]> git.lizzy.rs Git - rust.git/blob - src/librustc_codegen_ssa/mir/rvalue.rs
b9c59cde53a70c7b3034996dc1f9cf8dc0a54dc5
[rust.git] / src / librustc_codegen_ssa / mir / rvalue.rs
1 use super::operand::{OperandRef, OperandValue};
2 use super::place::PlaceRef;
3 use super::{FunctionCx, LocalRef};
4
5 use crate::base;
6 use crate::common::{self, IntPredicate, RealPredicate};
7 use crate::traits::*;
8 use crate::MemFlags;
9
10 use rustc_apfloat::{ieee, Float, Round, Status};
11 use rustc_hir::lang_items::ExchangeMallocFnLangItem;
12 use rustc_middle::mir;
13 use rustc_middle::ty::cast::{CastTy, IntTy};
14 use rustc_middle::ty::layout::HasTyCtxt;
15 use rustc_middle::ty::{self, adjustment::PointerCast, Instance, Ty, TyCtxt};
16 use rustc_span::source_map::{Span, DUMMY_SP};
17 use rustc_span::symbol::sym;
18 use rustc_target::abi::{Abi, Int, LayoutOf, Variants};
19
20 impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
21     pub fn codegen_rvalue(
22         &mut self,
23         mut bx: Bx,
24         dest: PlaceRef<'tcx, Bx::Value>,
25         rvalue: &mir::Rvalue<'tcx>,
26     ) -> Bx {
27         debug!("codegen_rvalue(dest.llval={:?}, rvalue={:?})", dest.llval, rvalue);
28
29         match *rvalue {
30             mir::Rvalue::Use(ref operand) => {
31                 let cg_operand = self.codegen_operand(&mut bx, operand);
32                 // FIXME: consider not copying constants through stack. (Fixable by codegen'ing
33                 // constants into `OperandValue::Ref`; why don’t we do that yet if we don’t?)
34                 cg_operand.val.store(&mut bx, dest);
35                 bx
36             }
37
38             mir::Rvalue::Cast(mir::CastKind::Pointer(PointerCast::Unsize), ref source, _) => {
39                 // The destination necessarily contains a fat pointer, so if
40                 // it's a scalar pair, it's a fat pointer or newtype thereof.
41                 if bx.cx().is_backend_scalar_pair(dest.layout) {
42                     // Into-coerce of a thin pointer to a fat pointer -- just
43                     // use the operand path.
44                     let (mut bx, temp) = self.codegen_rvalue_operand(bx, rvalue);
45                     temp.val.store(&mut bx, dest);
46                     return bx;
47                 }
48
49                 // Unsize of a nontrivial struct. I would prefer for
50                 // this to be eliminated by MIR building, but
51                 // `CoerceUnsized` can be passed by a where-clause,
52                 // so the (generic) MIR may not be able to expand it.
53                 let operand = self.codegen_operand(&mut bx, source);
54                 match operand.val {
55                     OperandValue::Pair(..) | OperandValue::Immediate(_) => {
56                         // Unsize from an immediate structure. We don't
57                         // really need a temporary alloca here, but
58                         // avoiding it would require us to have
59                         // `coerce_unsized_into` use `extractvalue` to
60                         // index into the struct, and this case isn't
61                         // important enough for it.
62                         debug!("codegen_rvalue: creating ugly alloca");
63                         let scratch = PlaceRef::alloca(&mut bx, operand.layout);
64                         scratch.storage_live(&mut bx);
65                         operand.val.store(&mut bx, scratch);
66                         base::coerce_unsized_into(&mut bx, scratch, dest);
67                         scratch.storage_dead(&mut bx);
68                     }
69                     OperandValue::Ref(llref, None, align) => {
70                         let source = PlaceRef::new_sized_aligned(llref, operand.layout, align);
71                         base::coerce_unsized_into(&mut bx, source, dest);
72                     }
73                     OperandValue::Ref(_, Some(_), _) => {
74                         bug!("unsized coercion on an unsized rvalue");
75                     }
76                 }
77                 bx
78             }
79
80             mir::Rvalue::Repeat(ref elem, count) => {
81                 let cg_elem = self.codegen_operand(&mut bx, elem);
82
83                 // Do not generate the loop for zero-sized elements or empty arrays.
84                 if dest.layout.is_zst() {
85                     return bx;
86                 }
87
88                 if let OperandValue::Immediate(v) = cg_elem.val {
89                     let zero = bx.const_usize(0);
90                     let start = dest.project_index(&mut bx, zero).llval;
91                     let size = bx.const_usize(dest.layout.size.bytes());
92
93                     // Use llvm.memset.p0i8.* to initialize all zero arrays
94                     if bx.cx().const_to_opt_uint(v) == Some(0) {
95                         let fill = bx.cx().const_u8(0);
96                         bx.memset(start, fill, size, dest.align, MemFlags::empty());
97                         return bx;
98                     }
99
100                     // Use llvm.memset.p0i8.* to initialize byte arrays
101                     let v = base::from_immediate(&mut bx, v);
102                     if bx.cx().val_ty(v) == bx.cx().type_i8() {
103                         bx.memset(start, v, size, dest.align, MemFlags::empty());
104                         return bx;
105                     }
106                 }
107
108                 let count =
109                     self.monomorphize(&count).eval_usize(bx.cx().tcx(), ty::ParamEnv::reveal_all());
110
111                 bx.write_operand_repeatedly(cg_elem, count, dest)
112             }
113
114             mir::Rvalue::Aggregate(ref kind, ref operands) => {
115                 let (dest, active_field_index) = match **kind {
116                     mir::AggregateKind::Adt(adt_def, variant_index, _, _, active_field_index) => {
117                         dest.codegen_set_discr(&mut bx, variant_index);
118                         if adt_def.is_enum() {
119                             (dest.project_downcast(&mut bx, variant_index), active_field_index)
120                         } else {
121                             (dest, active_field_index)
122                         }
123                     }
124                     _ => (dest, None),
125                 };
126                 for (i, operand) in operands.iter().enumerate() {
127                     let op = self.codegen_operand(&mut bx, operand);
128                     // Do not generate stores and GEPis for zero-sized fields.
129                     if !op.layout.is_zst() {
130                         let field_index = active_field_index.unwrap_or(i);
131                         let field = dest.project_field(&mut bx, field_index);
132                         op.val.store(&mut bx, field);
133                     }
134                 }
135                 bx
136             }
137
138             _ => {
139                 assert!(self.rvalue_creates_operand(rvalue, DUMMY_SP));
140                 let (mut bx, temp) = self.codegen_rvalue_operand(bx, rvalue);
141                 temp.val.store(&mut bx, dest);
142                 bx
143             }
144         }
145     }
146
147     pub fn codegen_rvalue_unsized(
148         &mut self,
149         mut bx: Bx,
150         indirect_dest: PlaceRef<'tcx, Bx::Value>,
151         rvalue: &mir::Rvalue<'tcx>,
152     ) -> Bx {
153         debug!(
154             "codegen_rvalue_unsized(indirect_dest.llval={:?}, rvalue={:?})",
155             indirect_dest.llval, rvalue
156         );
157
158         match *rvalue {
159             mir::Rvalue::Use(ref operand) => {
160                 let cg_operand = self.codegen_operand(&mut bx, operand);
161                 cg_operand.val.store_unsized(&mut bx, indirect_dest);
162                 bx
163             }
164
165             _ => bug!("unsized assignment other than `Rvalue::Use`"),
166         }
167     }
168
169     pub fn codegen_rvalue_operand(
170         &mut self,
171         mut bx: Bx,
172         rvalue: &mir::Rvalue<'tcx>,
173     ) -> (Bx, OperandRef<'tcx, Bx::Value>) {
174         assert!(
175             self.rvalue_creates_operand(rvalue, DUMMY_SP),
176             "cannot codegen {:?} to operand",
177             rvalue,
178         );
179
180         match *rvalue {
181             mir::Rvalue::Cast(ref kind, ref source, mir_cast_ty) => {
182                 let operand = self.codegen_operand(&mut bx, source);
183                 debug!("cast operand is {:?}", operand);
184                 let cast = bx.cx().layout_of(self.monomorphize(&mir_cast_ty));
185
186                 let val = match *kind {
187                     mir::CastKind::Pointer(PointerCast::ReifyFnPointer) => {
188                         match operand.layout.ty.kind {
189                             ty::FnDef(def_id, substs) => {
190                                 if bx.cx().tcx().has_attr(def_id, sym::rustc_args_required_const) {
191                                     bug!("reifying a fn ptr that requires const arguments");
192                                 }
193                                 OperandValue::Immediate(
194                                     bx.get_fn_addr(
195                                         ty::Instance::resolve_for_fn_ptr(
196                                             bx.tcx(),
197                                             ty::ParamEnv::reveal_all(),
198                                             def_id,
199                                             substs,
200                                         )
201                                         .unwrap(),
202                                     ),
203                                 )
204                             }
205                             _ => bug!("{} cannot be reified to a fn ptr", operand.layout.ty),
206                         }
207                     }
208                     mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)) => {
209                         match operand.layout.ty.kind {
210                             ty::Closure(def_id, substs) => {
211                                 let instance = Instance::resolve_closure(
212                                     bx.cx().tcx(),
213                                     def_id,
214                                     substs,
215                                     ty::ClosureKind::FnOnce,
216                                 );
217                                 OperandValue::Immediate(bx.cx().get_fn_addr(instance))
218                             }
219                             _ => bug!("{} cannot be cast to a fn ptr", operand.layout.ty),
220                         }
221                     }
222                     mir::CastKind::Pointer(PointerCast::UnsafeFnPointer) => {
223                         // This is a no-op at the LLVM level.
224                         operand.val
225                     }
226                     mir::CastKind::Pointer(PointerCast::Unsize) => {
227                         assert!(bx.cx().is_backend_scalar_pair(cast));
228                         match operand.val {
229                             OperandValue::Pair(lldata, llextra) => {
230                                 // unsize from a fat pointer -- this is a
231                                 // "trait-object-to-supertrait" coercion, for
232                                 // example, `&'a fmt::Debug + Send => &'a fmt::Debug`.
233
234                                 // HACK(eddyb) have to bitcast pointers
235                                 // until LLVM removes pointee types.
236                                 let lldata = bx.pointercast(
237                                     lldata,
238                                     bx.cx().scalar_pair_element_backend_type(cast, 0, true),
239                                 );
240                                 OperandValue::Pair(lldata, llextra)
241                             }
242                             OperandValue::Immediate(lldata) => {
243                                 // "standard" unsize
244                                 let (lldata, llextra) = base::unsize_thin_ptr(
245                                     &mut bx,
246                                     lldata,
247                                     operand.layout.ty,
248                                     cast.ty,
249                                 );
250                                 OperandValue::Pair(lldata, llextra)
251                             }
252                             OperandValue::Ref(..) => {
253                                 bug!("by-ref operand {:?} in `codegen_rvalue_operand`", operand);
254                             }
255                         }
256                     }
257                     mir::CastKind::Pointer(PointerCast::MutToConstPointer)
258                     | mir::CastKind::Misc
259                         if bx.cx().is_backend_scalar_pair(operand.layout) =>
260                     {
261                         if let OperandValue::Pair(data_ptr, meta) = operand.val {
262                             if bx.cx().is_backend_scalar_pair(cast) {
263                                 let data_cast = bx.pointercast(
264                                     data_ptr,
265                                     bx.cx().scalar_pair_element_backend_type(cast, 0, true),
266                                 );
267                                 OperandValue::Pair(data_cast, meta)
268                             } else {
269                                 // cast to thin-ptr
270                                 // Cast of fat-ptr to thin-ptr is an extraction of data-ptr and
271                                 // pointer-cast of that pointer to desired pointer type.
272                                 let llcast_ty = bx.cx().immediate_backend_type(cast);
273                                 let llval = bx.pointercast(data_ptr, llcast_ty);
274                                 OperandValue::Immediate(llval)
275                             }
276                         } else {
277                             bug!("unexpected non-pair operand");
278                         }
279                     }
280                     mir::CastKind::Pointer(
281                         PointerCast::MutToConstPointer | PointerCast::ArrayToPointer,
282                     )
283                     | mir::CastKind::Misc => {
284                         assert!(bx.cx().is_backend_immediate(cast));
285                         let ll_t_out = bx.cx().immediate_backend_type(cast);
286                         if operand.layout.abi.is_uninhabited() {
287                             let val = OperandValue::Immediate(bx.cx().const_undef(ll_t_out));
288                             return (bx, OperandRef { val, layout: cast });
289                         }
290                         let r_t_in =
291                             CastTy::from_ty(operand.layout.ty).expect("bad input type for cast");
292                         let r_t_out = CastTy::from_ty(cast.ty).expect("bad output type for cast");
293                         let ll_t_in = bx.cx().immediate_backend_type(operand.layout);
294                         match operand.layout.variants {
295                             Variants::Single { index } => {
296                                 if let Some(discr) =
297                                     operand.layout.ty.discriminant_for_variant(bx.tcx(), index)
298                                 {
299                                     let discr_layout = bx.cx().layout_of(discr.ty);
300                                     let discr_t = bx.cx().immediate_backend_type(discr_layout);
301                                     let discr_val = bx.cx().const_uint_big(discr_t, discr.val);
302                                     let discr_val =
303                                         bx.intcast(discr_val, ll_t_out, discr.ty.is_signed());
304
305                                     return (
306                                         bx,
307                                         OperandRef {
308                                             val: OperandValue::Immediate(discr_val),
309                                             layout: cast,
310                                         },
311                                     );
312                                 }
313                             }
314                             Variants::Multiple { .. } => {}
315                         }
316                         let llval = operand.immediate();
317
318                         let mut signed = false;
319                         if let Abi::Scalar(ref scalar) = operand.layout.abi {
320                             if let Int(_, s) = scalar.value {
321                                 // We use `i1` for bytes that are always `0` or `1`,
322                                 // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
323                                 // let LLVM interpret the `i1` as signed, because
324                                 // then `i1 1` (i.e., E::B) is effectively `i8 -1`.
325                                 signed = !scalar.is_bool() && s;
326
327                                 let er = scalar.valid_range_exclusive(bx.cx());
328                                 if er.end != er.start
329                                     && scalar.valid_range.end() > scalar.valid_range.start()
330                                 {
331                                     // We want `table[e as usize]` to not
332                                     // have bound checks, and this is the most
333                                     // convenient place to put the `assume`.
334                                     let ll_t_in_const =
335                                         bx.cx().const_uint_big(ll_t_in, *scalar.valid_range.end());
336                                     let cmp = bx.icmp(IntPredicate::IntULE, llval, ll_t_in_const);
337                                     bx.assume(cmp);
338                                 }
339                             }
340                         }
341
342                         let newval = match (r_t_in, r_t_out) {
343                             (CastTy::Int(_), CastTy::Int(_)) => bx.intcast(llval, ll_t_out, signed),
344                             (CastTy::Float, CastTy::Float) => {
345                                 let srcsz = bx.cx().float_width(ll_t_in);
346                                 let dstsz = bx.cx().float_width(ll_t_out);
347                                 if dstsz > srcsz {
348                                     bx.fpext(llval, ll_t_out)
349                                 } else if srcsz > dstsz {
350                                     bx.fptrunc(llval, ll_t_out)
351                                 } else {
352                                     llval
353                                 }
354                             }
355                             (CastTy::Int(_), CastTy::Float) => {
356                                 if signed {
357                                     bx.sitofp(llval, ll_t_out)
358                                 } else {
359                                     bx.uitofp(llval, ll_t_out)
360                                 }
361                             }
362                             (CastTy::Ptr(_) | CastTy::FnPtr, CastTy::Ptr(_)) => {
363                                 bx.pointercast(llval, ll_t_out)
364                             }
365                             (CastTy::Ptr(_) | CastTy::FnPtr, CastTy::Int(_)) => {
366                                 bx.ptrtoint(llval, ll_t_out)
367                             }
368                             (CastTy::Int(_), CastTy::Ptr(_)) => {
369                                 let usize_llval = bx.intcast(llval, bx.cx().type_isize(), signed);
370                                 bx.inttoptr(usize_llval, ll_t_out)
371                             }
372                             (CastTy::Float, CastTy::Int(IntTy::I)) => {
373                                 cast_float_to_int(&mut bx, true, llval, ll_t_in, ll_t_out)
374                             }
375                             (CastTy::Float, CastTy::Int(_)) => {
376                                 cast_float_to_int(&mut bx, false, llval, ll_t_in, ll_t_out)
377                             }
378                             _ => bug!("unsupported cast: {:?} to {:?}", operand.layout.ty, cast.ty),
379                         };
380                         OperandValue::Immediate(newval)
381                     }
382                 };
383                 (bx, OperandRef { val, layout: cast })
384             }
385
386             mir::Rvalue::Ref(_, bk, place) => {
387                 let mk_ref = move |tcx: TyCtxt<'tcx>, ty: Ty<'tcx>| {
388                     tcx.mk_ref(
389                         tcx.lifetimes.re_erased,
390                         ty::TypeAndMut { ty, mutbl: bk.to_mutbl_lossy() },
391                     )
392                 };
393                 self.codegen_place_to_pointer(bx, place, mk_ref)
394             }
395
396             mir::Rvalue::AddressOf(mutability, place) => {
397                 let mk_ptr = move |tcx: TyCtxt<'tcx>, ty: Ty<'tcx>| {
398                     tcx.mk_ptr(ty::TypeAndMut { ty, mutbl: mutability })
399                 };
400                 self.codegen_place_to_pointer(bx, place, mk_ptr)
401             }
402
403             mir::Rvalue::Len(place) => {
404                 let size = self.evaluate_array_len(&mut bx, place);
405                 let operand = OperandRef {
406                     val: OperandValue::Immediate(size),
407                     layout: bx.cx().layout_of(bx.tcx().types.usize),
408                 };
409                 (bx, operand)
410             }
411
412             mir::Rvalue::BinaryOp(op, ref lhs, ref rhs) => {
413                 let lhs = self.codegen_operand(&mut bx, lhs);
414                 let rhs = self.codegen_operand(&mut bx, rhs);
415                 let llresult = match (lhs.val, rhs.val) {
416                     (
417                         OperandValue::Pair(lhs_addr, lhs_extra),
418                         OperandValue::Pair(rhs_addr, rhs_extra),
419                     ) => self.codegen_fat_ptr_binop(
420                         &mut bx,
421                         op,
422                         lhs_addr,
423                         lhs_extra,
424                         rhs_addr,
425                         rhs_extra,
426                         lhs.layout.ty,
427                     ),
428
429                     (OperandValue::Immediate(lhs_val), OperandValue::Immediate(rhs_val)) => {
430                         self.codegen_scalar_binop(&mut bx, op, lhs_val, rhs_val, lhs.layout.ty)
431                     }
432
433                     _ => bug!(),
434                 };
435                 let operand = OperandRef {
436                     val: OperandValue::Immediate(llresult),
437                     layout: bx.cx().layout_of(op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty)),
438                 };
439                 (bx, operand)
440             }
441             mir::Rvalue::CheckedBinaryOp(op, ref lhs, ref rhs) => {
442                 let lhs = self.codegen_operand(&mut bx, lhs);
443                 let rhs = self.codegen_operand(&mut bx, rhs);
444                 let result = self.codegen_scalar_checked_binop(
445                     &mut bx,
446                     op,
447                     lhs.immediate(),
448                     rhs.immediate(),
449                     lhs.layout.ty,
450                 );
451                 let val_ty = op.ty(bx.tcx(), lhs.layout.ty, rhs.layout.ty);
452                 let operand_ty = bx.tcx().intern_tup(&[val_ty, bx.tcx().types.bool]);
453                 let operand = OperandRef { val: result, layout: bx.cx().layout_of(operand_ty) };
454
455                 (bx, operand)
456             }
457
458             mir::Rvalue::UnaryOp(op, ref operand) => {
459                 let operand = self.codegen_operand(&mut bx, operand);
460                 let lloperand = operand.immediate();
461                 let is_float = operand.layout.ty.is_floating_point();
462                 let llval = match op {
463                     mir::UnOp::Not => bx.not(lloperand),
464                     mir::UnOp::Neg => {
465                         if is_float {
466                             bx.fneg(lloperand)
467                         } else {
468                             bx.neg(lloperand)
469                         }
470                     }
471                 };
472                 (bx, OperandRef { val: OperandValue::Immediate(llval), layout: operand.layout })
473             }
474
475             mir::Rvalue::Discriminant(ref place) => {
476                 let discr_ty = rvalue.ty(*self.mir, bx.tcx());
477                 let discr = self
478                     .codegen_place(&mut bx, place.as_ref())
479                     .codegen_get_discr(&mut bx, discr_ty);
480                 (
481                     bx,
482                     OperandRef {
483                         val: OperandValue::Immediate(discr),
484                         layout: self.cx.layout_of(discr_ty),
485                     },
486                 )
487             }
488
489             mir::Rvalue::NullaryOp(mir::NullOp::SizeOf, ty) => {
490                 assert!(bx.cx().type_is_sized(ty));
491                 let val = bx.cx().const_usize(bx.cx().layout_of(ty).size.bytes());
492                 let tcx = self.cx.tcx();
493                 (
494                     bx,
495                     OperandRef {
496                         val: OperandValue::Immediate(val),
497                         layout: self.cx.layout_of(tcx.types.usize),
498                     },
499                 )
500             }
501
502             mir::Rvalue::NullaryOp(mir::NullOp::Box, content_ty) => {
503                 let content_ty = self.monomorphize(&content_ty);
504                 let content_layout = bx.cx().layout_of(content_ty);
505                 let llsize = bx.cx().const_usize(content_layout.size.bytes());
506                 let llalign = bx.cx().const_usize(content_layout.align.abi.bytes());
507                 let box_layout = bx.cx().layout_of(bx.tcx().mk_box(content_ty));
508                 let llty_ptr = bx.cx().backend_type(box_layout);
509
510                 // Allocate space:
511                 let def_id = match bx.tcx().lang_items().require(ExchangeMallocFnLangItem) {
512                     Ok(id) => id,
513                     Err(s) => {
514                         bx.cx().sess().fatal(&format!("allocation of `{}` {}", box_layout.ty, s));
515                     }
516                 };
517                 let instance = ty::Instance::mono(bx.tcx(), def_id);
518                 let r = bx.cx().get_fn_addr(instance);
519                 let call = bx.call(r, &[llsize, llalign], None);
520                 let val = bx.pointercast(call, llty_ptr);
521
522                 let operand = OperandRef { val: OperandValue::Immediate(val), layout: box_layout };
523                 (bx, operand)
524             }
525             mir::Rvalue::Use(ref operand) => {
526                 let operand = self.codegen_operand(&mut bx, operand);
527                 (bx, operand)
528             }
529             mir::Rvalue::Repeat(..) | mir::Rvalue::Aggregate(..) => {
530                 // According to `rvalue_creates_operand`, only ZST
531                 // aggregate rvalues are allowed to be operands.
532                 let ty = rvalue.ty(*self.mir, self.cx.tcx());
533                 let operand =
534                     OperandRef::new_zst(&mut bx, self.cx.layout_of(self.monomorphize(&ty)));
535                 (bx, operand)
536             }
537         }
538     }
539
540     fn evaluate_array_len(&mut self, bx: &mut Bx, place: mir::Place<'tcx>) -> Bx::Value {
541         // ZST are passed as operands and require special handling
542         // because codegen_place() panics if Local is operand.
543         if let Some(index) = place.as_local() {
544             if let LocalRef::Operand(Some(op)) = self.locals[index] {
545                 if let ty::Array(_, n) = op.layout.ty.kind {
546                     let n = n.eval_usize(bx.cx().tcx(), ty::ParamEnv::reveal_all());
547                     return bx.cx().const_usize(n);
548                 }
549             }
550         }
551         // use common size calculation for non zero-sized types
552         let cg_value = self.codegen_place(bx, place.as_ref());
553         cg_value.len(bx.cx())
554     }
555
556     /// Codegen an `Rvalue::AddressOf` or `Rvalue::Ref`
557     fn codegen_place_to_pointer(
558         &mut self,
559         mut bx: Bx,
560         place: mir::Place<'tcx>,
561         mk_ptr_ty: impl FnOnce(TyCtxt<'tcx>, Ty<'tcx>) -> Ty<'tcx>,
562     ) -> (Bx, OperandRef<'tcx, Bx::Value>) {
563         let cg_place = self.codegen_place(&mut bx, place.as_ref());
564
565         let ty = cg_place.layout.ty;
566
567         // Note: places are indirect, so storing the `llval` into the
568         // destination effectively creates a reference.
569         let val = if !bx.cx().type_has_metadata(ty) {
570             OperandValue::Immediate(cg_place.llval)
571         } else {
572             OperandValue::Pair(cg_place.llval, cg_place.llextra.unwrap())
573         };
574         (bx, OperandRef { val, layout: self.cx.layout_of(mk_ptr_ty(self.cx.tcx(), ty)) })
575     }
576
577     pub fn codegen_scalar_binop(
578         &mut self,
579         bx: &mut Bx,
580         op: mir::BinOp,
581         lhs: Bx::Value,
582         rhs: Bx::Value,
583         input_ty: Ty<'tcx>,
584     ) -> Bx::Value {
585         let is_float = input_ty.is_floating_point();
586         let is_signed = input_ty.is_signed();
587         match op {
588             mir::BinOp::Add => {
589                 if is_float {
590                     bx.fadd(lhs, rhs)
591                 } else {
592                     bx.add(lhs, rhs)
593                 }
594             }
595             mir::BinOp::Sub => {
596                 if is_float {
597                     bx.fsub(lhs, rhs)
598                 } else {
599                     bx.sub(lhs, rhs)
600                 }
601             }
602             mir::BinOp::Mul => {
603                 if is_float {
604                     bx.fmul(lhs, rhs)
605                 } else {
606                     bx.mul(lhs, rhs)
607                 }
608             }
609             mir::BinOp::Div => {
610                 if is_float {
611                     bx.fdiv(lhs, rhs)
612                 } else if is_signed {
613                     bx.sdiv(lhs, rhs)
614                 } else {
615                     bx.udiv(lhs, rhs)
616                 }
617             }
618             mir::BinOp::Rem => {
619                 if is_float {
620                     bx.frem(lhs, rhs)
621                 } else if is_signed {
622                     bx.srem(lhs, rhs)
623                 } else {
624                     bx.urem(lhs, rhs)
625                 }
626             }
627             mir::BinOp::BitOr => bx.or(lhs, rhs),
628             mir::BinOp::BitAnd => bx.and(lhs, rhs),
629             mir::BinOp::BitXor => bx.xor(lhs, rhs),
630             mir::BinOp::Offset => bx.inbounds_gep(lhs, &[rhs]),
631             mir::BinOp::Shl => common::build_unchecked_lshift(bx, lhs, rhs),
632             mir::BinOp::Shr => common::build_unchecked_rshift(bx, input_ty, lhs, rhs),
633             mir::BinOp::Ne
634             | mir::BinOp::Lt
635             | mir::BinOp::Gt
636             | mir::BinOp::Eq
637             | mir::BinOp::Le
638             | mir::BinOp::Ge => {
639                 if is_float {
640                     bx.fcmp(base::bin_op_to_fcmp_predicate(op.to_hir_binop()), lhs, rhs)
641                 } else {
642                     bx.icmp(base::bin_op_to_icmp_predicate(op.to_hir_binop(), is_signed), lhs, rhs)
643                 }
644             }
645         }
646     }
647
648     pub fn codegen_fat_ptr_binop(
649         &mut self,
650         bx: &mut Bx,
651         op: mir::BinOp,
652         lhs_addr: Bx::Value,
653         lhs_extra: Bx::Value,
654         rhs_addr: Bx::Value,
655         rhs_extra: Bx::Value,
656         _input_ty: Ty<'tcx>,
657     ) -> Bx::Value {
658         match op {
659             mir::BinOp::Eq => {
660                 let lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr);
661                 let rhs = bx.icmp(IntPredicate::IntEQ, lhs_extra, rhs_extra);
662                 bx.and(lhs, rhs)
663             }
664             mir::BinOp::Ne => {
665                 let lhs = bx.icmp(IntPredicate::IntNE, lhs_addr, rhs_addr);
666                 let rhs = bx.icmp(IntPredicate::IntNE, lhs_extra, rhs_extra);
667                 bx.or(lhs, rhs)
668             }
669             mir::BinOp::Le | mir::BinOp::Lt | mir::BinOp::Ge | mir::BinOp::Gt => {
670                 // a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1)
671                 let (op, strict_op) = match op {
672                     mir::BinOp::Lt => (IntPredicate::IntULT, IntPredicate::IntULT),
673                     mir::BinOp::Le => (IntPredicate::IntULE, IntPredicate::IntULT),
674                     mir::BinOp::Gt => (IntPredicate::IntUGT, IntPredicate::IntUGT),
675                     mir::BinOp::Ge => (IntPredicate::IntUGE, IntPredicate::IntUGT),
676                     _ => bug!(),
677                 };
678                 let lhs = bx.icmp(strict_op, lhs_addr, rhs_addr);
679                 let and_lhs = bx.icmp(IntPredicate::IntEQ, lhs_addr, rhs_addr);
680                 let and_rhs = bx.icmp(op, lhs_extra, rhs_extra);
681                 let rhs = bx.and(and_lhs, and_rhs);
682                 bx.or(lhs, rhs)
683             }
684             _ => {
685                 bug!("unexpected fat ptr binop");
686             }
687         }
688     }
689
690     pub fn codegen_scalar_checked_binop(
691         &mut self,
692         bx: &mut Bx,
693         op: mir::BinOp,
694         lhs: Bx::Value,
695         rhs: Bx::Value,
696         input_ty: Ty<'tcx>,
697     ) -> OperandValue<Bx::Value> {
698         // This case can currently arise only from functions marked
699         // with #[rustc_inherit_overflow_checks] and inlined from
700         // another crate (mostly core::num generic/#[inline] fns),
701         // while the current crate doesn't use overflow checks.
702         if !bx.cx().check_overflow() {
703             let val = self.codegen_scalar_binop(bx, op, lhs, rhs, input_ty);
704             return OperandValue::Pair(val, bx.cx().const_bool(false));
705         }
706
707         let (val, of) = match op {
708             // These are checked using intrinsics
709             mir::BinOp::Add | mir::BinOp::Sub | mir::BinOp::Mul => {
710                 let oop = match op {
711                     mir::BinOp::Add => OverflowOp::Add,
712                     mir::BinOp::Sub => OverflowOp::Sub,
713                     mir::BinOp::Mul => OverflowOp::Mul,
714                     _ => unreachable!(),
715                 };
716                 bx.checked_binop(oop, input_ty, lhs, rhs)
717             }
718             mir::BinOp::Shl | mir::BinOp::Shr => {
719                 let lhs_llty = bx.cx().val_ty(lhs);
720                 let rhs_llty = bx.cx().val_ty(rhs);
721                 let invert_mask = common::shift_mask_val(bx, lhs_llty, rhs_llty, true);
722                 let outer_bits = bx.and(rhs, invert_mask);
723
724                 let of = bx.icmp(IntPredicate::IntNE, outer_bits, bx.cx().const_null(rhs_llty));
725                 let val = self.codegen_scalar_binop(bx, op, lhs, rhs, input_ty);
726
727                 (val, of)
728             }
729             _ => bug!("Operator `{:?}` is not a checkable operator", op),
730         };
731
732         OperandValue::Pair(val, of)
733     }
734 }
735
736 impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
737     pub fn rvalue_creates_operand(&self, rvalue: &mir::Rvalue<'tcx>, span: Span) -> bool {
738         match *rvalue {
739             mir::Rvalue::Ref(..) |
740             mir::Rvalue::AddressOf(..) |
741             mir::Rvalue::Len(..) |
742             mir::Rvalue::Cast(..) | // (*)
743             mir::Rvalue::BinaryOp(..) |
744             mir::Rvalue::CheckedBinaryOp(..) |
745             mir::Rvalue::UnaryOp(..) |
746             mir::Rvalue::Discriminant(..) |
747             mir::Rvalue::NullaryOp(..) |
748             mir::Rvalue::Use(..) => // (*)
749                 true,
750             mir::Rvalue::Repeat(..) |
751             mir::Rvalue::Aggregate(..) => {
752                 let ty = rvalue.ty(*self.mir, self.cx.tcx());
753                 let ty = self.monomorphize(&ty);
754                 self.cx.spanned_layout_of(ty, span).is_zst()
755             }
756         }
757
758         // (*) this is only true if the type is suitable
759     }
760 }
761
762 fn cast_float_to_int<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
763     bx: &mut Bx,
764     signed: bool,
765     x: Bx::Value,
766     float_ty: Bx::Type,
767     int_ty: Bx::Type,
768 ) -> Bx::Value {
769     let fptosui_result = if signed { bx.fptosi(x, int_ty) } else { bx.fptoui(x, int_ty) };
770
771     if !bx.cx().sess().opts.debugging_opts.saturating_float_casts {
772         return fptosui_result;
773     }
774
775     let int_width = bx.cx().int_width(int_ty);
776     let float_width = bx.cx().float_width(float_ty);
777     // LLVM's fpto[su]i returns undef when the input x is infinite, NaN, or does not fit into the
778     // destination integer type after rounding towards zero. This `undef` value can cause UB in
779     // safe code (see issue #10184), so we implement a saturating conversion on top of it:
780     // Semantically, the mathematical value of the input is rounded towards zero to the next
781     // mathematical integer, and then the result is clamped into the range of the destination
782     // integer type. Positive and negative infinity are mapped to the maximum and minimum value of
783     // the destination integer type. NaN is mapped to 0.
784     //
785     // Define f_min and f_max as the largest and smallest (finite) floats that are exactly equal to
786     // a value representable in int_ty.
787     // They are exactly equal to int_ty::{MIN,MAX} if float_ty has enough significand bits.
788     // Otherwise, int_ty::MAX must be rounded towards zero, as it is one less than a power of two.
789     // int_ty::MIN, however, is either zero or a negative power of two and is thus exactly
790     // representable. Note that this only works if float_ty's exponent range is sufficiently large.
791     // f16 or 256 bit integers would break this property. Right now the smallest float type is f32
792     // with exponents ranging up to 127, which is barely enough for i128::MIN = -2^127.
793     // On the other hand, f_max works even if int_ty::MAX is greater than float_ty::MAX. Because
794     // we're rounding towards zero, we just get float_ty::MAX (which is always an integer).
795     // This already happens today with u128::MAX = 2^128 - 1 > f32::MAX.
796     let int_max = |signed: bool, int_width: u64| -> u128 {
797         let shift_amount = 128 - int_width;
798         if signed { i128::MAX as u128 >> shift_amount } else { u128::MAX >> shift_amount }
799     };
800     let int_min = |signed: bool, int_width: u64| -> i128 {
801         if signed { i128::MIN >> (128 - int_width) } else { 0 }
802     };
803
804     let compute_clamp_bounds_single = |signed: bool, int_width: u64| -> (u128, u128) {
805         let rounded_min = ieee::Single::from_i128_r(int_min(signed, int_width), Round::TowardZero);
806         assert_eq!(rounded_min.status, Status::OK);
807         let rounded_max = ieee::Single::from_u128_r(int_max(signed, int_width), Round::TowardZero);
808         assert!(rounded_max.value.is_finite());
809         (rounded_min.value.to_bits(), rounded_max.value.to_bits())
810     };
811     let compute_clamp_bounds_double = |signed: bool, int_width: u64| -> (u128, u128) {
812         let rounded_min = ieee::Double::from_i128_r(int_min(signed, int_width), Round::TowardZero);
813         assert_eq!(rounded_min.status, Status::OK);
814         let rounded_max = ieee::Double::from_u128_r(int_max(signed, int_width), Round::TowardZero);
815         assert!(rounded_max.value.is_finite());
816         (rounded_min.value.to_bits(), rounded_max.value.to_bits())
817     };
818
819     let mut float_bits_to_llval = |bits| {
820         let bits_llval = match float_width {
821             32 => bx.cx().const_u32(bits as u32),
822             64 => bx.cx().const_u64(bits as u64),
823             n => bug!("unsupported float width {}", n),
824         };
825         bx.bitcast(bits_llval, float_ty)
826     };
827     let (f_min, f_max) = match float_width {
828         32 => compute_clamp_bounds_single(signed, int_width),
829         64 => compute_clamp_bounds_double(signed, int_width),
830         n => bug!("unsupported float width {}", n),
831     };
832     let f_min = float_bits_to_llval(f_min);
833     let f_max = float_bits_to_llval(f_max);
834     // To implement saturation, we perform the following steps:
835     //
836     // 1. Cast x to an integer with fpto[su]i. This may result in undef.
837     // 2. Compare x to f_min and f_max, and use the comparison results to select:
838     //  a) int_ty::MIN if x < f_min or x is NaN
839     //  b) int_ty::MAX if x > f_max
840     //  c) the result of fpto[su]i otherwise
841     // 3. If x is NaN, return 0.0, otherwise return the result of step 2.
842     //
843     // This avoids resulting undef because values in range [f_min, f_max] by definition fit into the
844     // destination type. It creates an undef temporary, but *producing* undef is not UB. Our use of
845     // undef does not introduce any non-determinism either.
846     // More importantly, the above procedure correctly implements saturating conversion.
847     // Proof (sketch):
848     // If x is NaN, 0 is returned by definition.
849     // Otherwise, x is finite or infinite and thus can be compared with f_min and f_max.
850     // This yields three cases to consider:
851     // (1) if x in [f_min, f_max], the result of fpto[su]i is returned, which agrees with
852     //     saturating conversion for inputs in that range.
853     // (2) if x > f_max, then x is larger than int_ty::MAX. This holds even if f_max is rounded
854     //     (i.e., if f_max < int_ty::MAX) because in those cases, nextUp(f_max) is already larger
855     //     than int_ty::MAX. Because x is larger than int_ty::MAX, the return value of int_ty::MAX
856     //     is correct.
857     // (3) if x < f_min, then x is smaller than int_ty::MIN. As shown earlier, f_min exactly equals
858     //     int_ty::MIN and therefore the return value of int_ty::MIN is correct.
859     // QED.
860
861     // Step 1 was already performed above.
862
863     // Step 2: We use two comparisons and two selects, with %s1 being the result:
864     //     %less_or_nan = fcmp ult %x, %f_min
865     //     %greater = fcmp olt %x, %f_max
866     //     %s0 = select %less_or_nan, int_ty::MIN, %fptosi_result
867     //     %s1 = select %greater, int_ty::MAX, %s0
868     // Note that %less_or_nan uses an *unordered* comparison. This comparison is true if the
869     // operands are not comparable (i.e., if x is NaN). The unordered comparison ensures that s1
870     // becomes int_ty::MIN if x is NaN.
871     // Performance note: Unordered comparison can be lowered to a "flipped" comparison and a
872     // negation, and the negation can be merged into the select. Therefore, it not necessarily any
873     // more expensive than a ordered ("normal") comparison. Whether these optimizations will be
874     // performed is ultimately up to the backend, but at least x86 does perform them.
875     let less_or_nan = bx.fcmp(RealPredicate::RealULT, x, f_min);
876     let greater = bx.fcmp(RealPredicate::RealOGT, x, f_max);
877     let int_max = bx.cx().const_uint_big(int_ty, int_max(signed, int_width));
878     let int_min = bx.cx().const_uint_big(int_ty, int_min(signed, int_width) as u128);
879     let s0 = bx.select(less_or_nan, int_min, fptosui_result);
880     let s1 = bx.select(greater, int_max, s0);
881
882     // Step 3: NaN replacement.
883     // For unsigned types, the above step already yielded int_ty::MIN == 0 if x is NaN.
884     // Therefore we only need to execute this step for signed integer types.
885     if signed {
886         // LLVM has no isNaN predicate, so we use (x == x) instead
887         let zero = bx.cx().const_uint(int_ty, 0);
888         let cmp = bx.fcmp(RealPredicate::RealOEQ, x, x);
889         bx.select(cmp, s1, zero)
890     } else {
891         s1
892     }
893 }