]> git.lizzy.rs Git - rust.git/blob - src/librustc/ty/wf.rs
599d38bc4ab6ee56c76fee7d674729b5e3ac0784
[rust.git] / src / librustc / ty / wf.rs
1 use crate::hir;
2 use crate::hir::def_id::DefId;
3 use crate::infer::InferCtxt;
4 use crate::ty::subst::SubstsRef;
5 use crate::traits;
6 use crate::ty::{self, ToPredicate, Ty, TyCtxt, TypeFoldable};
7 use std::iter::once;
8 use syntax_pos::Span;
9 use crate::middle::lang_items;
10
11 /// Returns the set of obligations needed to make `ty` well-formed.
12 /// If `ty` contains unresolved inference variables, this may include
13 /// further WF obligations. However, if `ty` IS an unresolved
14 /// inference variable, returns `None`, because we are not able to
15 /// make any progress at all. This is to prevent "livelock" where we
16 /// say "$0 is WF if $0 is WF".
17 pub fn obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
18                                    param_env: ty::ParamEnv<'tcx>,
19                                    body_id: hir::HirId,
20                                    ty: Ty<'tcx>,
21                                    span: Span)
22                                    -> Option<Vec<traits::PredicateObligation<'tcx>>>
23 {
24     let mut wf = WfPredicates { infcx,
25                                 param_env,
26                                 body_id,
27                                 span,
28                                 out: vec![] };
29     if wf.compute(ty) {
30         debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
31         let result = wf.normalize();
32         debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
33         Some(result)
34     } else {
35         None // no progress made, return None
36     }
37 }
38
39 /// Returns the obligations that make this trait reference
40 /// well-formed.  For example, if there is a trait `Set` defined like
41 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
42 /// if `Bar: Eq`.
43 pub fn trait_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
44                                          param_env: ty::ParamEnv<'tcx>,
45                                          body_id: hir::HirId,
46                                          trait_ref: &ty::TraitRef<'tcx>,
47                                          span: Span)
48                                          -> Vec<traits::PredicateObligation<'tcx>>
49 {
50     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
51     wf.compute_trait_ref(trait_ref, Elaborate::All);
52     wf.normalize()
53 }
54
55 pub fn predicate_obligations<'a, 'gcx, 'tcx>(infcx: &InferCtxt<'a, 'gcx, 'tcx>,
56                                              param_env: ty::ParamEnv<'tcx>,
57                                              body_id: hir::HirId,
58                                              predicate: &ty::Predicate<'tcx>,
59                                              span: Span)
60                                              -> Vec<traits::PredicateObligation<'tcx>>
61 {
62     let mut wf = WfPredicates { infcx, param_env, body_id, span, out: vec![] };
63
64     // (*) ok to skip binders, because wf code is prepared for it
65     match *predicate {
66         ty::Predicate::Trait(ref t) => {
67             wf.compute_trait_ref(&t.skip_binder().trait_ref, Elaborate::None); // (*)
68         }
69         ty::Predicate::RegionOutlives(..) => {
70         }
71         ty::Predicate::TypeOutlives(ref t) => {
72             wf.compute(t.skip_binder().0);
73         }
74         ty::Predicate::Projection(ref t) => {
75             let t = t.skip_binder(); // (*)
76             wf.compute_projection(t.projection_ty);
77             wf.compute(t.ty);
78         }
79         ty::Predicate::WellFormed(t) => {
80             wf.compute(t);
81         }
82         ty::Predicate::ObjectSafe(_) => {
83         }
84         ty::Predicate::ClosureKind(..) => {
85         }
86         ty::Predicate::Subtype(ref data) => {
87             wf.compute(data.skip_binder().a); // (*)
88             wf.compute(data.skip_binder().b); // (*)
89         }
90         ty::Predicate::ConstEvaluatable(def_id, substs) => {
91             let obligations = wf.nominal_obligations(def_id, substs);
92             wf.out.extend(obligations);
93
94             for ty in substs.types() {
95                 wf.compute(ty);
96             }
97         }
98     }
99
100     wf.normalize()
101 }
102
103 struct WfPredicates<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
104     infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
105     param_env: ty::ParamEnv<'tcx>,
106     body_id: hir::HirId,
107     span: Span,
108     out: Vec<traits::PredicateObligation<'tcx>>,
109 }
110
111 /// Controls whether we "elaborate" supertraits and so forth on the WF
112 /// predicates. This is a kind of hack to address #43784. The
113 /// underlying problem in that issue was a trait structure like:
114 ///
115 /// ```
116 /// trait Foo: Copy { }
117 /// trait Bar: Foo { }
118 /// impl<T: Bar> Foo for T { }
119 /// impl<T> Bar for T { }
120 /// ```
121 ///
122 /// Here, in the `Foo` impl, we will check that `T: Copy` holds -- but
123 /// we decide that this is true because `T: Bar` is in the
124 /// where-clauses (and we can elaborate that to include `T:
125 /// Copy`). This wouldn't be a problem, except that when we check the
126 /// `Bar` impl, we decide that `T: Foo` must hold because of the `Foo`
127 /// impl. And so nowhere did we check that `T: Copy` holds!
128 ///
129 /// To resolve this, we elaborate the WF requirements that must be
130 /// proven when checking impls. This means that (e.g.) the `impl Bar
131 /// for T` will be forced to prove not only that `T: Foo` but also `T:
132 /// Copy` (which it won't be able to do, because there is no `Copy`
133 /// impl for `T`).
134 #[derive(Debug, PartialEq, Eq, Copy, Clone)]
135 enum Elaborate {
136     All,
137     None,
138 }
139
140 impl<'a, 'gcx, 'tcx> WfPredicates<'a, 'gcx, 'tcx> {
141     fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
142         traits::ObligationCause::new(self.span, self.body_id, code)
143     }
144
145     fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
146         let cause = self.cause(traits::MiscObligation);
147         let infcx = &mut self.infcx;
148         let param_env = self.param_env;
149         self.out.iter()
150                 .inspect(|pred| assert!(!pred.has_escaping_bound_vars()))
151                 .flat_map(|pred| {
152                     let mut selcx = traits::SelectionContext::new(infcx);
153                     let pred = traits::normalize(&mut selcx, param_env, cause.clone(), pred);
154                     once(pred.value).chain(pred.obligations)
155                 })
156                 .collect()
157     }
158
159     /// Pushes the obligations required for `trait_ref` to be WF into
160     /// `self.out`.
161     fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>, elaborate: Elaborate) {
162         let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
163
164         let cause = self.cause(traits::MiscObligation);
165         let param_env = self.param_env;
166
167         if let Elaborate::All = elaborate {
168             let predicates = obligations.iter()
169                                         .map(|obligation| obligation.predicate.clone())
170                                         .collect();
171             let implied_obligations = traits::elaborate_predicates(self.infcx.tcx, predicates);
172             let implied_obligations = implied_obligations.map(|pred| {
173                 traits::Obligation::new(cause.clone(), param_env, pred)
174             });
175             self.out.extend(implied_obligations);
176         }
177
178         self.out.extend(obligations);
179
180         self.out.extend(
181             trait_ref.substs.types()
182                             .filter(|ty| !ty.has_escaping_bound_vars())
183                             .map(|ty| traits::Obligation::new(cause.clone(),
184                                                               param_env,
185                                                               ty::Predicate::WellFormed(ty))));
186     }
187
188     /// Pushes the obligations required for `trait_ref::Item` to be WF
189     /// into `self.out`.
190     fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
191         // A projection is well-formed if (a) the trait ref itself is
192         // WF and (b) the trait-ref holds.  (It may also be
193         // normalizable and be WF that way.)
194         let trait_ref = data.trait_ref(self.infcx.tcx);
195         self.compute_trait_ref(&trait_ref, Elaborate::None);
196
197         if !data.has_escaping_bound_vars() {
198             let predicate = trait_ref.to_predicate();
199             let cause = self.cause(traits::ProjectionWf(data));
200             self.out.push(traits::Obligation::new(cause, self.param_env, predicate));
201         }
202     }
203
204     /// Pushes the obligations required for an array length to be WF
205     /// into `self.out`.
206     fn compute_array_len(&mut self, constant: ty::LazyConst<'tcx>) {
207         if let ty::LazyConst::Unevaluated(def_id, substs) = constant {
208             let obligations = self.nominal_obligations(def_id, substs);
209             self.out.extend(obligations);
210
211             let predicate = ty::Predicate::ConstEvaluatable(def_id, substs);
212             let cause = self.cause(traits::MiscObligation);
213             self.out.push(traits::Obligation::new(cause,
214                                                   self.param_env,
215                                                   predicate));
216         }
217     }
218
219     fn require_sized(&mut self, subty: Ty<'tcx>, cause: traits::ObligationCauseCode<'tcx>) {
220         if !subty.has_escaping_bound_vars() {
221             let cause = self.cause(cause);
222             let trait_ref = ty::TraitRef {
223                 def_id: self.infcx.tcx.require_lang_item(lang_items::SizedTraitLangItem),
224                 substs: self.infcx.tcx.mk_substs_trait(subty, &[]),
225             };
226             self.out.push(traits::Obligation::new(cause, self.param_env, trait_ref.to_predicate()));
227         }
228     }
229
230     /// Pushes new obligations into `out`. Returns `true` if it was able
231     /// to generate all the predicates needed to validate that `ty0`
232     /// is WF. Returns false if `ty0` is an unresolved type variable,
233     /// in which case we are not able to simplify at all.
234     fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
235         let mut subtys = ty0.walk();
236         let param_env = self.param_env;
237         while let Some(ty) = subtys.next() {
238             match ty.sty {
239                 ty::Bool |
240                 ty::Char |
241                 ty::Int(..) |
242                 ty::Uint(..) |
243                 ty::Float(..) |
244                 ty::Error |
245                 ty::Str |
246                 ty::GeneratorWitness(..) |
247                 ty::Never |
248                 ty::Param(_) |
249                 ty::Bound(..) |
250                 ty::Placeholder(..) |
251                 ty::Foreign(..) => {
252                     // WfScalar, WfParameter, etc
253                 }
254
255                 ty::Slice(subty) => {
256                     self.require_sized(subty, traits::SliceOrArrayElem);
257                 }
258
259                 ty::Array(subty, len) => {
260                     self.require_sized(subty, traits::SliceOrArrayElem);
261                     self.compute_array_len(*len);
262                 }
263
264                 ty::Tuple(ref tys) => {
265                     if let Some((_last, rest)) = tys.split_last() {
266                         for elem in rest {
267                             self.require_sized(elem, traits::TupleElem);
268                         }
269                     }
270                 }
271
272                 ty::RawPtr(_) => {
273                     // simple cases that are WF if their type args are WF
274                 }
275
276                 ty::Projection(data) => {
277                     subtys.skip_current_subtree(); // subtree handled by compute_projection
278                     self.compute_projection(data);
279                 }
280
281                 ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
282
283                 ty::Adt(def, substs) => {
284                     // WfNominalType
285                     let obligations = self.nominal_obligations(def.did, substs);
286                     self.out.extend(obligations);
287                 }
288
289                 ty::FnDef(did, substs) => {
290                     let obligations = self.nominal_obligations(did, substs);
291                     self.out.extend(obligations);
292                 }
293
294                 ty::Ref(r, rty, _) => {
295                     // WfReference
296                     if !r.has_escaping_bound_vars() && !rty.has_escaping_bound_vars() {
297                         let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
298                         self.out.push(
299                             traits::Obligation::new(
300                                 cause,
301                                 param_env,
302                                 ty::Predicate::TypeOutlives(
303                                     ty::Binder::dummy(
304                                         ty::OutlivesPredicate(rty, r)))));
305                     }
306                 }
307
308                 ty::Generator(..) => {
309                     // Walk ALL the types in the generator: this will
310                     // include the upvar types as well as the yield
311                     // type. Note that this is mildly distinct from
312                     // the closure case, where we have to be careful
313                     // about the signature of the closure. We don't
314                     // have the problem of implied bounds here since
315                     // generators don't take arguments.
316                 }
317
318                 ty::Closure(def_id, substs) => {
319                     // Only check the upvar types for WF, not the rest
320                     // of the types within. This is needed because we
321                     // capture the signature and it may not be WF
322                     // without the implied bounds. Consider a closure
323                     // like `|x: &'a T|` -- it may be that `T: 'a` is
324                     // not known to hold in the creator's context (and
325                     // indeed the closure may not be invoked by its
326                     // creator, but rather turned to someone who *can*
327                     // verify that).
328                     //
329                     // The special treatment of closures here really
330                     // ought not to be necessary either; the problem
331                     // is related to #25860 -- there is no way for us
332                     // to express a fn type complete with the implied
333                     // bounds that it is assuming. I think in reality
334                     // the WF rules around fn are a bit messed up, and
335                     // that is the rot problem: `fn(&'a T)` should
336                     // probably always be WF, because it should be
337                     // shorthand for something like `where(T: 'a) {
338                     // fn(&'a T) }`, as discussed in #25860.
339                     //
340                     // Note that we are also skipping the generic
341                     // types. This is consistent with the `outlives`
342                     // code, but anyway doesn't matter: within the fn
343                     // body where they are created, the generics will
344                     // always be WF, and outside of that fn body we
345                     // are not directly inspecting closure types
346                     // anyway, except via auto trait matching (which
347                     // only inspects the upvar types).
348                     subtys.skip_current_subtree(); // subtree handled by compute_projection
349                     for upvar_ty in substs.upvar_tys(def_id, self.infcx.tcx) {
350                         self.compute(upvar_ty);
351                     }
352                 }
353
354                 ty::FnPtr(_) => {
355                     // let the loop iterate into the argument/return
356                     // types appearing in the fn signature
357                 }
358
359                 ty::Opaque(did, substs) => {
360                     // all of the requirements on type parameters
361                     // should've been checked by the instantiation
362                     // of whatever returned this exact `impl Trait`.
363
364                     // for named existential types we still need to check them
365                     if super::is_impl_trait_defn(self.infcx.tcx, did).is_none() {
366                         let obligations = self.nominal_obligations(did, substs);
367                         self.out.extend(obligations);
368                     }
369                 }
370
371                 ty::Dynamic(data, r) => {
372                     // WfObject
373                     //
374                     // Here, we defer WF checking due to higher-ranked
375                     // regions. This is perhaps not ideal.
376                     self.from_object_ty(ty, data, r);
377
378                     // FIXME(#27579) RFC also considers adding trait
379                     // obligations that don't refer to Self and
380                     // checking those
381
382                     let cause = self.cause(traits::MiscObligation);
383                     let component_traits =
384                         data.auto_traits().chain(data.principal_def_id());
385                     self.out.extend(
386                         component_traits.map(|did| traits::Obligation::new(
387                             cause.clone(),
388                             param_env,
389                             ty::Predicate::ObjectSafe(did)
390                         ))
391                     );
392                 }
393
394                 // Inference variables are the complicated case, since we don't
395                 // know what type they are. We do two things:
396                 //
397                 // 1. Check if they have been resolved, and if so proceed with
398                 //    THAT type.
399                 // 2. If not, check whether this is the type that we
400                 //    started with (ty0). In that case, we've made no
401                 //    progress at all, so return false. Otherwise,
402                 //    we've at least simplified things (i.e., we went
403                 //    from `Vec<$0>: WF` to `$0: WF`, so we can
404                 //    register a pending obligation and keep
405                 //    moving. (Goal is that an "inductive hypothesis"
406                 //    is satisfied to ensure termination.)
407                 ty::Infer(_) => {
408                     let ty = self.infcx.shallow_resolve(ty);
409                     if let ty::Infer(_) = ty.sty { // not yet resolved...
410                         if ty == ty0 { // ...this is the type we started from! no progress.
411                             return false;
412                         }
413
414                         let cause = self.cause(traits::MiscObligation);
415                         self.out.push( // ...not the type we started from, so we made progress.
416                             traits::Obligation::new(cause,
417                                                     self.param_env,
418                                                     ty::Predicate::WellFormed(ty)));
419                     } else {
420                         // Yes, resolved, proceed with the
421                         // result. Should never return false because
422                         // `ty` is not a Infer.
423                         assert!(self.compute(ty));
424                     }
425                 }
426             }
427         }
428
429         // if we made it through that loop above, we made progress!
430         return true;
431     }
432
433     fn nominal_obligations(&mut self,
434                            def_id: DefId,
435                            substs: SubstsRef<'tcx>)
436                            -> Vec<traits::PredicateObligation<'tcx>>
437     {
438         let predicates =
439             self.infcx.tcx.predicates_of(def_id)
440                           .instantiate(self.infcx.tcx, substs);
441         let cause = self.cause(traits::ItemObligation(def_id));
442         predicates.predicates
443                   .into_iter()
444                   .map(|pred| traits::Obligation::new(cause.clone(),
445                                                       self.param_env,
446                                                       pred))
447                   .filter(|pred| !pred.has_escaping_bound_vars())
448                   .collect()
449     }
450
451     fn from_object_ty(&mut self, ty: Ty<'tcx>,
452                       data: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>,
453                       region: ty::Region<'tcx>) {
454         // Imagine a type like this:
455         //
456         //     trait Foo { }
457         //     trait Bar<'c> : 'c { }
458         //
459         //     &'b (Foo+'c+Bar<'d>)
460         //         ^
461         //
462         // In this case, the following relationships must hold:
463         //
464         //     'b <= 'c
465         //     'd <= 'c
466         //
467         // The first conditions is due to the normal region pointer
468         // rules, which say that a reference cannot outlive its
469         // referent.
470         //
471         // The final condition may be a bit surprising. In particular,
472         // you may expect that it would have been `'c <= 'd`, since
473         // usually lifetimes of outer things are conservative
474         // approximations for inner things. However, it works somewhat
475         // differently with trait objects: here the idea is that if the
476         // user specifies a region bound (`'c`, in this case) it is the
477         // "master bound" that *implies* that bounds from other traits are
478         // all met. (Remember that *all bounds* in a type like
479         // `Foo+Bar+Zed` must be met, not just one, hence if we write
480         // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
481         // 'y.)
482         //
483         // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
484         // am looking forward to the future here.
485
486         if !data.has_escaping_bound_vars() {
487             let implicit_bounds =
488                 object_region_bounds(self.infcx.tcx, data);
489
490             let explicit_bound = region;
491
492             self.out.reserve(implicit_bounds.len());
493             for implicit_bound in implicit_bounds {
494                 let cause = self.cause(traits::ObjectTypeBound(ty, explicit_bound));
495                 let outlives = ty::Binder::dummy(
496                     ty::OutlivesPredicate(explicit_bound, implicit_bound));
497                 self.out.push(traits::Obligation::new(cause,
498                                                       self.param_env,
499                                                       outlives.to_predicate()));
500             }
501         }
502     }
503 }
504
505 /// Given an object type like `SomeTrait + Send`, computes the lifetime
506 /// bounds that must hold on the elided self type. These are derived
507 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
508 /// they declare `trait SomeTrait : 'static`, for example, then
509 /// `'static` would appear in the list. The hard work is done by
510 /// `ty::required_region_bounds`, see that for more information.
511 pub fn object_region_bounds<'a, 'gcx, 'tcx>(
512     tcx: TyCtxt<'a, 'gcx, 'tcx>,
513     existential_predicates: ty::Binder<&'tcx ty::List<ty::ExistentialPredicate<'tcx>>>)
514     -> Vec<ty::Region<'tcx>>
515 {
516     // Since we don't actually *know* the self type for an object,
517     // this "open(err)" serves as a kind of dummy standin -- basically
518     // a placeholder type.
519     let open_ty = tcx.mk_infer(ty::FreshTy(0));
520
521     let predicates = existential_predicates.iter().filter_map(|predicate| {
522         if let ty::ExistentialPredicate::Projection(_) = *predicate.skip_binder() {
523             None
524         } else {
525             Some(predicate.with_self_ty(tcx, open_ty))
526         }
527     }).collect();
528
529     tcx.required_region_bounds(open_ty, predicates)
530 }