]> git.lizzy.rs Git - rust.git/blob - src/librustc/ty/wf.rs
Auto merge of #35856 - phimuemue:master, r=brson
[rust.git] / src / librustc / ty / wf.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use hir::def_id::DefId;
12 use infer::InferCtxt;
13 use ty::outlives::Component;
14 use ty::subst::Substs;
15 use traits;
16 use ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
17 use std::iter::once;
18 use syntax::ast;
19 use syntax_pos::Span;
20 use util::common::ErrorReported;
21
22 /// Returns the set of obligations needed to make `ty` well-formed.
23 /// If `ty` contains unresolved inference variables, this may include
24 /// further WF obligations. However, if `ty` IS an unresolved
25 /// inference variable, returns `None`, because we are not able to
26 /// make any progress at all. This is to prevent "livelock" where we
27 /// say "$0 is WF if $0 is WF".
28 pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
29                                    body_id: ast::NodeId,
30                                    ty: Ty<'tcx>,
31                                    span: Span)
32                                    -> Option<Vec<traits::PredicateObligation<'tcx>>>
33 {
34     let mut wf = WfPredicates { infcx: infcx,
35                                 body_id: body_id,
36                                 span: span,
37                                 out: vec![] };
38     if wf.compute(ty) {
39         debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
40         let result = wf.normalize();
41         debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
42         Some(result)
43     } else {
44         None // no progress made, return None
45     }
46 }
47
48 /// Returns the obligations that make this trait reference
49 /// well-formed.  For example, if there is a trait `Set` defined like
50 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
51 /// if `Bar: Eq`.
52 pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
53                                          body_id: ast::NodeId,
54                                          trait_ref: &ty::TraitRef<'tcx>,
55                                          span: Span)
56                                          -> Vec<traits::PredicateObligation<'tcx>>
57 {
58     let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
59     wf.compute_trait_ref(trait_ref);
60     wf.normalize()
61 }
62
63 pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
64                                              body_id: ast::NodeId,
65                                              predicate: &ty::Predicate<'tcx>,
66                                              span: Span)
67                                              -> Vec<traits::PredicateObligation<'tcx>>
68 {
69     let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
70
71     // (*) ok to skip binders, because wf code is prepared for it
72     match *predicate {
73         ty::Predicate::Trait(ref t) => {
74             wf.compute_trait_ref(&t.skip_binder().trait_ref); // (*)
75         }
76         ty::Predicate::Equate(ref t) => {
77             wf.compute(t.skip_binder().0);
78             wf.compute(t.skip_binder().1);
79         }
80         ty::Predicate::RegionOutlives(..) => {
81         }
82         ty::Predicate::TypeOutlives(ref t) => {
83             wf.compute(t.skip_binder().0);
84         }
85         ty::Predicate::Projection(ref t) => {
86             let t = t.skip_binder(); // (*)
87             wf.compute_projection(t.projection_ty);
88             wf.compute(t.ty);
89         }
90         ty::Predicate::WellFormed(t) => {
91             wf.compute(t);
92         }
93         ty::Predicate::ObjectSafe(_) => {
94         }
95         ty::Predicate::ClosureKind(..) => {
96         }
97     }
98
99     wf.normalize()
100 }
101
102 /// Implied bounds are region relationships that we deduce
103 /// automatically.  The idea is that (e.g.) a caller must check that a
104 /// function's argument types are well-formed immediately before
105 /// calling that fn, and hence the *callee* can assume that its
106 /// argument types are well-formed. This may imply certain relationships
107 /// between generic parameters. For example:
108 ///
109 ///     fn foo<'a,T>(x: &'a T)
110 ///
111 /// can only be called with a `'a` and `T` such that `&'a T` is WF.
112 /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`.
113 #[derive(Debug)]
114 pub enum ImpliedBound<'tcx> {
115     RegionSubRegion(&'tcx ty::Region, &'tcx ty::Region),
116     RegionSubParam(&'tcx ty::Region, ty::ParamTy),
117     RegionSubProjection(&'tcx ty::Region, ty::ProjectionTy<'tcx>),
118 }
119
120 /// Compute the implied bounds that a callee/impl can assume based on
121 /// the fact that caller/projector has ensured that `ty` is WF.  See
122 /// the `ImpliedBound` type for more details.
123 pub fn implied_bounds<'a, 'gcx, 'tcx>(
124     infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
125     body_id: ast::NodeId,
126     ty: Ty<'tcx>,
127     span: Span)
128     -> Vec<ImpliedBound<'tcx>>
129 {
130     // Sometimes when we ask what it takes for T: WF, we get back that
131     // U: WF is required; in that case, we push U onto this stack and
132     // process it next. Currently (at least) these resulting
133     // predicates are always guaranteed to be a subset of the original
134     // type, so we need not fear non-termination.
135     let mut wf_types = vec![ty];
136
137     let mut implied_bounds = vec![];
138
139     while let Some(ty) = wf_types.pop() {
140         // Compute the obligations for `ty` to be well-formed. If `ty` is
141         // an unresolved inference variable, just substituted an empty set
142         // -- because the return type here is going to be things we *add*
143         // to the environment, it's always ok for this set to be smaller
144         // than the ultimate set. (Note: normally there won't be
145         // unresolved inference variables here anyway, but there might be
146         // during typeck under some circumstances.)
147         let obligations = obligations(infcx, body_id, ty, span).unwrap_or(vec![]);
148
149         // From the full set of obligations, just filter down to the
150         // region relationships.
151         implied_bounds.extend(
152             obligations
153             .into_iter()
154             .flat_map(|obligation| {
155                 assert!(!obligation.has_escaping_regions());
156                 match obligation.predicate {
157                     ty::Predicate::Trait(..) |
158                     ty::Predicate::Equate(..) |
159                     ty::Predicate::Projection(..) |
160                     ty::Predicate::ClosureKind(..) |
161                     ty::Predicate::ObjectSafe(..) =>
162                         vec![],
163
164                     ty::Predicate::WellFormed(subty) => {
165                         wf_types.push(subty);
166                         vec![]
167                     }
168
169                     ty::Predicate::RegionOutlives(ref data) =>
170                         match infcx.tcx.no_late_bound_regions(data) {
171                             None =>
172                                 vec![],
173                             Some(ty::OutlivesPredicate(r_a, r_b)) =>
174                                 vec![ImpliedBound::RegionSubRegion(r_b, r_a)],
175                         },
176
177                     ty::Predicate::TypeOutlives(ref data) =>
178                         match infcx.tcx.no_late_bound_regions(data) {
179                             None => vec![],
180                             Some(ty::OutlivesPredicate(ty_a, r_b)) => {
181                                 let components = infcx.outlives_components(ty_a);
182                                 implied_bounds_from_components(r_b, components)
183                             }
184                         },
185                 }}));
186     }
187
188     implied_bounds
189 }
190
191 /// When we have an implied bound that `T: 'a`, we can further break
192 /// this down to determine what relationships would have to hold for
193 /// `T: 'a` to hold. We get to assume that the caller has validated
194 /// those relationships.
195 fn implied_bounds_from_components<'tcx>(sub_region: &'tcx ty::Region,
196                                         sup_components: Vec<Component<'tcx>>)
197                                         -> Vec<ImpliedBound<'tcx>>
198 {
199     sup_components
200         .into_iter()
201         .flat_map(|component| {
202             match component {
203                 Component::Region(r) =>
204                     vec!(ImpliedBound::RegionSubRegion(sub_region, r)),
205                 Component::Param(p) =>
206                     vec!(ImpliedBound::RegionSubParam(sub_region, p)),
207                 Component::Projection(p) =>
208                     vec!(ImpliedBound::RegionSubProjection(sub_region, p)),
209                 Component::EscapingProjection(_) =>
210                     // If the projection has escaping regions, don't
211                     // try to infer any implied bounds even for its
212                     // free components. This is conservative, because
213                     // the caller will still have to prove that those
214                     // free components outlive `sub_region`. But the
215                     // idea is that the WAY that the caller proves
216                     // that may change in the future and we want to
217                     // give ourselves room to get smarter here.
218                     vec!(),
219                 Component::UnresolvedInferenceVariable(..) =>
220                     vec!(),
221             }
222         })
223         .collect()
224 }
225
226 struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
227     infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
228     body_id: ast::NodeId,
229     span: Span,
230     out: Vec<traits::PredicateObligation<'tcx>>,
231 }
232
233 impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
234     fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
235         traits::ObligationCause::new(self.span, self.body_id, code)
236     }
237
238     fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
239         let cause = self.cause(traits::MiscObligation);
240         let infcx = &mut self.infcx;
241         self.out.iter()
242                 .inspect(|pred| assert!(!pred.has_escaping_regions()))
243                 .flat_map(|pred| {
244                     let mut selcx = traits::SelectionContext::new(infcx);
245                     let pred = traits::normalize(&mut selcx, cause.clone(), pred);
246                     once(pred.value).chain(pred.obligations)
247                 })
248                 .collect()
249     }
250
251     /// Pushes the obligations required for `trait_ref` to be WF into
252     /// `self.out`.
253     fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>) {
254         let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
255         self.out.extend(obligations);
256
257         let cause = self.cause(traits::MiscObligation);
258         self.out.extend(
259             trait_ref.substs.types()
260                             .filter(|ty| !ty.has_escaping_regions())
261                             .map(|ty| traits::Obligation::new(cause.clone(),
262                                                               ty::Predicate::WellFormed(ty))));
263     }
264
265     /// Pushes the obligations required for `trait_ref::Item` to be WF
266     /// into `self.out`.
267     fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
268         // A projection is well-formed if (a) the trait ref itself is
269         // WF and (b) the trait-ref holds.  (It may also be
270         // normalizable and be WF that way.)
271
272         self.compute_trait_ref(&data.trait_ref);
273
274         if !data.has_escaping_regions() {
275             let predicate = data.trait_ref.to_predicate();
276             let cause = self.cause(traits::ProjectionWf(data));
277             self.out.push(traits::Obligation::new(cause, predicate));
278         }
279     }
280
281     fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
282         if !subty.has_escaping_regions() {
283             let cause = self.cause(cause);
284             match self.infcx.tcx.trait_ref_for_builtin_bound(ty::BoundSized, subty) {
285                 Ok(trait_ref) => {
286                     self.out.push(
287                         traits::Obligation::new(cause,
288                                                 trait_ref.to_predicate()));
289                 }
290                 Err(ErrorReported) => { }
291             }
292         }
293     }
294
295     /// Push new obligations into `out`. Returns true if it was able
296     /// to generate all the predicates needed to validate that `ty0`
297     /// is WF. Returns false if `ty0` is an unresolved type variable,
298     /// in which case we are not able to simplify at all.
299     fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
300         let tcx = self.infcx.tcx;
301         let mut subtys = ty0.walk();
302         while let Some(ty) = subtys.next() {
303             match ty.sty {
304                 ty::TyBool |
305                 ty::TyChar |
306                 ty::TyInt(..) |
307                 ty::TyUint(..) |
308                 ty::TyFloat(..) |
309                 ty::TyError |
310                 ty::TyStr |
311                 ty::TyNever |
312                 ty::TyParam(_) => {
313                     // WfScalar, WfParameter, etc
314                 }
315
316                 ty::TySlice(subty) |
317                 ty::TyArray(subty, _) => {
318                     self.require_sized(subty, traits::SliceOrArrayElem);
319                 }
320
321                 ty::TyTuple(ref tys) => {
322                     if let Some((_last, rest)) = tys.split_last() {
323                         for elem in rest {
324                             self.require_sized(elem, traits::TupleElem);
325                         }
326                     }
327                 }
328
329                 ty::TyBox(_) |
330                 ty::TyRawPtr(_) => {
331                     // simple cases that are WF if their type args are WF
332                 }
333
334                 ty::TyProjection(data) => {
335                     subtys.skip_current_subtree(); // subtree handled by compute_projection
336                     self.compute_projection(data);
337                 }
338
339                 ty::TyEnum(def, substs) |
340                 ty::TyStruct(def, substs) => {
341                     // WfNominalType
342                     let obligations = self.nominal_obligations(def.did, substs);
343                     self.out.extend(obligations);
344                 }
345
346                 ty::TyRef(r, mt) => {
347                     // WfReference
348                     if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
349                         let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
350                         self.out.push(
351                             traits::Obligation::new(
352                                 cause,
353                                 ty::Predicate::TypeOutlives(
354                                     ty::Binder(
355                                         ty::OutlivesPredicate(mt.ty, r)))));
356                     }
357                 }
358
359                 ty::TyClosure(..) => {
360                     // the types in a closure are always the types of
361                     // local variables (or possibly references to local
362                     // variables), we'll walk those.
363                     //
364                     // (Though, local variables are probably not
365                     // needed, as they are separately checked w/r/t
366                     // WFedness.)
367                 }
368
369                 ty::TyFnDef(..) | ty::TyFnPtr(_) => {
370                     // let the loop iterate into the argument/return
371                     // types appearing in the fn signature
372                 }
373
374                 ty::TyAnon(..) => {
375                     // all of the requirements on type parameters
376                     // should've been checked by the instantiation
377                     // of whatever returned this exact `impl Trait`.
378                 }
379
380                 ty::TyTrait(ref data) => {
381                     // WfObject
382                     //
383                     // Here, we defer WF checking due to higher-ranked
384                     // regions. This is perhaps not ideal.
385                     self.from_object_ty(ty, data);
386
387                     // FIXME(#27579) RFC also considers adding trait
388                     // obligations that don't refer to Self and
389                     // checking those
390
391                     let cause = self.cause(traits::MiscObligation);
392
393                     let component_traits =
394                         data.builtin_bounds.iter().flat_map(|bound| {
395                             tcx.lang_items.from_builtin_kind(bound).ok()
396                         })
397                         .chain(Some(data.principal.def_id()));
398                     self.out.extend(
399                         component_traits.map(|did| { traits::Obligation::new(
400                             cause.clone(),
401                             ty::Predicate::ObjectSafe(did)
402                         )})
403                     );
404                 }
405
406                 // Inference variables are the complicated case, since we don't
407                 // know what type they are. We do two things:
408                 //
409                 // 1. Check if they have been resolved, and if so proceed with
410                 //    THAT type.
411                 // 2. If not, check whether this is the type that we
412                 //    started with (ty0). In that case, we've made no
413                 //    progress at all, so return false. Otherwise,
414                 //    we've at least simplified things (i.e., we went
415                 //    from `Vec<$0>: WF` to `$0: WF`, so we can
416                 //    register a pending obligation and keep
417                 //    moving. (Goal is that an "inductive hypothesis"
418                 //    is satisfied to ensure termination.)
419                 ty::TyInfer(_) => {
420                     let ty = self.infcx.shallow_resolve(ty);
421                     if let ty::TyInfer(_) = ty.sty { // not yet resolved...
422                         if ty == ty0 { // ...this is the type we started from! no progress.
423                             return false;
424                         }
425
426                         let cause = self.cause(traits::MiscObligation);
427                         self.out.push( // ...not the type we started from, so we made progress.
428                             traits::Obligation::new(cause, ty::Predicate::WellFormed(ty)));
429                     } else {
430                         // Yes, resolved, proceed with the
431                         // result. Should never return false because
432                         // `ty` is not a TyInfer.
433                         assert!(self.compute(ty));
434                     }
435                 }
436             }
437         }
438
439         // if we made it through that loop above, we made progress!
440         return true;
441     }
442
443     fn nominal_obligations(&mut self,
444                            def_id: DefId,
445                            substs: &Substs<'tcx>)
446                            -> Vec<traits::PredicateObligation<'tcx>>
447     {
448         let predicates =
449             self.infcx.tcx.lookup_predicates(def_id)
450                           .instantiate(self.infcx.tcx, substs);
451         let cause = self.cause(traits::ItemObligation(def_id));
452         predicates.predicates
453                   .into_iter()
454                   .map(|pred| traits::Obligation::new(cause.clone(), pred))
455                   .filter(|pred| !pred.has_escaping_regions())
456                   .collect()
457     }
458
459     fn from_object_ty(&mut self, ty: Ty<'tcx>, data: &ty::TraitObject<'tcx>) {
460         // Imagine a type like this:
461         //
462         //     trait Foo { }
463         //     trait Bar<'c> : 'c { }
464         //
465         //     &'b (Foo+'c+Bar<'d>)
466         //         ^
467         //
468         // In this case, the following relationships must hold:
469         //
470         //     'b <= 'c
471         //     'd <= 'c
472         //
473         // The first conditions is due to the normal region pointer
474         // rules, which say that a reference cannot outlive its
475         // referent.
476         //
477         // The final condition may be a bit surprising. In particular,
478         // you may expect that it would have been `'c <= 'd`, since
479         // usually lifetimes of outer things are conservative
480         // approximations for inner things. However, it works somewhat
481         // differently with trait objects: here the idea is that if the
482         // user specifies a region bound (`'c`, in this case) it is the
483         // "master bound" that *implies* that bounds from other traits are
484         // all met. (Remember that *all bounds* in a type like
485         // `Foo+Bar+Zed` must be met, not just one, hence if we write
486         // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
487         // 'y.)
488         //
489         // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
490         // am looking forward to the future here.
491
492         if !data.has_escaping_regions() {
493             let implicit_bounds =
494                 object_region_bounds(self.infcx.tcx,
495                                      data.principal,
496                                      data.builtin_bounds);
497
498             let explicit_bound = data.region_bound;
499
500             for implicit_bound in implicit_bounds {
501                 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
502                 let outlives = ty::Binder(ty::OutlivesPredicate(explicit_bound, implicit_bound));
503                 self.out.push(traits::Obligation::new(cause, outlives.to_predicate()));
504             }
505         }
506     }
507 }
508
509 /// Given an object type like `SomeTrait+Send`, computes the lifetime
510 /// bounds that must hold on the elided self type. These are derived
511 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
512 /// they declare `trait SomeTrait : 'static`, for example, then
513 /// `'static` would appear in the list. The hard work is done by
514 /// `ty::required_region_bounds`, see that for more information.
515 pub fn object_region_bounds<'a, 'gcx, 'tcx>(
516     tcx: TyCtxt<'a, 'gcx, 'tcx>,
517     principal: ty::PolyExistentialTraitRef<'tcx>,
518     others: ty::BuiltinBounds)
519     -> Vec<&'tcx ty::Region>
520 {
521     // Since we don't actually *know* the self type for an object,
522     // this "open(err)" serves as a kind of dummy standin -- basically
523     // a skolemized type.
524     let open_ty = tcx.mk_infer(ty::FreshTy(0));
525
526     let mut predicates = others.to_predicates(tcx, open_ty);
527     predicates.push(principal.with_self_ty(tcx, open_ty).to_predicate());
528
529     tcx.required_region_bounds(open_ty, predicates)
530 }