]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/select.rs
Rollup merge of #47126 - sdroege:exact-chunks, r=bluss
[rust.git] / src / librustc / traits / select.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! See `README.md` for high-level documentation
12
13 use self::SelectionCandidate::*;
14 use self::EvaluationResult::*;
15
16 use super::coherence::{self, Conflict};
17 use super::DerivedObligationCause;
18 use super::IntercrateMode;
19 use super::project;
20 use super::project::{normalize_with_depth, Normalized, ProjectionCacheKey};
21 use super::{PredicateObligation, TraitObligation, ObligationCause};
22 use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
23 use super::{SelectionError, Unimplemented, OutputTypeParameterMismatch};
24 use super::{ObjectCastObligation, Obligation};
25 use super::TraitNotObjectSafe;
26 use super::Selection;
27 use super::SelectionResult;
28 use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure, VtableGenerator,
29             VtableFnPointer, VtableObject, VtableAutoImpl};
30 use super::{VtableImplData, VtableObjectData, VtableBuiltinData, VtableGeneratorData,
31             VtableClosureData, VtableAutoImplData, VtableFnPointerData};
32 use super::util;
33
34 use dep_graph::{DepNodeIndex, DepKind};
35 use hir::def_id::DefId;
36 use infer;
37 use infer::{InferCtxt, InferOk, TypeFreshener};
38 use ty::subst::{Kind, Subst, Substs};
39 use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
40 use ty::fast_reject;
41 use ty::relate::TypeRelation;
42 use middle::lang_items;
43
44 use rustc_data_structures::bitvec::BitVector;
45 use rustc_data_structures::snapshot_vec::{SnapshotVecDelegate, SnapshotVec};
46 use std::iter;
47 use std::cell::RefCell;
48 use std::cmp;
49 use std::fmt;
50 use std::marker::PhantomData;
51 use std::mem;
52 use std::rc::Rc;
53 use syntax::abi::Abi;
54 use hir;
55 use lint;
56 use util::nodemap::FxHashMap;
57
58 struct InferredObligationsSnapshotVecDelegate<'tcx> {
59     phantom: PhantomData<&'tcx i32>,
60 }
61 impl<'tcx> SnapshotVecDelegate for InferredObligationsSnapshotVecDelegate<'tcx> {
62     type Value = PredicateObligation<'tcx>;
63     type Undo = ();
64     fn reverse(_: &mut Vec<Self::Value>, _: Self::Undo) {}
65 }
66
67 pub struct SelectionContext<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
68     infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
69
70     /// Freshener used specifically for skolemizing entries on the
71     /// obligation stack. This ensures that all entries on the stack
72     /// at one time will have the same set of skolemized entries,
73     /// which is important for checking for trait bounds that
74     /// recursively require themselves.
75     freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
76
77     /// If true, indicates that the evaluation should be conservative
78     /// and consider the possibility of types outside this crate.
79     /// This comes up primarily when resolving ambiguity. Imagine
80     /// there is some trait reference `$0 : Bar` where `$0` is an
81     /// inference variable. If `intercrate` is true, then we can never
82     /// say for sure that this reference is not implemented, even if
83     /// there are *no impls at all for `Bar`*, because `$0` could be
84     /// bound to some type that in a downstream crate that implements
85     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
86     /// though, we set this to false, because we are only interested
87     /// in types that the user could actually have written --- in
88     /// other words, we consider `$0 : Bar` to be unimplemented if
89     /// there is no type that the user could *actually name* that
90     /// would satisfy it. This avoids crippling inference, basically.
91     intercrate: Option<IntercrateMode>,
92
93     inferred_obligations: SnapshotVec<InferredObligationsSnapshotVecDelegate<'tcx>>,
94
95     intercrate_ambiguity_causes: Vec<IntercrateAmbiguityCause>,
96 }
97
98 #[derive(Clone)]
99 pub enum IntercrateAmbiguityCause {
100     DownstreamCrate {
101         trait_desc: String,
102         self_desc: Option<String>,
103     },
104     UpstreamCrateUpdate {
105         trait_desc: String,
106         self_desc: Option<String>,
107     },
108 }
109
110 impl IntercrateAmbiguityCause {
111     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
112     /// See #23980 for details.
113     pub fn add_intercrate_ambiguity_hint<'a, 'tcx>(&self,
114                                                    err: &mut ::errors::DiagnosticBuilder) {
115         err.note(&self.intercrate_ambiguity_hint());
116     }
117
118     pub fn intercrate_ambiguity_hint(&self) -> String {
119         match self {
120             &IntercrateAmbiguityCause::DownstreamCrate { ref trait_desc, ref self_desc } => {
121                 let self_desc = if let &Some(ref ty) = self_desc {
122                     format!(" for type `{}`", ty)
123                 } else { "".to_string() };
124                 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
125             }
126             &IntercrateAmbiguityCause::UpstreamCrateUpdate { ref trait_desc, ref self_desc } => {
127                 let self_desc = if let &Some(ref ty) = self_desc {
128                     format!(" for type `{}`", ty)
129                 } else { "".to_string() };
130                 format!("upstream crates may add new impl of trait `{}`{} \
131                          in future versions",
132                         trait_desc, self_desc)
133             }
134         }
135     }
136 }
137
138 // A stack that walks back up the stack frame.
139 struct TraitObligationStack<'prev, 'tcx: 'prev> {
140     obligation: &'prev TraitObligation<'tcx>,
141
142     /// Trait ref from `obligation` but skolemized with the
143     /// selection-context's freshener. Used to check for recursion.
144     fresh_trait_ref: ty::PolyTraitRef<'tcx>,
145
146     previous: TraitObligationStackList<'prev, 'tcx>,
147 }
148
149 #[derive(Clone)]
150 pub struct SelectionCache<'tcx> {
151     hashmap: RefCell<FxHashMap<ty::TraitRef<'tcx>,
152                                WithDepNode<SelectionResult<'tcx, SelectionCandidate<'tcx>>>>>,
153 }
154
155 /// The selection process begins by considering all impls, where
156 /// clauses, and so forth that might resolve an obligation.  Sometimes
157 /// we'll be able to say definitively that (e.g.) an impl does not
158 /// apply to the obligation: perhaps it is defined for `usize` but the
159 /// obligation is for `int`. In that case, we drop the impl out of the
160 /// list.  But the other cases are considered *candidates*.
161 ///
162 /// For selection to succeed, there must be exactly one matching
163 /// candidate. If the obligation is fully known, this is guaranteed
164 /// by coherence. However, if the obligation contains type parameters
165 /// or variables, there may be multiple such impls.
166 ///
167 /// It is not a real problem if multiple matching impls exist because
168 /// of type variables - it just means the obligation isn't sufficiently
169 /// elaborated. In that case we report an ambiguity, and the caller can
170 /// try again after more type information has been gathered or report a
171 /// "type annotations required" error.
172 ///
173 /// However, with type parameters, this can be a real problem - type
174 /// parameters don't unify with regular types, but they *can* unify
175 /// with variables from blanket impls, and (unless we know its bounds
176 /// will always be satisfied) picking the blanket impl will be wrong
177 /// for at least *some* substitutions. To make this concrete, if we have
178 ///
179 ///    trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
180 ///    impl<T: fmt::Debug> AsDebug for T {
181 ///        type Out = T;
182 ///        fn debug(self) -> fmt::Debug { self }
183 ///    }
184 ///    fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
185 ///
186 /// we can't just use the impl to resolve the <T as AsDebug> obligation
187 /// - a type from another crate (that doesn't implement fmt::Debug) could
188 /// implement AsDebug.
189 ///
190 /// Because where-clauses match the type exactly, multiple clauses can
191 /// only match if there are unresolved variables, and we can mostly just
192 /// report this ambiguity in that case. This is still a problem - we can't
193 /// *do anything* with ambiguities that involve only regions. This is issue
194 /// #21974.
195 ///
196 /// If a single where-clause matches and there are no inference
197 /// variables left, then it definitely matches and we can just select
198 /// it.
199 ///
200 /// In fact, we even select the where-clause when the obligation contains
201 /// inference variables. The can lead to inference making "leaps of logic",
202 /// for example in this situation:
203 ///
204 ///    pub trait Foo<T> { fn foo(&self) -> T; }
205 ///    impl<T> Foo<()> for T { fn foo(&self) { } }
206 ///    impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
207 ///
208 ///    pub fn foo<T>(t: T) where T: Foo<bool> {
209 ///       println!("{:?}", <T as Foo<_>>::foo(&t));
210 ///    }
211 ///    fn main() { foo(false); }
212 ///
213 /// Here the obligation <T as Foo<$0>> can be matched by both the blanket
214 /// impl and the where-clause. We select the where-clause and unify $0=bool,
215 /// so the program prints "false". However, if the where-clause is omitted,
216 /// the blanket impl is selected, we unify $0=(), and the program prints
217 /// "()".
218 ///
219 /// Exactly the same issues apply to projection and object candidates, except
220 /// that we can have both a projection candidate and a where-clause candidate
221 /// for the same obligation. In that case either would do (except that
222 /// different "leaps of logic" would occur if inference variables are
223 /// present), and we just pick the where-clause. This is, for example,
224 /// required for associated types to work in default impls, as the bounds
225 /// are visible both as projection bounds and as where-clauses from the
226 /// parameter environment.
227 #[derive(PartialEq,Eq,Debug,Clone)]
228 enum SelectionCandidate<'tcx> {
229     BuiltinCandidate { has_nested: bool },
230     ParamCandidate(ty::PolyTraitRef<'tcx>),
231     ImplCandidate(DefId),
232     AutoImplCandidate(DefId),
233
234     /// This is a trait matching with a projected type as `Self`, and
235     /// we found an applicable bound in the trait definition.
236     ProjectionCandidate,
237
238     /// Implementation of a `Fn`-family trait by one of the anonymous types
239     /// generated for a `||` expression.
240     ClosureCandidate,
241
242     /// Implementation of a `Generator` trait by one of the anonymous types
243     /// generated for a generator.
244     GeneratorCandidate,
245
246     /// Implementation of a `Fn`-family trait by one of the anonymous
247     /// types generated for a fn pointer type (e.g., `fn(int)->int`)
248     FnPointerCandidate,
249
250     ObjectCandidate,
251
252     BuiltinObjectCandidate,
253
254     BuiltinUnsizeCandidate,
255 }
256
257 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
258     type Lifted = SelectionCandidate<'tcx>;
259     fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
260         Some(match *self {
261             BuiltinCandidate { has_nested } => {
262                 BuiltinCandidate {
263                     has_nested,
264                 }
265             }
266             ImplCandidate(def_id) => ImplCandidate(def_id),
267             AutoImplCandidate(def_id) => AutoImplCandidate(def_id),
268             ProjectionCandidate => ProjectionCandidate,
269             FnPointerCandidate => FnPointerCandidate,
270             ObjectCandidate => ObjectCandidate,
271             BuiltinObjectCandidate => BuiltinObjectCandidate,
272             BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
273             ClosureCandidate => ClosureCandidate,
274             GeneratorCandidate => GeneratorCandidate,
275
276             ParamCandidate(ref trait_ref) => {
277                 return tcx.lift(trait_ref).map(ParamCandidate);
278             }
279         })
280     }
281 }
282
283 struct SelectionCandidateSet<'tcx> {
284     // a list of candidates that definitely apply to the current
285     // obligation (meaning: types unify).
286     vec: Vec<SelectionCandidate<'tcx>>,
287
288     // if this is true, then there were candidates that might or might
289     // not have applied, but we couldn't tell. This occurs when some
290     // of the input types are type variables, in which case there are
291     // various "builtin" rules that might or might not trigger.
292     ambiguous: bool,
293 }
294
295 #[derive(PartialEq,Eq,Debug,Clone)]
296 struct EvaluatedCandidate<'tcx> {
297     candidate: SelectionCandidate<'tcx>,
298     evaluation: EvaluationResult,
299 }
300
301 /// When does the builtin impl for `T: Trait` apply?
302 enum BuiltinImplConditions<'tcx> {
303     /// The impl is conditional on T1,T2,.. : Trait
304     Where(ty::Binder<Vec<Ty<'tcx>>>),
305     /// There is no built-in impl. There may be some other
306     /// candidate (a where-clause or user-defined impl).
307     None,
308     /// There is *no* impl for this, builtin or not. Ignore
309     /// all where-clauses.
310     Never,
311     /// It is unknown whether there is an impl.
312     Ambiguous
313 }
314
315 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
316 /// The result of trait evaluation. The order is important
317 /// here as the evaluation of a list is the maximum of the
318 /// evaluations.
319 ///
320 /// The evaluation results are ordered:
321 ///     - `EvaluatedToOk` implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
322 ///     - `EvaluatedToErr` implies `EvaluatedToRecur`
323 ///     - the "union" of evaluation results is equal to their maximum -
324 ///     all the "potential success" candidates can potentially succeed,
325 ///     so they are no-ops when unioned with a definite error, and within
326 ///     the categories it's easy to see that the unions are correct.
327 enum EvaluationResult {
328     /// Evaluation successful
329     EvaluatedToOk,
330     /// Evaluation is known to be ambiguous - it *might* hold for some
331     /// assignment of inference variables, but it might not.
332     ///
333     /// While this has the same meaning as `EvaluatedToUnknown` - we can't
334     /// know whether this obligation holds or not - it is the result we
335     /// would get with an empty stack, and therefore is cacheable.
336     EvaluatedToAmbig,
337     /// Evaluation failed because of recursion involving inference
338     /// variables. We are somewhat imprecise there, so we don't actually
339     /// know the real result.
340     ///
341     /// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
342     EvaluatedToUnknown,
343     /// Evaluation failed because we encountered an obligation we are already
344     /// trying to prove on this branch.
345     ///
346     /// We know this branch can't be a part of a minimal proof-tree for
347     /// the "root" of our cycle, because then we could cut out the recursion
348     /// and maintain a valid proof tree. However, this does not mean
349     /// that all the obligations on this branch do not hold - it's possible
350     /// that we entered this branch "speculatively", and that there
351     /// might be some other way to prove this obligation that does not
352     /// go through this cycle - so we can't cache this as a failure.
353     ///
354     /// For example, suppose we have this:
355     ///
356     /// ```rust,ignore (pseudo-Rust)
357     ///     pub trait Trait { fn xyz(); }
358     ///     // This impl is "useless", but we can still have
359     ///     // an `impl Trait for SomeUnsizedType` somewhere.
360     ///     impl<T: Trait + Sized> Trait for T { fn xyz() {} }
361     ///
362     ///     pub fn foo<T: Trait + ?Sized>() {
363     ///         <T as Trait>::xyz();
364     ///     }
365     /// ```
366     ///
367     /// When checking `foo`, we have to prove `T: Trait`. This basically
368     /// translates into this:
369     ///
370     ///     (T: Trait + Sized â†’_\impl T: Trait), T: Trait âŠ¢ T: Trait
371     ///
372     /// When we try to prove it, we first go the first option, which
373     /// recurses. This shows us that the impl is "useless" - it won't
374     /// tell us that `T: Trait` unless it already implemented `Trait`
375     /// by some other means. However, that does not prevent `T: Trait`
376     /// does not hold, because of the bound (which can indeed be satisfied
377     /// by `SomeUnsizedType` from another crate).
378     ///
379     /// FIXME: when an `EvaluatedToRecur` goes past its parent root, we
380     /// ought to convert it to an `EvaluatedToErr`, because we know
381     /// there definitely isn't a proof tree for that obligation. Not
382     /// doing so is still sound - there isn't any proof tree, so the
383     /// branch still can't be a part of a minimal one - but does not
384     /// re-enable caching.
385     EvaluatedToRecur,
386     /// Evaluation failed
387     EvaluatedToErr,
388 }
389
390 impl EvaluationResult {
391     fn may_apply(self) -> bool {
392         match self {
393             EvaluatedToOk |
394             EvaluatedToAmbig |
395             EvaluatedToUnknown => true,
396
397             EvaluatedToErr |
398             EvaluatedToRecur => false
399         }
400     }
401
402     fn is_stack_dependent(self) -> bool {
403         match self {
404             EvaluatedToUnknown |
405             EvaluatedToRecur => true,
406
407             EvaluatedToOk |
408             EvaluatedToAmbig |
409             EvaluatedToErr => false,
410         }
411     }
412 }
413
414 #[derive(Clone)]
415 pub struct EvaluationCache<'tcx> {
416     hashmap: RefCell<FxHashMap<ty::PolyTraitRef<'tcx>, WithDepNode<EvaluationResult>>>
417 }
418
419 impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
420     pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
421         SelectionContext {
422             infcx,
423             freshener: infcx.freshener(),
424             intercrate: None,
425             inferred_obligations: SnapshotVec::new(),
426             intercrate_ambiguity_causes: Vec::new(),
427         }
428     }
429
430     pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
431                       mode: IntercrateMode) -> SelectionContext<'cx, 'gcx, 'tcx> {
432         debug!("intercrate({:?})", mode);
433         SelectionContext {
434             infcx,
435             freshener: infcx.freshener(),
436             intercrate: Some(mode),
437             inferred_obligations: SnapshotVec::new(),
438             intercrate_ambiguity_causes: Vec::new(),
439         }
440     }
441
442     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
443         self.infcx
444     }
445
446     pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
447         self.infcx.tcx
448     }
449
450     pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
451         self.infcx
452     }
453
454     pub fn intercrate_ambiguity_causes(&self) -> &[IntercrateAmbiguityCause] {
455         &self.intercrate_ambiguity_causes
456     }
457
458     /// Wraps the inference context's in_snapshot s.t. snapshot handling is only from the selection
459     /// context's self.
460     fn in_snapshot<R, F>(&mut self, f: F) -> R
461         where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
462     {
463         // The irrefutable nature of the operation means we don't need to snapshot the
464         // inferred_obligations vector.
465         self.infcx.in_snapshot(|snapshot| f(self, snapshot))
466     }
467
468     /// Wraps a probe s.t. obligations collected during it are ignored and old obligations are
469     /// retained.
470     fn probe<R, F>(&mut self, f: F) -> R
471         where F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> R
472     {
473         let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
474         let result = self.infcx.probe(|snapshot| f(self, snapshot));
475         self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
476         result
477     }
478
479     /// Wraps a commit_if_ok s.t. obligations collected during it are not returned in selection if
480     /// the transaction fails and s.t. old obligations are retained.
481     fn commit_if_ok<T, E, F>(&mut self, f: F) -> Result<T, E> where
482         F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> Result<T, E>
483     {
484         let inferred_obligations_snapshot = self.inferred_obligations.start_snapshot();
485         match self.infcx.commit_if_ok(|snapshot| f(self, snapshot)) {
486             Ok(ok) => {
487                 self.inferred_obligations.commit(inferred_obligations_snapshot);
488                 Ok(ok)
489             },
490             Err(err) => {
491                 self.inferred_obligations.rollback_to(inferred_obligations_snapshot);
492                 Err(err)
493             }
494         }
495     }
496
497
498     ///////////////////////////////////////////////////////////////////////////
499     // Selection
500     //
501     // The selection phase tries to identify *how* an obligation will
502     // be resolved. For example, it will identify which impl or
503     // parameter bound is to be used. The process can be inconclusive
504     // if the self type in the obligation is not fully inferred. Selection
505     // can result in an error in one of two ways:
506     //
507     // 1. If no applicable impl or parameter bound can be found.
508     // 2. If the output type parameters in the obligation do not match
509     //    those specified by the impl/bound. For example, if the obligation
510     //    is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
511     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
512
513     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
514     /// type environment by performing unification.
515     pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
516                   -> SelectionResult<'tcx, Selection<'tcx>> {
517         debug!("select({:?})", obligation);
518         assert!(!obligation.predicate.has_escaping_regions());
519
520         let tcx = self.tcx();
521
522         let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
523         let ret = match self.candidate_from_obligation(&stack)? {
524             None => None,
525             Some(candidate) => {
526                 let mut candidate = self.confirm_candidate(obligation, candidate)?;
527                 let inferred_obligations = (*self.inferred_obligations).into_iter().cloned();
528                 candidate.nested_obligations_mut().extend(inferred_obligations);
529                 Some(candidate)
530             },
531         };
532
533         // Test whether this is a `()` which was produced by defaulting a
534         // diverging type variable with `!` disabled. If so, we may need
535         // to raise a warning.
536         if obligation.predicate.skip_binder().self_ty().is_defaulted_unit() {
537             let mut raise_warning = true;
538             // Don't raise a warning if the trait is implemented for ! and only
539             // permits a trivial implementation for !. This stops us warning
540             // about (for example) `(): Clone` becoming `!: Clone` because such
541             // a switch can't cause code to stop compiling or execute
542             // differently.
543             let mut never_obligation = obligation.clone();
544             let def_id = never_obligation.predicate.skip_binder().trait_ref.def_id;
545             never_obligation.predicate = never_obligation.predicate.map_bound(|mut trait_pred| {
546                 // Swap out () with ! so we can check if the trait is impld for !
547                 {
548                     let trait_ref = &mut trait_pred.trait_ref;
549                     let unit_substs = trait_ref.substs;
550                     let mut never_substs = Vec::with_capacity(unit_substs.len());
551                     never_substs.push(From::from(tcx.types.never));
552                     never_substs.extend(&unit_substs[1..]);
553                     trait_ref.substs = tcx.intern_substs(&never_substs);
554                 }
555                 trait_pred
556             });
557             if let Ok(Some(..)) = self.select(&never_obligation) {
558                 if !tcx.trait_relevant_for_never(def_id) {
559                     // The trait is also implemented for ! and the resulting
560                     // implementation cannot actually be invoked in any way.
561                     raise_warning = false;
562                 }
563             }
564
565             if raise_warning {
566                 tcx.lint_node(lint::builtin::RESOLVE_TRAIT_ON_DEFAULTED_UNIT,
567                               obligation.cause.body_id,
568                               obligation.cause.span,
569                               &format!("code relies on type inference rules which are likely \
570                                         to change"));
571             }
572         }
573         Ok(ret)
574     }
575
576     ///////////////////////////////////////////////////////////////////////////
577     // EVALUATION
578     //
579     // Tests whether an obligation can be selected or whether an impl
580     // can be applied to particular types. It skips the "confirmation"
581     // step and hence completely ignores output type parameters.
582     //
583     // The result is "true" if the obligation *may* hold and "false" if
584     // we can be sure it does not.
585
586     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
587     pub fn evaluate_obligation(&mut self,
588                                obligation: &PredicateObligation<'tcx>)
589                                -> bool
590     {
591         debug!("evaluate_obligation({:?})",
592                obligation);
593
594         self.probe(|this, _| {
595             this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
596                 .may_apply()
597         })
598     }
599
600     /// Evaluates whether the obligation `obligation` can be satisfied,
601     /// and returns `false` if not certain. However, this is not entirely
602     /// accurate if inference variables are involved.
603     pub fn evaluate_obligation_conservatively(&mut self,
604                                               obligation: &PredicateObligation<'tcx>)
605                                               -> bool
606     {
607         debug!("evaluate_obligation_conservatively({:?})",
608                obligation);
609
610         self.probe(|this, _| {
611             this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
612                 == EvaluatedToOk
613         })
614     }
615
616     /// Evaluates the predicates in `predicates` recursively. Note that
617     /// this applies projections in the predicates, and therefore
618     /// is run within an inference probe.
619     fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
620                                                 stack: TraitObligationStackList<'o, 'tcx>,
621                                                 predicates: I)
622                                                 -> EvaluationResult
623         where I : Iterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
624     {
625         let mut result = EvaluatedToOk;
626         for obligation in predicates {
627             let eval = self.evaluate_predicate_recursively(stack, obligation);
628             debug!("evaluate_predicate_recursively({:?}) = {:?}",
629                    obligation, eval);
630             if let EvaluatedToErr = eval {
631                 // fast-path - EvaluatedToErr is the top of the lattice,
632                 // so we don't need to look on the other predicates.
633                 return EvaluatedToErr;
634             } else {
635                 result = cmp::max(result, eval);
636             }
637         }
638         result
639     }
640
641     fn evaluate_predicate_recursively<'o>(&mut self,
642                                           previous_stack: TraitObligationStackList<'o, 'tcx>,
643                                           obligation: &PredicateObligation<'tcx>)
644                                            -> EvaluationResult
645     {
646         debug!("evaluate_predicate_recursively({:?})",
647                obligation);
648
649         match obligation.predicate {
650             ty::Predicate::Trait(ref t) => {
651                 assert!(!t.has_escaping_regions());
652                 let obligation = obligation.with(t.clone());
653                 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
654             }
655
656             ty::Predicate::Equate(ref p) => {
657                 // does this code ever run?
658                 match self.infcx.equality_predicate(&obligation.cause, obligation.param_env, p) {
659                     Ok(InferOk { obligations, .. }) => {
660                         self.inferred_obligations.extend(obligations);
661                         EvaluatedToOk
662                     },
663                     Err(_) => EvaluatedToErr
664                 }
665             }
666
667             ty::Predicate::Subtype(ref p) => {
668                 // does this code ever run?
669                 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
670                     Some(Ok(InferOk { obligations, .. })) => {
671                         self.inferred_obligations.extend(obligations);
672                         EvaluatedToOk
673                     },
674                     Some(Err(_)) => EvaluatedToErr,
675                     None => EvaluatedToAmbig,
676                 }
677             }
678
679             ty::Predicate::WellFormed(ty) => {
680                 match ty::wf::obligations(self.infcx,
681                                           obligation.param_env,
682                                           obligation.cause.body_id,
683                                           ty, obligation.cause.span) {
684                     Some(obligations) =>
685                         self.evaluate_predicates_recursively(previous_stack, obligations.iter()),
686                     None =>
687                         EvaluatedToAmbig,
688                 }
689             }
690
691             ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
692                 // we do not consider region relationships when
693                 // evaluating trait matches
694                 EvaluatedToOk
695             }
696
697             ty::Predicate::ObjectSafe(trait_def_id) => {
698                 if self.tcx().is_object_safe(trait_def_id) {
699                     EvaluatedToOk
700                 } else {
701                     EvaluatedToErr
702                 }
703             }
704
705             ty::Predicate::Projection(ref data) => {
706                 let project_obligation = obligation.with(data.clone());
707                 match project::poly_project_and_unify_type(self, &project_obligation) {
708                     Ok(Some(subobligations)) => {
709                         let result = self.evaluate_predicates_recursively(previous_stack,
710                                                                           subobligations.iter());
711                         if let Some(key) =
712                             ProjectionCacheKey::from_poly_projection_predicate(self, data)
713                         {
714                             self.infcx.projection_cache.borrow_mut().complete(key);
715                         }
716                         result
717                     }
718                     Ok(None) => {
719                         EvaluatedToAmbig
720                     }
721                     Err(_) => {
722                         EvaluatedToErr
723                     }
724                 }
725             }
726
727             ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
728                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
729                     Some(closure_kind) => {
730                         if closure_kind.extends(kind) {
731                             EvaluatedToOk
732                         } else {
733                             EvaluatedToErr
734                         }
735                     }
736                     None => {
737                         EvaluatedToAmbig
738                     }
739                 }
740             }
741
742             ty::Predicate::ConstEvaluatable(def_id, substs) => {
743                 match self.tcx().lift_to_global(&(obligation.param_env, substs)) {
744                     Some((param_env, substs)) => {
745                         match self.tcx().const_eval(param_env.and((def_id, substs))) {
746                             Ok(_) => EvaluatedToOk,
747                             Err(_) => EvaluatedToErr
748                         }
749                     }
750                     None => {
751                         // Inference variables still left in param_env or substs.
752                         EvaluatedToAmbig
753                     }
754                 }
755             }
756         }
757     }
758
759     fn evaluate_trait_predicate_recursively<'o>(&mut self,
760                                                 previous_stack: TraitObligationStackList<'o, 'tcx>,
761                                                 mut obligation: TraitObligation<'tcx>)
762                                                 -> EvaluationResult
763     {
764         debug!("evaluate_trait_predicate_recursively({:?})",
765                obligation);
766
767         if !self.intercrate.is_some() && obligation.is_global() {
768             // If a param env is consistent, global obligations do not depend on its particular
769             // value in order to work, so we can clear out the param env and get better
770             // caching. (If the current param env is inconsistent, we don't care what happens).
771             debug!("evaluate_trait_predicate_recursively({:?}) - in global", obligation);
772             obligation.param_env = ty::ParamEnv::empty(obligation.param_env.reveal);
773         }
774
775         let stack = self.push_stack(previous_stack, &obligation);
776         let fresh_trait_ref = stack.fresh_trait_ref;
777         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
778             debug!("CACHE HIT: EVAL({:?})={:?}",
779                    fresh_trait_ref,
780                    result);
781             return result;
782         }
783
784         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
785
786         debug!("CACHE MISS: EVAL({:?})={:?}",
787                fresh_trait_ref,
788                result);
789         self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
790
791         result
792     }
793
794     fn evaluate_stack<'o>(&mut self,
795                           stack: &TraitObligationStack<'o, 'tcx>)
796                           -> EvaluationResult
797     {
798         // In intercrate mode, whenever any of the types are unbound,
799         // there can always be an impl. Even if there are no impls in
800         // this crate, perhaps the type would be unified with
801         // something from another crate that does provide an impl.
802         //
803         // In intra mode, we must still be conservative. The reason is
804         // that we want to avoid cycles. Imagine an impl like:
805         //
806         //     impl<T:Eq> Eq for Vec<T>
807         //
808         // and a trait reference like `$0 : Eq` where `$0` is an
809         // unbound variable. When we evaluate this trait-reference, we
810         // will unify `$0` with `Vec<$1>` (for some fresh variable
811         // `$1`), on the condition that `$1 : Eq`. We will then wind
812         // up with many candidates (since that are other `Eq` impls
813         // that apply) and try to winnow things down. This results in
814         // a recursive evaluation that `$1 : Eq` -- as you can
815         // imagine, this is just where we started. To avoid that, we
816         // check for unbound variables and return an ambiguous (hence possible)
817         // match if we've seen this trait before.
818         //
819         // This suffices to allow chains like `FnMut` implemented in
820         // terms of `Fn` etc, but we could probably make this more
821         // precise still.
822         let unbound_input_types = stack.fresh_trait_ref.input_types().any(|ty| ty.is_fresh());
823         // this check was an imperfect workaround for a bug n the old
824         // intercrate mode, it should be removed when that goes away.
825         if unbound_input_types &&
826             self.intercrate == Some(IntercrateMode::Issue43355)
827         {
828             debug!("evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
829                    stack.fresh_trait_ref);
830             // Heuristics: show the diagnostics when there are no candidates in crate.
831             if let Ok(candidate_set) = self.assemble_candidates(stack) {
832                 if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
833                     let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
834                     let self_ty = trait_ref.self_ty();
835                     let cause = IntercrateAmbiguityCause::DownstreamCrate {
836                         trait_desc: trait_ref.to_string(),
837                         self_desc: if self_ty.has_concrete_skeleton() {
838                             Some(self_ty.to_string())
839                         } else {
840                             None
841                         },
842                     };
843                     self.intercrate_ambiguity_causes.push(cause);
844                 }
845             }
846             return EvaluatedToAmbig;
847         }
848         if unbound_input_types &&
849               stack.iter().skip(1).any(
850                   |prev| stack.obligation.param_env == prev.obligation.param_env &&
851                       self.match_fresh_trait_refs(&stack.fresh_trait_ref,
852                                                   &prev.fresh_trait_ref))
853         {
854             debug!("evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
855                    stack.fresh_trait_ref);
856             return EvaluatedToUnknown;
857         }
858
859         // If there is any previous entry on the stack that precisely
860         // matches this obligation, then we can assume that the
861         // obligation is satisfied for now (still all other conditions
862         // must be met of course). One obvious case this comes up is
863         // marker traits like `Send`. Think of a linked list:
864         //
865         //    struct List<T> { data: T, next: Option<Box<List<T>>> {
866         //
867         // `Box<List<T>>` will be `Send` if `T` is `Send` and
868         // `Option<Box<List<T>>>` is `Send`, and in turn
869         // `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
870         // `Send`.
871         //
872         // Note that we do this comparison using the `fresh_trait_ref`
873         // fields. Because these have all been skolemized using
874         // `self.freshener`, we can be sure that (a) this will not
875         // affect the inferencer state and (b) that if we see two
876         // skolemized types with the same index, they refer to the
877         // same unbound type variable.
878         if let Some(rec_index) =
879             stack.iter()
880             .skip(1) // skip top-most frame
881             .position(|prev| stack.obligation.param_env == prev.obligation.param_env &&
882                       stack.fresh_trait_ref == prev.fresh_trait_ref)
883         {
884             debug!("evaluate_stack({:?}) --> recursive",
885                    stack.fresh_trait_ref);
886             let cycle = stack.iter().skip(1).take(rec_index+1);
887             let cycle = cycle.map(|stack| ty::Predicate::Trait(stack.obligation.predicate));
888             if self.coinductive_match(cycle) {
889                 debug!("evaluate_stack({:?}) --> recursive, coinductive",
890                        stack.fresh_trait_ref);
891                 return EvaluatedToOk;
892             } else {
893                 debug!("evaluate_stack({:?}) --> recursive, inductive",
894                        stack.fresh_trait_ref);
895                 return EvaluatedToRecur;
896             }
897         }
898
899         match self.candidate_from_obligation(stack) {
900             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
901             Ok(None) => EvaluatedToAmbig,
902             Err(..) => EvaluatedToErr
903         }
904     }
905
906     /// For defaulted traits, we use a co-inductive strategy to solve, so
907     /// that recursion is ok. This routine returns true if the top of the
908     /// stack (`cycle[0]`):
909     ///
910     /// - is a defaulted trait, and
911     /// - it also appears in the backtrace at some position `X`; and,
912     /// - all the predicates at positions `X..` between `X` an the top are
913     ///   also defaulted traits.
914     pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
915         where I: Iterator<Item=ty::Predicate<'tcx>>
916     {
917         let mut cycle = cycle;
918         cycle.all(|predicate| self.coinductive_predicate(predicate))
919     }
920
921     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
922         let result = match predicate {
923             ty::Predicate::Trait(ref data) => {
924                 self.tcx().trait_is_auto(data.def_id())
925             }
926             _ => {
927                 false
928             }
929         };
930         debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
931         result
932     }
933
934     /// Further evaluate `candidate` to decide whether all type parameters match and whether nested
935     /// obligations are met. Returns true if `candidate` remains viable after this further
936     /// scrutiny.
937     fn evaluate_candidate<'o>(&mut self,
938                               stack: &TraitObligationStack<'o, 'tcx>,
939                               candidate: &SelectionCandidate<'tcx>)
940                               -> EvaluationResult
941     {
942         debug!("evaluate_candidate: depth={} candidate={:?}",
943                stack.obligation.recursion_depth, candidate);
944         let result = self.probe(|this, _| {
945             let candidate = (*candidate).clone();
946             match this.confirm_candidate(stack.obligation, candidate) {
947                 Ok(selection) => {
948                     this.evaluate_predicates_recursively(
949                         stack.list(),
950                         selection.nested_obligations().iter())
951                 }
952                 Err(..) => EvaluatedToErr
953             }
954         });
955         debug!("evaluate_candidate: depth={} result={:?}",
956                stack.obligation.recursion_depth, result);
957         result
958     }
959
960     fn check_evaluation_cache(&self,
961                               param_env: ty::ParamEnv<'tcx>,
962                               trait_ref: ty::PolyTraitRef<'tcx>)
963                               -> Option<EvaluationResult>
964     {
965         let tcx = self.tcx();
966         if self.can_use_global_caches(param_env) {
967             let cache = tcx.evaluation_cache.hashmap.borrow();
968             if let Some(cached) = cache.get(&trait_ref) {
969                 return Some(cached.get(tcx));
970             }
971         }
972         self.infcx.evaluation_cache.hashmap
973                                    .borrow()
974                                    .get(&trait_ref)
975                                    .map(|v| v.get(tcx))
976     }
977
978     fn insert_evaluation_cache(&mut self,
979                                param_env: ty::ParamEnv<'tcx>,
980                                trait_ref: ty::PolyTraitRef<'tcx>,
981                                dep_node: DepNodeIndex,
982                                result: EvaluationResult)
983     {
984         // Avoid caching results that depend on more than just the trait-ref
985         // - the stack can create recursion.
986         if result.is_stack_dependent() {
987             return;
988         }
989
990         if self.can_use_global_caches(param_env) {
991             let mut cache = self.tcx().evaluation_cache.hashmap.borrow_mut();
992             if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
993                 cache.insert(trait_ref, WithDepNode::new(dep_node, result));
994                 return;
995             }
996         }
997
998         self.infcx.evaluation_cache.hashmap
999                                    .borrow_mut()
1000                                    .insert(trait_ref, WithDepNode::new(dep_node, result));
1001     }
1002
1003     ///////////////////////////////////////////////////////////////////////////
1004     // CANDIDATE ASSEMBLY
1005     //
1006     // The selection process begins by examining all in-scope impls,
1007     // caller obligations, and so forth and assembling a list of
1008     // candidates. See `README.md` and the `Candidate` type for more
1009     // details.
1010
1011     fn candidate_from_obligation<'o>(&mut self,
1012                                      stack: &TraitObligationStack<'o, 'tcx>)
1013                                      -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
1014     {
1015         // Watch out for overflow. This intentionally bypasses (and does
1016         // not update) the cache.
1017         let recursion_limit = self.infcx.tcx.sess.recursion_limit.get();
1018         if stack.obligation.recursion_depth >= recursion_limit {
1019             self.infcx().report_overflow_error(&stack.obligation, true);
1020         }
1021
1022         // Check the cache. Note that we skolemize the trait-ref
1023         // separately rather than using `stack.fresh_trait_ref` -- this
1024         // is because we want the unbound variables to be replaced
1025         // with fresh skolemized types starting from index 0.
1026         let cache_fresh_trait_pred =
1027             self.infcx.freshen(stack.obligation.predicate.clone());
1028         debug!("candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
1029                cache_fresh_trait_pred,
1030                stack);
1031         assert!(!stack.obligation.predicate.has_escaping_regions());
1032
1033         if let Some(c) = self.check_candidate_cache(stack.obligation.param_env,
1034                                                     &cache_fresh_trait_pred) {
1035             debug!("CACHE HIT: SELECT({:?})={:?}",
1036                    cache_fresh_trait_pred,
1037                    c);
1038             return c;
1039         }
1040
1041         // If no match, compute result and insert into cache.
1042         let (candidate, dep_node) = self.in_task(|this| {
1043             this.candidate_from_obligation_no_cache(stack)
1044         });
1045
1046         debug!("CACHE MISS: SELECT({:?})={:?}",
1047                cache_fresh_trait_pred, candidate);
1048         self.insert_candidate_cache(stack.obligation.param_env,
1049                                     cache_fresh_trait_pred,
1050                                     dep_node,
1051                                     candidate.clone());
1052         candidate
1053     }
1054
1055     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1056         where OP: FnOnce(&mut Self) -> R
1057     {
1058         let (result, dep_node) = self.tcx().dep_graph.with_anon_task(DepKind::TraitSelect, || {
1059             op(self)
1060         });
1061         self.tcx().dep_graph.read_index(dep_node);
1062         (result, dep_node)
1063     }
1064
1065     // Treat negative impls as unimplemented
1066     fn filter_negative_impls(&self, candidate: SelectionCandidate<'tcx>)
1067                              -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1068         if let ImplCandidate(def_id) = candidate {
1069             if self.tcx().impl_polarity(def_id) == hir::ImplPolarity::Negative {
1070                 return Err(Unimplemented)
1071             }
1072         }
1073         Ok(Some(candidate))
1074     }
1075
1076     fn candidate_from_obligation_no_cache<'o>(&mut self,
1077                                               stack: &TraitObligationStack<'o, 'tcx>)
1078                                               -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
1079     {
1080         if stack.obligation.predicate.references_error() {
1081             // If we encounter a `TyError`, we generally prefer the
1082             // most "optimistic" result in response -- that is, the
1083             // one least likely to report downstream errors. But
1084             // because this routine is shared by coherence and by
1085             // trait selection, there isn't an obvious "right" choice
1086             // here in that respect, so we opt to just return
1087             // ambiguity and let the upstream clients sort it out.
1088             return Ok(None);
1089         }
1090
1091         match self.is_knowable(stack) {
1092             None => {}
1093             Some(conflict) => {
1094                 debug!("coherence stage: not knowable");
1095                 // Heuristics: show the diagnostics when there are no candidates in crate.
1096                 let candidate_set = self.assemble_candidates(stack)?;
1097                 if !candidate_set.ambiguous && candidate_set.vec.iter().all(|c| {
1098                     !self.evaluate_candidate(stack, &c).may_apply()
1099                 }) {
1100                     let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1101                     let self_ty = trait_ref.self_ty();
1102                     let trait_desc = trait_ref.to_string();
1103                     let self_desc = if self_ty.has_concrete_skeleton() {
1104                         Some(self_ty.to_string())
1105                     } else {
1106                         None
1107                     };
1108                     let cause = if let Conflict::Upstream = conflict {
1109                         IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
1110                     } else {
1111                         IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
1112                     };
1113                     self.intercrate_ambiguity_causes.push(cause);
1114                 }
1115                 return Ok(None);
1116             }
1117         }
1118
1119         let candidate_set = self.assemble_candidates(stack)?;
1120
1121         if candidate_set.ambiguous {
1122             debug!("candidate set contains ambig");
1123             return Ok(None);
1124         }
1125
1126         let mut candidates = candidate_set.vec;
1127
1128         debug!("assembled {} candidates for {:?}: {:?}",
1129                candidates.len(),
1130                stack,
1131                candidates);
1132
1133         // At this point, we know that each of the entries in the
1134         // candidate set is *individually* applicable. Now we have to
1135         // figure out if they contain mutual incompatibilities. This
1136         // frequently arises if we have an unconstrained input type --
1137         // for example, we are looking for $0:Eq where $0 is some
1138         // unconstrained type variable. In that case, we'll get a
1139         // candidate which assumes $0 == int, one that assumes $0 ==
1140         // usize, etc. This spells an ambiguity.
1141
1142         // If there is more than one candidate, first winnow them down
1143         // by considering extra conditions (nested obligations and so
1144         // forth). We don't winnow if there is exactly one
1145         // candidate. This is a relatively minor distinction but it
1146         // can lead to better inference and error-reporting. An
1147         // example would be if there was an impl:
1148         //
1149         //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
1150         //
1151         // and we were to see some code `foo.push_clone()` where `boo`
1152         // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
1153         // we were to winnow, we'd wind up with zero candidates.
1154         // Instead, we select the right impl now but report `Bar does
1155         // not implement Clone`.
1156         if candidates.len() == 1 {
1157             return self.filter_negative_impls(candidates.pop().unwrap());
1158         }
1159
1160         // Winnow, but record the exact outcome of evaluation, which
1161         // is needed for specialization.
1162         let mut candidates: Vec<_> = candidates.into_iter().filter_map(|c| {
1163             let eval = self.evaluate_candidate(stack, &c);
1164             if eval.may_apply() {
1165                 Some(EvaluatedCandidate {
1166                     candidate: c,
1167                     evaluation: eval,
1168                 })
1169             } else {
1170                 None
1171             }
1172         }).collect();
1173
1174         // If there are STILL multiple candidate, we can further
1175         // reduce the list by dropping duplicates -- including
1176         // resolving specializations.
1177         if candidates.len() > 1 {
1178             let mut i = 0;
1179             while i < candidates.len() {
1180                 let is_dup =
1181                     (0..candidates.len())
1182                     .filter(|&j| i != j)
1183                     .any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
1184                                                                           &candidates[j]));
1185                 if is_dup {
1186                     debug!("Dropping candidate #{}/{}: {:?}",
1187                            i, candidates.len(), candidates[i]);
1188                     candidates.swap_remove(i);
1189                 } else {
1190                     debug!("Retaining candidate #{}/{}: {:?}",
1191                            i, candidates.len(), candidates[i]);
1192                     i += 1;
1193
1194                     // If there are *STILL* multiple candidates, give up
1195                     // and report ambiguity.
1196                     if i > 1 {
1197                         debug!("multiple matches, ambig");
1198                         return Ok(None);
1199                     }
1200                 }
1201             }
1202         }
1203
1204         // If there are *NO* candidates, then there are no impls --
1205         // that we know of, anyway. Note that in the case where there
1206         // are unbound type variables within the obligation, it might
1207         // be the case that you could still satisfy the obligation
1208         // from another crate by instantiating the type variables with
1209         // a type from another crate that does have an impl. This case
1210         // is checked for in `evaluate_stack` (and hence users
1211         // who might care about this case, like coherence, should use
1212         // that function).
1213         if candidates.is_empty() {
1214             return Err(Unimplemented);
1215         }
1216
1217         // Just one candidate left.
1218         self.filter_negative_impls(candidates.pop().unwrap().candidate)
1219     }
1220
1221     fn is_knowable<'o>(&mut self,
1222                        stack: &TraitObligationStack<'o, 'tcx>)
1223                        -> Option<Conflict>
1224     {
1225         debug!("is_knowable(intercrate={:?})", self.intercrate);
1226
1227         if !self.intercrate.is_some() {
1228             return None;
1229         }
1230
1231         let obligation = &stack.obligation;
1232         let predicate = self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
1233
1234         // ok to skip binder because of the nature of the
1235         // trait-ref-is-knowable check, which does not care about
1236         // bound regions
1237         let trait_ref = predicate.skip_binder().trait_ref;
1238
1239         let result = coherence::trait_ref_is_knowable(self.tcx(), trait_ref);
1240         if let (Some(Conflict::Downstream { used_to_be_broken: true }),
1241                 Some(IntercrateMode::Issue43355)) = (result, self.intercrate) {
1242             debug!("is_knowable: IGNORING conflict to be bug-compatible with #43355");
1243             None
1244         } else {
1245             result
1246         }
1247     }
1248
1249     /// Returns true if the global caches can be used.
1250     /// Do note that if the type itself is not in the
1251     /// global tcx, the local caches will be used.
1252     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1253         // If there are any where-clauses in scope, then we always use
1254         // a cache local to this particular scope. Otherwise, we
1255         // switch to a global cache. We used to try and draw
1256         // finer-grained distinctions, but that led to a serious of
1257         // annoying and weird bugs like #22019 and #18290. This simple
1258         // rule seems to be pretty clearly safe and also still retains
1259         // a very high hit rate (~95% when compiling rustc).
1260         if !param_env.caller_bounds.is_empty() {
1261             return false;
1262         }
1263
1264         // Avoid using the master cache during coherence and just rely
1265         // on the local cache. This effectively disables caching
1266         // during coherence. It is really just a simplification to
1267         // avoid us having to fear that coherence results "pollute"
1268         // the master cache. Since coherence executes pretty quickly,
1269         // it's not worth going to more trouble to increase the
1270         // hit-rate I don't think.
1271         if self.intercrate.is_some() {
1272             return false;
1273         }
1274
1275         // Otherwise, we can use the global cache.
1276         true
1277     }
1278
1279     fn check_candidate_cache(&mut self,
1280                              param_env: ty::ParamEnv<'tcx>,
1281                              cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
1282                              -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
1283     {
1284         let tcx = self.tcx();
1285         let trait_ref = &cache_fresh_trait_pred.0.trait_ref;
1286         if self.can_use_global_caches(param_env) {
1287             let cache = tcx.selection_cache.hashmap.borrow();
1288             if let Some(cached) = cache.get(&trait_ref) {
1289                 return Some(cached.get(tcx));
1290             }
1291         }
1292         self.infcx.selection_cache.hashmap
1293                                   .borrow()
1294                                   .get(trait_ref)
1295                                   .map(|v| v.get(tcx))
1296     }
1297
1298     fn insert_candidate_cache(&mut self,
1299                               param_env: ty::ParamEnv<'tcx>,
1300                               cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1301                               dep_node: DepNodeIndex,
1302                               candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
1303     {
1304         let tcx = self.tcx();
1305         let trait_ref = cache_fresh_trait_pred.0.trait_ref;
1306         if self.can_use_global_caches(param_env) {
1307             let mut cache = tcx.selection_cache.hashmap.borrow_mut();
1308             if let Some(trait_ref) = tcx.lift_to_global(&trait_ref) {
1309                 if let Some(candidate) = tcx.lift_to_global(&candidate) {
1310                     cache.insert(trait_ref, WithDepNode::new(dep_node, candidate));
1311                     return;
1312                 }
1313             }
1314         }
1315
1316         self.infcx.selection_cache.hashmap
1317                                   .borrow_mut()
1318                                   .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1319     }
1320
1321     fn assemble_candidates<'o>(&mut self,
1322                                stack: &TraitObligationStack<'o, 'tcx>)
1323                                -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
1324     {
1325         let TraitObligationStack { obligation, .. } = *stack;
1326         let ref obligation = Obligation {
1327             param_env: obligation.param_env,
1328             cause: obligation.cause.clone(),
1329             recursion_depth: obligation.recursion_depth,
1330             predicate: self.infcx().resolve_type_vars_if_possible(&obligation.predicate)
1331         };
1332
1333         if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1334             // Self is a type variable (e.g. `_: AsRef<str>`).
1335             //
1336             // This is somewhat problematic, as the current scheme can't really
1337             // handle it turning to be a projection. This does end up as truly
1338             // ambiguous in most cases anyway.
1339             //
1340             // Take the fast path out - this also improves
1341             // performance by preventing assemble_candidates_from_impls from
1342             // matching every impl for this trait.
1343             return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
1344         }
1345
1346         let mut candidates = SelectionCandidateSet {
1347             vec: Vec::new(),
1348             ambiguous: false
1349         };
1350
1351         // Other bounds. Consider both in-scope bounds from fn decl
1352         // and applicable impls. There is a certain set of precedence rules here.
1353
1354         let def_id = obligation.predicate.def_id();
1355         let lang_items = self.tcx().lang_items();
1356         if lang_items.copy_trait() == Some(def_id) {
1357             debug!("obligation self ty is {:?}",
1358                    obligation.predicate.0.self_ty());
1359
1360             // User-defined copy impls are permitted, but only for
1361             // structs and enums.
1362             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1363
1364             // For other types, we'll use the builtin rules.
1365             let copy_conditions = self.copy_clone_conditions(obligation);
1366             self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1367         } else if lang_items.sized_trait() == Some(def_id) {
1368             // Sized is never implementable by end-users, it is
1369             // always automatically computed.
1370             let sized_conditions = self.sized_conditions(obligation);
1371             self.assemble_builtin_bound_candidates(sized_conditions,
1372                                                    &mut candidates)?;
1373          } else if lang_items.unsize_trait() == Some(def_id) {
1374              self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1375          } else {
1376              if lang_items.clone_trait() == Some(def_id) {
1377                  // Same builtin conditions as `Copy`, i.e. every type which has builtin support
1378                  // for `Copy` also has builtin support for `Clone`, + tuples and arrays of `Clone`
1379                  // types have builtin support for `Clone`.
1380                  let clone_conditions = self.copy_clone_conditions(obligation);
1381                  self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
1382              }
1383
1384              self.assemble_generator_candidates(obligation, &mut candidates)?;
1385              self.assemble_closure_candidates(obligation, &mut candidates)?;
1386              self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1387              self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1388              self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1389         }
1390
1391         self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1392         self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1393         // Auto implementations have lower priority, so we only
1394         // consider triggering a default if there is no other impl that can apply.
1395         if candidates.vec.is_empty() {
1396             self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
1397         }
1398         debug!("candidate list size: {}", candidates.vec.len());
1399         Ok(candidates)
1400     }
1401
1402     fn assemble_candidates_from_projected_tys(&mut self,
1403                                               obligation: &TraitObligation<'tcx>,
1404                                               candidates: &mut SelectionCandidateSet<'tcx>)
1405     {
1406         debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1407
1408         // before we go into the whole skolemization thing, just
1409         // quickly check if the self-type is a projection at all.
1410         match obligation.predicate.0.trait_ref.self_ty().sty {
1411             ty::TyProjection(_) | ty::TyAnon(..) => {}
1412             ty::TyInfer(ty::TyVar(_)) => {
1413                 span_bug!(obligation.cause.span,
1414                     "Self=_ should have been handled by assemble_candidates");
1415             }
1416             _ => return
1417         }
1418
1419         let result = self.probe(|this, snapshot| {
1420             this.match_projection_obligation_against_definition_bounds(obligation,
1421                                                                        snapshot)
1422         });
1423
1424         if result {
1425             candidates.vec.push(ProjectionCandidate);
1426         }
1427     }
1428
1429     fn match_projection_obligation_against_definition_bounds(
1430         &mut self,
1431         obligation: &TraitObligation<'tcx>,
1432         snapshot: &infer::CombinedSnapshot)
1433         -> bool
1434     {
1435         let poly_trait_predicate =
1436             self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
1437         let (skol_trait_predicate, skol_map) =
1438             self.infcx().skolemize_late_bound_regions(&poly_trait_predicate, snapshot);
1439         debug!("match_projection_obligation_against_definition_bounds: \
1440                 skol_trait_predicate={:?} skol_map={:?}",
1441                skol_trait_predicate,
1442                skol_map);
1443
1444         let (def_id, substs) = match skol_trait_predicate.trait_ref.self_ty().sty {
1445             ty::TyProjection(ref data) =>
1446                 (data.trait_ref(self.tcx()).def_id, data.substs),
1447             ty::TyAnon(def_id, substs) => (def_id, substs),
1448             _ => {
1449                 span_bug!(
1450                     obligation.cause.span,
1451                     "match_projection_obligation_against_definition_bounds() called \
1452                      but self-ty not a projection: {:?}",
1453                     skol_trait_predicate.trait_ref.self_ty());
1454             }
1455         };
1456         debug!("match_projection_obligation_against_definition_bounds: \
1457                 def_id={:?}, substs={:?}",
1458                def_id, substs);
1459
1460         let predicates_of = self.tcx().predicates_of(def_id);
1461         let bounds = predicates_of.instantiate(self.tcx(), substs);
1462         debug!("match_projection_obligation_against_definition_bounds: \
1463                 bounds={:?}",
1464                bounds);
1465
1466         let matching_bound =
1467             util::elaborate_predicates(self.tcx(), bounds.predicates)
1468             .filter_to_traits()
1469             .find(
1470                 |bound| self.probe(
1471                     |this, _| this.match_projection(obligation,
1472                                                     bound.clone(),
1473                                                     skol_trait_predicate.trait_ref.clone(),
1474                                                     &skol_map,
1475                                                     snapshot)));
1476
1477         debug!("match_projection_obligation_against_definition_bounds: \
1478                 matching_bound={:?}",
1479                matching_bound);
1480         match matching_bound {
1481             None => false,
1482             Some(bound) => {
1483                 // Repeat the successful match, if any, this time outside of a probe.
1484                 let result = self.match_projection(obligation,
1485                                                    bound,
1486                                                    skol_trait_predicate.trait_ref.clone(),
1487                                                    &skol_map,
1488                                                    snapshot);
1489
1490                 self.infcx.pop_skolemized(skol_map, snapshot);
1491
1492                 assert!(result);
1493                 true
1494             }
1495         }
1496     }
1497
1498     fn match_projection(&mut self,
1499                         obligation: &TraitObligation<'tcx>,
1500                         trait_bound: ty::PolyTraitRef<'tcx>,
1501                         skol_trait_ref: ty::TraitRef<'tcx>,
1502                         skol_map: &infer::SkolemizationMap<'tcx>,
1503                         snapshot: &infer::CombinedSnapshot)
1504                         -> bool
1505     {
1506         assert!(!skol_trait_ref.has_escaping_regions());
1507         match self.infcx.at(&obligation.cause, obligation.param_env)
1508                         .sup(ty::Binder(skol_trait_ref), trait_bound) {
1509             Ok(InferOk { obligations, .. }) => {
1510                 self.inferred_obligations.extend(obligations);
1511             }
1512             Err(_) => { return false; }
1513         }
1514
1515         self.infcx.leak_check(false, obligation.cause.span, skol_map, snapshot).is_ok()
1516     }
1517
1518     /// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
1519     /// supplied to find out whether it is listed among them.
1520     ///
1521     /// Never affects inference environment.
1522     fn assemble_candidates_from_caller_bounds<'o>(&mut self,
1523                                                   stack: &TraitObligationStack<'o, 'tcx>,
1524                                                   candidates: &mut SelectionCandidateSet<'tcx>)
1525                                                   -> Result<(),SelectionError<'tcx>>
1526     {
1527         debug!("assemble_candidates_from_caller_bounds({:?})",
1528                stack.obligation);
1529
1530         let all_bounds =
1531             stack.obligation.param_env.caller_bounds
1532                                       .iter()
1533                                       .filter_map(|o| o.to_opt_poly_trait_ref());
1534
1535         // micro-optimization: filter out predicates relating to different
1536         // traits.
1537         let matching_bounds =
1538             all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
1539
1540         let matching_bounds =
1541             matching_bounds.filter(
1542                 |bound| self.evaluate_where_clause(stack, bound.clone()).may_apply());
1543
1544         let param_candidates =
1545             matching_bounds.map(|bound| ParamCandidate(bound));
1546
1547         candidates.vec.extend(param_candidates);
1548
1549         Ok(())
1550     }
1551
1552     fn evaluate_where_clause<'o>(&mut self,
1553                                  stack: &TraitObligationStack<'o, 'tcx>,
1554                                  where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
1555                                  -> EvaluationResult
1556     {
1557         self.probe(move |this, _| {
1558             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1559                 Ok(obligations) => {
1560                     this.evaluate_predicates_recursively(stack.list(), obligations.iter())
1561                 }
1562                 Err(()) => EvaluatedToErr
1563             }
1564         })
1565     }
1566
1567     fn assemble_generator_candidates(&mut self,
1568                                    obligation: &TraitObligation<'tcx>,
1569                                    candidates: &mut SelectionCandidateSet<'tcx>)
1570                                    -> Result<(),SelectionError<'tcx>>
1571     {
1572         if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
1573             return Ok(());
1574         }
1575
1576         // ok to skip binder because the substs on generator types never
1577         // touch bound regions, they just capture the in-scope
1578         // type/region parameters
1579         let self_ty = *obligation.self_ty().skip_binder();
1580         match self_ty.sty {
1581             ty::TyGenerator(..) => {
1582                 debug!("assemble_generator_candidates: self_ty={:?} obligation={:?}",
1583                        self_ty,
1584                        obligation);
1585
1586                 candidates.vec.push(GeneratorCandidate);
1587                 Ok(())
1588             }
1589             ty::TyInfer(ty::TyVar(_)) => {
1590                 debug!("assemble_generator_candidates: ambiguous self-type");
1591                 candidates.ambiguous = true;
1592                 return Ok(());
1593             }
1594             _ => { return Ok(()); }
1595         }
1596     }
1597
1598     /// Check for the artificial impl that the compiler will create for an obligation like `X :
1599     /// FnMut<..>` where `X` is a closure type.
1600     ///
1601     /// Note: the type parameters on a closure candidate are modeled as *output* type
1602     /// parameters and hence do not affect whether this trait is a match or not. They will be
1603     /// unified during the confirmation step.
1604     fn assemble_closure_candidates(&mut self,
1605                                    obligation: &TraitObligation<'tcx>,
1606                                    candidates: &mut SelectionCandidateSet<'tcx>)
1607                                    -> Result<(),SelectionError<'tcx>>
1608     {
1609         let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.0.def_id()) {
1610             Some(k) => k,
1611             None => { return Ok(()); }
1612         };
1613
1614         // ok to skip binder because the substs on closure types never
1615         // touch bound regions, they just capture the in-scope
1616         // type/region parameters
1617         match obligation.self_ty().skip_binder().sty {
1618             ty::TyClosure(closure_def_id, closure_substs) => {
1619                 debug!("assemble_unboxed_candidates: kind={:?} obligation={:?}",
1620                        kind, obligation);
1621                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
1622                     Some(closure_kind) => {
1623                         debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
1624                         if closure_kind.extends(kind) {
1625                             candidates.vec.push(ClosureCandidate);
1626                         }
1627                     }
1628                     None => {
1629                         debug!("assemble_unboxed_candidates: closure_kind not yet known");
1630                         candidates.vec.push(ClosureCandidate);
1631                     }
1632                 };
1633                 Ok(())
1634             }
1635             ty::TyInfer(ty::TyVar(_)) => {
1636                 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
1637                 candidates.ambiguous = true;
1638                 return Ok(());
1639             }
1640             _ => { return Ok(()); }
1641         }
1642     }
1643
1644     /// Implement one of the `Fn()` family for a fn pointer.
1645     fn assemble_fn_pointer_candidates(&mut self,
1646                                       obligation: &TraitObligation<'tcx>,
1647                                       candidates: &mut SelectionCandidateSet<'tcx>)
1648                                       -> Result<(),SelectionError<'tcx>>
1649     {
1650         // We provide impl of all fn traits for fn pointers.
1651         if self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()).is_none() {
1652             return Ok(());
1653         }
1654
1655         // ok to skip binder because what we are inspecting doesn't involve bound regions
1656         let self_ty = *obligation.self_ty().skip_binder();
1657         match self_ty.sty {
1658             ty::TyInfer(ty::TyVar(_)) => {
1659                 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
1660                 candidates.ambiguous = true; // could wind up being a fn() type
1661             }
1662
1663             // provide an impl, but only for suitable `fn` pointers
1664             ty::TyFnDef(..) | ty::TyFnPtr(_) => {
1665                 if let ty::Binder(ty::FnSig {
1666                     unsafety: hir::Unsafety::Normal,
1667                     abi: Abi::Rust,
1668                     variadic: false,
1669                     ..
1670                 }) = self_ty.fn_sig(self.tcx()) {
1671                     candidates.vec.push(FnPointerCandidate);
1672                 }
1673             }
1674
1675             _ => { }
1676         }
1677
1678         Ok(())
1679     }
1680
1681     /// Search for impls that might apply to `obligation`.
1682     fn assemble_candidates_from_impls(&mut self,
1683                                       obligation: &TraitObligation<'tcx>,
1684                                       candidates: &mut SelectionCandidateSet<'tcx>)
1685                                       -> Result<(), SelectionError<'tcx>>
1686     {
1687         debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
1688
1689         self.tcx().for_each_relevant_impl(
1690             obligation.predicate.def_id(),
1691             obligation.predicate.0.trait_ref.self_ty(),
1692             |impl_def_id| {
1693                 self.probe(|this, snapshot| { /* [1] */
1694                     match this.match_impl(impl_def_id, obligation, snapshot) {
1695                         Ok(skol_map) => {
1696                             candidates.vec.push(ImplCandidate(impl_def_id));
1697
1698                             // NB: we can safely drop the skol map
1699                             // since we are in a probe [1]
1700                             mem::drop(skol_map);
1701                         }
1702                         Err(_) => { }
1703                     }
1704                 });
1705             }
1706         );
1707
1708         Ok(())
1709     }
1710
1711     fn assemble_candidates_from_auto_impls(&mut self,
1712                                               obligation: &TraitObligation<'tcx>,
1713                                               candidates: &mut SelectionCandidateSet<'tcx>)
1714                                               -> Result<(), SelectionError<'tcx>>
1715     {
1716         // OK to skip binder here because the tests we do below do not involve bound regions
1717         let self_ty = *obligation.self_ty().skip_binder();
1718         debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
1719
1720         let def_id = obligation.predicate.def_id();
1721
1722         if self.tcx().trait_is_auto(def_id) {
1723             match self_ty.sty {
1724                 ty::TyDynamic(..) => {
1725                     // For object types, we don't know what the closed
1726                     // over types are. This means we conservatively
1727                     // say nothing; a candidate may be added by
1728                     // `assemble_candidates_from_object_ty`.
1729                 }
1730                 ty::TyForeign(..) => {
1731                     // Since the contents of foreign types is unknown,
1732                     // we don't add any `..` impl. Default traits could
1733                     // still be provided by a manual implementation for
1734                     // this trait and type.
1735                 }
1736                 ty::TyParam(..) |
1737                 ty::TyProjection(..) => {
1738                     // In these cases, we don't know what the actual
1739                     // type is.  Therefore, we cannot break it down
1740                     // into its constituent types. So we don't
1741                     // consider the `..` impl but instead just add no
1742                     // candidates: this means that typeck will only
1743                     // succeed if there is another reason to believe
1744                     // that this obligation holds. That could be a
1745                     // where-clause or, in the case of an object type,
1746                     // it could be that the object type lists the
1747                     // trait (e.g. `Foo+Send : Send`). See
1748                     // `compile-fail/typeck-default-trait-impl-send-param.rs`
1749                     // for an example of a test case that exercises
1750                     // this path.
1751                 }
1752                 ty::TyInfer(ty::TyVar(_)) => {
1753                     // the auto impl might apply, we don't know
1754                     candidates.ambiguous = true;
1755                 }
1756                 _ => {
1757                     candidates.vec.push(AutoImplCandidate(def_id.clone()))
1758                 }
1759             }
1760         }
1761
1762         Ok(())
1763     }
1764
1765     /// Search for impls that might apply to `obligation`.
1766     fn assemble_candidates_from_object_ty(&mut self,
1767                                           obligation: &TraitObligation<'tcx>,
1768                                           candidates: &mut SelectionCandidateSet<'tcx>)
1769     {
1770         debug!("assemble_candidates_from_object_ty(self_ty={:?})",
1771                obligation.self_ty().skip_binder());
1772
1773         // Object-safety candidates are only applicable to object-safe
1774         // traits. Including this check is useful because it helps
1775         // inference in cases of traits like `BorrowFrom`, which are
1776         // not object-safe, and which rely on being able to infer the
1777         // self-type from one of the other inputs. Without this check,
1778         // these cases wind up being considered ambiguous due to a
1779         // (spurious) ambiguity introduced here.
1780         let predicate_trait_ref = obligation.predicate.to_poly_trait_ref();
1781         if !self.tcx().is_object_safe(predicate_trait_ref.def_id()) {
1782             return;
1783         }
1784
1785         self.probe(|this, _snapshot| {
1786             // the code below doesn't care about regions, and the
1787             // self-ty here doesn't escape this probe, so just erase
1788             // any LBR.
1789             let self_ty = this.tcx().erase_late_bound_regions(&obligation.self_ty());
1790             let poly_trait_ref = match self_ty.sty {
1791                 ty::TyDynamic(ref data, ..) => {
1792                     if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
1793                         debug!("assemble_candidates_from_object_ty: matched builtin bound, \
1794                                     pushing candidate");
1795                         candidates.vec.push(BuiltinObjectCandidate);
1796                         return;
1797                     }
1798
1799                     match data.principal() {
1800                         Some(p) => p.with_self_ty(this.tcx(), self_ty),
1801                         None => return,
1802                     }
1803                 }
1804                 ty::TyInfer(ty::TyVar(_)) => {
1805                     debug!("assemble_candidates_from_object_ty: ambiguous");
1806                     candidates.ambiguous = true; // could wind up being an object type
1807                     return;
1808                 }
1809                 _ => {
1810                     return;
1811                 }
1812             };
1813
1814             debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}",
1815                    poly_trait_ref);
1816
1817             // Count only those upcast versions that match the trait-ref
1818             // we are looking for. Specifically, do not only check for the
1819             // correct trait, but also the correct type parameters.
1820             // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
1821             // but `Foo` is declared as `trait Foo : Bar<u32>`.
1822             let upcast_trait_refs =
1823                 util::supertraits(this.tcx(), poly_trait_ref)
1824                 .filter(|upcast_trait_ref| {
1825                     this.probe(|this, _| {
1826                         let upcast_trait_ref = upcast_trait_ref.clone();
1827                         this.match_poly_trait_ref(obligation, upcast_trait_ref).is_ok()
1828                     })
1829                 })
1830                 .count();
1831
1832             if upcast_trait_refs > 1 {
1833                 // can be upcast in many ways; need more type information
1834                 candidates.ambiguous = true;
1835             } else if upcast_trait_refs == 1 {
1836                 candidates.vec.push(ObjectCandidate);
1837             }
1838         })
1839     }
1840
1841     /// Search for unsizing that might apply to `obligation`.
1842     fn assemble_candidates_for_unsizing(&mut self,
1843                                         obligation: &TraitObligation<'tcx>,
1844                                         candidates: &mut SelectionCandidateSet<'tcx>) {
1845         // We currently never consider higher-ranked obligations e.g.
1846         // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
1847         // because they are a priori invalid, and we could potentially add support
1848         // for them later, it's just that there isn't really a strong need for it.
1849         // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
1850         // impl, and those are generally applied to concrete types.
1851         //
1852         // That said, one might try to write a fn with a where clause like
1853         //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
1854         // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
1855         // Still, you'd be more likely to write that where clause as
1856         //     T: Trait
1857         // so it seems ok if we (conservatively) fail to accept that `Unsize`
1858         // obligation above. Should be possible to extend this in the future.
1859         let source = match obligation.self_ty().no_late_bound_regions() {
1860             Some(t) => t,
1861             None => {
1862                 // Don't add any candidates if there are bound regions.
1863                 return;
1864             }
1865         };
1866         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
1867
1868         debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})",
1869                source, target);
1870
1871         let may_apply = match (&source.sty, &target.sty) {
1872             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
1873             (&ty::TyDynamic(ref data_a, ..), &ty::TyDynamic(ref data_b, ..)) => {
1874                 // Upcasts permit two things:
1875                 //
1876                 // 1. Dropping builtin bounds, e.g. `Foo+Send` to `Foo`
1877                 // 2. Tightening the region bound, e.g. `Foo+'a` to `Foo+'b` if `'a : 'b`
1878                 //
1879                 // Note that neither of these changes requires any
1880                 // change at runtime.  Eventually this will be
1881                 // generalized.
1882                 //
1883                 // We always upcast when we can because of reason
1884                 // #2 (region bounds).
1885                 match (data_a.principal(), data_b.principal()) {
1886                     (Some(a), Some(b)) => a.def_id() == b.def_id() &&
1887                         data_b.auto_traits()
1888                             // All of a's auto traits need to be in b's auto traits.
1889                             .all(|b| data_a.auto_traits().any(|a| a == b)),
1890                     _ => false
1891                 }
1892             }
1893
1894             // T -> Trait.
1895             (_, &ty::TyDynamic(..)) => true,
1896
1897             // Ambiguous handling is below T -> Trait, because inference
1898             // variables can still implement Unsize<Trait> and nested
1899             // obligations will have the final say (likely deferred).
1900             (&ty::TyInfer(ty::TyVar(_)), _) |
1901             (_, &ty::TyInfer(ty::TyVar(_))) => {
1902                 debug!("assemble_candidates_for_unsizing: ambiguous");
1903                 candidates.ambiguous = true;
1904                 false
1905             }
1906
1907             // [T; n] -> [T].
1908             (&ty::TyArray(..), &ty::TySlice(_)) => true,
1909
1910             // Struct<T> -> Struct<U>.
1911             (&ty::TyAdt(def_id_a, _), &ty::TyAdt(def_id_b, _)) if def_id_a.is_struct() => {
1912                 def_id_a == def_id_b
1913             }
1914
1915             // (.., T) -> (.., U).
1916             (&ty::TyTuple(tys_a, _), &ty::TyTuple(tys_b, _)) => {
1917                 tys_a.len() == tys_b.len()
1918             }
1919
1920             _ => false
1921         };
1922
1923         if may_apply {
1924             candidates.vec.push(BuiltinUnsizeCandidate);
1925         }
1926     }
1927
1928     ///////////////////////////////////////////////////////////////////////////
1929     // WINNOW
1930     //
1931     // Winnowing is the process of attempting to resolve ambiguity by
1932     // probing further. During the winnowing process, we unify all
1933     // type variables (ignoring skolemization) and then we also
1934     // attempt to evaluate recursive bounds to see if they are
1935     // satisfied.
1936
1937     /// Returns true if `candidate_i` should be dropped in favor of
1938     /// `candidate_j`.  Generally speaking we will drop duplicate
1939     /// candidates and prefer where-clause candidates.
1940     /// Returns true if `victim` should be dropped in favor of
1941     /// `other`.  Generally speaking we will drop duplicate
1942     /// candidates and prefer where-clause candidates.
1943     ///
1944     /// See the comment for "SelectionCandidate" for more details.
1945     fn candidate_should_be_dropped_in_favor_of<'o>(
1946         &mut self,
1947         victim: &EvaluatedCandidate<'tcx>,
1948         other: &EvaluatedCandidate<'tcx>)
1949         -> bool
1950     {
1951         if victim.candidate == other.candidate {
1952             return true;
1953         }
1954
1955         match other.candidate {
1956             ObjectCandidate |
1957             ParamCandidate(_) | ProjectionCandidate => match victim.candidate {
1958                 AutoImplCandidate(..) => {
1959                     bug!(
1960                         "default implementations shouldn't be recorded \
1961                          when there are other valid candidates");
1962                 }
1963                 ImplCandidate(..) |
1964                 ClosureCandidate |
1965                 GeneratorCandidate |
1966                 FnPointerCandidate |
1967                 BuiltinObjectCandidate |
1968                 BuiltinUnsizeCandidate |
1969                 BuiltinCandidate { .. } => {
1970                     // We have a where-clause so don't go around looking
1971                     // for impls.
1972                     true
1973                 }
1974                 ObjectCandidate |
1975                 ProjectionCandidate => {
1976                     // Arbitrarily give param candidates priority
1977                     // over projection and object candidates.
1978                     true
1979                 },
1980                 ParamCandidate(..) => false,
1981             },
1982             ImplCandidate(other_def) => {
1983                 // See if we can toss out `victim` based on specialization.
1984                 // This requires us to know *for sure* that the `other` impl applies
1985                 // i.e. EvaluatedToOk:
1986                 if other.evaluation == EvaluatedToOk {
1987                     if let ImplCandidate(victim_def) = victim.candidate {
1988                         let tcx = self.tcx().global_tcx();
1989                         return tcx.specializes((other_def, victim_def)) ||
1990                             tcx.impls_are_allowed_to_overlap(other_def, victim_def);
1991                     }
1992                 }
1993
1994                 false
1995             },
1996             _ => false
1997         }
1998     }
1999
2000     ///////////////////////////////////////////////////////////////////////////
2001     // BUILTIN BOUNDS
2002     //
2003     // These cover the traits that are built-in to the language
2004     // itself.  This includes `Copy` and `Sized` for sure. For the
2005     // moment, it also includes `Send` / `Sync` and a few others, but
2006     // those will hopefully change to library-defined traits in the
2007     // future.
2008
2009     // HACK: if this returns an error, selection exits without considering
2010     // other impls.
2011     fn assemble_builtin_bound_candidates<'o>(&mut self,
2012                                              conditions: BuiltinImplConditions<'tcx>,
2013                                              candidates: &mut SelectionCandidateSet<'tcx>)
2014                                              -> Result<(),SelectionError<'tcx>>
2015     {
2016         match conditions {
2017             BuiltinImplConditions::Where(nested) => {
2018                 debug!("builtin_bound: nested={:?}", nested);
2019                 candidates.vec.push(BuiltinCandidate {
2020                     has_nested: nested.skip_binder().len() > 0
2021                 });
2022                 Ok(())
2023             }
2024             BuiltinImplConditions::None => { Ok(()) }
2025             BuiltinImplConditions::Ambiguous => {
2026                 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
2027                 Ok(candidates.ambiguous = true)
2028             }
2029             BuiltinImplConditions::Never => { Err(Unimplemented) }
2030         }
2031     }
2032
2033     fn sized_conditions(&mut self, obligation: &TraitObligation<'tcx>)
2034                      -> BuiltinImplConditions<'tcx>
2035     {
2036         use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
2037
2038         // NOTE: binder moved to (*)
2039         let self_ty = self.infcx.shallow_resolve(
2040             obligation.predicate.skip_binder().self_ty());
2041
2042         match self_ty.sty {
2043             ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
2044             ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
2045             ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyRawPtr(..) |
2046             ty::TyChar | ty::TyRef(..) | ty::TyGenerator(..) |
2047             ty::TyArray(..) | ty::TyClosure(..) | ty::TyNever |
2048             ty::TyError => {
2049                 // safe for everything
2050                 Where(ty::Binder(Vec::new()))
2051             }
2052
2053             ty::TyStr | ty::TySlice(_) | ty::TyDynamic(..) | ty::TyForeign(..) => Never,
2054
2055             ty::TyTuple(tys, _) => {
2056                 Where(ty::Binder(tys.last().into_iter().cloned().collect()))
2057             }
2058
2059             ty::TyAdt(def, substs) => {
2060                 let sized_crit = def.sized_constraint(self.tcx());
2061                 // (*) binder moved here
2062                 Where(ty::Binder(
2063                     sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
2064                 ))
2065             }
2066
2067             ty::TyProjection(_) | ty::TyParam(_) | ty::TyAnon(..) => None,
2068             ty::TyInfer(ty::TyVar(_)) => Ambiguous,
2069
2070             ty::TyInfer(ty::FreshTy(_))
2071             | ty::TyInfer(ty::FreshIntTy(_))
2072             | ty::TyInfer(ty::FreshFloatTy(_)) => {
2073                 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
2074                      self_ty);
2075             }
2076         }
2077     }
2078
2079     fn copy_clone_conditions(&mut self, obligation: &TraitObligation<'tcx>)
2080                      -> BuiltinImplConditions<'tcx>
2081     {
2082         // NOTE: binder moved to (*)
2083         let self_ty = self.infcx.shallow_resolve(
2084             obligation.predicate.skip_binder().self_ty());
2085
2086         use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
2087
2088         match self_ty.sty {
2089             ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
2090             ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
2091             ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyChar |
2092             ty::TyRawPtr(..) | ty::TyError | ty::TyNever |
2093             ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
2094                 Where(ty::Binder(Vec::new()))
2095             }
2096
2097             ty::TyDynamic(..) | ty::TyStr | ty::TySlice(..) |
2098             ty::TyGenerator(..) | ty::TyForeign(..) |
2099             ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
2100                 Never
2101             }
2102
2103             ty::TyArray(element_ty, _) => {
2104                 // (*) binder moved here
2105                 Where(ty::Binder(vec![element_ty]))
2106             }
2107
2108             ty::TyTuple(tys, _) => {
2109                 // (*) binder moved here
2110                 Where(ty::Binder(tys.to_vec()))
2111             }
2112
2113             ty::TyClosure(def_id, substs) => {
2114                 let trait_id = obligation.predicate.def_id();
2115                 let copy_closures =
2116                     Some(trait_id) == self.tcx().lang_items().copy_trait() &&
2117                     self.tcx().has_copy_closures(def_id.krate);
2118                 let clone_closures =
2119                     Some(trait_id) == self.tcx().lang_items().clone_trait() &&
2120                     self.tcx().has_clone_closures(def_id.krate);
2121
2122                 if copy_closures || clone_closures {
2123                     Where(ty::Binder(substs.upvar_tys(def_id, self.tcx()).collect()))
2124                 } else {
2125                     Never
2126                 }
2127             }
2128
2129             ty::TyAdt(..) | ty::TyProjection(..) | ty::TyParam(..) | ty::TyAnon(..) => {
2130                 // Fallback to whatever user-defined impls exist in this case.
2131                 None
2132             }
2133
2134             ty::TyInfer(ty::TyVar(_)) => {
2135                 // Unbound type variable. Might or might not have
2136                 // applicable impls and so forth, depending on what
2137                 // those type variables wind up being bound to.
2138                 Ambiguous
2139             }
2140
2141             ty::TyInfer(ty::FreshTy(_))
2142             | ty::TyInfer(ty::FreshIntTy(_))
2143             | ty::TyInfer(ty::FreshFloatTy(_)) => {
2144                 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
2145                      self_ty);
2146             }
2147         }
2148     }
2149
2150     /// For default impls, we need to break apart a type into its
2151     /// "constituent types" -- meaning, the types that it contains.
2152     ///
2153     /// Here are some (simple) examples:
2154     ///
2155     /// ```
2156     /// (i32, u32) -> [i32, u32]
2157     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2158     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2159     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2160     /// ```
2161     fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
2162         match t.sty {
2163             ty::TyUint(_) |
2164             ty::TyInt(_) |
2165             ty::TyBool |
2166             ty::TyFloat(_) |
2167             ty::TyFnDef(..) |
2168             ty::TyFnPtr(_) |
2169             ty::TyStr |
2170             ty::TyError |
2171             ty::TyInfer(ty::IntVar(_)) |
2172             ty::TyInfer(ty::FloatVar(_)) |
2173             ty::TyNever |
2174             ty::TyChar => {
2175                 Vec::new()
2176             }
2177
2178             ty::TyDynamic(..) |
2179             ty::TyParam(..) |
2180             ty::TyForeign(..) |
2181             ty::TyProjection(..) |
2182             ty::TyInfer(ty::TyVar(_)) |
2183             ty::TyInfer(ty::FreshTy(_)) |
2184             ty::TyInfer(ty::FreshIntTy(_)) |
2185             ty::TyInfer(ty::FreshFloatTy(_)) => {
2186                 bug!("asked to assemble constituent types of unexpected type: {:?}",
2187                      t);
2188             }
2189
2190             ty::TyRawPtr(ty::TypeAndMut { ty: element_ty, ..}) |
2191             ty::TyRef(_, ty::TypeAndMut { ty: element_ty, ..}) => {
2192                 vec![element_ty]
2193             },
2194
2195             ty::TyArray(element_ty, _) | ty::TySlice(element_ty) => {
2196                 vec![element_ty]
2197             }
2198
2199             ty::TyTuple(ref tys, _) => {
2200                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2201                 tys.to_vec()
2202             }
2203
2204             ty::TyClosure(def_id, ref substs) => {
2205                 substs.upvar_tys(def_id, self.tcx()).collect()
2206             }
2207
2208             ty::TyGenerator(def_id, ref substs, interior) => {
2209                 let witness = iter::once(interior.witness);
2210                 substs.upvar_tys(def_id, self.tcx()).chain(witness).collect()
2211             }
2212
2213             // for `PhantomData<T>`, we pass `T`
2214             ty::TyAdt(def, substs) if def.is_phantom_data() => {
2215                 substs.types().collect()
2216             }
2217
2218             ty::TyAdt(def, substs) => {
2219                 def.all_fields()
2220                     .map(|f| f.ty(self.tcx(), substs))
2221                     .collect()
2222             }
2223
2224             ty::TyAnon(def_id, substs) => {
2225                 // We can resolve the `impl Trait` to its concrete type,
2226                 // which enforces a DAG between the functions requiring
2227                 // the auto trait bounds in question.
2228                 vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
2229             }
2230         }
2231     }
2232
2233     fn collect_predicates_for_types(&mut self,
2234                                     param_env: ty::ParamEnv<'tcx>,
2235                                     cause: ObligationCause<'tcx>,
2236                                     recursion_depth: usize,
2237                                     trait_def_id: DefId,
2238                                     types: ty::Binder<Vec<Ty<'tcx>>>)
2239                                     -> Vec<PredicateObligation<'tcx>>
2240     {
2241         // Because the types were potentially derived from
2242         // higher-ranked obligations they may reference late-bound
2243         // regions. For example, `for<'a> Foo<&'a int> : Copy` would
2244         // yield a type like `for<'a> &'a int`. In general, we
2245         // maintain the invariant that we never manipulate bound
2246         // regions, so we have to process these bound regions somehow.
2247         //
2248         // The strategy is to:
2249         //
2250         // 1. Instantiate those regions to skolemized regions (e.g.,
2251         //    `for<'a> &'a int` becomes `&0 int`.
2252         // 2. Produce something like `&'0 int : Copy`
2253         // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
2254
2255         types.skip_binder().into_iter().flat_map(|ty| { // binder moved -\
2256             let ty: ty::Binder<Ty<'tcx>> = ty::Binder(ty); // <----------/
2257
2258             self.in_snapshot(|this, snapshot| {
2259                 let (skol_ty, skol_map) =
2260                     this.infcx().skolemize_late_bound_regions(&ty, snapshot);
2261                 let Normalized { value: normalized_ty, mut obligations } =
2262                     project::normalize_with_depth(this,
2263                                                   param_env,
2264                                                   cause.clone(),
2265                                                   recursion_depth,
2266                                                   &skol_ty);
2267                 let skol_obligation =
2268                     this.tcx().predicate_for_trait_def(param_env,
2269                                                        cause.clone(),
2270                                                        trait_def_id,
2271                                                        recursion_depth,
2272                                                        normalized_ty,
2273                                                        &[]);
2274                 obligations.push(skol_obligation);
2275                 this.infcx().plug_leaks(skol_map, snapshot, obligations)
2276             })
2277         }).collect()
2278     }
2279
2280     ///////////////////////////////////////////////////////////////////////////
2281     // CONFIRMATION
2282     //
2283     // Confirmation unifies the output type parameters of the trait
2284     // with the values found in the obligation, possibly yielding a
2285     // type error.  See `README.md` for more details.
2286
2287     fn confirm_candidate(&mut self,
2288                          obligation: &TraitObligation<'tcx>,
2289                          candidate: SelectionCandidate<'tcx>)
2290                          -> Result<Selection<'tcx>,SelectionError<'tcx>>
2291     {
2292         debug!("confirm_candidate({:?}, {:?})",
2293                obligation,
2294                candidate);
2295
2296         match candidate {
2297             BuiltinCandidate { has_nested } => {
2298                 let data = self.confirm_builtin_candidate(obligation, has_nested);
2299                 Ok(VtableBuiltin(data))
2300             }
2301
2302             ParamCandidate(param) => {
2303                 let obligations = self.confirm_param_candidate(obligation, param);
2304                 Ok(VtableParam(obligations))
2305             }
2306
2307             AutoImplCandidate(trait_def_id) => {
2308                 let data = self.confirm_auto_impl_candidate(obligation, trait_def_id);
2309                 Ok(VtableAutoImpl(data))
2310             }
2311
2312             ImplCandidate(impl_def_id) => {
2313                 Ok(VtableImpl(self.confirm_impl_candidate(obligation, impl_def_id)))
2314             }
2315
2316             ClosureCandidate => {
2317                 let vtable_closure = self.confirm_closure_candidate(obligation)?;
2318                 Ok(VtableClosure(vtable_closure))
2319             }
2320
2321             GeneratorCandidate => {
2322                 let vtable_generator = self.confirm_generator_candidate(obligation)?;
2323                 Ok(VtableGenerator(vtable_generator))
2324             }
2325
2326             BuiltinObjectCandidate => {
2327                 // This indicates something like `(Trait+Send) :
2328                 // Send`. In this case, we know that this holds
2329                 // because that's what the object type is telling us,
2330                 // and there's really no additional obligations to
2331                 // prove and no types in particular to unify etc.
2332                 Ok(VtableParam(Vec::new()))
2333             }
2334
2335             ObjectCandidate => {
2336                 let data = self.confirm_object_candidate(obligation);
2337                 Ok(VtableObject(data))
2338             }
2339
2340             FnPointerCandidate => {
2341                 let data =
2342                     self.confirm_fn_pointer_candidate(obligation)?;
2343                 Ok(VtableFnPointer(data))
2344             }
2345
2346             ProjectionCandidate => {
2347                 self.confirm_projection_candidate(obligation);
2348                 Ok(VtableParam(Vec::new()))
2349             }
2350
2351             BuiltinUnsizeCandidate => {
2352                 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2353                 Ok(VtableBuiltin(data))
2354             }
2355         }
2356     }
2357
2358     fn confirm_projection_candidate(&mut self,
2359                                     obligation: &TraitObligation<'tcx>)
2360     {
2361         self.in_snapshot(|this, snapshot| {
2362             let result =
2363                 this.match_projection_obligation_against_definition_bounds(obligation,
2364                                                                            snapshot);
2365             assert!(result);
2366         })
2367     }
2368
2369     fn confirm_param_candidate(&mut self,
2370                                obligation: &TraitObligation<'tcx>,
2371                                param: ty::PolyTraitRef<'tcx>)
2372                                -> Vec<PredicateObligation<'tcx>>
2373     {
2374         debug!("confirm_param_candidate({:?},{:?})",
2375                obligation,
2376                param);
2377
2378         // During evaluation, we already checked that this
2379         // where-clause trait-ref could be unified with the obligation
2380         // trait-ref. Repeat that unification now without any
2381         // transactional boundary; it should not fail.
2382         match self.match_where_clause_trait_ref(obligation, param.clone()) {
2383             Ok(obligations) => obligations,
2384             Err(()) => {
2385                 bug!("Where clause `{:?}` was applicable to `{:?}` but now is not",
2386                      param,
2387                      obligation);
2388             }
2389         }
2390     }
2391
2392     fn confirm_builtin_candidate(&mut self,
2393                                  obligation: &TraitObligation<'tcx>,
2394                                  has_nested: bool)
2395                                  -> VtableBuiltinData<PredicateObligation<'tcx>>
2396     {
2397         debug!("confirm_builtin_candidate({:?}, {:?})",
2398                obligation, has_nested);
2399
2400         let lang_items = self.tcx().lang_items();
2401         let obligations = if has_nested {
2402             let trait_def = obligation.predicate.def_id();
2403             let conditions = match trait_def {
2404                 _ if Some(trait_def) == lang_items.sized_trait() => {
2405                     self.sized_conditions(obligation)
2406                 }
2407                 _ if Some(trait_def) == lang_items.copy_trait() => {
2408                     self.copy_clone_conditions(obligation)
2409                 }
2410                 _ if Some(trait_def) == lang_items.clone_trait() => {
2411                     self.copy_clone_conditions(obligation)
2412                 }
2413                 _ => bug!("unexpected builtin trait {:?}", trait_def)
2414             };
2415             let nested = match conditions {
2416                 BuiltinImplConditions::Where(nested) => nested,
2417                 _ => bug!("obligation {:?} had matched a builtin impl but now doesn't",
2418                           obligation)
2419             };
2420
2421             let cause = obligation.derived_cause(BuiltinDerivedObligation);
2422             self.collect_predicates_for_types(obligation.param_env,
2423                                               cause,
2424                                               obligation.recursion_depth+1,
2425                                               trait_def,
2426                                               nested)
2427         } else {
2428             vec![]
2429         };
2430
2431         debug!("confirm_builtin_candidate: obligations={:?}",
2432                obligations);
2433
2434         VtableBuiltinData { nested: obligations }
2435     }
2436
2437     /// This handles the case where a `auto trait Foo` impl is being used.
2438     /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2439     ///
2440     /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2441     /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2442     fn confirm_auto_impl_candidate(&mut self,
2443                                       obligation: &TraitObligation<'tcx>,
2444                                       trait_def_id: DefId)
2445                                       -> VtableAutoImplData<PredicateObligation<'tcx>>
2446     {
2447         debug!("confirm_auto_impl_candidate({:?}, {:?})",
2448                obligation,
2449                trait_def_id);
2450
2451         // binder is moved below
2452         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2453         let types = self.constituent_types_for_ty(self_ty);
2454         self.vtable_auto_impl(obligation, trait_def_id, ty::Binder(types))
2455     }
2456
2457     /// See `confirm_auto_impl_candidate`
2458     fn vtable_auto_impl(&mut self,
2459                            obligation: &TraitObligation<'tcx>,
2460                            trait_def_id: DefId,
2461                            nested: ty::Binder<Vec<Ty<'tcx>>>)
2462                            -> VtableAutoImplData<PredicateObligation<'tcx>>
2463     {
2464         debug!("vtable_auto_impl: nested={:?}", nested);
2465
2466         let cause = obligation.derived_cause(BuiltinDerivedObligation);
2467         let mut obligations = self.collect_predicates_for_types(
2468             obligation.param_env,
2469             cause,
2470             obligation.recursion_depth+1,
2471             trait_def_id,
2472             nested);
2473
2474         let trait_obligations = self.in_snapshot(|this, snapshot| {
2475             let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
2476             let (trait_ref, skol_map) =
2477                 this.infcx().skolemize_late_bound_regions(&poly_trait_ref, snapshot);
2478             let cause = obligation.derived_cause(ImplDerivedObligation);
2479             this.impl_or_trait_obligations(cause,
2480                                            obligation.recursion_depth + 1,
2481                                            obligation.param_env,
2482                                            trait_def_id,
2483                                            &trait_ref.substs,
2484                                            skol_map,
2485                                            snapshot)
2486         });
2487
2488         obligations.extend(trait_obligations);
2489
2490         debug!("vtable_auto_impl: obligations={:?}", obligations);
2491
2492         VtableAutoImplData {
2493             trait_def_id,
2494             nested: obligations
2495         }
2496     }
2497
2498     fn confirm_impl_candidate(&mut self,
2499                               obligation: &TraitObligation<'tcx>,
2500                               impl_def_id: DefId)
2501                               -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2502     {
2503         debug!("confirm_impl_candidate({:?},{:?})",
2504                obligation,
2505                impl_def_id);
2506
2507         // First, create the substitutions by matching the impl again,
2508         // this time not in a probe.
2509         self.in_snapshot(|this, snapshot| {
2510             let (substs, skol_map) =
2511                 this.rematch_impl(impl_def_id, obligation,
2512                                   snapshot);
2513             debug!("confirm_impl_candidate substs={:?}", substs);
2514             let cause = obligation.derived_cause(ImplDerivedObligation);
2515             this.vtable_impl(impl_def_id,
2516                              substs,
2517                              cause,
2518                              obligation.recursion_depth + 1,
2519                              obligation.param_env,
2520                              skol_map,
2521                              snapshot)
2522         })
2523     }
2524
2525     fn vtable_impl(&mut self,
2526                    impl_def_id: DefId,
2527                    mut substs: Normalized<'tcx, &'tcx Substs<'tcx>>,
2528                    cause: ObligationCause<'tcx>,
2529                    recursion_depth: usize,
2530                    param_env: ty::ParamEnv<'tcx>,
2531                    skol_map: infer::SkolemizationMap<'tcx>,
2532                    snapshot: &infer::CombinedSnapshot)
2533                    -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2534     {
2535         debug!("vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={}, skol_map={:?})",
2536                impl_def_id,
2537                substs,
2538                recursion_depth,
2539                skol_map);
2540
2541         let mut impl_obligations =
2542             self.impl_or_trait_obligations(cause,
2543                                            recursion_depth,
2544                                            param_env,
2545                                            impl_def_id,
2546                                            &substs.value,
2547                                            skol_map,
2548                                            snapshot);
2549
2550         debug!("vtable_impl: impl_def_id={:?} impl_obligations={:?}",
2551                impl_def_id,
2552                impl_obligations);
2553
2554         // Because of RFC447, the impl-trait-ref and obligations
2555         // are sufficient to determine the impl substs, without
2556         // relying on projections in the impl-trait-ref.
2557         //
2558         // e.g. `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
2559         impl_obligations.append(&mut substs.obligations);
2560
2561         VtableImplData { impl_def_id,
2562                          substs: substs.value,
2563                          nested: impl_obligations }
2564     }
2565
2566     fn confirm_object_candidate(&mut self,
2567                                 obligation: &TraitObligation<'tcx>)
2568                                 -> VtableObjectData<'tcx, PredicateObligation<'tcx>>
2569     {
2570         debug!("confirm_object_candidate({:?})",
2571                obligation);
2572
2573         // FIXME skipping binder here seems wrong -- we should
2574         // probably flatten the binder from the obligation and the
2575         // binder from the object. Have to try to make a broken test
2576         // case that results. -nmatsakis
2577         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2578         let poly_trait_ref = match self_ty.sty {
2579             ty::TyDynamic(ref data, ..) => {
2580                 data.principal().unwrap().with_self_ty(self.tcx(), self_ty)
2581             }
2582             _ => {
2583                 span_bug!(obligation.cause.span,
2584                           "object candidate with non-object");
2585             }
2586         };
2587
2588         let mut upcast_trait_ref = None;
2589         let vtable_base;
2590
2591         {
2592             let tcx = self.tcx();
2593
2594             // We want to find the first supertrait in the list of
2595             // supertraits that we can unify with, and do that
2596             // unification. We know that there is exactly one in the list
2597             // where we can unify because otherwise select would have
2598             // reported an ambiguity. (When we do find a match, also
2599             // record it for later.)
2600             let nonmatching =
2601                 util::supertraits(tcx, poly_trait_ref)
2602                 .take_while(|&t| {
2603                     match
2604                         self.commit_if_ok(
2605                             |this, _| this.match_poly_trait_ref(obligation, t))
2606                     {
2607                         Ok(_) => { upcast_trait_ref = Some(t); false }
2608                         Err(_) => { true }
2609                     }
2610                 });
2611
2612             // Additionally, for each of the nonmatching predicates that
2613             // we pass over, we sum up the set of number of vtable
2614             // entries, so that we can compute the offset for the selected
2615             // trait.
2616             vtable_base =
2617                 nonmatching.map(|t| tcx.count_own_vtable_entries(t))
2618                            .sum();
2619
2620         }
2621
2622         VtableObjectData {
2623             upcast_trait_ref: upcast_trait_ref.unwrap(),
2624             vtable_base,
2625             nested: vec![]
2626         }
2627     }
2628
2629     fn confirm_fn_pointer_candidate(&mut self, obligation: &TraitObligation<'tcx>)
2630         -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
2631     {
2632         debug!("confirm_fn_pointer_candidate({:?})",
2633                obligation);
2634
2635         // ok to skip binder; it is reintroduced below
2636         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2637         let sig = self_ty.fn_sig(self.tcx());
2638         let trait_ref =
2639             self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
2640                                                          self_ty,
2641                                                          sig,
2642                                                          util::TupleArgumentsFlag::Yes)
2643             .map_bound(|(trait_ref, _)| trait_ref);
2644
2645         let Normalized { value: trait_ref, obligations } =
2646             project::normalize_with_depth(self,
2647                                           obligation.param_env,
2648                                           obligation.cause.clone(),
2649                                           obligation.recursion_depth + 1,
2650                                           &trait_ref);
2651
2652         self.confirm_poly_trait_refs(obligation.cause.clone(),
2653                                      obligation.param_env,
2654                                      obligation.predicate.to_poly_trait_ref(),
2655                                      trait_ref)?;
2656         Ok(VtableFnPointerData { fn_ty: self_ty, nested: obligations })
2657     }
2658
2659     fn confirm_generator_candidate(&mut self,
2660                                    obligation: &TraitObligation<'tcx>)
2661                                    -> Result<VtableGeneratorData<'tcx, PredicateObligation<'tcx>>,
2662                                            SelectionError<'tcx>>
2663     {
2664         // ok to skip binder because the substs on generator types never
2665         // touch bound regions, they just capture the in-scope
2666         // type/region parameters
2667         let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2668         let (closure_def_id, substs) = match self_ty.sty {
2669             ty::TyGenerator(id, substs, _) => (id, substs),
2670             _ => bug!("closure candidate for non-closure {:?}", obligation)
2671         };
2672
2673         debug!("confirm_generator_candidate({:?},{:?},{:?})",
2674                obligation,
2675                closure_def_id,
2676                substs);
2677
2678         let trait_ref =
2679             self.generator_trait_ref_unnormalized(obligation, closure_def_id, substs);
2680         let Normalized {
2681             value: trait_ref,
2682             obligations
2683         } = normalize_with_depth(self,
2684                                  obligation.param_env,
2685                                  obligation.cause.clone(),
2686                                  obligation.recursion_depth+1,
2687                                  &trait_ref);
2688
2689         debug!("confirm_generator_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
2690                closure_def_id,
2691                trait_ref,
2692                obligations);
2693
2694         self.confirm_poly_trait_refs(obligation.cause.clone(),
2695                                      obligation.param_env,
2696                                      obligation.predicate.to_poly_trait_ref(),
2697                                      trait_ref)?;
2698
2699         Ok(VtableGeneratorData {
2700             closure_def_id: closure_def_id,
2701             substs: substs.clone(),
2702             nested: obligations
2703         })
2704     }
2705
2706     fn confirm_closure_candidate(&mut self,
2707                                  obligation: &TraitObligation<'tcx>)
2708                                  -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>,
2709                                            SelectionError<'tcx>>
2710     {
2711         debug!("confirm_closure_candidate({:?})", obligation);
2712
2713         let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.0.def_id()) {
2714             Some(k) => k,
2715             None => bug!("closure candidate for non-fn trait {:?}", obligation)
2716         };
2717
2718         // ok to skip binder because the substs on closure types never
2719         // touch bound regions, they just capture the in-scope
2720         // type/region parameters
2721         let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2722         let (closure_def_id, substs) = match self_ty.sty {
2723             ty::TyClosure(id, substs) => (id, substs),
2724             _ => bug!("closure candidate for non-closure {:?}", obligation)
2725         };
2726
2727         let trait_ref =
2728             self.closure_trait_ref_unnormalized(obligation, closure_def_id, substs);
2729         let Normalized {
2730             value: trait_ref,
2731             mut obligations
2732         } = normalize_with_depth(self,
2733                                  obligation.param_env,
2734                                  obligation.cause.clone(),
2735                                  obligation.recursion_depth+1,
2736                                  &trait_ref);
2737
2738         debug!("confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
2739                closure_def_id,
2740                trait_ref,
2741                obligations);
2742
2743         self.confirm_poly_trait_refs(obligation.cause.clone(),
2744                                      obligation.param_env,
2745                                      obligation.predicate.to_poly_trait_ref(),
2746                                      trait_ref)?;
2747
2748         obligations.push(Obligation::new(
2749             obligation.cause.clone(),
2750             obligation.param_env,
2751             ty::Predicate::ClosureKind(closure_def_id, substs, kind)));
2752
2753         Ok(VtableClosureData {
2754             closure_def_id,
2755             substs: substs.clone(),
2756             nested: obligations
2757         })
2758     }
2759
2760     /// In the case of closure types and fn pointers,
2761     /// we currently treat the input type parameters on the trait as
2762     /// outputs. This means that when we have a match we have only
2763     /// considered the self type, so we have to go back and make sure
2764     /// to relate the argument types too.  This is kind of wrong, but
2765     /// since we control the full set of impls, also not that wrong,
2766     /// and it DOES yield better error messages (since we don't report
2767     /// errors as if there is no applicable impl, but rather report
2768     /// errors are about mismatched argument types.
2769     ///
2770     /// Here is an example. Imagine we have a closure expression
2771     /// and we desugared it so that the type of the expression is
2772     /// `Closure`, and `Closure` expects an int as argument. Then it
2773     /// is "as if" the compiler generated this impl:
2774     ///
2775     ///     impl Fn(int) for Closure { ... }
2776     ///
2777     /// Now imagine our obligation is `Fn(usize) for Closure`. So far
2778     /// we have matched the self-type `Closure`. At this point we'll
2779     /// compare the `int` to `usize` and generate an error.
2780     ///
2781     /// Note that this checking occurs *after* the impl has selected,
2782     /// because these output type parameters should not affect the
2783     /// selection of the impl. Therefore, if there is a mismatch, we
2784     /// report an error to the user.
2785     fn confirm_poly_trait_refs(&mut self,
2786                                obligation_cause: ObligationCause<'tcx>,
2787                                obligation_param_env: ty::ParamEnv<'tcx>,
2788                                obligation_trait_ref: ty::PolyTraitRef<'tcx>,
2789                                expected_trait_ref: ty::PolyTraitRef<'tcx>)
2790                                -> Result<(), SelectionError<'tcx>>
2791     {
2792         let obligation_trait_ref = obligation_trait_ref.clone();
2793         self.infcx
2794             .at(&obligation_cause, obligation_param_env)
2795             .sup(obligation_trait_ref, expected_trait_ref)
2796             .map(|InferOk { obligations, .. }| self.inferred_obligations.extend(obligations))
2797             .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
2798     }
2799
2800     fn confirm_builtin_unsize_candidate(&mut self,
2801                                         obligation: &TraitObligation<'tcx>,)
2802         -> Result<VtableBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>>
2803     {
2804         let tcx = self.tcx();
2805
2806         // assemble_candidates_for_unsizing should ensure there are no late bound
2807         // regions here. See the comment there for more details.
2808         let source = self.infcx.shallow_resolve(
2809             obligation.self_ty().no_late_bound_regions().unwrap());
2810         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
2811         let target = self.infcx.shallow_resolve(target);
2812
2813         debug!("confirm_builtin_unsize_candidate(source={:?}, target={:?})",
2814                source, target);
2815
2816         let mut nested = vec![];
2817         match (&source.sty, &target.sty) {
2818             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2819             (&ty::TyDynamic(ref data_a, r_a), &ty::TyDynamic(ref data_b, r_b)) => {
2820                 // See assemble_candidates_for_unsizing for more info.
2821                 // Binders reintroduced below in call to mk_existential_predicates.
2822                 let principal = data_a.skip_binder().principal();
2823                 let iter = principal.into_iter().map(ty::ExistentialPredicate::Trait)
2824                     .chain(data_a.skip_binder().projection_bounds()
2825                            .map(|x| ty::ExistentialPredicate::Projection(x)))
2826                     .chain(data_b.auto_traits().map(ty::ExistentialPredicate::AutoTrait));
2827                 let new_trait = tcx.mk_dynamic(
2828                     ty::Binder(tcx.mk_existential_predicates(iter)), r_b);
2829                 let InferOk { obligations, .. } =
2830                     self.infcx.at(&obligation.cause, obligation.param_env)
2831                               .eq(target, new_trait)
2832                               .map_err(|_| Unimplemented)?;
2833                 self.inferred_obligations.extend(obligations);
2834
2835                 // Register one obligation for 'a: 'b.
2836                 let cause = ObligationCause::new(obligation.cause.span,
2837                                                  obligation.cause.body_id,
2838                                                  ObjectCastObligation(target));
2839                 let outlives = ty::OutlivesPredicate(r_a, r_b);
2840                 nested.push(Obligation::with_depth(cause,
2841                                                    obligation.recursion_depth + 1,
2842                                                    obligation.param_env,
2843                                                    ty::Binder(outlives).to_predicate()));
2844             }
2845
2846             // T -> Trait.
2847             (_, &ty::TyDynamic(ref data, r)) => {
2848                 let mut object_dids =
2849                     data.auto_traits().chain(data.principal().map(|p| p.def_id()));
2850                 if let Some(did) = object_dids.find(|did| {
2851                     !tcx.is_object_safe(*did)
2852                 }) {
2853                     return Err(TraitNotObjectSafe(did))
2854                 }
2855
2856                 let cause = ObligationCause::new(obligation.cause.span,
2857                                                  obligation.cause.body_id,
2858                                                  ObjectCastObligation(target));
2859                 let mut push = |predicate| {
2860                     nested.push(Obligation::with_depth(cause.clone(),
2861                                                        obligation.recursion_depth + 1,
2862                                                        obligation.param_env,
2863                                                        predicate));
2864                 };
2865
2866                 // Create obligations:
2867                 //  - Casting T to Trait
2868                 //  - For all the various builtin bounds attached to the object cast. (In other
2869                 //  words, if the object type is Foo+Send, this would create an obligation for the
2870                 //  Send check.)
2871                 //  - Projection predicates
2872                 for predicate in data.iter() {
2873                     push(predicate.with_self_ty(tcx, source));
2874                 }
2875
2876                 // We can only make objects from sized types.
2877                 let tr = ty::TraitRef {
2878                     def_id: tcx.require_lang_item(lang_items::SizedTraitLangItem),
2879                     substs: tcx.mk_substs_trait(source, &[]),
2880                 };
2881                 push(tr.to_predicate());
2882
2883                 // If the type is `Foo+'a`, ensures that the type
2884                 // being cast to `Foo+'a` outlives `'a`:
2885                 let outlives = ty::OutlivesPredicate(source, r);
2886                 push(ty::Binder(outlives).to_predicate());
2887             }
2888
2889             // [T; n] -> [T].
2890             (&ty::TyArray(a, _), &ty::TySlice(b)) => {
2891                 let InferOk { obligations, .. } =
2892                     self.infcx.at(&obligation.cause, obligation.param_env)
2893                               .eq(b, a)
2894                               .map_err(|_| Unimplemented)?;
2895                 self.inferred_obligations.extend(obligations);
2896             }
2897
2898             // Struct<T> -> Struct<U>.
2899             (&ty::TyAdt(def, substs_a), &ty::TyAdt(_, substs_b)) => {
2900                 let fields = def
2901                     .all_fields()
2902                     .map(|f| tcx.type_of(f.did))
2903                     .collect::<Vec<_>>();
2904
2905                 // The last field of the structure has to exist and contain type parameters.
2906                 let field = if let Some(&field) = fields.last() {
2907                     field
2908                 } else {
2909                     return Err(Unimplemented);
2910                 };
2911                 let mut ty_params = BitVector::new(substs_a.types().count());
2912                 let mut found = false;
2913                 for ty in field.walk() {
2914                     if let ty::TyParam(p) = ty.sty {
2915                         ty_params.insert(p.idx as usize);
2916                         found = true;
2917                     }
2918                 }
2919                 if !found {
2920                     return Err(Unimplemented);
2921                 }
2922
2923                 // Replace type parameters used in unsizing with
2924                 // TyError and ensure they do not affect any other fields.
2925                 // This could be checked after type collection for any struct
2926                 // with a potentially unsized trailing field.
2927                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
2928                     if ty_params.contains(i) {
2929                         Kind::from(tcx.types.err)
2930                     } else {
2931                         k
2932                     }
2933                 });
2934                 let substs = tcx.mk_substs(params);
2935                 for &ty in fields.split_last().unwrap().1 {
2936                     if ty.subst(tcx, substs).references_error() {
2937                         return Err(Unimplemented);
2938                     }
2939                 }
2940
2941                 // Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
2942                 let inner_source = field.subst(tcx, substs_a);
2943                 let inner_target = field.subst(tcx, substs_b);
2944
2945                 // Check that the source struct with the target's
2946                 // unsized parameters is equal to the target.
2947                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
2948                     if ty_params.contains(i) {
2949                         Kind::from(substs_b.type_at(i))
2950                     } else {
2951                         k
2952                     }
2953                 });
2954                 let new_struct = tcx.mk_adt(def, tcx.mk_substs(params));
2955                 let InferOk { obligations, .. } =
2956                     self.infcx.at(&obligation.cause, obligation.param_env)
2957                               .eq(target, new_struct)
2958                               .map_err(|_| Unimplemented)?;
2959                 self.inferred_obligations.extend(obligations);
2960
2961                 // Construct the nested Field<T>: Unsize<Field<U>> predicate.
2962                 nested.push(tcx.predicate_for_trait_def(
2963                     obligation.param_env,
2964                     obligation.cause.clone(),
2965                     obligation.predicate.def_id(),
2966                     obligation.recursion_depth + 1,
2967                     inner_source,
2968                     &[inner_target]));
2969             }
2970
2971             // (.., T) -> (.., U).
2972             (&ty::TyTuple(tys_a, _), &ty::TyTuple(tys_b, _)) => {
2973                 assert_eq!(tys_a.len(), tys_b.len());
2974
2975                 // The last field of the tuple has to exist.
2976                 let (a_last, a_mid) = if let Some(x) = tys_a.split_last() {
2977                     x
2978                 } else {
2979                     return Err(Unimplemented);
2980                 };
2981                 let b_last = tys_b.last().unwrap();
2982
2983                 // Check that the source tuple with the target's
2984                 // last element is equal to the target.
2985                 let new_tuple = tcx.mk_tup(a_mid.iter().chain(Some(b_last)), false);
2986                 let InferOk { obligations, .. } =
2987                     self.infcx.at(&obligation.cause, obligation.param_env)
2988                               .eq(target, new_tuple)
2989                               .map_err(|_| Unimplemented)?;
2990                 self.inferred_obligations.extend(obligations);
2991
2992                 // Construct the nested T: Unsize<U> predicate.
2993                 nested.push(tcx.predicate_for_trait_def(
2994                     obligation.param_env,
2995                     obligation.cause.clone(),
2996                     obligation.predicate.def_id(),
2997                     obligation.recursion_depth + 1,
2998                     a_last,
2999                     &[b_last]));
3000             }
3001
3002             _ => bug!()
3003         };
3004
3005         Ok(VtableBuiltinData { nested: nested })
3006     }
3007
3008     ///////////////////////////////////////////////////////////////////////////
3009     // Matching
3010     //
3011     // Matching is a common path used for both evaluation and
3012     // confirmation.  It basically unifies types that appear in impls
3013     // and traits. This does affect the surrounding environment;
3014     // therefore, when used during evaluation, match routines must be
3015     // run inside of a `probe()` so that their side-effects are
3016     // contained.
3017
3018     fn rematch_impl(&mut self,
3019                     impl_def_id: DefId,
3020                     obligation: &TraitObligation<'tcx>,
3021                     snapshot: &infer::CombinedSnapshot)
3022                     -> (Normalized<'tcx, &'tcx Substs<'tcx>>,
3023                         infer::SkolemizationMap<'tcx>)
3024     {
3025         match self.match_impl(impl_def_id, obligation, snapshot) {
3026             Ok((substs, skol_map)) => (substs, skol_map),
3027             Err(()) => {
3028                 bug!("Impl {:?} was matchable against {:?} but now is not",
3029                      impl_def_id,
3030                      obligation);
3031             }
3032         }
3033     }
3034
3035     fn match_impl(&mut self,
3036                   impl_def_id: DefId,
3037                   obligation: &TraitObligation<'tcx>,
3038                   snapshot: &infer::CombinedSnapshot)
3039                   -> Result<(Normalized<'tcx, &'tcx Substs<'tcx>>,
3040                              infer::SkolemizationMap<'tcx>), ()>
3041     {
3042         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
3043
3044         // Before we create the substitutions and everything, first
3045         // consider a "quick reject". This avoids creating more types
3046         // and so forth that we need to.
3047         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
3048             return Err(());
3049         }
3050
3051         let (skol_obligation, skol_map) = self.infcx().skolemize_late_bound_regions(
3052             &obligation.predicate,
3053             snapshot);
3054         let skol_obligation_trait_ref = skol_obligation.trait_ref;
3055
3056         let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span,
3057                                                            impl_def_id);
3058
3059         let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
3060                                                   impl_substs);
3061
3062         let impl_trait_ref =
3063             project::normalize_with_depth(self,
3064                                           obligation.param_env,
3065                                           obligation.cause.clone(),
3066                                           obligation.recursion_depth + 1,
3067                                           &impl_trait_ref);
3068
3069         debug!("match_impl(impl_def_id={:?}, obligation={:?}, \
3070                impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
3071                impl_def_id,
3072                obligation,
3073                impl_trait_ref,
3074                skol_obligation_trait_ref);
3075
3076         let InferOk { obligations, .. } =
3077             self.infcx.at(&obligation.cause, obligation.param_env)
3078                       .eq(skol_obligation_trait_ref, impl_trait_ref.value)
3079                       .map_err(|e| {
3080                           debug!("match_impl: failed eq_trait_refs due to `{}`", e);
3081                           ()
3082                       })?;
3083         self.inferred_obligations.extend(obligations);
3084
3085         if let Err(e) = self.infcx.leak_check(false,
3086                                               obligation.cause.span,
3087                                               &skol_map,
3088                                               snapshot) {
3089             debug!("match_impl: failed leak check due to `{}`", e);
3090             return Err(());
3091         }
3092
3093         debug!("match_impl: success impl_substs={:?}", impl_substs);
3094         Ok((Normalized {
3095             value: impl_substs,
3096             obligations: impl_trait_ref.obligations
3097         }, skol_map))
3098     }
3099
3100     fn fast_reject_trait_refs(&mut self,
3101                               obligation: &TraitObligation,
3102                               impl_trait_ref: &ty::TraitRef)
3103                               -> bool
3104     {
3105         // We can avoid creating type variables and doing the full
3106         // substitution if we find that any of the input types, when
3107         // simplified, do not match.
3108
3109         obligation.predicate.skip_binder().input_types()
3110             .zip(impl_trait_ref.input_types())
3111             .any(|(obligation_ty, impl_ty)| {
3112                 let simplified_obligation_ty =
3113                     fast_reject::simplify_type(self.tcx(), obligation_ty, true);
3114                 let simplified_impl_ty =
3115                     fast_reject::simplify_type(self.tcx(), impl_ty, false);
3116
3117                 simplified_obligation_ty.is_some() &&
3118                     simplified_impl_ty.is_some() &&
3119                     simplified_obligation_ty != simplified_impl_ty
3120             })
3121     }
3122
3123     /// Normalize `where_clause_trait_ref` and try to match it against
3124     /// `obligation`.  If successful, return any predicates that
3125     /// result from the normalization. Normalization is necessary
3126     /// because where-clauses are stored in the parameter environment
3127     /// unnormalized.
3128     fn match_where_clause_trait_ref(&mut self,
3129                                     obligation: &TraitObligation<'tcx>,
3130                                     where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
3131                                     -> Result<Vec<PredicateObligation<'tcx>>,()>
3132     {
3133         self.match_poly_trait_ref(obligation, where_clause_trait_ref)?;
3134         Ok(Vec::new())
3135     }
3136
3137     /// Returns `Ok` if `poly_trait_ref` being true implies that the
3138     /// obligation is satisfied.
3139     fn match_poly_trait_ref(&mut self,
3140                             obligation: &TraitObligation<'tcx>,
3141                             poly_trait_ref: ty::PolyTraitRef<'tcx>)
3142                             -> Result<(),()>
3143     {
3144         debug!("match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
3145                obligation,
3146                poly_trait_ref);
3147
3148         self.infcx.at(&obligation.cause, obligation.param_env)
3149                   .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
3150                   .map(|InferOk { obligations, .. }| self.inferred_obligations.extend(obligations))
3151                   .map_err(|_| ())
3152     }
3153
3154     ///////////////////////////////////////////////////////////////////////////
3155     // Miscellany
3156
3157     fn match_fresh_trait_refs(&self,
3158                               previous: &ty::PolyTraitRef<'tcx>,
3159                               current: &ty::PolyTraitRef<'tcx>)
3160                               -> bool
3161     {
3162         let mut matcher = ty::_match::Match::new(self.tcx());
3163         matcher.relate(previous, current).is_ok()
3164     }
3165
3166     fn push_stack<'o,'s:'o>(&mut self,
3167                             previous_stack: TraitObligationStackList<'s, 'tcx>,
3168                             obligation: &'o TraitObligation<'tcx>)
3169                             -> TraitObligationStack<'o, 'tcx>
3170     {
3171         let fresh_trait_ref =
3172             obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
3173
3174         TraitObligationStack {
3175             obligation,
3176             fresh_trait_ref,
3177             previous: previous_stack,
3178         }
3179     }
3180
3181     fn closure_trait_ref_unnormalized(&mut self,
3182                                       obligation: &TraitObligation<'tcx>,
3183                                       closure_def_id: DefId,
3184                                       substs: ty::ClosureSubsts<'tcx>)
3185                                       -> ty::PolyTraitRef<'tcx>
3186     {
3187         let closure_type = self.infcx.closure_sig(closure_def_id, substs);
3188         let ty::Binder((trait_ref, _)) =
3189             self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
3190                                                          obligation.predicate.0.self_ty(), // (1)
3191                                                          closure_type,
3192                                                          util::TupleArgumentsFlag::No);
3193         // (1) Feels icky to skip the binder here, but OTOH we know
3194         // that the self-type is an unboxed closure type and hence is
3195         // in fact unparameterized (or at least does not reference any
3196         // regions bound in the obligation). Still probably some
3197         // refactoring could make this nicer.
3198
3199         ty::Binder(trait_ref)
3200     }
3201
3202     fn generator_trait_ref_unnormalized(&mut self,
3203                                       obligation: &TraitObligation<'tcx>,
3204                                       closure_def_id: DefId,
3205                                       substs: ty::ClosureSubsts<'tcx>)
3206                                       -> ty::PolyTraitRef<'tcx>
3207     {
3208         let gen_sig = substs.generator_poly_sig(closure_def_id, self.tcx());
3209         let ty::Binder((trait_ref, ..)) =
3210             self.tcx().generator_trait_ref_and_outputs(obligation.predicate.def_id(),
3211                                                        obligation.predicate.0.self_ty(), // (1)
3212                                                        gen_sig);
3213         // (1) Feels icky to skip the binder here, but OTOH we know
3214         // that the self-type is an generator type and hence is
3215         // in fact unparameterized (or at least does not reference any
3216         // regions bound in the obligation). Still probably some
3217         // refactoring could make this nicer.
3218
3219         ty::Binder(trait_ref)
3220     }
3221
3222     /// Returns the obligations that are implied by instantiating an
3223     /// impl or trait. The obligations are substituted and fully
3224     /// normalized. This is used when confirming an impl or default
3225     /// impl.
3226     fn impl_or_trait_obligations(&mut self,
3227                                  cause: ObligationCause<'tcx>,
3228                                  recursion_depth: usize,
3229                                  param_env: ty::ParamEnv<'tcx>,
3230                                  def_id: DefId, // of impl or trait
3231                                  substs: &Substs<'tcx>, // for impl or trait
3232                                  skol_map: infer::SkolemizationMap<'tcx>,
3233                                  snapshot: &infer::CombinedSnapshot)
3234                                  -> Vec<PredicateObligation<'tcx>>
3235     {
3236         debug!("impl_or_trait_obligations(def_id={:?})", def_id);
3237         let tcx = self.tcx();
3238
3239         // To allow for one-pass evaluation of the nested obligation,
3240         // each predicate must be preceded by the obligations required
3241         // to normalize it.
3242         // for example, if we have:
3243         //    impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
3244         // the impl will have the following predicates:
3245         //    <V as Iterator>::Item = U,
3246         //    U: Iterator, U: Sized,
3247         //    V: Iterator, V: Sized,
3248         //    <U as Iterator>::Item: Copy
3249         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
3250         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
3251         // `$1: Copy`, so we must ensure the obligations are emitted in
3252         // that order.
3253         let predicates = tcx.predicates_of(def_id);
3254         assert_eq!(predicates.parent, None);
3255         let predicates = predicates.predicates.iter().flat_map(|predicate| {
3256             let predicate = normalize_with_depth(self, param_env, cause.clone(), recursion_depth,
3257                                                  &predicate.subst(tcx, substs));
3258             predicate.obligations.into_iter().chain(
3259                 Some(Obligation {
3260                     cause: cause.clone(),
3261                     recursion_depth,
3262                     param_env,
3263                     predicate: predicate.value
3264                 }))
3265         }).collect();
3266         self.infcx().plug_leaks(skol_map, snapshot, predicates)
3267     }
3268 }
3269
3270 impl<'tcx> TraitObligation<'tcx> {
3271     #[allow(unused_comparisons)]
3272     pub fn derived_cause(&self,
3273                         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
3274                         -> ObligationCause<'tcx>
3275     {
3276         /*!
3277          * Creates a cause for obligations that are derived from
3278          * `obligation` by a recursive search (e.g., for a builtin
3279          * bound, or eventually a `auto trait Foo`). If `obligation`
3280          * is itself a derived obligation, this is just a clone, but
3281          * otherwise we create a "derived obligation" cause so as to
3282          * keep track of the original root obligation for error
3283          * reporting.
3284          */
3285
3286         let obligation = self;
3287
3288         // NOTE(flaper87): As of now, it keeps track of the whole error
3289         // chain. Ideally, we should have a way to configure this either
3290         // by using -Z verbose or just a CLI argument.
3291         if obligation.recursion_depth >= 0 {
3292             let derived_cause = DerivedObligationCause {
3293                 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
3294                 parent_code: Rc::new(obligation.cause.code.clone())
3295             };
3296             let derived_code = variant(derived_cause);
3297             ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
3298         } else {
3299             obligation.cause.clone()
3300         }
3301     }
3302 }
3303
3304 impl<'tcx> SelectionCache<'tcx> {
3305     pub fn new() -> SelectionCache<'tcx> {
3306         SelectionCache {
3307             hashmap: RefCell::new(FxHashMap())
3308         }
3309     }
3310 }
3311
3312 impl<'tcx> EvaluationCache<'tcx> {
3313     pub fn new() -> EvaluationCache<'tcx> {
3314         EvaluationCache {
3315             hashmap: RefCell::new(FxHashMap())
3316         }
3317     }
3318 }
3319
3320 impl<'o,'tcx> TraitObligationStack<'o,'tcx> {
3321     fn list(&'o self) -> TraitObligationStackList<'o,'tcx> {
3322         TraitObligationStackList::with(self)
3323     }
3324
3325     fn iter(&'o self) -> TraitObligationStackList<'o,'tcx> {
3326         self.list()
3327     }
3328 }
3329
3330 #[derive(Copy, Clone)]
3331 struct TraitObligationStackList<'o,'tcx:'o> {
3332     head: Option<&'o TraitObligationStack<'o,'tcx>>
3333 }
3334
3335 impl<'o,'tcx> TraitObligationStackList<'o,'tcx> {
3336     fn empty() -> TraitObligationStackList<'o,'tcx> {
3337         TraitObligationStackList { head: None }
3338     }
3339
3340     fn with(r: &'o TraitObligationStack<'o,'tcx>) -> TraitObligationStackList<'o,'tcx> {
3341         TraitObligationStackList { head: Some(r) }
3342     }
3343 }
3344
3345 impl<'o,'tcx> Iterator for TraitObligationStackList<'o,'tcx>{
3346     type Item = &'o TraitObligationStack<'o,'tcx>;
3347
3348     fn next(&mut self) -> Option<&'o TraitObligationStack<'o,'tcx>> {
3349         match self.head {
3350             Some(o) => {
3351                 *self = o.previous;
3352                 Some(o)
3353             }
3354             None => None
3355         }
3356     }
3357 }
3358
3359 impl<'o,'tcx> fmt::Debug for TraitObligationStack<'o,'tcx> {
3360     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
3361         write!(f, "TraitObligationStack({:?})", self.obligation)
3362     }
3363 }
3364
3365 #[derive(Clone)]
3366 pub struct WithDepNode<T> {
3367     dep_node: DepNodeIndex,
3368     cached_value: T
3369 }
3370
3371 impl<T: Clone> WithDepNode<T> {
3372     pub fn new(dep_node: DepNodeIndex, cached_value: T) -> Self {
3373         WithDepNode { dep_node, cached_value }
3374     }
3375
3376     pub fn get(&self, tcx: TyCtxt) -> T {
3377         tcx.dep_graph.read_index(self.dep_node);
3378         self.cached_value.clone()
3379     }
3380 }