'b>,
929     cfg: StripUnconfigured<'a>,
930     invocations: Vec<Invocation>,
931     monotonic: bool,
932 }
933
934 impl<'a, 'b> InvocationCollector<'a, 'b> {
935     fn collect(&mut self, fragment_kind: AstFragmentKind, kind: InvocationKind) -> AstFragment {
936         // Expansion data for all the collected invocations is set upon their resolution,
937         // with exception of the derive container case which is not resolved and can get
938         // its expansion data immediately.
939         let expn_data = match &kind {
940             InvocationKind::DeriveContainer { item, .. } => Some(ExpnData {
941                 parent: self.cx.current_expansion.id,
942                 ..ExpnData::default(
943                     ExpnKind::Macro(MacroKind::Attr, sym::derive),
944                     item.span(),
945                     self.cx.parse_sess.edition,
946                 )
947             }),
948             _ => None,
949         };
950         let expn_id = ExpnId::fresh(expn_data);
951         let vis = kind.placeholder_visibility();
952         self.invocations.push(Invocation {
953             kind,
954             fragment_kind,
955             expansion_data: ExpansionData {
956                 id: expn_id,
957                 depth: self.cx.current_expansion.depth + 1,
958                 ..self.cx.current_expansion.clone()
959             },
960         });
961         placeholder(fragment_kind, NodeId::placeholder_from_expn_id(expn_id), vis)
962     }
963
964     fn collect_bang(&mut self, mac: ast::Mac, span: Span, kind: AstFragmentKind) -> AstFragment {
965         self.collect(kind, InvocationKind::Bang { mac, span })
966     }
967
968     fn collect_attr(
969         &mut self,
970         attr: Option<ast::Attribute>,
971         derives: Vec<Path>,
972         item: Annotatable,
973         kind: AstFragmentKind,
974         after_derive: bool,
975     ) -> AstFragment {
976         self.collect(
977             kind,
978             match attr {
979                 Some(attr) => InvocationKind::Attr { attr, item, derives, after_derive },
980                 None => InvocationKind::DeriveContainer { derives, item },
981             },
982         )
983     }
984
985     fn find_attr_invoc(
986         &self,
987         attrs: &mut Vec<ast::Attribute>,
988         after_derive: &mut bool,
989     ) -> Option<ast::Attribute> {
990         let attr = attrs
991             .iter()
992             .position(|a| {
993                 if a.has_name(sym::derive) {
994                     *after_derive = true;
995                 }
996                 !attr::is_known(a) && !is_builtin_attr(a)
997             })
998             .map(|i| attrs.remove(i));
999         if let Some(attr) = &attr {
1000             if !self.cx.ecfg.custom_inner_attributes()
1001                 && attr.style == ast::AttrStyle::Inner
1002                 && !attr.has_name(sym::test)
1003             {
1004                 feature_err(
1005                     &self.cx.parse_sess,
1006                     sym::custom_inner_attributes,
1007                     attr.span,
1008                     "non-builtin inner attributes are unstable",
1009                 )
1010                 .emit();
1011             }
1012         }
1013         attr
1014     }
1015
1016     /// If `item` is an attr invocation, remove and return the macro attribute and derive traits.
1017     fn classify_item<T>(
1018         &mut self,
1019         item: &mut T,
1020     ) -> (Option<ast::Attribute>, Vec<Path>, /* after_derive */ bool)
1021     where
1022         T: HasAttrs,
1023     {
1024         let (mut attr, mut traits, mut after_derive) = (None, Vec::new(), false);
1025
1026         item.visit_attrs(|mut attrs| {
1027             attr = self.find_attr_invoc(&mut attrs, &mut after_derive);
1028             traits = collect_derives(&mut self.cx, &mut attrs);
1029         });
1030
1031         (attr, traits, after_derive)
1032     }
1033
1034     /// Alternative to `classify_item()` that ignores `#[derive]` so invocations fallthrough
1035     /// to the unused-attributes lint (making it an error on statements and expressions
1036     /// is a breaking change)
1037     fn classify_nonitem<T: HasAttrs>(
1038         &mut self,
1039         nonitem: &mut T,
1040     ) -> (Option<ast::Attribute>, /* after_derive */ bool) {
1041         let (mut attr, mut after_derive) = (None, false);
1042
1043         nonitem.visit_attrs(|mut attrs| {
1044             attr = self.find_attr_invoc(&mut attrs, &mut after_derive);
1045         });
1046
1047         (attr, after_derive)
1048     }
1049
1050     fn configure<T: HasAttrs>(&mut self, node: T) -> Option<T> {
1051         self.cfg.configure(node)
1052     }
1053
1054     // Detect use of feature-gated or invalid attributes on macro invocations
1055     // since they will not be detected after macro expansion.
1056     fn check_attributes(&mut self, attrs: &[ast::Attribute]) {
1057         let features = self.cx.ecfg.features.unwrap();
1058         for attr in attrs.iter() {
1059             rustc_ast_passes::feature_gate::check_attribute(attr, self.cx.parse_sess, features);
1060             validate_attr::check_meta(self.cx.parse_sess, attr);
1061
1062             // macros are expanded before any lint passes so this warning has to be hardcoded
1063             if attr.has_name(sym::derive) {
1064                 self.cx
1065                     .struct_span_warn(attr.span, "`#[derive]` does nothing on macro invocations")
1066                     .note("this may become a hard error in a future release")
1067                     .emit();
1068             }
1069         }
1070     }
1071 }
1072
1073 impl<'a, 'b> MutVisitor for InvocationCollector<'a, 'b> {
1074     fn visit_expr(&mut self, expr: &mut P<ast::Expr>) {
1075         self.cfg.configure_expr(expr);
1076         visit_clobber(expr.deref_mut(), |mut expr| {
1077             self.cfg.configure_expr_kind(&mut expr.kind);
1078
1079             // ignore derives so they remain unused
1080             let (attr, after_derive) = self.classify_nonitem(&mut expr);
1081
1082             if attr.is_some() {
1083                 // Collect the invoc regardless of whether or not attributes are permitted here
1084                 // expansion will eat the attribute so it won't error later.
1085                 attr.as_ref().map(|a| self.cfg.maybe_emit_expr_attr_err(a));
1086
1087                 // AstFragmentKind::Expr requires the macro to emit an expression.
1088                 return self
1089                     .collect_attr(
1090                         attr,
1091                         vec![],
1092                         Annotatable::Expr(P(expr)),
1093                         AstFragmentKind::Expr,
1094                         after_derive,
1095                     )
1096                     .make_expr()
1097                     .into_inner();
1098             }
1099
1100             if let ast::ExprKind::Mac(mac) = expr.kind {
1101                 self.check_attributes(&expr.attrs);
1102                 self.collect_bang(mac, expr.span, AstFragmentKind::Expr).make_expr().into_inner()
1103             } else {
1104                 noop_visit_expr(&mut expr, self);
1105                 expr
1106             }
1107         });
1108     }
1109
1110     fn flat_map_arm(&mut self, arm: ast::Arm) -> SmallVec<[ast::Arm; 1]> {
1111         let mut arm = configure!(self, arm);
1112
1113         let (attr, traits, after_derive) = self.classify_item(&mut arm);
1114         if attr.is_some() || !traits.is_empty() {
1115             return self
1116                 .collect_attr(
1117                     attr,
1118                     traits,
1119                     Annotatable::Arm(arm),
1120                     AstFragmentKind::Arms,
1121                     after_derive,
1122                 )
1123                 .make_arms();
1124         }
1125
1126         noop_flat_map_arm(arm, self)
1127     }
1128
1129     fn flat_map_field(&mut self, field: ast::Field) -> SmallVec<[ast::Field; 1]> {
1130         let mut field = configure!(self, field);
1131
1132         let (attr, traits, after_derive) = self.classify_item(&mut field);
1133         if attr.is_some() || !traits.is_empty() {
1134             return self
1135                 .collect_attr(
1136                     attr,
1137                     traits,
1138                     Annotatable::Field(field),
1139                     AstFragmentKind::Fields,
1140                     after_derive,
1141                 )
1142                 .make_fields();
1143         }
1144
1145         noop_flat_map_field(field, self)
1146     }
1147
1148     fn flat_map_field_pattern(&mut self, fp: ast::FieldPat) -> SmallVec<[ast::FieldPat; 1]> {
1149         let mut fp = configure!(self, fp);
1150
1151         let (attr, traits, after_derive) = self.classify_item(&mut fp);
1152         if attr.is_some() || !traits.is_empty() {
1153             return self
1154                 .collect_attr(
1155                     attr,
1156                     traits,
1157                     Annotatable::FieldPat(fp),
1158                     AstFragmentKind::FieldPats,
1159                     after_derive,
1160                 )
1161                 .make_field_patterns();
1162         }
1163
1164         noop_flat_map_field_pattern(fp, self)
1165     }
1166
1167     fn flat_map_param(&mut self, p: ast::Param) -> SmallVec<[ast::Param; 1]> {
1168         let mut p = configure!(self, p);
1169
1170         let (attr, traits, after_derive) = self.classify_item(&mut p);
1171         if attr.is_some() || !traits.is_empty() {
1172             return self
1173                 .collect_attr(
1174                     attr,
1175                     traits,
1176                     Annotatable::Param(p),
1177                     AstFragmentKind::Params,
1178                     after_derive,
1179                 )
1180                 .make_params();
1181         }
1182
1183         noop_flat_map_param(p, self)
1184     }
1185
1186     fn flat_map_struct_field(&mut self, sf: ast::StructField) -> SmallVec<[ast::StructField; 1]> {
1187         let mut sf = configure!(self, sf);
1188
1189         let (attr, traits, after_derive) = self.classify_item(&mut sf);
1190         if attr.is_some() || !traits.is_empty() {
1191             return self
1192                 .collect_attr(
1193                     attr,
1194                     traits,
1195                     Annotatable::StructField(sf),
1196                     AstFragmentKind::StructFields,
1197                     after_derive,
1198                 )
1199                 .make_struct_fields();
1200         }
1201
1202         noop_flat_map_struct_field(sf, self)
1203     }
1204
1205     fn flat_map_variant(&mut self, variant: ast::Variant) -> SmallVec<[ast::Variant; 1]> {
1206         let mut variant = configure!(self, variant);
1207
1208         let (attr, traits, after_derive) = self.classify_item(&mut variant);
1209         if attr.is_some() || !traits.is_empty() {
1210             return self
1211                 .collect_attr(
1212                     attr,
1213                     traits,
1214                     Annotatable::Variant(variant),
1215                     AstFragmentKind::Variants,
1216                     after_derive,
1217                 )
1218                 .make_variants();
1219         }
1220
1221         noop_flat_map_variant(variant, self)
1222     }
1223
1224     fn filter_map_expr(&mut self, expr: P<ast::Expr>) -> Option<P<ast::Expr>> {
1225         let expr = configure!(self, expr);
1226         expr.filter_map(|mut expr| {
1227             self.cfg.configure_expr_kind(&mut expr.kind);
1228
1229             // Ignore derives so they remain unused.
1230             let (attr, after_derive) = self.classify_nonitem(&mut expr);
1231
1232             if attr.is_some() {
1233                 attr.as_ref().map(|a| self.cfg.maybe_emit_expr_attr_err(a));
1234
1235                 return self
1236                     .collect_attr(
1237                         attr,
1238                         vec![],
1239                         Annotatable::Expr(P(expr)),
1240                         AstFragmentKind::OptExpr,
1241                         after_derive,
1242                     )
1243                     .make_opt_expr()
1244                     .map(|expr| expr.into_inner());
1245             }
1246
1247             if let ast::ExprKind::Mac(mac) = expr.kind {
1248                 self.check_attributes(&expr.attrs);
1249                 self.collect_bang(mac, expr.span, AstFragmentKind::OptExpr)
1250                     .make_opt_expr()
1251                     .map(|expr| expr.into_inner())
1252             } else {
1253                 Some({
1254                     noop_visit_expr(&mut expr, self);
1255                     expr
1256                 })
1257             }
1258         })
1259     }
1260
1261     fn visit_pat(&mut self, pat: &mut P<ast::Pat>) {
1262         self.cfg.configure_pat(pat);
1263         match pat.kind {
1264             PatKind::Mac(_) => {}
1265             _ => return noop_visit_pat(pat, self),
1266         }
1267
1268         visit_clobber(pat, |mut pat| match mem::replace(&mut pat.kind, PatKind::Wild) {
1269             PatKind::Mac(mac) => self.collect_bang(mac, pat.span, AstFragmentKind::Pat).make_pat(),
1270             _ => unreachable!(),
1271         });
1272     }
1273
1274     fn flat_map_stmt(&mut self, stmt: ast::Stmt) -> SmallVec<[ast::Stmt; 1]> {
1275         let mut stmt = configure!(self, stmt);
1276
1277         // we'll expand attributes on expressions separately
1278         if !stmt.is_expr() {
1279             let (attr, derives, after_derive) = if stmt.is_item() {
1280                 self.classify_item(&mut stmt)
1281             } else {
1282                 // ignore derives on non-item statements so it falls through
1283                 // to the unused-attributes lint
1284                 let (attr, after_derive) = self.classify_nonitem(&mut stmt);
1285                 (attr, vec![], after_derive)
1286             };
1287
1288             if attr.is_some() || !derives.is_empty() {
1289                 return self
1290                     .collect_attr(
1291                         attr,
1292                         derives,
1293                         Annotatable::Stmt(P(stmt)),
1294                         AstFragmentKind::Stmts,
1295                         after_derive,
1296                     )
1297                     .make_stmts();
1298             }
1299         }
1300
1301         if let StmtKind::Mac(mac) = stmt.kind {
1302             let (mac, style, attrs) = mac.into_inner();
1303             self.check_attributes(&attrs);
1304             let mut placeholder =
1305                 self.collect_bang(mac, stmt.span, AstFragmentKind::Stmts).make_stmts();
1306
1307             // If this is a macro invocation with a semicolon, then apply that
1308             // semicolon to the final statement produced by expansion.
1309             if style == MacStmtStyle::Semicolon {
1310                 if let Some(stmt) = placeholder.pop() {
1311                     placeholder.push(stmt.add_trailing_semicolon());
1312                 }
1313             }
1314
1315             return placeholder;
1316         }
1317
1318         // The placeholder expander gives ids to statements, so we avoid folding the id here.
1319         let ast::Stmt { id, kind, span } = stmt;
1320         noop_flat_map_stmt_kind(kind, self)
1321             .into_iter()
1322             .map(|kind| ast::Stmt { id, kind, span })
1323             .collect()
1324     }
1325
1326     fn visit_block(&mut self, block: &mut P<Block>) {
1327         let old_directory_ownership = self.cx.current_expansion.directory_ownership;
1328         self.cx.current_expansion.directory_ownership = DirectoryOwnership::UnownedViaBlock;
1329         noop_visit_block(block, self);
1330         self.cx.current_expansion.directory_ownership = old_directory_ownership;
1331     }
1332
1333     fn flat_map_item(&mut self, item: P<ast::Item>) -> SmallVec<[P<ast::Item>; 1]> {
1334         let mut item = configure!(self, item);
1335
1336         let (attr, traits, after_derive) = self.classify_item(&mut item);
1337         if attr.is_some() || !traits.is_empty() {
1338             return self
1339                 .collect_attr(
1340                     attr,
1341                     traits,
1342                     Annotatable::Item(item),
1343                     AstFragmentKind::Items,
1344                     after_derive,
1345                 )
1346                 .make_items();
1347         }
1348
1349         match item.kind {
1350             ast::ItemKind::Mac(..) => {
1351                 self.check_attributes(&item.attrs);
1352                 item.and_then(|item| match item.kind {
1353                     ItemKind::Mac(mac) => self
1354                         .collect(
1355                             AstFragmentKind::Items,
1356                             InvocationKind::Bang { mac, span: item.span },
1357                         )
1358                         .make_items(),
1359                     _ => unreachable!(),
1360                 })
1361             }
1362             ast::ItemKind::Mod(ast::Mod { inner, .. }) => {
1363                 if item.ident == Ident::invalid() {
1364                     return noop_flat_map_item(item, self);
1365                 }
1366
1367                 let orig_directory_ownership = self.cx.current_expansion.directory_ownership;
1368                 let mut module = (*self.cx.current_expansion.module).clone();
1369                 module.mod_path.push(item.ident);
1370
1371                 // Detect if this is an inline module (`mod m { ... }` as opposed to `mod m;`).
1372                 // In the non-inline case, `inner` is never the dummy span (cf. `parse_item_mod`).
1373                 // Thus, if `inner` is the dummy span, we know the module is inline.
1374                 let inline_module = item.span.contains(inner) || inner.is_dummy();
1375
1376                 if inline_module {
1377                     if let Some(path) = attr::first_attr_value_str_by_name(&item.attrs, sym::path) {
1378                         self.cx.current_expansion.directory_ownership =
1379                             DirectoryOwnership::Owned { relative: None };
1380                         module.directory.push(&*path.as_str());
1381                     } else {
1382                         module.directory.push(&*item.ident.as_str());
1383                     }
1384                 } else {
1385                     let path = self.cx.parse_sess.source_map().span_to_unmapped_path(inner);
1386                     let mut path = match path {
1387                         FileName::Real(path) => path,
1388                         other => PathBuf::from(other.to_string()),
1389                     };
1390                     let directory_ownership = match path.file_name().unwrap().to_str() {
1391                         Some("mod.rs") => DirectoryOwnership::Owned { relative: None },
1392                         Some(_) => DirectoryOwnership::Owned { relative: Some(item.ident) },
1393                         None => DirectoryOwnership::UnownedViaMod,
1394                     };
1395                     path.pop();
1396                     module.directory = path;
1397                     self.cx.current_expansion.directory_ownership = directory_ownership;
1398                 }
1399
1400                 let orig_module =
1401                     mem::replace(&mut self.cx.current_expansion.module, Rc::new(module));
1402                 let result = noop_flat_map_item(item, self);
1403                 self.cx.current_expansion.module = orig_module;
1404                 self.cx.current_expansion.directory_ownership = orig_directory_ownership;
1405                 result
1406             }
1407
1408             _ => noop_flat_map_item(item, self),
1409         }
1410     }
1411
1412     fn flat_map_trait_item(&mut self, item: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
1413         let mut item = configure!(self, item);
1414
1415         let (attr, traits, after_derive) = self.classify_item(&mut item);
1416         if attr.is_some() || !traits.is_empty() {
1417             return self
1418                 .collect_attr(
1419                     attr,
1420                     traits,
1421                     Annotatable::TraitItem(item),
1422                     AstFragmentKind::TraitItems,
1423                     after_derive,
1424                 )
1425                 .make_trait_items();
1426         }
1427
1428         match item.kind {
1429             ast::AssocItemKind::Macro(..) => {
1430                 self.check_attributes(&item.attrs);
1431                 item.and_then(|item| match item.kind {
1432                     ast::AssocItemKind::Macro(mac) => self
1433                         .collect_bang(mac, item.span, AstFragmentKind::TraitItems)
1434                         .make_trait_items(),
1435                     _ => unreachable!(),
1436                 })
1437             }
1438             _ => noop_flat_map_assoc_item(item, self),
1439         }
1440     }
1441
1442     fn flat_map_impl_item(&mut self, item: P<ast::AssocItem>) -> SmallVec<[P<ast::AssocItem>; 1]> {
1443         let mut item = configure!(self, item);
1444
1445         let (attr, traits, after_derive) = self.classify_item(&mut item);
1446         if attr.is_some() || !traits.is_empty() {
1447             return self
1448                 .collect_attr(
1449                     attr,
1450                     traits,
1451                     Annotatable::ImplItem(item),
1452                     AstFragmentKind::ImplItems,
1453                     after_derive,
1454                 )
1455                 .make_impl_items();
1456         }
1457
1458         match item.kind {
1459             ast::AssocItemKind::Macro(..) => {
1460                 self.check_attributes(&item.attrs);
1461                 item.and_then(|item| match item.kind {
1462                     ast::AssocItemKind::Macro(mac) => self
1463                         .collect_bang(mac, item.span, AstFragmentKind::ImplItems)
1464                         .make_impl_items(),
1465                     _ => unreachable!(),
1466                 })
1467             }
1468             _ => noop_flat_map_assoc_item(item, self),
1469         }
1470     }
1471
1472     fn visit_ty(&mut self, ty: &mut P<ast::Ty>) {
1473         match ty.kind {
1474             ast::TyKind::Mac(_) => {}
1475             _ => return noop_visit_ty(ty, self),
1476         };
1477
1478         visit_clobber(ty, |mut ty| match mem::replace(&mut ty.kind, ast::TyKind::Err) {
1479             ast::TyKind::Mac(mac) => self.collect_bang(mac, ty.span, AstFragmentKind::Ty).make_ty(),
1480             _ => unreachable!(),
1481         });
1482     }
1483
1484     fn visit_foreign_mod(&mut self, foreign_mod: &mut ast::ForeignMod) {
1485         self.cfg.configure_foreign_mod(foreign_mod);
1486         noop_visit_foreign_mod(foreign_mod, self);
1487     }
1488
1489     fn flat_map_foreign_item(
1490         &mut self,
1491         mut foreign_item: P<ast::ForeignItem>,
1492     ) -> SmallVec<[P<ast::ForeignItem>; 1]> {
1493         let (attr, traits, after_derive) = self.classify_item(&mut foreign_item);
1494
1495         if attr.is_some() || !traits.is_empty() {
1496             return self
1497                 .collect_attr(
1498                     attr,
1499                     traits,
1500                     Annotatable::ForeignItem(foreign_item),
1501                     AstFragmentKind::ForeignItems,
1502                     after_derive,
1503                 )
1504                 .make_foreign_items();
1505         }
1506
1507         match foreign_item.kind {
1508             ast::ForeignItemKind::Macro(..) => {
1509                 self.check_attributes(&foreign_item.attrs);
1510                 foreign_item.and_then(|item| match item.kind {
1511                     ast::ForeignItemKind::Macro(mac) => self
1512                         .collect_bang(mac, item.span, AstFragmentKind::ForeignItems)
1513                         .make_foreign_items(),
1514                     _ => unreachable!(),
1515                 })
1516             }
1517             _ => noop_flat_map_foreign_item(foreign_item, self),
1518         }
1519     }
1520
1521     fn visit_item_kind(&mut self, item: &mut ast::ItemKind) {
1522         match item {
1523             ast::ItemKind::MacroDef(..) => {}
1524             _ => {
1525                 self.cfg.configure_item_kind(item);
1526                 noop_visit_item_kind(item, self);
1527             }
1528         }
1529     }
1530
1531     fn flat_map_generic_param(
1532         &mut self,
1533         param: ast::GenericParam,
1534     ) -> SmallVec<[ast::GenericParam; 1]> {
1535         let mut param = configure!(self, param);
1536
1537         let (attr, traits, after_derive) = self.classify_item(&mut param);
1538         if attr.is_some() || !traits.is_empty() {
1539             return self
1540                 .collect_attr(
1541                     attr,
1542                     traits,
1543                     Annotatable::GenericParam(param),
1544                     AstFragmentKind::GenericParams,
1545                     after_derive,
1546                 )
1547                 .make_generic_params();
1548         }
1549
1550         noop_flat_map_generic_param(param, self)
1551     }
1552
1553     fn visit_attribute(&mut self, at: &mut ast::Attribute) {
1554         // turn `#[doc(include="filename")]` attributes into `#[doc(include(file="filename",
1555         // contents="file contents")]` attributes
1556         if !at.check_name(sym::doc) {
1557             return noop_visit_attribute(at, self);
1558         }
1559
1560         if let Some(list) = at.meta_item_list() {
1561             if !list.iter().any(|it| it.check_name(sym::include)) {
1562                 return noop_visit_attribute(at, self);
1563             }
1564
1565             let mut items = vec![];
1566
1567             for mut it in list {
1568                 if !it.check_name(sym::include) {
1569                     items.push({
1570                         noop_visit_meta_list_item(&mut it, self);
1571                         it
1572                     });
1573                     continue;
1574                 }
1575
1576                 if let Some(file) = it.value_str() {
1577                     let err_count = self.cx.parse_sess.span_diagnostic.err_count();
1578                     self.check_attributes(slice::from_ref(at));
1579                     if self.cx.parse_sess.span_diagnostic.err_count() > err_count {
1580                         // avoid loading the file if they haven't enabled the feature
1581                         return noop_visit_attribute(at, self);
1582                     }
1583
1584                     let filename = match self.cx.resolve_path(&*file.as_str(), it.span()) {
1585                         Ok(filename) => filename,
1586                         Err(mut err) => {
1587                             err.emit();
1588                             continue;
1589                         }
1590                     };
1591
1592                     match self.cx.source_map().load_file(&filename) {
1593                         Ok(source_file) => {
1594                             let src = source_file
1595                                 .src
1596                                 .as_ref()
1597                                 .expect("freshly loaded file should have a source");
1598                             let src_interned = Symbol::intern(src.as_str());
1599
1600                             let include_info = vec![
1601                                 ast::NestedMetaItem::MetaItem(attr::mk_name_value_item_str(
1602                                     Ident::with_dummy_span(sym::file),
1603                                     file,
1604                                     DUMMY_SP,
1605                                 )),
1606                                 ast::NestedMetaItem::MetaItem(attr::mk_name_value_item_str(
1607                                     Ident::with_dummy_span(sym::contents),
1608                                     src_interned,
1609                                     DUMMY_SP,
1610                                 )),
1611                             ];
1612
1613                             let include_ident = Ident::with_dummy_span(sym::include);
1614                             let item = attr::mk_list_item(include_ident, include_info);
1615                             items.push(ast::NestedMetaItem::MetaItem(item));
1616                         }
1617                         Err(e) => {
1618                             let lit =
1619                                 it.meta_item().and_then(|item| item.name_value_literal()).unwrap();
1620
1621                             if e.kind() == ErrorKind::InvalidData {
1622                                 self.cx
1623                                     .struct_span_err(
1624                                         lit.span,
1625                                         &format!("{} wasn't a utf-8 file", filename.display()),
1626                                     )
1627                                     .span_label(lit.span, "contains invalid utf-8")
1628                                     .emit();
1629                             } else {
1630                                 let mut err = self.cx.struct_span_err(
1631                                     lit.span,
1632                                     &format!("couldn't read {}: {}", filename.display(), e),
1633                                 );
1634                                 err.span_label(lit.span, "couldn't read file");
1635
1636                                 err.emit();
1637                             }
1638                         }
1639                     }
1640                 } else {
1641                     let mut err = self.cx.struct_span_err(
1642                         it.span(),
1643                         &format!("expected path to external documentation"),
1644                     );
1645
1646                     // Check if the user erroneously used `doc(include(...))` syntax.
1647                     let literal = it.meta_item_list().and_then(|list| {
1648                         if list.len() == 1 {
1649                             list[0].literal().map(|literal| &literal.kind)
1650                         } else {
1651                             None
1652                         }
1653                     });
1654
1655                     let (path, applicability) = match &literal {
1656                         Some(LitKind::Str(path, ..)) => {
1657                             (path.to_string(), Applicability::MachineApplicable)
1658                         }
1659                         _ => (String::from("<path>"), Applicability::HasPlaceholders),
1660                     };
1661
1662                     err.span_suggestion(
1663                         it.span(),
1664                         "provide a file path with `=`",
1665                         format!("include = \"{}\"", path),
1666                         applicability,
1667                     );
1668
1669                     err.emit();
1670                 }
1671             }
1672
1673             let meta = attr::mk_list_item(Ident::with_dummy_span(sym::doc), items);
1674             *at = ast::Attribute {
1675                 kind: ast::AttrKind::Normal(AttrItem {
1676                     path: meta.path,
1677                     args: meta.kind.mac_args(meta.span),
1678                 }),
1679                 span: at.span,
1680                 id: at.id,
1681                 style: at.style,
1682             };
1683         } else {
1684             noop_visit_attribute(at, self)
1685         }
1686     }
1687
1688     fn visit_id(&mut self, id: &mut ast::NodeId) {
1689         if self.monotonic {
1690             debug_assert_eq!(*id, ast::DUMMY_NODE_ID);
1691             *id = self.cx.resolver.next_node_id()
1692         }
1693     }
1694
1695     fn visit_fn_decl(&mut self, mut fn_decl: &mut P<ast::FnDecl>) {
1696         self.cfg.configure_fn_decl(&mut fn_decl);
1697         noop_visit_fn_decl(fn_decl, self);
1698     }
1699 }
1700
1701 pub struct ExpansionConfig<'feat> {
1702     pub crate_name: String,
1703     pub features: Option<&'feat Features>,
1704     pub recursion_limit: usize,
1705     pub trace_mac: bool,
1706     pub should_test: bool, // If false, strip `#[test]` nodes
1707     pub single_step: bool,
1708     pub keep_macs: bool,
1709 }
1710
1711 impl<'feat> ExpansionConfig<'feat> {
1712     pub fn default(crate_name: String) -> ExpansionConfig<'static> {
1713         ExpansionConfig {
1714             crate_name,
1715             features: None,
1716             recursion_limit: 1024,
1717             trace_mac: false,
1718             should_test: false,
1719             single_step: false,
1720             keep_macs: false,
1721         }
1722     }
1723
1724     fn proc_macro_hygiene(&self) -> bool {
1725         self.features.map_or(false, |features| features.proc_macro_hygiene)
1726     }
1727     fn custom_inner_attributes(&self) -> bool {
1728         self.features.map_or(false, |features| features.custom_inner_attributes)
1729     }
1730 }