]> git.lizzy.rs Git - rust.git/blob - src/librustc/ty/util.rs
87921c80502e09a48f6d21d0cea212392d30b5ff
[rust.git] / src / librustc / ty / util.rs
1 // Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! misc. type-system utilities too small to deserve their own file
12
13 use hir::def_id::{DefId, LOCAL_CRATE};
14 use hir::map::DefPathData;
15 use infer::InferCtxt;
16 use ich::{StableHashingContext, NodeIdHashingMode};
17 use traits::{self, Reveal};
18 use ty::{self, Ty, TyCtxt, TypeAndMut, TypeFlags, TypeFoldable};
19 use ty::ParameterEnvironment;
20 use ty::fold::TypeVisitor;
21 use ty::layout::{Layout, LayoutError};
22 use ty::subst::{Subst, Kind};
23 use ty::TypeVariants::*;
24 use util::common::ErrorReported;
25 use util::nodemap::{FxHashMap, FxHashSet};
26 use middle::lang_items;
27
28 use rustc_const_math::{ConstInt, ConstIsize, ConstUsize};
29 use rustc_data_structures::stable_hasher::{StableHasher, StableHasherResult,
30                                            HashStable};
31 use std::cell::RefCell;
32 use std::cmp;
33 use std::hash::Hash;
34 use std::intrinsics;
35 use syntax::ast::{self, Name};
36 use syntax::attr::{self, SignedInt, UnsignedInt};
37 use syntax_pos::{Span, DUMMY_SP};
38
39 use hir;
40
41 type Disr = ConstInt;
42
43 pub trait IntTypeExt {
44     fn to_ty<'a, 'gcx, 'tcx>(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx>;
45     fn disr_incr<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, val: Option<Disr>)
46                            -> Option<Disr>;
47     fn assert_ty_matches(&self, val: Disr);
48     fn initial_discriminant<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Disr;
49 }
50
51
52 macro_rules! typed_literal {
53     ($tcx:expr, $ty:expr, $lit:expr) => {
54         match $ty {
55             SignedInt(ast::IntTy::I8)    => ConstInt::I8($lit),
56             SignedInt(ast::IntTy::I16)   => ConstInt::I16($lit),
57             SignedInt(ast::IntTy::I32)   => ConstInt::I32($lit),
58             SignedInt(ast::IntTy::I64)   => ConstInt::I64($lit),
59             SignedInt(ast::IntTy::I128)   => ConstInt::I128($lit),
60             SignedInt(ast::IntTy::Is) => match $tcx.sess.target.int_type {
61                 ast::IntTy::I16 => ConstInt::Isize(ConstIsize::Is16($lit)),
62                 ast::IntTy::I32 => ConstInt::Isize(ConstIsize::Is32($lit)),
63                 ast::IntTy::I64 => ConstInt::Isize(ConstIsize::Is64($lit)),
64                 _ => bug!(),
65             },
66             UnsignedInt(ast::UintTy::U8)  => ConstInt::U8($lit),
67             UnsignedInt(ast::UintTy::U16) => ConstInt::U16($lit),
68             UnsignedInt(ast::UintTy::U32) => ConstInt::U32($lit),
69             UnsignedInt(ast::UintTy::U64) => ConstInt::U64($lit),
70             UnsignedInt(ast::UintTy::U128) => ConstInt::U128($lit),
71             UnsignedInt(ast::UintTy::Us) => match $tcx.sess.target.uint_type {
72                 ast::UintTy::U16 => ConstInt::Usize(ConstUsize::Us16($lit)),
73                 ast::UintTy::U32 => ConstInt::Usize(ConstUsize::Us32($lit)),
74                 ast::UintTy::U64 => ConstInt::Usize(ConstUsize::Us64($lit)),
75                 _ => bug!(),
76             },
77         }
78     }
79 }
80
81 impl IntTypeExt for attr::IntType {
82     fn to_ty<'a, 'gcx, 'tcx>(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Ty<'tcx> {
83         match *self {
84             SignedInt(ast::IntTy::I8)      => tcx.types.i8,
85             SignedInt(ast::IntTy::I16)     => tcx.types.i16,
86             SignedInt(ast::IntTy::I32)     => tcx.types.i32,
87             SignedInt(ast::IntTy::I64)     => tcx.types.i64,
88             SignedInt(ast::IntTy::I128)     => tcx.types.i128,
89             SignedInt(ast::IntTy::Is)   => tcx.types.isize,
90             UnsignedInt(ast::UintTy::U8)    => tcx.types.u8,
91             UnsignedInt(ast::UintTy::U16)   => tcx.types.u16,
92             UnsignedInt(ast::UintTy::U32)   => tcx.types.u32,
93             UnsignedInt(ast::UintTy::U64)   => tcx.types.u64,
94             UnsignedInt(ast::UintTy::U128)   => tcx.types.u128,
95             UnsignedInt(ast::UintTy::Us) => tcx.types.usize,
96         }
97     }
98
99     fn initial_discriminant<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>) -> Disr {
100         typed_literal!(tcx, *self, 0)
101     }
102
103     fn assert_ty_matches(&self, val: Disr) {
104         match (*self, val) {
105             (SignedInt(ast::IntTy::I8), ConstInt::I8(_)) => {},
106             (SignedInt(ast::IntTy::I16), ConstInt::I16(_)) => {},
107             (SignedInt(ast::IntTy::I32), ConstInt::I32(_)) => {},
108             (SignedInt(ast::IntTy::I64), ConstInt::I64(_)) => {},
109             (SignedInt(ast::IntTy::I128), ConstInt::I128(_)) => {},
110             (SignedInt(ast::IntTy::Is), ConstInt::Isize(_)) => {},
111             (UnsignedInt(ast::UintTy::U8), ConstInt::U8(_)) => {},
112             (UnsignedInt(ast::UintTy::U16), ConstInt::U16(_)) => {},
113             (UnsignedInt(ast::UintTy::U32), ConstInt::U32(_)) => {},
114             (UnsignedInt(ast::UintTy::U64), ConstInt::U64(_)) => {},
115             (UnsignedInt(ast::UintTy::U128), ConstInt::U128(_)) => {},
116             (UnsignedInt(ast::UintTy::Us), ConstInt::Usize(_)) => {},
117             _ => bug!("disr type mismatch: {:?} vs {:?}", self, val),
118         }
119     }
120
121     fn disr_incr<'a, 'tcx>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>, val: Option<Disr>)
122                            -> Option<Disr> {
123         if let Some(val) = val {
124             self.assert_ty_matches(val);
125             (val + typed_literal!(tcx, *self, 1)).ok()
126         } else {
127             Some(self.initial_discriminant(tcx))
128         }
129     }
130 }
131
132
133 #[derive(Copy, Clone)]
134 pub enum CopyImplementationError<'tcx> {
135     InfrigingField(&'tcx ty::FieldDef),
136     NotAnAdt,
137     HasDestructor,
138 }
139
140 /// Describes whether a type is representable. For types that are not
141 /// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
142 /// distinguish between types that are recursive with themselves and types that
143 /// contain a different recursive type. These cases can therefore be treated
144 /// differently when reporting errors.
145 ///
146 /// The ordering of the cases is significant. They are sorted so that cmp::max
147 /// will keep the "more erroneous" of two values.
148 #[derive(Copy, Clone, PartialOrd, Ord, Eq, PartialEq, Debug)]
149 pub enum Representability {
150     Representable,
151     ContainsRecursive,
152     SelfRecursive,
153 }
154
155 impl<'tcx> ParameterEnvironment<'tcx> {
156     pub fn can_type_implement_copy<'a>(&self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
157                                        self_type: Ty<'tcx>, span: Span)
158                                        -> Result<(), CopyImplementationError> {
159         // FIXME: (@jroesch) float this code up
160         tcx.infer_ctxt(self.clone(), Reveal::UserFacing).enter(|infcx| {
161             let (adt, substs) = match self_type.sty {
162                 ty::TyAdt(adt, substs) => (adt, substs),
163                 _ => return Err(CopyImplementationError::NotAnAdt),
164             };
165
166             let field_implements_copy = |field: &ty::FieldDef| {
167                 let cause = traits::ObligationCause::dummy();
168                 match traits::fully_normalize(&infcx, cause, &field.ty(tcx, substs)) {
169                     Ok(ty) => !infcx.type_moves_by_default(ty, span),
170                     Err(..) => false,
171                 }
172             };
173
174             for variant in &adt.variants {
175                 for field in &variant.fields {
176                     if !field_implements_copy(field) {
177                         return Err(CopyImplementationError::InfrigingField(field));
178                     }
179                 }
180             }
181
182             if adt.has_dtor(tcx) {
183                 return Err(CopyImplementationError::HasDestructor);
184             }
185
186             Ok(())
187         })
188     }
189 }
190
191 impl<'a, 'tcx> TyCtxt<'a, 'tcx, 'tcx> {
192     /// Creates a hash of the type `Ty` which will be the same no matter what crate
193     /// context it's calculated within. This is used by the `type_id` intrinsic.
194     pub fn type_id_hash(self, ty: Ty<'tcx>) -> u64 {
195         let mut hasher = StableHasher::new();
196         let mut hcx = StableHashingContext::new(self);
197
198         hcx.while_hashing_spans(false, |hcx| {
199             hcx.with_node_id_hashing_mode(NodeIdHashingMode::HashDefPath, |hcx| {
200                 ty.hash_stable(hcx, &mut hasher);
201             });
202         });
203         hasher.finish()
204     }
205 }
206
207 impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
208     pub fn has_error_field(self, ty: Ty<'tcx>) -> bool {
209         match ty.sty {
210             ty::TyAdt(def, substs) => {
211                 for field in def.all_fields() {
212                     let field_ty = field.ty(self, substs);
213                     if let TyError = field_ty.sty {
214                         return true;
215                     }
216                 }
217             }
218             _ => (),
219         }
220         false
221     }
222
223     /// Returns the type of element at index `i` in tuple or tuple-like type `t`.
224     /// For an enum `t`, `variant` is None only if `t` is a univariant enum.
225     pub fn positional_element_ty(self,
226                                  ty: Ty<'tcx>,
227                                  i: usize,
228                                  variant: Option<DefId>) -> Option<Ty<'tcx>> {
229         match (&ty.sty, variant) {
230             (&TyAdt(adt, substs), Some(vid)) => {
231                 adt.variant_with_id(vid).fields.get(i).map(|f| f.ty(self, substs))
232             }
233             (&TyAdt(adt, substs), None) => {
234                 // Don't use `struct_variant`, this may be a univariant enum.
235                 adt.variants[0].fields.get(i).map(|f| f.ty(self, substs))
236             }
237             (&TyTuple(ref v, _), None) => v.get(i).cloned(),
238             _ => None,
239         }
240     }
241
242     /// Returns the type of element at field `n` in struct or struct-like type `t`.
243     /// For an enum `t`, `variant` must be some def id.
244     pub fn named_element_ty(self,
245                             ty: Ty<'tcx>,
246                             n: Name,
247                             variant: Option<DefId>) -> Option<Ty<'tcx>> {
248         match (&ty.sty, variant) {
249             (&TyAdt(adt, substs), Some(vid)) => {
250                 adt.variant_with_id(vid).find_field_named(n).map(|f| f.ty(self, substs))
251             }
252             (&TyAdt(adt, substs), None) => {
253                 adt.struct_variant().find_field_named(n).map(|f| f.ty(self, substs))
254             }
255             _ => return None
256         }
257     }
258
259     /// Returns the deeply last field of nested structures, or the same type,
260     /// if not a structure at all. Corresponds to the only possible unsized
261     /// field, and its type can be used to determine unsizing strategy.
262     pub fn struct_tail(self, mut ty: Ty<'tcx>) -> Ty<'tcx> {
263         while let TyAdt(def, substs) = ty.sty {
264             if !def.is_struct() {
265                 break;
266             }
267             match def.struct_variant().fields.last() {
268                 Some(f) => ty = f.ty(self, substs),
269                 None => break,
270             }
271         }
272         ty
273     }
274
275     /// Same as applying struct_tail on `source` and `target`, but only
276     /// keeps going as long as the two types are instances of the same
277     /// structure definitions.
278     /// For `(Foo<Foo<T>>, Foo<Trait>)`, the result will be `(Foo<T>, Trait)`,
279     /// whereas struct_tail produces `T`, and `Trait`, respectively.
280     pub fn struct_lockstep_tails(self,
281                                  source: Ty<'tcx>,
282                                  target: Ty<'tcx>)
283                                  -> (Ty<'tcx>, Ty<'tcx>) {
284         let (mut a, mut b) = (source, target);
285         while let (&TyAdt(a_def, a_substs), &TyAdt(b_def, b_substs)) = (&a.sty, &b.sty) {
286             if a_def != b_def || !a_def.is_struct() {
287                 break;
288             }
289             match a_def.struct_variant().fields.last() {
290                 Some(f) => {
291                     a = f.ty(self, a_substs);
292                     b = f.ty(self, b_substs);
293                 }
294                 _ => break,
295             }
296         }
297         (a, b)
298     }
299
300     /// Given a set of predicates that apply to an object type, returns
301     /// the region bounds that the (erased) `Self` type must
302     /// outlive. Precisely *because* the `Self` type is erased, the
303     /// parameter `erased_self_ty` must be supplied to indicate what type
304     /// has been used to represent `Self` in the predicates
305     /// themselves. This should really be a unique type; `FreshTy(0)` is a
306     /// popular choice.
307     ///
308     /// NB: in some cases, particularly around higher-ranked bounds,
309     /// this function returns a kind of conservative approximation.
310     /// That is, all regions returned by this function are definitely
311     /// required, but there may be other region bounds that are not
312     /// returned, as well as requirements like `for<'a> T: 'a`.
313     ///
314     /// Requires that trait definitions have been processed so that we can
315     /// elaborate predicates and walk supertraits.
316     pub fn required_region_bounds(self,
317                                   erased_self_ty: Ty<'tcx>,
318                                   predicates: Vec<ty::Predicate<'tcx>>)
319                                   -> Vec<&'tcx ty::Region>    {
320         debug!("required_region_bounds(erased_self_ty={:?}, predicates={:?})",
321                erased_self_ty,
322                predicates);
323
324         assert!(!erased_self_ty.has_escaping_regions());
325
326         traits::elaborate_predicates(self, predicates)
327             .filter_map(|predicate| {
328                 match predicate {
329                     ty::Predicate::Projection(..) |
330                     ty::Predicate::Trait(..) |
331                     ty::Predicate::Equate(..) |
332                     ty::Predicate::Subtype(..) |
333                     ty::Predicate::WellFormed(..) |
334                     ty::Predicate::ObjectSafe(..) |
335                     ty::Predicate::ClosureKind(..) |
336                     ty::Predicate::RegionOutlives(..) => {
337                         None
338                     }
339                     ty::Predicate::TypeOutlives(ty::Binder(ty::OutlivesPredicate(t, r))) => {
340                         // Search for a bound of the form `erased_self_ty
341                         // : 'a`, but be wary of something like `for<'a>
342                         // erased_self_ty : 'a` (we interpret a
343                         // higher-ranked bound like that as 'static,
344                         // though at present the code in `fulfill.rs`
345                         // considers such bounds to be unsatisfiable, so
346                         // it's kind of a moot point since you could never
347                         // construct such an object, but this seems
348                         // correct even if that code changes).
349                         if t == erased_self_ty && !r.has_escaping_regions() {
350                             Some(r)
351                         } else {
352                             None
353                         }
354                     }
355                 }
356             })
357             .collect()
358     }
359
360     /// Calculate the destructor of a given type.
361     pub fn calculate_dtor(
362         self,
363         adt_did: DefId,
364         validate: &mut FnMut(Self, DefId) -> Result<(), ErrorReported>
365     ) -> Option<ty::Destructor> {
366         let drop_trait = if let Some(def_id) = self.lang_items.drop_trait() {
367             def_id
368         } else {
369             return None;
370         };
371
372         self.coherent_trait((LOCAL_CRATE, drop_trait));
373
374         let mut dtor_did = None;
375         let ty = self.type_of(adt_did);
376         self.trait_def(drop_trait).for_each_relevant_impl(self, ty, |impl_did| {
377             if let Some(item) = self.associated_items(impl_did).next() {
378                 if let Ok(()) = validate(self, impl_did) {
379                     dtor_did = Some(item.def_id);
380                 }
381             }
382         });
383
384         let dtor_did = match dtor_did {
385             Some(dtor) => dtor,
386             None => return None,
387         };
388
389         Some(ty::Destructor { did: dtor_did })
390     }
391
392     /// Return the set of types that are required to be alive in
393     /// order to run the destructor of `def` (see RFCs 769 and
394     /// 1238).
395     ///
396     /// Note that this returns only the constraints for the
397     /// destructor of `def` itself. For the destructors of the
398     /// contents, you need `adt_dtorck_constraint`.
399     pub fn destructor_constraints(self, def: &'tcx ty::AdtDef)
400                                   -> Vec<ty::subst::Kind<'tcx>>
401     {
402         let dtor = match def.destructor(self) {
403             None => {
404                 debug!("destructor_constraints({:?}) - no dtor", def.did);
405                 return vec![]
406             }
407             Some(dtor) => dtor.did
408         };
409
410         // RFC 1238: if the destructor method is tagged with the
411         // attribute `unsafe_destructor_blind_to_params`, then the
412         // compiler is being instructed to *assume* that the
413         // destructor will not access borrowed data,
414         // even if such data is otherwise reachable.
415         //
416         // Such access can be in plain sight (e.g. dereferencing
417         // `*foo.0` of `Foo<'a>(&'a u32)`) or indirectly hidden
418         // (e.g. calling `foo.0.clone()` of `Foo<T:Clone>`).
419         if self.has_attr(dtor, "unsafe_destructor_blind_to_params") {
420             debug!("destructor_constraint({:?}) - blind", def.did);
421             return vec![];
422         }
423
424         let impl_def_id = self.associated_item(dtor).container.id();
425         let impl_generics = self.generics_of(impl_def_id);
426
427         // We have a destructor - all the parameters that are not
428         // pure_wrt_drop (i.e, don't have a #[may_dangle] attribute)
429         // must be live.
430
431         // We need to return the list of parameters from the ADTs
432         // generics/substs that correspond to impure parameters on the
433         // impl's generics. This is a bit ugly, but conceptually simple:
434         //
435         // Suppose our ADT looks like the following
436         //
437         //     struct S<X, Y, Z>(X, Y, Z);
438         //
439         // and the impl is
440         //
441         //     impl<#[may_dangle] P0, P1, P2> Drop for S<P1, P2, P0>
442         //
443         // We want to return the parameters (X, Y). For that, we match
444         // up the item-substs <X, Y, Z> with the substs on the impl ADT,
445         // <P1, P2, P0>, and then look up which of the impl substs refer to
446         // parameters marked as pure.
447
448         let impl_substs = match self.type_of(impl_def_id).sty {
449             ty::TyAdt(def_, substs) if def_ == def => substs,
450             _ => bug!()
451         };
452
453         let item_substs = match self.type_of(def.did).sty {
454             ty::TyAdt(def_, substs) if def_ == def => substs,
455             _ => bug!()
456         };
457
458         let result = item_substs.iter().zip(impl_substs.iter())
459             .filter(|&(_, &k)| {
460                 if let Some(&ty::Region::ReEarlyBound(ref ebr)) = k.as_region() {
461                     !impl_generics.region_param(ebr).pure_wrt_drop
462                 } else if let Some(&ty::TyS {
463                     sty: ty::TypeVariants::TyParam(ref pt), ..
464                 }) = k.as_type() {
465                     !impl_generics.type_param(pt).pure_wrt_drop
466                 } else {
467                     // not a type or region param - this should be reported
468                     // as an error.
469                     false
470                 }
471             }).map(|(&item_param, _)| item_param).collect();
472         debug!("destructor_constraint({:?}) = {:?}", def.did, result);
473         result
474     }
475
476     /// Return a set of constraints that needs to be satisfied in
477     /// order for `ty` to be valid for destruction.
478     pub fn dtorck_constraint_for_ty(self,
479                                     span: Span,
480                                     for_ty: Ty<'tcx>,
481                                     depth: usize,
482                                     ty: Ty<'tcx>)
483                                     -> Result<ty::DtorckConstraint<'tcx>, ErrorReported>
484     {
485         debug!("dtorck_constraint_for_ty({:?}, {:?}, {:?}, {:?})",
486                span, for_ty, depth, ty);
487
488         if depth >= self.sess.recursion_limit.get() {
489             let mut err = struct_span_err!(
490                 self.sess, span, E0320,
491                 "overflow while adding drop-check rules for {}", for_ty);
492             err.note(&format!("overflowed on {}", ty));
493             err.emit();
494             return Err(ErrorReported);
495         }
496
497         let result = match ty.sty {
498             ty::TyBool | ty::TyChar | ty::TyInt(_) | ty::TyUint(_) |
499             ty::TyFloat(_) | ty::TyStr | ty::TyNever |
500             ty::TyRawPtr(..) | ty::TyRef(..) | ty::TyFnDef(..) | ty::TyFnPtr(_) => {
501                 // these types never have a destructor
502                 Ok(ty::DtorckConstraint::empty())
503             }
504
505             ty::TyArray(ety, _) | ty::TySlice(ety) => {
506                 // single-element containers, behave like their element
507                 self.dtorck_constraint_for_ty(span, for_ty, depth+1, ety)
508             }
509
510             ty::TyTuple(tys, _) => {
511                 tys.iter().map(|ty| {
512                     self.dtorck_constraint_for_ty(span, for_ty, depth+1, ty)
513                 }).collect()
514             }
515
516             ty::TyClosure(def_id, substs) => {
517                 substs.upvar_tys(def_id, self).map(|ty| {
518                     self.dtorck_constraint_for_ty(span, for_ty, depth+1, ty)
519                 }).collect()
520             }
521
522             ty::TyAdt(def, substs) => {
523                 let ty::DtorckConstraint {
524                     dtorck_types, outlives
525                 } = self.at(span).adt_dtorck_constraint(def.did);
526                 Ok(ty::DtorckConstraint {
527                     // FIXME: we can try to recursively `dtorck_constraint_on_ty`
528                     // there, but that needs some way to handle cycles.
529                     dtorck_types: dtorck_types.subst(self, substs),
530                     outlives: outlives.subst(self, substs)
531                 })
532             }
533
534             // Objects must be alive in order for their destructor
535             // to be called.
536             ty::TyDynamic(..) => Ok(ty::DtorckConstraint {
537                 outlives: vec![Kind::from(ty)],
538                 dtorck_types: vec![],
539             }),
540
541             // Types that can't be resolved. Pass them forward.
542             ty::TyProjection(..) | ty::TyAnon(..) | ty::TyParam(..) => {
543                 Ok(ty::DtorckConstraint {
544                     outlives: vec![],
545                     dtorck_types: vec![ty],
546                 })
547             }
548
549             ty::TyInfer(..) | ty::TyError => {
550                 self.sess.delay_span_bug(span, "unresolved type in dtorck");
551                 Err(ErrorReported)
552             }
553         };
554
555         debug!("dtorck_constraint_for_ty({:?}) = {:?}", ty, result);
556         result
557     }
558
559     pub fn closure_base_def_id(self, def_id: DefId) -> DefId {
560         let mut def_id = def_id;
561         while self.def_key(def_id).disambiguated_data.data == DefPathData::ClosureExpr {
562             def_id = self.parent_def_id(def_id).unwrap_or_else(|| {
563                 bug!("closure {:?} has no parent", def_id);
564             });
565         }
566         def_id
567     }
568
569     /// Given the def-id of some item that has no type parameters, make
570     /// a suitable "empty substs" for it.
571     pub fn empty_substs_for_def_id(self, item_def_id: DefId) -> &'tcx ty::Substs<'tcx> {
572         ty::Substs::for_item(self, item_def_id,
573                              |_, _| self.types.re_erased,
574                              |_, _| {
575             bug!("empty_substs_for_def_id: {:?} has type parameters", item_def_id)
576         })
577     }
578 }
579
580 pub struct TypeIdHasher<'a, 'gcx: 'a+'tcx, 'tcx: 'a, W> {
581     tcx: TyCtxt<'a, 'gcx, 'tcx>,
582     state: StableHasher<W>,
583 }
584
585 impl<'a, 'gcx, 'tcx, W> TypeIdHasher<'a, 'gcx, 'tcx, W>
586     where W: StableHasherResult
587 {
588     pub fn new(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> Self {
589         TypeIdHasher { tcx: tcx, state: StableHasher::new() }
590     }
591
592     pub fn finish(self) -> W {
593         self.state.finish()
594     }
595
596     pub fn hash<T: Hash>(&mut self, x: T) {
597         x.hash(&mut self.state);
598     }
599
600     fn hash_discriminant_u8<T>(&mut self, x: &T) {
601         let v = unsafe {
602             intrinsics::discriminant_value(x)
603         };
604         let b = v as u8;
605         assert_eq!(v, b as u64);
606         self.hash(b)
607     }
608
609     fn def_id(&mut self, did: DefId) {
610         // Hash the DefPath corresponding to the DefId, which is independent
611         // of compiler internal state. We already have a stable hash value of
612         // all DefPaths available via tcx.def_path_hash(), so we just feed that
613         // into the hasher.
614         let hash = self.tcx.def_path_hash(did);
615         self.hash(hash);
616     }
617 }
618
619 impl<'a, 'gcx, 'tcx, W> TypeVisitor<'tcx> for TypeIdHasher<'a, 'gcx, 'tcx, W>
620     where W: StableHasherResult
621 {
622     fn visit_ty(&mut self, ty: Ty<'tcx>) -> bool {
623         // Distinguish between the Ty variants uniformly.
624         self.hash_discriminant_u8(&ty.sty);
625
626         match ty.sty {
627             TyInt(i) => self.hash(i),
628             TyUint(u) => self.hash(u),
629             TyFloat(f) => self.hash(f),
630             TyArray(_, n) => self.hash(n),
631             TyRawPtr(m) |
632             TyRef(_, m) => self.hash(m.mutbl),
633             TyClosure(def_id, _) |
634             TyAnon(def_id, _) |
635             TyFnDef(def_id, ..) => self.def_id(def_id),
636             TyAdt(d, _) => self.def_id(d.did),
637             TyFnPtr(f) => {
638                 self.hash(f.unsafety());
639                 self.hash(f.abi());
640                 self.hash(f.variadic());
641                 self.hash(f.inputs().skip_binder().len());
642             }
643             TyDynamic(ref data, ..) => {
644                 if let Some(p) = data.principal() {
645                     self.def_id(p.def_id());
646                 }
647                 for d in data.auto_traits() {
648                     self.def_id(d);
649                 }
650             }
651             TyTuple(tys, defaulted) => {
652                 self.hash(tys.len());
653                 self.hash(defaulted);
654             }
655             TyParam(p) => {
656                 self.hash(p.idx);
657                 self.hash(p.name.as_str());
658             }
659             TyProjection(ref data) => {
660                 self.def_id(data.trait_ref.def_id);
661                 self.hash(data.item_name.as_str());
662             }
663             TyNever |
664             TyBool |
665             TyChar |
666             TyStr |
667             TySlice(_) => {}
668
669             TyError |
670             TyInfer(_) => bug!("TypeIdHasher: unexpected type {}", ty)
671         }
672
673         ty.super_visit_with(self)
674     }
675
676     fn visit_region(&mut self, r: &'tcx ty::Region) -> bool {
677         self.hash_discriminant_u8(r);
678         match *r {
679             ty::ReErased |
680             ty::ReStatic |
681             ty::ReEmpty => {
682                 // No variant fields to hash for these ...
683             }
684             ty::ReLateBound(db, ty::BrAnon(i)) => {
685                 self.hash(db.depth);
686                 self.hash(i);
687             }
688             ty::ReEarlyBound(ty::EarlyBoundRegion { index, name }) => {
689                 self.hash(index);
690                 self.hash(name.as_str());
691             }
692             ty::ReLateBound(..) |
693             ty::ReFree(..) |
694             ty::ReScope(..) |
695             ty::ReVar(..) |
696             ty::ReSkolemized(..) => {
697                 bug!("TypeIdHasher: unexpected region {:?}", r)
698             }
699         }
700         false
701     }
702
703     fn visit_binder<T: TypeFoldable<'tcx>>(&mut self, x: &ty::Binder<T>) -> bool {
704         // Anonymize late-bound regions so that, for example:
705         // `for<'a, b> fn(&'a &'b T)` and `for<'a, b> fn(&'b &'a T)`
706         // result in the same TypeId (the two types are equivalent).
707         self.tcx.anonymize_late_bound_regions(x).super_visit_with(self)
708     }
709 }
710
711 impl<'a, 'tcx> ty::TyS<'tcx> {
712     fn impls_bound(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
713                    param_env: &ParameterEnvironment<'tcx>,
714                    def_id: DefId,
715                    cache: &RefCell<FxHashMap<Ty<'tcx>, bool>>,
716                    span: Span) -> bool
717     {
718         if self.has_param_types() || self.has_self_ty() {
719             if let Some(result) = cache.borrow().get(self) {
720                 return *result;
721             }
722         }
723         let result =
724             tcx.infer_ctxt(param_env.clone(), Reveal::UserFacing)
725             .enter(|infcx| {
726                 traits::type_known_to_meet_bound(&infcx, self, def_id, span)
727             });
728         if self.has_param_types() || self.has_self_ty() {
729             cache.borrow_mut().insert(self, result);
730         }
731         return result;
732     }
733
734     // FIXME (@jroesch): I made this public to use it, not sure if should be private
735     pub fn moves_by_default(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
736                             param_env: &ParameterEnvironment<'tcx>,
737                             span: Span) -> bool {
738         if self.flags.get().intersects(TypeFlags::MOVENESS_CACHED) {
739             return self.flags.get().intersects(TypeFlags::MOVES_BY_DEFAULT);
740         }
741
742         assert!(!self.needs_infer());
743
744         // Fast-path for primitive types
745         let result = match self.sty {
746             TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) | TyNever |
747             TyRawPtr(..) | TyFnDef(..) | TyFnPtr(_) | TyRef(_, TypeAndMut {
748                 mutbl: hir::MutImmutable, ..
749             }) => Some(false),
750
751             TyStr | TyRef(_, TypeAndMut {
752                 mutbl: hir::MutMutable, ..
753             }) => Some(true),
754
755             TyArray(..) | TySlice(..) | TyDynamic(..) | TyTuple(..) |
756             TyClosure(..) | TyAdt(..) | TyAnon(..) |
757             TyProjection(..) | TyParam(..) | TyInfer(..) | TyError => None
758         }.unwrap_or_else(|| {
759             !self.impls_bound(tcx, param_env,
760                               tcx.require_lang_item(lang_items::CopyTraitLangItem),
761                               &param_env.is_copy_cache, span) });
762
763         if !self.has_param_types() && !self.has_self_ty() {
764             self.flags.set(self.flags.get() | if result {
765                 TypeFlags::MOVENESS_CACHED | TypeFlags::MOVES_BY_DEFAULT
766             } else {
767                 TypeFlags::MOVENESS_CACHED
768             });
769         }
770
771         result
772     }
773
774     #[inline]
775     pub fn is_sized(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
776                     param_env: &ParameterEnvironment<'tcx>,
777                     span: Span) -> bool
778     {
779         if self.flags.get().intersects(TypeFlags::SIZEDNESS_CACHED) {
780             return self.flags.get().intersects(TypeFlags::IS_SIZED);
781         }
782
783         self.is_sized_uncached(tcx, param_env, span)
784     }
785
786     fn is_sized_uncached(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
787                          param_env: &ParameterEnvironment<'tcx>,
788                          span: Span) -> bool {
789         assert!(!self.needs_infer());
790
791         // Fast-path for primitive types
792         let result = match self.sty {
793             TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
794             TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
795             TyArray(..) | TyTuple(..) | TyClosure(..) | TyNever => Some(true),
796
797             TyStr | TyDynamic(..) | TySlice(_) => Some(false),
798
799             TyAdt(..) | TyProjection(..) | TyParam(..) |
800             TyInfer(..) | TyAnon(..) | TyError => None
801         }.unwrap_or_else(|| {
802             self.impls_bound(tcx, param_env, tcx.require_lang_item(lang_items::SizedTraitLangItem),
803                               &param_env.is_sized_cache, span) });
804
805         if !self.has_param_types() && !self.has_self_ty() {
806             self.flags.set(self.flags.get() | if result {
807                 TypeFlags::SIZEDNESS_CACHED | TypeFlags::IS_SIZED
808             } else {
809                 TypeFlags::SIZEDNESS_CACHED
810             });
811         }
812
813         result
814     }
815
816     /// Returns `true` if and only if there are no `UnsafeCell`s
817     /// nested within the type (ignoring `PhantomData` or pointers).
818     #[inline]
819     pub fn is_freeze(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
820                      param_env: &ParameterEnvironment<'tcx>,
821                      span: Span) -> bool
822     {
823         if self.flags.get().intersects(TypeFlags::FREEZENESS_CACHED) {
824             return self.flags.get().intersects(TypeFlags::IS_FREEZE);
825         }
826
827         self.is_freeze_uncached(tcx, param_env, span)
828     }
829
830     fn is_freeze_uncached(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
831                           param_env: &ParameterEnvironment<'tcx>,
832                           span: Span) -> bool {
833         assert!(!self.needs_infer());
834
835         // Fast-path for primitive types
836         let result = match self.sty {
837             TyBool | TyChar | TyInt(..) | TyUint(..) | TyFloat(..) |
838             TyRawPtr(..) | TyRef(..) | TyFnDef(..) | TyFnPtr(_) |
839             TyStr | TyNever => Some(true),
840
841             TyArray(..) | TySlice(_) |
842             TyTuple(..) | TyClosure(..) | TyAdt(..) |
843             TyDynamic(..) | TyProjection(..) | TyParam(..) |
844             TyInfer(..) | TyAnon(..) | TyError => None
845         }.unwrap_or_else(|| {
846             self.impls_bound(tcx, param_env, tcx.require_lang_item(lang_items::FreezeTraitLangItem),
847                               &param_env.is_freeze_cache, span) });
848
849         if !self.has_param_types() && !self.has_self_ty() {
850             self.flags.set(self.flags.get() | if result {
851                 TypeFlags::FREEZENESS_CACHED | TypeFlags::IS_FREEZE
852             } else {
853                 TypeFlags::FREEZENESS_CACHED
854             });
855         }
856
857         result
858     }
859
860     /// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely
861     /// non-copy and *might* have a destructor attached; if it returns
862     /// `false`, then `ty` definitely has no destructor (i.e. no drop glue).
863     ///
864     /// (Note that this implies that if `ty` has a destructor attached,
865     /// then `needs_drop` will definitely return `true` for `ty`.)
866     #[inline]
867     pub fn needs_drop(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>,
868                     param_env: &ty::ParameterEnvironment<'tcx>) -> bool {
869         if self.flags.get().intersects(TypeFlags::NEEDS_DROP_CACHED) {
870             return self.flags.get().intersects(TypeFlags::NEEDS_DROP);
871         }
872
873         self.needs_drop_uncached(tcx, param_env, &mut FxHashSet())
874     }
875
876     fn needs_drop_inner(&'tcx self,
877                         tcx: TyCtxt<'a, 'tcx, 'tcx>,
878                         param_env: &ty::ParameterEnvironment<'tcx>,
879                         stack: &mut FxHashSet<Ty<'tcx>>)
880                         -> bool {
881         if self.flags.get().intersects(TypeFlags::NEEDS_DROP_CACHED) {
882             return self.flags.get().intersects(TypeFlags::NEEDS_DROP);
883         }
884
885         // This should be reported as an error by `check_representable`.
886         //
887         // Consider the type as not needing drop in the meanwhile to avoid
888         // further errors.
889         if let Some(_) = stack.replace(self) {
890             return false;
891         }
892
893         let needs_drop = self.needs_drop_uncached(tcx, param_env, stack);
894
895         // "Pop" the cycle detection "stack".
896         stack.remove(self);
897
898         needs_drop
899     }
900
901     fn needs_drop_uncached(&'tcx self,
902                            tcx: TyCtxt<'a, 'tcx, 'tcx>,
903                            param_env: &ty::ParameterEnvironment<'tcx>,
904                            stack: &mut FxHashSet<Ty<'tcx>>)
905                            -> bool {
906         assert!(!self.needs_infer());
907
908         let result = match self.sty {
909             // Fast-path for primitive types
910             ty::TyInfer(ty::FreshIntTy(_)) | ty::TyInfer(ty::FreshFloatTy(_)) |
911             ty::TyBool | ty::TyInt(_) | ty::TyUint(_) | ty::TyFloat(_) | ty::TyNever |
912             ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyChar |
913             ty::TyRawPtr(_) | ty::TyRef(..) | ty::TyStr => false,
914
915             // Issue #22536: We first query type_moves_by_default.  It sees a
916             // normalized version of the type, and therefore will definitely
917             // know whether the type implements Copy (and thus needs no
918             // cleanup/drop/zeroing) ...
919             _ if !self.moves_by_default(tcx, param_env, DUMMY_SP) => false,
920
921             // ... (issue #22536 continued) but as an optimization, still use
922             // prior logic of asking for the structural "may drop".
923
924             // FIXME(#22815): Note that this is a conservative heuristic;
925             // it may report that the type "may drop" when actual type does
926             // not actually have a destructor associated with it. But since
927             // the type absolutely did not have the `Copy` bound attached
928             // (see above), it is sound to treat it as having a destructor.
929
930             // User destructors are the only way to have concrete drop types.
931             ty::TyAdt(def, _) if def.has_dtor(tcx) => true,
932
933             // Can refer to a type which may drop.
934             // FIXME(eddyb) check this against a ParameterEnvironment.
935             ty::TyDynamic(..) | ty::TyProjection(..) | ty::TyParam(_) |
936             ty::TyAnon(..) | ty::TyInfer(_) | ty::TyError => true,
937
938             // Structural recursion.
939             ty::TyArray(ty, _) | ty::TySlice(ty) => {
940                 ty.needs_drop_inner(tcx, param_env, stack)
941             }
942
943             ty::TyClosure(def_id, ref substs) => {
944                 substs.upvar_tys(def_id, tcx)
945                     .any(|ty| ty.needs_drop_inner(tcx, param_env, stack))
946             }
947
948             ty::TyTuple(ref tys, _) => {
949                 tys.iter().any(|ty| ty.needs_drop_inner(tcx, param_env, stack))
950             }
951
952             // unions don't have destructors regardless of the child types
953             ty::TyAdt(def, _) if def.is_union() => false,
954
955             ty::TyAdt(def, substs) => {
956                 def.variants.iter().any(|v| {
957                     v.fields.iter().any(|f| {
958                         f.ty(tcx, substs).needs_drop_inner(tcx, param_env, stack)
959                     })
960                 })
961             }
962         };
963
964         if !self.has_param_types() && !self.has_self_ty() {
965             self.flags.set(self.flags.get() | if result {
966                 TypeFlags::NEEDS_DROP_CACHED | TypeFlags::NEEDS_DROP
967             } else {
968                 TypeFlags::NEEDS_DROP_CACHED
969             });
970         }
971
972         result
973     }
974
975     #[inline]
976     pub fn layout<'lcx>(&'tcx self, infcx: &InferCtxt<'a, 'tcx, 'lcx>)
977                         -> Result<&'tcx Layout, LayoutError<'tcx>> {
978         let tcx = infcx.tcx.global_tcx();
979         let can_cache = !self.has_param_types() && !self.has_self_ty();
980         if can_cache {
981             if let Some(&cached) = tcx.layout_cache.borrow().get(&self) {
982                 return Ok(cached);
983             }
984         }
985
986         let rec_limit = tcx.sess.recursion_limit.get();
987         let depth = tcx.layout_depth.get();
988         if depth > rec_limit {
989             tcx.sess.fatal(
990                 &format!("overflow representing the type `{}`", self));
991         }
992
993         tcx.layout_depth.set(depth+1);
994         let layout = Layout::compute_uncached(self, infcx);
995         tcx.layout_depth.set(depth);
996         let layout = layout?;
997         if can_cache {
998             tcx.layout_cache.borrow_mut().insert(self, layout);
999         }
1000         Ok(layout)
1001     }
1002
1003
1004     /// Check whether a type is representable. This means it cannot contain unboxed
1005     /// structural recursion. This check is needed for structs and enums.
1006     pub fn is_representable(&'tcx self, tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span)
1007                             -> Representability {
1008
1009         // Iterate until something non-representable is found
1010         fn find_nonrepresentable<'a, 'tcx, It>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1011                                                sp: Span,
1012                                                seen: &mut Vec<Ty<'tcx>>,
1013                                                iter: It)
1014                                                -> Representability
1015         where It: Iterator<Item=Ty<'tcx>> {
1016             iter.fold(Representability::Representable,
1017                       |r, ty| cmp::max(r, is_type_structurally_recursive(tcx, sp, seen, ty)))
1018         }
1019
1020         fn are_inner_types_recursive<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>, sp: Span,
1021                                                seen: &mut Vec<Ty<'tcx>>, ty: Ty<'tcx>)
1022                                                -> Representability {
1023             match ty.sty {
1024                 TyTuple(ref ts, _) => {
1025                     find_nonrepresentable(tcx, sp, seen, ts.iter().cloned())
1026                 }
1027                 // Fixed-length vectors.
1028                 // FIXME(#11924) Behavior undecided for zero-length vectors.
1029                 TyArray(ty, _) => {
1030                     is_type_structurally_recursive(tcx, sp, seen, ty)
1031                 }
1032                 TyAdt(def, substs) => {
1033                     find_nonrepresentable(tcx,
1034                                           sp,
1035                                           seen,
1036                                           def.all_fields().map(|f| f.ty(tcx, substs)))
1037                 }
1038                 TyClosure(..) => {
1039                     // this check is run on type definitions, so we don't expect
1040                     // to see closure types
1041                     bug!("requires check invoked on inapplicable type: {:?}", ty)
1042                 }
1043                 _ => Representability::Representable,
1044             }
1045         }
1046
1047         fn same_struct_or_enum<'tcx>(ty: Ty<'tcx>, def: &'tcx ty::AdtDef) -> bool {
1048             match ty.sty {
1049                 TyAdt(ty_def, _) => {
1050                      ty_def == def
1051                 }
1052                 _ => false
1053             }
1054         }
1055
1056         fn same_type<'tcx>(a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
1057             match (&a.sty, &b.sty) {
1058                 (&TyAdt(did_a, substs_a), &TyAdt(did_b, substs_b)) => {
1059                     if did_a != did_b {
1060                         return false;
1061                     }
1062
1063                     substs_a.types().zip(substs_b.types()).all(|(a, b)| same_type(a, b))
1064                 }
1065                 _ => a == b,
1066             }
1067         }
1068
1069         // Does the type `ty` directly (without indirection through a pointer)
1070         // contain any types on stack `seen`?
1071         fn is_type_structurally_recursive<'a, 'tcx>(tcx: TyCtxt<'a, 'tcx, 'tcx>,
1072                                                     sp: Span,
1073                                                     seen: &mut Vec<Ty<'tcx>>,
1074                                                     ty: Ty<'tcx>) -> Representability {
1075             debug!("is_type_structurally_recursive: {:?}", ty);
1076
1077             match ty.sty {
1078                 TyAdt(def, _) => {
1079                     {
1080                         // Iterate through stack of previously seen types.
1081                         let mut iter = seen.iter();
1082
1083                         // The first item in `seen` is the type we are actually curious about.
1084                         // We want to return SelfRecursive if this type contains itself.
1085                         // It is important that we DON'T take generic parameters into account
1086                         // for this check, so that Bar<T> in this example counts as SelfRecursive:
1087                         //
1088                         // struct Foo;
1089                         // struct Bar<T> { x: Bar<Foo> }
1090
1091                         if let Some(&seen_type) = iter.next() {
1092                             if same_struct_or_enum(seen_type, def) {
1093                                 debug!("SelfRecursive: {:?} contains {:?}",
1094                                        seen_type,
1095                                        ty);
1096                                 return Representability::SelfRecursive;
1097                             }
1098                         }
1099
1100                         // We also need to know whether the first item contains other types
1101                         // that are structurally recursive. If we don't catch this case, we
1102                         // will recurse infinitely for some inputs.
1103                         //
1104                         // It is important that we DO take generic parameters into account
1105                         // here, so that code like this is considered SelfRecursive, not
1106                         // ContainsRecursive:
1107                         //
1108                         // struct Foo { Option<Option<Foo>> }
1109
1110                         for &seen_type in iter {
1111                             if same_type(ty, seen_type) {
1112                                 debug!("ContainsRecursive: {:?} contains {:?}",
1113                                        seen_type,
1114                                        ty);
1115                                 return Representability::ContainsRecursive;
1116                             }
1117                         }
1118                     }
1119
1120                     // For structs and enums, track all previously seen types by pushing them
1121                     // onto the 'seen' stack.
1122                     seen.push(ty);
1123                     let out = are_inner_types_recursive(tcx, sp, seen, ty);
1124                     seen.pop();
1125                     out
1126                 }
1127                 _ => {
1128                     // No need to push in other cases.
1129                     are_inner_types_recursive(tcx, sp, seen, ty)
1130                 }
1131             }
1132         }
1133
1134         debug!("is_type_representable: {:?}", self);
1135
1136         // To avoid a stack overflow when checking an enum variant or struct that
1137         // contains a different, structurally recursive type, maintain a stack
1138         // of seen types and check recursion for each of them (issues #3008, #3779).
1139         let mut seen: Vec<Ty> = Vec::new();
1140         let r = is_type_structurally_recursive(tcx, sp, &mut seen, self);
1141         debug!("is_type_representable: {:?} is {:?}", self, r);
1142         r
1143     }
1144 }