]> git.lizzy.rs Git - rust.git/blob - src/librustc_codegen_ssa/mir/place.rs
Rollup merge of #67956 - varkor:E0588-provide-context, r=estebank
[rust.git] / src / librustc_codegen_ssa / mir / place.rs
1 use super::operand::OperandValue;
2 use super::{FunctionCx, LocalRef};
3
4 use crate::common::IntPredicate;
5 use crate::glue;
6 use crate::traits::*;
7 use crate::MemFlags;
8
9 use rustc::mir;
10 use rustc::mir::tcx::PlaceTy;
11 use rustc::ty::layout::{self, Align, HasTyCtxt, LayoutOf, TyLayout, VariantIdx};
12 use rustc::ty::{self, Ty};
13
14 #[derive(Copy, Clone, Debug)]
15 pub struct PlaceRef<'tcx, V> {
16     /// A pointer to the contents of the place.
17     pub llval: V,
18
19     /// This place's extra data if it is unsized, or `None` if null.
20     pub llextra: Option<V>,
21
22     /// The monomorphized type of this place, including variant information.
23     pub layout: TyLayout<'tcx>,
24
25     /// The alignment we know for this place.
26     pub align: Align,
27 }
28
29 impl<'a, 'tcx, V: CodegenObject> PlaceRef<'tcx, V> {
30     pub fn new_sized(llval: V, layout: TyLayout<'tcx>) -> PlaceRef<'tcx, V> {
31         assert!(!layout.is_unsized());
32         PlaceRef { llval, llextra: None, layout, align: layout.align.abi }
33     }
34
35     pub fn new_sized_aligned(llval: V, layout: TyLayout<'tcx>, align: Align) -> PlaceRef<'tcx, V> {
36         assert!(!layout.is_unsized());
37         PlaceRef { llval, llextra: None, layout, align }
38     }
39
40     // FIXME(eddyb) pass something else for the name so no work is done
41     // unless LLVM IR names are turned on (e.g. for `--emit=llvm-ir`).
42     pub fn alloca<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
43         bx: &mut Bx,
44         layout: TyLayout<'tcx>,
45     ) -> Self {
46         assert!(!layout.is_unsized(), "tried to statically allocate unsized place");
47         let tmp = bx.alloca(bx.cx().backend_type(layout), layout.align.abi);
48         Self::new_sized(tmp, layout)
49     }
50
51     /// Returns a place for an indirect reference to an unsized place.
52     // FIXME(eddyb) pass something else for the name so no work is done
53     // unless LLVM IR names are turned on (e.g. for `--emit=llvm-ir`).
54     pub fn alloca_unsized_indirect<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
55         bx: &mut Bx,
56         layout: TyLayout<'tcx>,
57     ) -> Self {
58         assert!(layout.is_unsized(), "tried to allocate indirect place for sized values");
59         let ptr_ty = bx.cx().tcx().mk_mut_ptr(layout.ty);
60         let ptr_layout = bx.cx().layout_of(ptr_ty);
61         Self::alloca(bx, ptr_layout)
62     }
63
64     pub fn len<Cx: ConstMethods<'tcx, Value = V>>(&self, cx: &Cx) -> V {
65         if let layout::FieldPlacement::Array { count, .. } = self.layout.fields {
66             if self.layout.is_unsized() {
67                 assert_eq!(count, 0);
68                 self.llextra.unwrap()
69             } else {
70                 cx.const_usize(count)
71             }
72         } else {
73             bug!("unexpected layout `{:#?}` in PlaceRef::len", self.layout)
74         }
75     }
76 }
77
78 impl<'a, 'tcx, V: CodegenObject> PlaceRef<'tcx, V> {
79     /// Access a field, at a point when the value's case is known.
80     pub fn project_field<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
81         self,
82         bx: &mut Bx,
83         ix: usize,
84     ) -> Self {
85         let field = self.layout.field(bx.cx(), ix);
86         let offset = self.layout.fields.offset(ix);
87         let effective_field_align = self.align.restrict_for_offset(offset);
88
89         let mut simple = || {
90             // Unions and newtypes only use an offset of 0.
91             let llval = if offset.bytes() == 0 {
92                 self.llval
93             } else if let layout::Abi::ScalarPair(ref a, ref b) = self.layout.abi {
94                 // Offsets have to match either first or second field.
95                 assert_eq!(offset, a.value.size(bx.cx()).align_to(b.value.align(bx.cx()).abi));
96                 bx.struct_gep(self.llval, 1)
97             } else {
98                 bx.struct_gep(self.llval, bx.cx().backend_field_index(self.layout, ix))
99             };
100             PlaceRef {
101                 // HACK(eddyb): have to bitcast pointers until LLVM removes pointee types.
102                 llval: bx.pointercast(llval, bx.cx().type_ptr_to(bx.cx().backend_type(field))),
103                 llextra: if bx.cx().type_has_metadata(field.ty) { self.llextra } else { None },
104                 layout: field,
105                 align: effective_field_align,
106             }
107         };
108
109         // Simple cases, which don't need DST adjustment:
110         //   * no metadata available - just log the case
111         //   * known alignment - sized types, `[T]`, `str` or a foreign type
112         //   * packed struct - there is no alignment padding
113         match field.ty.kind {
114             _ if self.llextra.is_none() => {
115                 debug!(
116                     "unsized field `{}`, of `{:?}` has no metadata for adjustment",
117                     ix, self.llval
118                 );
119                 return simple();
120             }
121             _ if !field.is_unsized() => return simple(),
122             ty::Slice(..) | ty::Str | ty::Foreign(..) => return simple(),
123             ty::Adt(def, _) => {
124                 if def.repr.packed() {
125                     // FIXME(eddyb) generalize the adjustment when we
126                     // start supporting packing to larger alignments.
127                     assert_eq!(self.layout.align.abi.bytes(), 1);
128                     return simple();
129                 }
130             }
131             _ => {}
132         }
133
134         // We need to get the pointer manually now.
135         // We do this by casting to a `*i8`, then offsetting it by the appropriate amount.
136         // We do this instead of, say, simply adjusting the pointer from the result of a GEP
137         // because the field may have an arbitrary alignment in the LLVM representation
138         // anyway.
139         //
140         // To demonstrate:
141         //
142         //     struct Foo<T: ?Sized> {
143         //         x: u16,
144         //         y: T
145         //     }
146         //
147         // The type `Foo<Foo<Trait>>` is represented in LLVM as `{ u16, { u16, u8 }}`, meaning that
148         // the `y` field has 16-bit alignment.
149
150         let meta = self.llextra;
151
152         let unaligned_offset = bx.cx().const_usize(offset.bytes());
153
154         // Get the alignment of the field
155         let (_, unsized_align) = glue::size_and_align_of_dst(bx, field.ty, meta);
156
157         // Bump the unaligned offset up to the appropriate alignment using the
158         // following expression:
159         //
160         //     (unaligned offset + (align - 1)) & -align
161
162         // Calculate offset.
163         let align_sub_1 = bx.sub(unsized_align, bx.cx().const_usize(1u64));
164         let and_lhs = bx.add(unaligned_offset, align_sub_1);
165         let and_rhs = bx.neg(unsized_align);
166         let offset = bx.and(and_lhs, and_rhs);
167
168         debug!("struct_field_ptr: DST field offset: {:?}", offset);
169
170         // Cast and adjust pointer.
171         let byte_ptr = bx.pointercast(self.llval, bx.cx().type_i8p());
172         let byte_ptr = bx.gep(byte_ptr, &[offset]);
173
174         // Finally, cast back to the type expected.
175         let ll_fty = bx.cx().backend_type(field);
176         debug!("struct_field_ptr: Field type is {:?}", ll_fty);
177
178         PlaceRef {
179             llval: bx.pointercast(byte_ptr, bx.cx().type_ptr_to(ll_fty)),
180             llextra: self.llextra,
181             layout: field,
182             align: effective_field_align,
183         }
184     }
185
186     /// Obtain the actual discriminant of a value.
187     pub fn codegen_get_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
188         self,
189         bx: &mut Bx,
190         cast_to: Ty<'tcx>,
191     ) -> V {
192         let cast_to = bx.cx().immediate_backend_type(bx.cx().layout_of(cast_to));
193         if self.layout.abi.is_uninhabited() {
194             return bx.cx().const_undef(cast_to);
195         }
196         let (discr_scalar, discr_kind, discr_index) = match self.layout.variants {
197             layout::Variants::Single { index } => {
198                 let discr_val = self
199                     .layout
200                     .ty
201                     .discriminant_for_variant(bx.cx().tcx(), index)
202                     .map_or(index.as_u32() as u128, |discr| discr.val);
203                 return bx.cx().const_uint_big(cast_to, discr_val);
204             }
205             layout::Variants::Multiple { ref discr, ref discr_kind, discr_index, .. } => {
206                 (discr, discr_kind, discr_index)
207             }
208         };
209
210         // Read the tag/niche-encoded discriminant from memory.
211         let encoded_discr = self.project_field(bx, discr_index);
212         let encoded_discr = bx.load_operand(encoded_discr);
213
214         // Decode the discriminant (specifically if it's niche-encoded).
215         match *discr_kind {
216             layout::DiscriminantKind::Tag => {
217                 let signed = match discr_scalar.value {
218                     // We use `i1` for bytes that are always `0` or `1`,
219                     // e.g., `#[repr(i8)] enum E { A, B }`, but we can't
220                     // let LLVM interpret the `i1` as signed, because
221                     // then `i1 1` (i.e., `E::B`) is effectively `i8 -1`.
222                     layout::Int(_, signed) => !discr_scalar.is_bool() && signed,
223                     _ => false,
224                 };
225                 bx.intcast(encoded_discr.immediate(), cast_to, signed)
226             }
227             layout::DiscriminantKind::Niche {
228                 dataful_variant,
229                 ref niche_variants,
230                 niche_start,
231             } => {
232                 // Rebase from niche values to discriminants, and check
233                 // whether the result is in range for the niche variants.
234                 let niche_llty = bx.cx().immediate_backend_type(encoded_discr.layout);
235                 let encoded_discr = encoded_discr.immediate();
236
237                 // We first compute the "relative discriminant" (wrt `niche_variants`),
238                 // that is, if `n = niche_variants.end() - niche_variants.start()`,
239                 // we remap `niche_start..=niche_start + n` (which may wrap around)
240                 // to (non-wrap-around) `0..=n`, to be able to check whether the
241                 // discriminant corresponds to a niche variant with one comparison.
242                 // We also can't go directly to the (variant index) discriminant
243                 // and check that it is in the range `niche_variants`, because
244                 // that might not fit in the same type, on top of needing an extra
245                 // comparison (see also the comment on `let niche_discr`).
246                 let relative_discr = if niche_start == 0 {
247                     // Avoid subtracting `0`, which wouldn't work for pointers.
248                     // FIXME(eddyb) check the actual primitive type here.
249                     encoded_discr
250                 } else {
251                     bx.sub(encoded_discr, bx.cx().const_uint_big(niche_llty, niche_start))
252                 };
253                 let relative_max = niche_variants.end().as_u32() - niche_variants.start().as_u32();
254                 let is_niche = {
255                     let relative_max = if relative_max == 0 {
256                         // Avoid calling `const_uint`, which wouldn't work for pointers.
257                         // FIXME(eddyb) check the actual primitive type here.
258                         bx.cx().const_null(niche_llty)
259                     } else {
260                         bx.cx().const_uint(niche_llty, relative_max as u64)
261                     };
262                     bx.icmp(IntPredicate::IntULE, relative_discr, relative_max)
263                 };
264
265                 // NOTE(eddyb) this addition needs to be performed on the final
266                 // type, in case the niche itself can't represent all variant
267                 // indices (e.g. `u8` niche with more than `256` variants,
268                 // but enough uninhabited variants so that the remaining variants
269                 // fit in the niche).
270                 // In other words, `niche_variants.end - niche_variants.start`
271                 // is representable in the niche, but `niche_variants.end`
272                 // might not be, in extreme cases.
273                 let niche_discr = {
274                     let relative_discr = if relative_max == 0 {
275                         // HACK(eddyb) since we have only one niche, we know which
276                         // one it is, and we can avoid having a dynamic value here.
277                         bx.cx().const_uint(cast_to, 0)
278                     } else {
279                         bx.intcast(relative_discr, cast_to, false)
280                     };
281                     bx.add(
282                         relative_discr,
283                         bx.cx().const_uint(cast_to, niche_variants.start().as_u32() as u64),
284                     )
285                 };
286
287                 bx.select(
288                     is_niche,
289                     niche_discr,
290                     bx.cx().const_uint(cast_to, dataful_variant.as_u32() as u64),
291                 )
292             }
293         }
294     }
295
296     /// Sets the discriminant for a new value of the given case of the given
297     /// representation.
298     pub fn codegen_set_discr<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
299         &self,
300         bx: &mut Bx,
301         variant_index: VariantIdx,
302     ) {
303         if self.layout.for_variant(bx.cx(), variant_index).abi.is_uninhabited() {
304             // We play it safe by using a well-defined `abort`, but we could go for immediate UB
305             // if that turns out to be helpful.
306             bx.abort();
307             return;
308         }
309         match self.layout.variants {
310             layout::Variants::Single { index } => {
311                 assert_eq!(index, variant_index);
312             }
313             layout::Variants::Multiple {
314                 discr_kind: layout::DiscriminantKind::Tag,
315                 discr_index,
316                 ..
317             } => {
318                 let ptr = self.project_field(bx, discr_index);
319                 let to =
320                     self.layout.ty.discriminant_for_variant(bx.tcx(), variant_index).unwrap().val;
321                 bx.store(
322                     bx.cx().const_uint_big(bx.cx().backend_type(ptr.layout), to),
323                     ptr.llval,
324                     ptr.align,
325                 );
326             }
327             layout::Variants::Multiple {
328                 discr_kind:
329                     layout::DiscriminantKind::Niche { dataful_variant, ref niche_variants, niche_start },
330                 discr_index,
331                 ..
332             } => {
333                 if variant_index != dataful_variant {
334                     if bx.cx().sess().target.target.arch == "arm"
335                         || bx.cx().sess().target.target.arch == "aarch64"
336                     {
337                         // FIXME(#34427): as workaround for LLVM bug on ARM,
338                         // use memset of 0 before assigning niche value.
339                         let fill_byte = bx.cx().const_u8(0);
340                         let size = bx.cx().const_usize(self.layout.size.bytes());
341                         bx.memset(self.llval, fill_byte, size, self.align, MemFlags::empty());
342                     }
343
344                     let niche = self.project_field(bx, discr_index);
345                     let niche_llty = bx.cx().immediate_backend_type(niche.layout);
346                     let niche_value = variant_index.as_u32() - niche_variants.start().as_u32();
347                     let niche_value = (niche_value as u128).wrapping_add(niche_start);
348                     // FIXME(eddyb): check the actual primitive type here.
349                     let niche_llval = if niche_value == 0 {
350                         // HACK(eddyb): using `c_null` as it works on all types.
351                         bx.cx().const_null(niche_llty)
352                     } else {
353                         bx.cx().const_uint_big(niche_llty, niche_value)
354                     };
355                     OperandValue::Immediate(niche_llval).store(bx, niche);
356                 }
357             }
358         }
359     }
360
361     pub fn project_index<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
362         &self,
363         bx: &mut Bx,
364         llindex: V,
365     ) -> Self {
366         // Statically compute the offset if we can, otherwise just use the element size,
367         // as this will yield the lowest alignment.
368         let layout = self.layout.field(bx, 0);
369         let offset = if let Some(llindex) = bx.const_to_opt_uint(llindex) {
370             layout.size.checked_mul(llindex, bx).unwrap_or(layout.size)
371         } else {
372             layout.size
373         };
374
375         PlaceRef {
376             llval: bx.inbounds_gep(self.llval, &[bx.cx().const_usize(0), llindex]),
377             llextra: None,
378             layout,
379             align: self.align.restrict_for_offset(offset),
380         }
381     }
382
383     pub fn project_downcast<Bx: BuilderMethods<'a, 'tcx, Value = V>>(
384         &self,
385         bx: &mut Bx,
386         variant_index: VariantIdx,
387     ) -> Self {
388         let mut downcast = *self;
389         downcast.layout = self.layout.for_variant(bx.cx(), variant_index);
390
391         // Cast to the appropriate variant struct type.
392         let variant_ty = bx.cx().backend_type(downcast.layout);
393         downcast.llval = bx.pointercast(downcast.llval, bx.cx().type_ptr_to(variant_ty));
394
395         downcast
396     }
397
398     pub fn storage_live<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) {
399         bx.lifetime_start(self.llval, self.layout.size);
400     }
401
402     pub fn storage_dead<Bx: BuilderMethods<'a, 'tcx, Value = V>>(&self, bx: &mut Bx) {
403         bx.lifetime_end(self.llval, self.layout.size);
404     }
405 }
406
407 impl<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>> FunctionCx<'a, 'tcx, Bx> {
408     pub fn codegen_place(
409         &mut self,
410         bx: &mut Bx,
411         place_ref: &mir::PlaceRef<'_, 'tcx>,
412     ) -> PlaceRef<'tcx, Bx::Value> {
413         debug!("codegen_place(place_ref={:?})", place_ref);
414         let cx = self.cx;
415         let tcx = self.cx.tcx();
416
417         let result = match place_ref {
418             mir::PlaceRef { local, projection: [] } => match self.locals[**local] {
419                 LocalRef::Place(place) => {
420                     return place;
421                 }
422                 LocalRef::UnsizedPlace(place) => {
423                     return bx.load_operand(place).deref(cx);
424                 }
425                 LocalRef::Operand(..) => {
426                     bug!("using operand local {:?} as place", place_ref);
427                 }
428             },
429             mir::PlaceRef { local, projection: [proj_base @ .., mir::ProjectionElem::Deref] } => {
430                 // Load the pointer from its location.
431                 self.codegen_consume(bx, &mir::PlaceRef { local, projection: proj_base })
432                     .deref(bx.cx())
433             }
434             mir::PlaceRef { local, projection: [proj_base @ .., elem] } => {
435                 // FIXME turn this recursion into iteration
436                 let cg_base =
437                     self.codegen_place(bx, &mir::PlaceRef { local, projection: proj_base });
438
439                 match elem {
440                     mir::ProjectionElem::Deref => bug!(),
441                     mir::ProjectionElem::Field(ref field, _) => {
442                         cg_base.project_field(bx, field.index())
443                     }
444                     mir::ProjectionElem::Index(index) => {
445                         let index = &mir::Operand::Copy(mir::Place::from(*index));
446                         let index = self.codegen_operand(bx, index);
447                         let llindex = index.immediate();
448                         cg_base.project_index(bx, llindex)
449                     }
450                     mir::ProjectionElem::ConstantIndex {
451                         offset,
452                         from_end: false,
453                         min_length: _,
454                     } => {
455                         let lloffset = bx.cx().const_usize(*offset as u64);
456                         cg_base.project_index(bx, lloffset)
457                     }
458                     mir::ProjectionElem::ConstantIndex {
459                         offset,
460                         from_end: true,
461                         min_length: _,
462                     } => {
463                         let lloffset = bx.cx().const_usize(*offset as u64);
464                         let lllen = cg_base.len(bx.cx());
465                         let llindex = bx.sub(lllen, lloffset);
466                         cg_base.project_index(bx, llindex)
467                     }
468                     mir::ProjectionElem::Subslice { from, to, from_end } => {
469                         let mut subslice =
470                             cg_base.project_index(bx, bx.cx().const_usize(*from as u64));
471                         let projected_ty =
472                             PlaceTy::from_ty(cg_base.layout.ty).projection_ty(tcx, elem).ty;
473                         subslice.layout = bx.cx().layout_of(self.monomorphize(&projected_ty));
474
475                         if subslice.layout.is_unsized() {
476                             assert!(from_end, "slice subslices should be `from_end`");
477                             subslice.llextra = Some(bx.sub(
478                                 cg_base.llextra.unwrap(),
479                                 bx.cx().const_usize((*from as u64) + (*to as u64)),
480                             ));
481                         }
482
483                         // Cast the place pointer type to the new
484                         // array or slice type (`*[%_; new_len]`).
485                         subslice.llval = bx.pointercast(
486                             subslice.llval,
487                             bx.cx().type_ptr_to(bx.cx().backend_type(subslice.layout)),
488                         );
489
490                         subslice
491                     }
492                     mir::ProjectionElem::Downcast(_, v) => cg_base.project_downcast(bx, *v),
493                 }
494             }
495         };
496         debug!("codegen_place(place={:?}) => {:?}", place_ref, result);
497         result
498     }
499
500     pub fn monomorphized_place_ty(&self, place_ref: &mir::PlaceRef<'_, 'tcx>) -> Ty<'tcx> {
501         let tcx = self.cx.tcx();
502         let place_ty = mir::Place::ty_from(place_ref.local, place_ref.projection, *self.mir, tcx);
503         self.monomorphize(&place_ty.ty)
504     }
505 }