]> git.lizzy.rs Git - rust.git/blob - src/librustc/ty/wf.rs
Rollup merge of #35558 - lukehinds:master, r=nikomatsakis
[rust.git] / src / librustc / ty / wf.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use hir::def_id::DefId;
12 use infer::InferCtxt;
13 use ty::outlives::Component;
14 use ty::subst::Substs;
15 use traits;
16 use ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
17 use std::iter::once;
18 use syntax::ast;
19 use syntax_pos::Span;
20 use util::common::ErrorReported;
21
22 /// Returns the set of obligations needed to make `ty` well-formed.
23 /// If `ty` contains unresolved inference variables, this may include
24 /// further WF obligations. However, if `ty` IS an unresolved
25 /// inference variable, returns `None`, because we are not able to
26 /// make any progress at all. This is to prevent "livelock" where we
27 /// say "$0 is WF if $0 is WF".
28 pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
29                                    body_id: ast::NodeId,
30                                    ty: Ty<'tcx>,
31                                    span: Span)
32                                    -> Option<Vec<traits::PredicateObligation<'tcx>>>
33 {
34     let mut wf = WfPredicates { infcx: infcx,
35                                 body_id: body_id,
36                                 span: span,
37                                 out: vec![] };
38     if wf.compute(ty) {
39         debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
40         let result = wf.normalize();
41         debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
42         Some(result)
43     } else {
44         None // no progress made, return None
45     }
46 }
47
48 /// Returns the obligations that make this trait reference
49 /// well-formed.  For example, if there is a trait `Set` defined like
50 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
51 /// if `Bar: Eq`.
52 pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
53                                          body_id: ast::NodeId,
54                                          trait_ref: &ty::TraitRef<'tcx>,
55                                          span: Span)
56                                          -> Vec<traits::PredicateObligation<'tcx>>
57 {
58     let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
59     wf.compute_trait_ref(trait_ref);
60     wf.normalize()
61 }
62
63 pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
64                                              body_id: ast::NodeId,
65                                              predicate: &ty::Predicate<'tcx>,
66                                              span: Span)
67                                              -> Vec<traits::PredicateObligation<'tcx>>
68 {
69     let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
70
71     // (*) ok to skip binders, because wf code is prepared for it
72     match *predicate {
73         ty::Predicate::Trait(ref t) => {
74             wf.compute_trait_ref(&t.skip_binder().trait_ref); // (*)
75         }
76         ty::Predicate::Equate(ref t) => {
77             wf.compute(t.skip_binder().0);
78             wf.compute(t.skip_binder().1);
79         }
80         ty::Predicate::RegionOutlives(..) => {
81         }
82         ty::Predicate::TypeOutlives(ref t) => {
83             wf.compute(t.skip_binder().0);
84         }
85         ty::Predicate::Projection(ref t) => {
86             let t = t.skip_binder(); // (*)
87             wf.compute_projection(t.projection_ty);
88             wf.compute(t.ty);
89         }
90         ty::Predicate::WellFormed(t) => {
91             wf.compute(t);
92         }
93         ty::Predicate::ObjectSafe(_) => {
94         }
95         ty::Predicate::ClosureKind(..) => {
96         }
97         ty::Predicate::Rfc1592(ref data) => {
98             bug!("RFC1592 predicate `{:?}` in predicate_obligations", data);
99         }
100     }
101
102     wf.normalize()
103 }
104
105 /// Implied bounds are region relationships that we deduce
106 /// automatically.  The idea is that (e.g.) a caller must check that a
107 /// function's argument types are well-formed immediately before
108 /// calling that fn, and hence the *callee* can assume that its
109 /// argument types are well-formed. This may imply certain relationships
110 /// between generic parameters. For example:
111 ///
112 ///     fn foo<'a,T>(x: &'a T)
113 ///
114 /// can only be called with a `'a` and `T` such that `&'a T` is WF.
115 /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`.
116 #[derive(Debug)]
117 pub enum ImpliedBound<'tcx> {
118     RegionSubRegion(ty::Region, ty::Region),
119     RegionSubParam(ty::Region, ty::ParamTy),
120     RegionSubProjection(ty::Region, ty::ProjectionTy<'tcx>),
121 }
122
123 /// Compute the implied bounds that a callee/impl can assume based on
124 /// the fact that caller/projector has ensured that `ty` is WF.  See
125 /// the `ImpliedBound` type for more details.
126 pub fn implied_bounds<'a, 'gcx, 'tcx>(
127     infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
128     body_id: ast::NodeId,
129     ty: Ty<'tcx>,
130     span: Span)
131     -> Vec<ImpliedBound<'tcx>>
132 {
133     // Sometimes when we ask what it takes for T: WF, we get back that
134     // U: WF is required; in that case, we push U onto this stack and
135     // process it next. Currently (at least) these resulting
136     // predicates are always guaranteed to be a subset of the original
137     // type, so we need not fear non-termination.
138     let mut wf_types = vec![ty];
139
140     let mut implied_bounds = vec![];
141
142     while let Some(ty) = wf_types.pop() {
143         // Compute the obligations for `ty` to be well-formed. If `ty` is
144         // an unresolved inference variable, just substituted an empty set
145         // -- because the return type here is going to be things we *add*
146         // to the environment, it's always ok for this set to be smaller
147         // than the ultimate set. (Note: normally there won't be
148         // unresolved inference variables here anyway, but there might be
149         // during typeck under some circumstances.)
150         let obligations = obligations(infcx, body_id, ty, span).unwrap_or(vec![]);
151
152         // From the full set of obligations, just filter down to the
153         // region relationships.
154         implied_bounds.extend(
155             obligations
156             .into_iter()
157             .flat_map(|obligation| {
158                 assert!(!obligation.has_escaping_regions());
159                 match obligation.predicate {
160                     ty::Predicate::Trait(..) |
161                     ty::Predicate::Rfc1592(..) |
162                     ty::Predicate::Equate(..) |
163                     ty::Predicate::Projection(..) |
164                     ty::Predicate::ClosureKind(..) |
165                     ty::Predicate::ObjectSafe(..) =>
166                         vec![],
167
168                     ty::Predicate::WellFormed(subty) => {
169                         wf_types.push(subty);
170                         vec![]
171                     }
172
173                     ty::Predicate::RegionOutlives(ref data) =>
174                         match infcx.tcx.no_late_bound_regions(data) {
175                             None =>
176                                 vec![],
177                             Some(ty::OutlivesPredicate(r_a, r_b)) =>
178                                 vec![ImpliedBound::RegionSubRegion(r_b, r_a)],
179                         },
180
181                     ty::Predicate::TypeOutlives(ref data) =>
182                         match infcx.tcx.no_late_bound_regions(data) {
183                             None => vec![],
184                             Some(ty::OutlivesPredicate(ty_a, r_b)) => {
185                                 let components = infcx.outlives_components(ty_a);
186                                 implied_bounds_from_components(r_b, components)
187                             }
188                         },
189                 }}));
190     }
191
192     implied_bounds
193 }
194
195 /// When we have an implied bound that `T: 'a`, we can further break
196 /// this down to determine what relationships would have to hold for
197 /// `T: 'a` to hold. We get to assume that the caller has validated
198 /// those relationships.
199 fn implied_bounds_from_components<'tcx>(sub_region: ty::Region,
200                                         sup_components: Vec<Component<'tcx>>)
201                                         -> Vec<ImpliedBound<'tcx>>
202 {
203     sup_components
204         .into_iter()
205         .flat_map(|component| {
206             match component {
207                 Component::Region(r) =>
208                     vec!(ImpliedBound::RegionSubRegion(sub_region, r)),
209                 Component::Param(p) =>
210                     vec!(ImpliedBound::RegionSubParam(sub_region, p)),
211                 Component::Projection(p) =>
212                     vec!(ImpliedBound::RegionSubProjection(sub_region, p)),
213                 Component::EscapingProjection(_) =>
214                     // If the projection has escaping regions, don't
215                     // try to infer any implied bounds even for its
216                     // free components. This is conservative, because
217                     // the caller will still have to prove that those
218                     // free components outlive `sub_region`. But the
219                     // idea is that the WAY that the caller proves
220                     // that may change in the future and we want to
221                     // give ourselves room to get smarter here.
222                     vec!(),
223                 Component::UnresolvedInferenceVariable(..) =>
224                     vec!(),
225             }
226         })
227         .collect()
228 }
229
230 struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
231     infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
232     body_id: ast::NodeId,
233     span: Span,
234     out: Vec<traits::PredicateObligation<'tcx>>,
235 }
236
237 impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
238     fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
239         traits::ObligationCause::new(self.span, self.body_id, code)
240     }
241
242     fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
243         let cause = self.cause(traits::MiscObligation);
244         let infcx = &mut self.infcx;
245         self.out.iter()
246                 .inspect(|pred| assert!(!pred.has_escaping_regions()))
247                 .flat_map(|pred| {
248                     let mut selcx = traits::SelectionContext::new(infcx);
249                     let pred = traits::normalize(&mut selcx, cause.clone(), pred);
250                     once(pred.value).chain(pred.obligations)
251                 })
252                 .collect()
253     }
254
255     /// Pushes the obligations required for `trait_ref` to be WF into
256     /// `self.out`.
257     fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>) {
258         let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
259         self.out.extend(obligations);
260
261         let cause = self.cause(traits::MiscObligation);
262         self.out.extend(
263             trait_ref.substs.types
264                             .as_slice()
265                             .iter()
266                             .filter(|ty| !ty.has_escaping_regions())
267                             .map(|ty| traits::Obligation::new(cause.clone(),
268                                                               ty::Predicate::WellFormed(ty))));
269     }
270
271     /// Pushes the obligations required for `trait_ref::Item` to be WF
272     /// into `self.out`.
273     fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
274         // A projection is well-formed if (a) the trait ref itself is
275         // WF and (b) the trait-ref holds.  (It may also be
276         // normalizable and be WF that way.)
277
278         self.compute_trait_ref(&data.trait_ref);
279
280         if !data.has_escaping_regions() {
281             let predicate = data.trait_ref.to_predicate();
282             let cause = self.cause(traits::ProjectionWf(data));
283             self.out.push(traits::Obligation::new(cause, predicate));
284         }
285     }
286
287     fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>,
288                      rfc1592: bool) {
289         if !subty.has_escaping_regions() {
290             let cause = self.cause(cause);
291             match self.infcx.tcx.trait_ref_for_builtin_bound(ty::BoundSized, subty) {
292                 Ok(trait_ref) => {
293                     let predicate = trait_ref.to_predicate();
294                     let predicate = if rfc1592 {
295                         ty::Predicate::Rfc1592(box predicate)
296                     } else {
297                         predicate
298                     };
299                     self.out.push(
300                         traits::Obligation::new(cause,
301                                                 predicate));
302                 }
303                 Err(ErrorReported) => { }
304             }
305         }
306     }
307
308     /// Push new obligations into `out`. Returns true if it was able
309     /// to generate all the predicates needed to validate that `ty0`
310     /// is WF. Returns false if `ty0` is an unresolved type variable,
311     /// in which case we are not able to simplify at all.
312     fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
313         let tcx = self.infcx.tcx;
314         let mut subtys = ty0.walk();
315         while let Some(ty) = subtys.next() {
316             match ty.sty {
317                 ty::TyBool |
318                 ty::TyChar |
319                 ty::TyInt(..) |
320                 ty::TyUint(..) |
321                 ty::TyFloat(..) |
322                 ty::TyError |
323                 ty::TyStr |
324                 ty::TyParam(_) => {
325                     // WfScalar, WfParameter, etc
326                 }
327
328                 ty::TySlice(subty) |
329                 ty::TyArray(subty, _) => {
330                     self.require_sized(subty, traits::SliceOrArrayElem, false);
331                 }
332
333                 ty::TyTuple(ref tys) => {
334                     if let Some((_last, rest)) = tys.split_last() {
335                         for elem in rest {
336                             self.require_sized(elem, traits::TupleElem, true);
337                         }
338                     }
339                 }
340
341                 ty::TyBox(_) |
342                 ty::TyRawPtr(_) => {
343                     // simple cases that are WF if their type args are WF
344                 }
345
346                 ty::TyProjection(data) => {
347                     subtys.skip_current_subtree(); // subtree handled by compute_projection
348                     self.compute_projection(data);
349                 }
350
351                 ty::TyEnum(def, substs) |
352                 ty::TyStruct(def, substs) => {
353                     // WfNominalType
354                     let obligations = self.nominal_obligations(def.did, substs);
355                     self.out.extend(obligations);
356                 }
357
358                 ty::TyRef(r, mt) => {
359                     // WfReference
360                     if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
361                         let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
362                         self.out.push(
363                             traits::Obligation::new(
364                                 cause,
365                                 ty::Predicate::TypeOutlives(
366                                     ty::Binder(
367                                         ty::OutlivesPredicate(mt.ty, *r)))));
368                     }
369                 }
370
371                 ty::TyClosure(..) => {
372                     // the types in a closure are always the types of
373                     // local variables (or possibly references to local
374                     // variables), we'll walk those.
375                     //
376                     // (Though, local variables are probably not
377                     // needed, as they are separately checked w/r/t
378                     // WFedness.)
379                 }
380
381                 ty::TyFnDef(..) | ty::TyFnPtr(_) => {
382                     // let the loop iterate into the argument/return
383                     // types appearing in the fn signature
384                 }
385
386                 ty::TyAnon(..) => {
387                     // all of the requirements on type parameters
388                     // should've been checked by the instantiation
389                     // of whatever returned this exact `impl Trait`.
390                 }
391
392                 ty::TyTrait(ref data) => {
393                     // WfObject
394                     //
395                     // Here, we defer WF checking due to higher-ranked
396                     // regions. This is perhaps not ideal.
397                     self.from_object_ty(ty, data);
398
399                     // FIXME(#27579) RFC also considers adding trait
400                     // obligations that don't refer to Self and
401                     // checking those
402
403                     let cause = self.cause(traits::MiscObligation);
404
405                     // FIXME(#33243): remove RFC1592
406                     self.out.push(traits::Obligation::new(
407                         cause.clone(),
408                         ty::Predicate::ObjectSafe(data.principal_def_id())
409                     ));
410                     let component_traits =
411                         data.bounds.builtin_bounds.iter().flat_map(|bound| {
412                             tcx.lang_items.from_builtin_kind(bound).ok()
413                         });
414 //                        .chain(Some(data.principal_def_id()));
415                     self.out.extend(
416                         component_traits.map(|did| { traits::Obligation::new(
417                             cause.clone(),
418                             ty::Predicate::Rfc1592(
419                                 box ty::Predicate::ObjectSafe(did)
420                             )
421                         )})
422                     );
423                 }
424
425                 // Inference variables are the complicated case, since we don't
426                 // know what type they are. We do two things:
427                 //
428                 // 1. Check if they have been resolved, and if so proceed with
429                 //    THAT type.
430                 // 2. If not, check whether this is the type that we
431                 //    started with (ty0). In that case, we've made no
432                 //    progress at all, so return false. Otherwise,
433                 //    we've at least simplified things (i.e., we went
434                 //    from `Vec<$0>: WF` to `$0: WF`, so we can
435                 //    register a pending obligation and keep
436                 //    moving. (Goal is that an "inductive hypothesis"
437                 //    is satisfied to ensure termination.)
438                 ty::TyInfer(_) => {
439                     let ty = self.infcx.shallow_resolve(ty);
440                     if let ty::TyInfer(_) = ty.sty { // not yet resolved...
441                         if ty == ty0 { // ...this is the type we started from! no progress.
442                             return false;
443                         }
444
445                         let cause = self.cause(traits::MiscObligation);
446                         self.out.push( // ...not the type we started from, so we made progress.
447                             traits::Obligation::new(cause, ty::Predicate::WellFormed(ty)));
448                     } else {
449                         // Yes, resolved, proceed with the
450                         // result. Should never return false because
451                         // `ty` is not a TyInfer.
452                         assert!(self.compute(ty));
453                     }
454                 }
455             }
456         }
457
458         // if we made it through that loop above, we made progress!
459         return true;
460     }
461
462     fn nominal_obligations(&mut self,
463                            def_id: DefId,
464                            substs: &Substs<'tcx>)
465                            -> Vec<traits::PredicateObligation<'tcx>>
466     {
467         let predicates =
468             self.infcx.tcx.lookup_predicates(def_id)
469                           .instantiate(self.infcx.tcx, substs);
470         let cause = self.cause(traits::ItemObligation(def_id));
471         predicates.predicates
472                   .into_iter()
473                   .map(|pred| traits::Obligation::new(cause.clone(), pred))
474                   .filter(|pred| !pred.has_escaping_regions())
475                   .collect()
476     }
477
478     fn from_object_ty(&mut self, ty: Ty<'tcx>, data: &ty::TraitTy<'tcx>) {
479         // Imagine a type like this:
480         //
481         //     trait Foo { }
482         //     trait Bar<'c> : 'c { }
483         //
484         //     &'b (Foo+'c+Bar<'d>)
485         //         ^
486         //
487         // In this case, the following relationships must hold:
488         //
489         //     'b <= 'c
490         //     'd <= 'c
491         //
492         // The first conditions is due to the normal region pointer
493         // rules, which say that a reference cannot outlive its
494         // referent.
495         //
496         // The final condition may be a bit surprising. In particular,
497         // you may expect that it would have been `'c <= 'd`, since
498         // usually lifetimes of outer things are conservative
499         // approximations for inner things. However, it works somewhat
500         // differently with trait objects: here the idea is that if the
501         // user specifies a region bound (`'c`, in this case) it is the
502         // "master bound" that *implies* that bounds from other traits are
503         // all met. (Remember that *all bounds* in a type like
504         // `Foo+Bar+Zed` must be met, not just one, hence if we write
505         // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
506         // 'y.)
507         //
508         // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
509         // am looking forward to the future here.
510
511         if !data.has_escaping_regions() {
512             let implicit_bounds =
513                 object_region_bounds(self.infcx.tcx,
514                                      &data.principal,
515                                      data.bounds.builtin_bounds);
516
517             let explicit_bound = data.bounds.region_bound;
518
519             for implicit_bound in implicit_bounds {
520                 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
521                 let outlives = ty::Binder(ty::OutlivesPredicate(explicit_bound, implicit_bound));
522                 self.out.push(traits::Obligation::new(cause, outlives.to_predicate()));
523             }
524         }
525     }
526 }
527
528 /// Given an object type like `SomeTrait+Send`, computes the lifetime
529 /// bounds that must hold on the elided self type. These are derived
530 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
531 /// they declare `trait SomeTrait : 'static`, for example, then
532 /// `'static` would appear in the list. The hard work is done by
533 /// `ty::required_region_bounds`, see that for more information.
534 pub fn object_region_bounds<'a, 'gcx, 'tcx>(
535     tcx: TyCtxt<'a, 'gcx, 'tcx>,
536     principal: &ty::PolyTraitRef<'tcx>,
537     others: ty::BuiltinBounds)
538     -> Vec<ty::Region>
539 {
540     // Since we don't actually *know* the self type for an object,
541     // this "open(err)" serves as a kind of dummy standin -- basically
542     // a skolemized type.
543     let open_ty = tcx.mk_infer(ty::FreshTy(0));
544
545     // Note that we preserve the overall binding levels here.
546     assert!(!open_ty.has_escaping_regions());
547     let substs = tcx.mk_substs(principal.0.substs.with_self_ty(open_ty));
548     let trait_refs = vec!(ty::Binder(ty::TraitRef::new(principal.0.def_id, substs)));
549
550     let mut predicates = others.to_predicates(tcx, open_ty);
551     predicates.extend(trait_refs.iter().map(|t| t.to_predicate()));
552
553     tcx.required_region_bounds(open_ty, predicates)
554 }