]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/select.rs
Rollup merge of #57703 - m-ou-se:mutexguard-debug, r=cramertj
[rust.git] / src / librustc / traits / select.rs
1 //! Candidate selection. See the [rustc guide] for more information on how this works.
2 //!
3 //! [rustc guide]: https://rust-lang.github.io/rustc-guide/traits/resolution.html#selection
4
5 use self::EvaluationResult::*;
6 use self::SelectionCandidate::*;
7
8 use super::coherence::{self, Conflict};
9 use super::project;
10 use super::project::{normalize_with_depth, Normalized, ProjectionCacheKey};
11 use super::util;
12 use super::DerivedObligationCause;
13 use super::Selection;
14 use super::SelectionResult;
15 use super::TraitNotObjectSafe;
16 use super::{BuiltinDerivedObligation, ImplDerivedObligation, ObligationCauseCode};
17 use super::{IntercrateMode, TraitQueryMode};
18 use super::{ObjectCastObligation, Obligation};
19 use super::{ObligationCause, PredicateObligation, TraitObligation};
20 use super::{OutputTypeParameterMismatch, Overflow, SelectionError, Unimplemented};
21 use super::{
22     VtableAutoImpl, VtableBuiltin, VtableClosure, VtableFnPointer, VtableGenerator, VtableImpl,
23     VtableObject, VtableParam, VtableTraitAlias,
24 };
25 use super::{
26     VtableAutoImplData, VtableBuiltinData, VtableClosureData, VtableFnPointerData,
27     VtableGeneratorData, VtableImplData, VtableObjectData, VtableTraitAliasData,
28 };
29
30 use dep_graph::{DepKind, DepNodeIndex};
31 use hir::def_id::DefId;
32 use infer::{InferCtxt, InferOk, TypeFreshener};
33 use middle::lang_items;
34 use mir::interpret::GlobalId;
35 use ty::fast_reject;
36 use ty::relate::TypeRelation;
37 use ty::subst::{Subst, Substs};
38 use ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable};
39
40 use hir;
41 use rustc_data_structures::bit_set::GrowableBitSet;
42 use rustc_data_structures::sync::Lock;
43 use rustc_target::spec::abi::Abi;
44 use std::cmp;
45 use std::fmt::{self, Display};
46 use std::iter;
47 use std::rc::Rc;
48 use util::nodemap::{FxHashMap, FxHashSet};
49
50 pub struct SelectionContext<'cx, 'gcx: 'cx + 'tcx, 'tcx: 'cx> {
51     infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
52
53     /// Freshener used specifically for entries on the obligation
54     /// stack. This ensures that all entries on the stack at one time
55     /// will have the same set of placeholder entries, which is
56     /// important for checking for trait bounds that recursively
57     /// require themselves.
58     freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
59
60     /// If `true`, indicates that the evaluation should be conservative
61     /// and consider the possibility of types outside this crate.
62     /// This comes up primarily when resolving ambiguity. Imagine
63     /// there is some trait reference `$0: Bar` where `$0` is an
64     /// inference variable. If `intercrate` is true, then we can never
65     /// say for sure that this reference is not implemented, even if
66     /// there are *no impls at all for `Bar`*, because `$0` could be
67     /// bound to some type that in a downstream crate that implements
68     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
69     /// though, we set this to false, because we are only interested
70     /// in types that the user could actually have written --- in
71     /// other words, we consider `$0: Bar` to be unimplemented if
72     /// there is no type that the user could *actually name* that
73     /// would satisfy it. This avoids crippling inference, basically.
74     intercrate: Option<IntercrateMode>,
75
76     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
77
78     /// Controls whether or not to filter out negative impls when selecting.
79     /// This is used in librustdoc to distinguish between the lack of an impl
80     /// and a negative impl
81     allow_negative_impls: bool,
82
83     /// The mode that trait queries run in, which informs our error handling
84     /// policy. In essence, canonicalized queries need their errors propagated
85     /// rather than immediately reported because we do not have accurate spans.
86     query_mode: TraitQueryMode,
87 }
88
89 #[derive(Clone, Debug)]
90 pub enum IntercrateAmbiguityCause {
91     DownstreamCrate {
92         trait_desc: String,
93         self_desc: Option<String>,
94     },
95     UpstreamCrateUpdate {
96         trait_desc: String,
97         self_desc: Option<String>,
98     },
99 }
100
101 impl IntercrateAmbiguityCause {
102     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
103     /// See #23980 for details.
104     pub fn add_intercrate_ambiguity_hint<'a, 'tcx>(
105         &self,
106         err: &mut ::errors::DiagnosticBuilder<'_>,
107     ) {
108         err.note(&self.intercrate_ambiguity_hint());
109     }
110
111     pub fn intercrate_ambiguity_hint(&self) -> String {
112         match self {
113             &IntercrateAmbiguityCause::DownstreamCrate {
114                 ref trait_desc,
115                 ref self_desc,
116             } => {
117                 let self_desc = if let &Some(ref ty) = self_desc {
118                     format!(" for type `{}`", ty)
119                 } else {
120                     String::new()
121                 };
122                 format!(
123                     "downstream crates may implement trait `{}`{}",
124                     trait_desc, self_desc
125                 )
126             }
127             &IntercrateAmbiguityCause::UpstreamCrateUpdate {
128                 ref trait_desc,
129                 ref self_desc,
130             } => {
131                 let self_desc = if let &Some(ref ty) = self_desc {
132                     format!(" for type `{}`", ty)
133                 } else {
134                     String::new()
135                 };
136                 format!(
137                     "upstream crates may add new impl of trait `{}`{} \
138                      in future versions",
139                     trait_desc, self_desc
140                 )
141             }
142         }
143     }
144 }
145
146 // A stack that walks back up the stack frame.
147 struct TraitObligationStack<'prev, 'tcx: 'prev> {
148     obligation: &'prev TraitObligation<'tcx>,
149
150     /// Trait ref from `obligation` but "freshened" with the
151     /// selection-context's freshener. Used to check for recursion.
152     fresh_trait_ref: ty::PolyTraitRef<'tcx>,
153
154     previous: TraitObligationStackList<'prev, 'tcx>,
155 }
156
157 #[derive(Clone, Default)]
158 pub struct SelectionCache<'tcx> {
159     hashmap: Lock<
160         FxHashMap<ty::TraitRef<'tcx>, WithDepNode<SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
161     >,
162 }
163
164 /// The selection process begins by considering all impls, where
165 /// clauses, and so forth that might resolve an obligation.  Sometimes
166 /// we'll be able to say definitively that (e.g.) an impl does not
167 /// apply to the obligation: perhaps it is defined for `usize` but the
168 /// obligation is for `int`. In that case, we drop the impl out of the
169 /// list.  But the other cases are considered *candidates*.
170 ///
171 /// For selection to succeed, there must be exactly one matching
172 /// candidate. If the obligation is fully known, this is guaranteed
173 /// by coherence. However, if the obligation contains type parameters
174 /// or variables, there may be multiple such impls.
175 ///
176 /// It is not a real problem if multiple matching impls exist because
177 /// of type variables - it just means the obligation isn't sufficiently
178 /// elaborated. In that case we report an ambiguity, and the caller can
179 /// try again after more type information has been gathered or report a
180 /// "type annotations required" error.
181 ///
182 /// However, with type parameters, this can be a real problem - type
183 /// parameters don't unify with regular types, but they *can* unify
184 /// with variables from blanket impls, and (unless we know its bounds
185 /// will always be satisfied) picking the blanket impl will be wrong
186 /// for at least *some* substitutions. To make this concrete, if we have
187 ///
188 ///    trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
189 ///    impl<T: fmt::Debug> AsDebug for T {
190 ///        type Out = T;
191 ///        fn debug(self) -> fmt::Debug { self }
192 ///    }
193 ///    fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
194 ///
195 /// we can't just use the impl to resolve the <T as AsDebug> obligation
196 /// - a type from another crate (that doesn't implement fmt::Debug) could
197 /// implement AsDebug.
198 ///
199 /// Because where-clauses match the type exactly, multiple clauses can
200 /// only match if there are unresolved variables, and we can mostly just
201 /// report this ambiguity in that case. This is still a problem - we can't
202 /// *do anything* with ambiguities that involve only regions. This is issue
203 /// #21974.
204 ///
205 /// If a single where-clause matches and there are no inference
206 /// variables left, then it definitely matches and we can just select
207 /// it.
208 ///
209 /// In fact, we even select the where-clause when the obligation contains
210 /// inference variables. The can lead to inference making "leaps of logic",
211 /// for example in this situation:
212 ///
213 ///    pub trait Foo<T> { fn foo(&self) -> T; }
214 ///    impl<T> Foo<()> for T { fn foo(&self) { } }
215 ///    impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
216 ///
217 ///    pub fn foo<T>(t: T) where T: Foo<bool> {
218 ///       println!("{:?}", <T as Foo<_>>::foo(&t));
219 ///    }
220 ///    fn main() { foo(false); }
221 ///
222 /// Here the obligation <T as Foo<$0>> can be matched by both the blanket
223 /// impl and the where-clause. We select the where-clause and unify $0=bool,
224 /// so the program prints "false". However, if the where-clause is omitted,
225 /// the blanket impl is selected, we unify $0=(), and the program prints
226 /// "()".
227 ///
228 /// Exactly the same issues apply to projection and object candidates, except
229 /// that we can have both a projection candidate and a where-clause candidate
230 /// for the same obligation. In that case either would do (except that
231 /// different "leaps of logic" would occur if inference variables are
232 /// present), and we just pick the where-clause. This is, for example,
233 /// required for associated types to work in default impls, as the bounds
234 /// are visible both as projection bounds and as where-clauses from the
235 /// parameter environment.
236 #[derive(PartialEq, Eq, Debug, Clone)]
237 enum SelectionCandidate<'tcx> {
238     /// If has_nested is false, there are no *further* obligations
239     BuiltinCandidate {
240         has_nested: bool,
241     },
242     ParamCandidate(ty::PolyTraitRef<'tcx>),
243     ImplCandidate(DefId),
244     AutoImplCandidate(DefId),
245
246     /// This is a trait matching with a projected type as `Self`, and
247     /// we found an applicable bound in the trait definition.
248     ProjectionCandidate,
249
250     /// Implementation of a `Fn`-family trait by one of the anonymous types
251     /// generated for a `||` expression.
252     ClosureCandidate,
253
254     /// Implementation of a `Generator` trait by one of the anonymous types
255     /// generated for a generator.
256     GeneratorCandidate,
257
258     /// Implementation of a `Fn`-family trait by one of the anonymous
259     /// types generated for a fn pointer type (e.g., `fn(int)->int`)
260     FnPointerCandidate,
261
262     TraitAliasCandidate(DefId),
263
264     ObjectCandidate,
265
266     BuiltinObjectCandidate,
267
268     BuiltinUnsizeCandidate,
269 }
270
271 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
272     type Lifted = SelectionCandidate<'tcx>;
273     fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
274         Some(match *self {
275             BuiltinCandidate { has_nested } => BuiltinCandidate { has_nested },
276             ImplCandidate(def_id) => ImplCandidate(def_id),
277             AutoImplCandidate(def_id) => AutoImplCandidate(def_id),
278             ProjectionCandidate => ProjectionCandidate,
279             ClosureCandidate => ClosureCandidate,
280             GeneratorCandidate => GeneratorCandidate,
281             FnPointerCandidate => FnPointerCandidate,
282             TraitAliasCandidate(def_id) => TraitAliasCandidate(def_id),
283             ObjectCandidate => ObjectCandidate,
284             BuiltinObjectCandidate => BuiltinObjectCandidate,
285             BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
286
287             ParamCandidate(ref trait_ref) => {
288                 return tcx.lift(trait_ref).map(ParamCandidate);
289             }
290         })
291     }
292 }
293
294 struct SelectionCandidateSet<'tcx> {
295     // a list of candidates that definitely apply to the current
296     // obligation (meaning: types unify).
297     vec: Vec<SelectionCandidate<'tcx>>,
298
299     // if this is true, then there were candidates that might or might
300     // not have applied, but we couldn't tell. This occurs when some
301     // of the input types are type variables, in which case there are
302     // various "builtin" rules that might or might not trigger.
303     ambiguous: bool,
304 }
305
306 #[derive(PartialEq, Eq, Debug, Clone)]
307 struct EvaluatedCandidate<'tcx> {
308     candidate: SelectionCandidate<'tcx>,
309     evaluation: EvaluationResult,
310 }
311
312 /// When does the builtin impl for `T: Trait` apply?
313 enum BuiltinImplConditions<'tcx> {
314     /// The impl is conditional on T1,T2,.. : Trait
315     Where(ty::Binder<Vec<Ty<'tcx>>>),
316     /// There is no built-in impl. There may be some other
317     /// candidate (a where-clause or user-defined impl).
318     None,
319     /// It is unknown whether there is an impl.
320     Ambiguous,
321 }
322
323 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
324 /// The result of trait evaluation. The order is important
325 /// here as the evaluation of a list is the maximum of the
326 /// evaluations.
327 ///
328 /// The evaluation results are ordered:
329 ///     - `EvaluatedToOk` implies `EvaluatedToOkModuloRegions`
330 ///       implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
331 ///     - `EvaluatedToErr` implies `EvaluatedToRecur`
332 ///     - the "union" of evaluation results is equal to their maximum -
333 ///     all the "potential success" candidates can potentially succeed,
334 ///     so they are no-ops when unioned with a definite error, and within
335 ///     the categories it's easy to see that the unions are correct.
336 pub enum EvaluationResult {
337     /// Evaluation successful
338     EvaluatedToOk,
339     /// Evaluation successful, but there were unevaluated region obligations
340     EvaluatedToOkModuloRegions,
341     /// Evaluation is known to be ambiguous - it *might* hold for some
342     /// assignment of inference variables, but it might not.
343     ///
344     /// While this has the same meaning as `EvaluatedToUnknown` - we can't
345     /// know whether this obligation holds or not - it is the result we
346     /// would get with an empty stack, and therefore is cacheable.
347     EvaluatedToAmbig,
348     /// Evaluation failed because of recursion involving inference
349     /// variables. We are somewhat imprecise there, so we don't actually
350     /// know the real result.
351     ///
352     /// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
353     EvaluatedToUnknown,
354     /// Evaluation failed because we encountered an obligation we are already
355     /// trying to prove on this branch.
356     ///
357     /// We know this branch can't be a part of a minimal proof-tree for
358     /// the "root" of our cycle, because then we could cut out the recursion
359     /// and maintain a valid proof tree. However, this does not mean
360     /// that all the obligations on this branch do not hold - it's possible
361     /// that we entered this branch "speculatively", and that there
362     /// might be some other way to prove this obligation that does not
363     /// go through this cycle - so we can't cache this as a failure.
364     ///
365     /// For example, suppose we have this:
366     ///
367     /// ```rust,ignore (pseudo-Rust)
368     ///     pub trait Trait { fn xyz(); }
369     ///     // This impl is "useless", but we can still have
370     ///     // an `impl Trait for SomeUnsizedType` somewhere.
371     ///     impl<T: Trait + Sized> Trait for T { fn xyz() {} }
372     ///
373     ///     pub fn foo<T: Trait + ?Sized>() {
374     ///         <T as Trait>::xyz();
375     ///     }
376     /// ```
377     ///
378     /// When checking `foo`, we have to prove `T: Trait`. This basically
379     /// translates into this:
380     ///
381     /// ```plain,ignore
382     ///     (T: Trait + Sized â†’_\impl T: Trait), T: Trait âŠ¢ T: Trait
383     /// ```
384     ///
385     /// When we try to prove it, we first go the first option, which
386     /// recurses. This shows us that the impl is "useless" - it won't
387     /// tell us that `T: Trait` unless it already implemented `Trait`
388     /// by some other means. However, that does not prevent `T: Trait`
389     /// does not hold, because of the bound (which can indeed be satisfied
390     /// by `SomeUnsizedType` from another crate).
391     ///
392     /// FIXME: when an `EvaluatedToRecur` goes past its parent root, we
393     /// ought to convert it to an `EvaluatedToErr`, because we know
394     /// there definitely isn't a proof tree for that obligation. Not
395     /// doing so is still sound - there isn't any proof tree, so the
396     /// branch still can't be a part of a minimal one - but does not
397     /// re-enable caching.
398     EvaluatedToRecur,
399     /// Evaluation failed
400     EvaluatedToErr,
401 }
402
403 impl EvaluationResult {
404     /// True if this evaluation result is known to apply, even
405     /// considering outlives constraints.
406     pub fn must_apply_considering_regions(self) -> bool {
407         self == EvaluatedToOk
408     }
409
410     /// True if this evaluation result is known to apply, ignoring
411     /// outlives constraints.
412     pub fn must_apply_modulo_regions(self) -> bool {
413         self <= EvaluatedToOkModuloRegions
414     }
415
416     pub fn may_apply(self) -> bool {
417         match self {
418             EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToUnknown => {
419                 true
420             }
421
422             EvaluatedToErr | EvaluatedToRecur => false,
423         }
424     }
425
426     fn is_stack_dependent(self) -> bool {
427         match self {
428             EvaluatedToUnknown | EvaluatedToRecur => true,
429
430             EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToErr => false,
431         }
432     }
433 }
434
435 impl_stable_hash_for!(enum self::EvaluationResult {
436     EvaluatedToOk,
437     EvaluatedToOkModuloRegions,
438     EvaluatedToAmbig,
439     EvaluatedToUnknown,
440     EvaluatedToRecur,
441     EvaluatedToErr
442 });
443
444 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
445 /// Indicates that trait evaluation caused overflow.
446 pub struct OverflowError;
447
448 impl_stable_hash_for!(struct OverflowError {});
449
450 impl<'tcx> From<OverflowError> for SelectionError<'tcx> {
451     fn from(OverflowError: OverflowError) -> SelectionError<'tcx> {
452         SelectionError::Overflow
453     }
454 }
455
456 #[derive(Clone, Default)]
457 pub struct EvaluationCache<'tcx> {
458     hashmap: Lock<FxHashMap<ty::PolyTraitRef<'tcx>, WithDepNode<EvaluationResult>>>,
459 }
460
461 impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
462     pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
463         SelectionContext {
464             infcx,
465             freshener: infcx.freshener(),
466             intercrate: None,
467             intercrate_ambiguity_causes: None,
468             allow_negative_impls: false,
469             query_mode: TraitQueryMode::Standard,
470         }
471     }
472
473     pub fn intercrate(
474         infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
475         mode: IntercrateMode,
476     ) -> SelectionContext<'cx, 'gcx, 'tcx> {
477         debug!("intercrate({:?})", mode);
478         SelectionContext {
479             infcx,
480             freshener: infcx.freshener(),
481             intercrate: Some(mode),
482             intercrate_ambiguity_causes: None,
483             allow_negative_impls: false,
484             query_mode: TraitQueryMode::Standard,
485         }
486     }
487
488     pub fn with_negative(
489         infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
490         allow_negative_impls: bool,
491     ) -> SelectionContext<'cx, 'gcx, 'tcx> {
492         debug!("with_negative({:?})", allow_negative_impls);
493         SelectionContext {
494             infcx,
495             freshener: infcx.freshener(),
496             intercrate: None,
497             intercrate_ambiguity_causes: None,
498             allow_negative_impls,
499             query_mode: TraitQueryMode::Standard,
500         }
501     }
502
503     pub fn with_query_mode(
504         infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
505         query_mode: TraitQueryMode,
506     ) -> SelectionContext<'cx, 'gcx, 'tcx> {
507         debug!("with_query_mode({:?})", query_mode);
508         SelectionContext {
509             infcx,
510             freshener: infcx.freshener(),
511             intercrate: None,
512             intercrate_ambiguity_causes: None,
513             allow_negative_impls: false,
514             query_mode,
515         }
516     }
517
518     /// Enables tracking of intercrate ambiguity causes. These are
519     /// used in coherence to give improved diagnostics. We don't do
520     /// this until we detect a coherence error because it can lead to
521     /// false overflow results (#47139) and because it costs
522     /// computation time.
523     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
524         assert!(self.intercrate.is_some());
525         assert!(self.intercrate_ambiguity_causes.is_none());
526         self.intercrate_ambiguity_causes = Some(vec![]);
527         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
528     }
529
530     /// Gets the intercrate ambiguity causes collected since tracking
531     /// was enabled and disables tracking at the same time. If
532     /// tracking is not enabled, just returns an empty vector.
533     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
534         assert!(self.intercrate.is_some());
535         self.intercrate_ambiguity_causes.take().unwrap_or(vec![])
536     }
537
538     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
539         self.infcx
540     }
541
542     pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
543         self.infcx.tcx
544     }
545
546     pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
547         self.infcx
548     }
549
550     ///////////////////////////////////////////////////////////////////////////
551     // Selection
552     //
553     // The selection phase tries to identify *how* an obligation will
554     // be resolved. For example, it will identify which impl or
555     // parameter bound is to be used. The process can be inconclusive
556     // if the self type in the obligation is not fully inferred. Selection
557     // can result in an error in one of two ways:
558     //
559     // 1. If no applicable impl or parameter bound can be found.
560     // 2. If the output type parameters in the obligation do not match
561     //    those specified by the impl/bound. For example, if the obligation
562     //    is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
563     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
564
565     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
566     /// type environment by performing unification.
567     pub fn select(
568         &mut self,
569         obligation: &TraitObligation<'tcx>,
570     ) -> SelectionResult<'tcx, Selection<'tcx>> {
571         debug!("select({:?})", obligation);
572         debug_assert!(!obligation.predicate.has_escaping_bound_vars());
573
574         let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
575
576         let candidate = match self.candidate_from_obligation(&stack) {
577             Err(SelectionError::Overflow) => {
578                 // In standard mode, overflow must have been caught and reported
579                 // earlier.
580                 assert!(self.query_mode == TraitQueryMode::Canonical);
581                 return Err(SelectionError::Overflow);
582             }
583             Err(e) => {
584                 return Err(e);
585             }
586             Ok(None) => {
587                 return Ok(None);
588             }
589             Ok(Some(candidate)) => candidate,
590         };
591
592         match self.confirm_candidate(obligation, candidate) {
593             Err(SelectionError::Overflow) => {
594                 assert!(self.query_mode == TraitQueryMode::Canonical);
595                 Err(SelectionError::Overflow)
596             }
597             Err(e) => Err(e),
598             Ok(candidate) => Ok(Some(candidate)),
599         }
600     }
601
602     ///////////////////////////////////////////////////////////////////////////
603     // EVALUATION
604     //
605     // Tests whether an obligation can be selected or whether an impl
606     // can be applied to particular types. It skips the "confirmation"
607     // step and hence completely ignores output type parameters.
608     //
609     // The result is "true" if the obligation *may* hold and "false" if
610     // we can be sure it does not.
611
612     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
613     pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
614         debug!("predicate_may_hold_fatal({:?})", obligation);
615
616         // This fatal query is a stopgap that should only be used in standard mode,
617         // where we do not expect overflow to be propagated.
618         assert!(self.query_mode == TraitQueryMode::Standard);
619
620         self.evaluate_obligation_recursively(obligation)
621             .expect("Overflow should be caught earlier in standard query mode")
622             .may_apply()
623     }
624
625     /// Evaluates whether the obligation `obligation` can be satisfied and returns
626     /// an `EvaluationResult`.
627     pub fn evaluate_obligation_recursively(
628         &mut self,
629         obligation: &PredicateObligation<'tcx>,
630     ) -> Result<EvaluationResult, OverflowError> {
631         self.evaluation_probe(|this| {
632             this.evaluate_predicate_recursively(TraitObligationStackList::empty(),
633                 obligation.clone())
634         })
635     }
636
637     fn evaluation_probe(
638         &mut self,
639         op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
640     ) -> Result<EvaluationResult, OverflowError> {
641         self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
642             let result = op(self)?;
643             match self.infcx.region_constraints_added_in_snapshot(snapshot) {
644                 None => Ok(result),
645                 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
646             }
647         })
648     }
649
650     /// Evaluates the predicates in `predicates` recursively. Note that
651     /// this applies projections in the predicates, and therefore
652     /// is run within an inference probe.
653     fn evaluate_predicates_recursively<'a, 'o, I>(
654         &mut self,
655         stack: TraitObligationStackList<'o, 'tcx>,
656         predicates: I,
657     ) -> Result<EvaluationResult, OverflowError>
658     where
659         I: IntoIterator<Item = PredicateObligation<'tcx>>,
660         'tcx: 'a,
661     {
662         let mut result = EvaluatedToOk;
663         for obligation in predicates {
664             let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
665             debug!(
666                 "evaluate_predicate_recursively({:?}) = {:?}",
667                 obligation, eval
668             );
669             if let EvaluatedToErr = eval {
670                 // fast-path - EvaluatedToErr is the top of the lattice,
671                 // so we don't need to look on the other predicates.
672                 return Ok(EvaluatedToErr);
673             } else {
674                 result = cmp::max(result, eval);
675             }
676         }
677         Ok(result)
678     }
679
680     fn evaluate_predicate_recursively<'o>(
681         &mut self,
682         previous_stack: TraitObligationStackList<'o, 'tcx>,
683         obligation: PredicateObligation<'tcx>,
684     ) -> Result<EvaluationResult, OverflowError> {
685         debug!("evaluate_predicate_recursively(previous_stack={:?}, obligation={:?})",
686             previous_stack.head(), obligation);
687
688         // Previous_stack stores a TraitObligatiom, while 'obligation' is
689         // a PredicateObligation. These are distinct types, so we can't
690         // use any Option combinator method that would force them to be
691         // the same
692         match previous_stack.head() {
693             Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
694             None => self.check_recursion_limit(&obligation, &obligation)?
695         }
696
697         match obligation.predicate {
698             ty::Predicate::Trait(ref t) => {
699                 debug_assert!(!t.has_escaping_bound_vars());
700                 let obligation = obligation.with(t.clone());
701                 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
702             }
703
704             ty::Predicate::Subtype(ref p) => {
705                 // does this code ever run?
706                 match self.infcx
707                     .subtype_predicate(&obligation.cause, obligation.param_env, p)
708                 {
709                     Some(Ok(InferOk { mut obligations, .. })) => {
710                         self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
711                         self.evaluate_predicates_recursively(previous_stack,obligations.into_iter())
712                     }
713                     Some(Err(_)) => Ok(EvaluatedToErr),
714                     None => Ok(EvaluatedToAmbig),
715                 }
716             }
717
718             ty::Predicate::WellFormed(ty) => match ty::wf::obligations(
719                 self.infcx,
720                 obligation.param_env,
721                 obligation.cause.body_id,
722                 ty,
723                 obligation.cause.span,
724             ) {
725                 Some(mut obligations) => {
726                     self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
727                     self.evaluate_predicates_recursively(previous_stack, obligations.into_iter())
728                 }
729                 None => Ok(EvaluatedToAmbig),
730             },
731
732             ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
733                 // we do not consider region relationships when
734                 // evaluating trait matches
735                 Ok(EvaluatedToOkModuloRegions)
736             }
737
738             ty::Predicate::ObjectSafe(trait_def_id) => {
739                 if self.tcx().is_object_safe(trait_def_id) {
740                     Ok(EvaluatedToOk)
741                 } else {
742                     Ok(EvaluatedToErr)
743                 }
744             }
745
746             ty::Predicate::Projection(ref data) => {
747                 let project_obligation = obligation.with(data.clone());
748                 match project::poly_project_and_unify_type(self, &project_obligation) {
749                     Ok(Some(mut subobligations)) => {
750                         self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
751                         let result = self.evaluate_predicates_recursively(
752                             previous_stack,
753                             subobligations.into_iter(),
754                         );
755                         if let Some(key) =
756                             ProjectionCacheKey::from_poly_projection_predicate(self, data)
757                         {
758                             self.infcx.projection_cache.borrow_mut().complete(key);
759                         }
760                         result
761                     }
762                     Ok(None) => Ok(EvaluatedToAmbig),
763                     Err(_) => Ok(EvaluatedToErr),
764                 }
765             }
766
767             ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
768                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
769                     Some(closure_kind) => {
770                         if closure_kind.extends(kind) {
771                             Ok(EvaluatedToOk)
772                         } else {
773                             Ok(EvaluatedToErr)
774                         }
775                     }
776                     None => Ok(EvaluatedToAmbig),
777                 }
778             }
779
780             ty::Predicate::ConstEvaluatable(def_id, substs) => {
781                 let tcx = self.tcx();
782                 match tcx.lift_to_global(&(obligation.param_env, substs)) {
783                     Some((param_env, substs)) => {
784                         let instance =
785                             ty::Instance::resolve(tcx.global_tcx(), param_env, def_id, substs);
786                         if let Some(instance) = instance {
787                             let cid = GlobalId {
788                                 instance,
789                                 promoted: None,
790                             };
791                             match self.tcx().const_eval(param_env.and(cid)) {
792                                 Ok(_) => Ok(EvaluatedToOk),
793                                 Err(_) => Ok(EvaluatedToErr),
794                             }
795                         } else {
796                             Ok(EvaluatedToErr)
797                         }
798                     }
799                     None => {
800                         // Inference variables still left in param_env or substs.
801                         Ok(EvaluatedToAmbig)
802                     }
803                 }
804             }
805         }
806     }
807
808     fn evaluate_trait_predicate_recursively<'o>(
809         &mut self,
810         previous_stack: TraitObligationStackList<'o, 'tcx>,
811         mut obligation: TraitObligation<'tcx>,
812     ) -> Result<EvaluationResult, OverflowError> {
813         debug!("evaluate_trait_predicate_recursively({:?})", obligation);
814
815         if self.intercrate.is_none() && obligation.is_global()
816             && obligation
817                 .param_env
818                 .caller_bounds
819                 .iter()
820                 .all(|bound| bound.needs_subst())
821         {
822             // If a param env has no global bounds, global obligations do not
823             // depend on its particular value in order to work, so we can clear
824             // out the param env and get better caching.
825             debug!(
826                 "evaluate_trait_predicate_recursively({:?}) - in global",
827                 obligation
828             );
829             obligation.param_env = obligation.param_env.without_caller_bounds();
830         }
831
832         let stack = self.push_stack(previous_stack, &obligation);
833         let fresh_trait_ref = stack.fresh_trait_ref;
834         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
835             debug!("CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
836             return Ok(result);
837         }
838
839         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
840         let result = result?;
841
842         debug!("CACHE MISS: EVAL({:?})={:?}", fresh_trait_ref, result);
843         self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
844
845         Ok(result)
846     }
847
848     fn evaluate_stack<'o>(
849         &mut self,
850         stack: &TraitObligationStack<'o, 'tcx>,
851     ) -> Result<EvaluationResult, OverflowError> {
852         // In intercrate mode, whenever any of the types are unbound,
853         // there can always be an impl. Even if there are no impls in
854         // this crate, perhaps the type would be unified with
855         // something from another crate that does provide an impl.
856         //
857         // In intra mode, we must still be conservative. The reason is
858         // that we want to avoid cycles. Imagine an impl like:
859         //
860         //     impl<T:Eq> Eq for Vec<T>
861         //
862         // and a trait reference like `$0 : Eq` where `$0` is an
863         // unbound variable. When we evaluate this trait-reference, we
864         // will unify `$0` with `Vec<$1>` (for some fresh variable
865         // `$1`), on the condition that `$1 : Eq`. We will then wind
866         // up with many candidates (since that are other `Eq` impls
867         // that apply) and try to winnow things down. This results in
868         // a recursive evaluation that `$1 : Eq` -- as you can
869         // imagine, this is just where we started. To avoid that, we
870         // check for unbound variables and return an ambiguous (hence possible)
871         // match if we've seen this trait before.
872         //
873         // This suffices to allow chains like `FnMut` implemented in
874         // terms of `Fn` etc, but we could probably make this more
875         // precise still.
876         let unbound_input_types = stack
877             .fresh_trait_ref
878             .skip_binder()
879             .input_types()
880             .any(|ty| ty.is_fresh());
881         // this check was an imperfect workaround for a bug n the old
882         // intercrate mode, it should be removed when that goes away.
883         if unbound_input_types && self.intercrate == Some(IntercrateMode::Issue43355) {
884             debug!(
885                 "evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
886                 stack.fresh_trait_ref
887             );
888             // Heuristics: show the diagnostics when there are no candidates in crate.
889             if self.intercrate_ambiguity_causes.is_some() {
890                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
891                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
892                     if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
893                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
894                         let self_ty = trait_ref.self_ty();
895                         let cause = IntercrateAmbiguityCause::DownstreamCrate {
896                             trait_desc: trait_ref.to_string(),
897                             self_desc: if self_ty.has_concrete_skeleton() {
898                                 Some(self_ty.to_string())
899                             } else {
900                                 None
901                             },
902                         };
903                         debug!("evaluate_stack: pushing cause = {:?}", cause);
904                         self.intercrate_ambiguity_causes
905                             .as_mut()
906                             .unwrap()
907                             .push(cause);
908                     }
909                 }
910             }
911             return Ok(EvaluatedToAmbig);
912         }
913         if unbound_input_types && stack.iter().skip(1).any(|prev| {
914             stack.obligation.param_env == prev.obligation.param_env
915                 && self.match_fresh_trait_refs(&stack.fresh_trait_ref, &prev.fresh_trait_ref)
916         }) {
917             debug!(
918                 "evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
919                 stack.fresh_trait_ref
920             );
921             return Ok(EvaluatedToUnknown);
922         }
923
924         // If there is any previous entry on the stack that precisely
925         // matches this obligation, then we can assume that the
926         // obligation is satisfied for now (still all other conditions
927         // must be met of course). One obvious case this comes up is
928         // marker traits like `Send`. Think of a linked list:
929         //
930         //    struct List<T> { data: T, next: Option<Box<List<T>>> }
931         //
932         // `Box<List<T>>` will be `Send` if `T` is `Send` and
933         // `Option<Box<List<T>>>` is `Send`, and in turn
934         // `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
935         // `Send`.
936         //
937         // Note that we do this comparison using the `fresh_trait_ref`
938         // fields. Because these have all been freshened using
939         // `self.freshener`, we can be sure that (a) this will not
940         // affect the inferencer state and (b) that if we see two
941         // fresh regions with the same index, they refer to the same
942         // unbound type variable.
943         if let Some(rec_index) = stack.iter()
944                  .skip(1) // skip top-most frame
945                  .position(|prev| stack.obligation.param_env == prev.obligation.param_env &&
946                                   stack.fresh_trait_ref == prev.fresh_trait_ref)
947         {
948             debug!("evaluate_stack({:?}) --> recursive", stack.fresh_trait_ref);
949
950             // Subtle: when checking for a coinductive cycle, we do
951             // not compare using the "freshened trait refs" (which
952             // have erased regions) but rather the fully explicit
953             // trait refs. This is important because it's only a cycle
954             // if the regions match exactly.
955             let cycle = stack.iter().skip(1).take(rec_index + 1);
956             let cycle = cycle.map(|stack| ty::Predicate::Trait(stack.obligation.predicate));
957             if self.coinductive_match(cycle) {
958                 debug!(
959                     "evaluate_stack({:?}) --> recursive, coinductive",
960                     stack.fresh_trait_ref
961                 );
962                 return Ok(EvaluatedToOk);
963             } else {
964                 debug!(
965                     "evaluate_stack({:?}) --> recursive, inductive",
966                     stack.fresh_trait_ref
967                 );
968                 return Ok(EvaluatedToRecur);
969             }
970         }
971
972         match self.candidate_from_obligation(stack) {
973             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
974             Ok(None) => Ok(EvaluatedToAmbig),
975             Err(Overflow) => Err(OverflowError),
976             Err(..) => Ok(EvaluatedToErr),
977         }
978     }
979
980     /// For defaulted traits, we use a co-inductive strategy to solve, so
981     /// that recursion is ok. This routine returns true if the top of the
982     /// stack (`cycle[0]`):
983     ///
984     /// - is a defaulted trait, and
985     /// - it also appears in the backtrace at some position `X`; and,
986     /// - all the predicates at positions `X..` between `X` an the top are
987     ///   also defaulted traits.
988     pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
989     where
990         I: Iterator<Item = ty::Predicate<'tcx>>,
991     {
992         let mut cycle = cycle;
993         cycle.all(|predicate| self.coinductive_predicate(predicate))
994     }
995
996     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
997         let result = match predicate {
998             ty::Predicate::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
999             _ => false,
1000         };
1001         debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
1002         result
1003     }
1004
1005     /// Further evaluate `candidate` to decide whether all type parameters match and whether nested
1006     /// obligations are met. Returns true if `candidate` remains viable after this further
1007     /// scrutiny.
1008     fn evaluate_candidate<'o>(
1009         &mut self,
1010         stack: &TraitObligationStack<'o, 'tcx>,
1011         candidate: &SelectionCandidate<'tcx>,
1012     ) -> Result<EvaluationResult, OverflowError> {
1013         debug!(
1014             "evaluate_candidate: depth={} candidate={:?}",
1015             stack.obligation.recursion_depth, candidate
1016         );
1017         let result = self.evaluation_probe(|this| {
1018             let candidate = (*candidate).clone();
1019             match this.confirm_candidate(stack.obligation, candidate) {
1020                 Ok(selection) => this.evaluate_predicates_recursively(
1021                     stack.list(),
1022                     selection.nested_obligations().into_iter()
1023                 ),
1024                 Err(..) => Ok(EvaluatedToErr),
1025             }
1026         })?;
1027         debug!(
1028             "evaluate_candidate: depth={} result={:?}",
1029             stack.obligation.recursion_depth, result
1030         );
1031         Ok(result)
1032     }
1033
1034     fn check_evaluation_cache(
1035         &self,
1036         param_env: ty::ParamEnv<'tcx>,
1037         trait_ref: ty::PolyTraitRef<'tcx>,
1038     ) -> Option<EvaluationResult> {
1039         let tcx = self.tcx();
1040         if self.can_use_global_caches(param_env) {
1041             let cache = tcx.evaluation_cache.hashmap.borrow();
1042             if let Some(cached) = cache.get(&trait_ref) {
1043                 return Some(cached.get(tcx));
1044             }
1045         }
1046         self.infcx
1047             .evaluation_cache
1048             .hashmap
1049             .borrow()
1050             .get(&trait_ref)
1051             .map(|v| v.get(tcx))
1052     }
1053
1054     fn insert_evaluation_cache(
1055         &mut self,
1056         param_env: ty::ParamEnv<'tcx>,
1057         trait_ref: ty::PolyTraitRef<'tcx>,
1058         dep_node: DepNodeIndex,
1059         result: EvaluationResult,
1060     ) {
1061         // Avoid caching results that depend on more than just the trait-ref
1062         // - the stack can create recursion.
1063         if result.is_stack_dependent() {
1064             return;
1065         }
1066
1067         if self.can_use_global_caches(param_env) {
1068             if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
1069                 debug!(
1070                     "insert_evaluation_cache(trait_ref={:?}, candidate={:?}) global",
1071                     trait_ref, result,
1072                 );
1073                 // This may overwrite the cache with the same value
1074                 // FIXME: Due to #50507 this overwrites the different values
1075                 // This should be changed to use HashMapExt::insert_same
1076                 // when that is fixed
1077                 self.tcx()
1078                     .evaluation_cache
1079                     .hashmap
1080                     .borrow_mut()
1081                     .insert(trait_ref, WithDepNode::new(dep_node, result));
1082                 return;
1083             }
1084         }
1085
1086         debug!(
1087             "insert_evaluation_cache(trait_ref={:?}, candidate={:?})",
1088             trait_ref, result,
1089         );
1090         self.infcx
1091             .evaluation_cache
1092             .hashmap
1093             .borrow_mut()
1094             .insert(trait_ref, WithDepNode::new(dep_node, result));
1095     }
1096
1097     // For various reasons, it's possible for a subobligation
1098     // to have a *lower* recursion_depth than the obligation used to create it.
1099     // Projection sub-obligations may be returned from the projection cache,
1100     // which results in obligations with an 'old' recursion_depth.
1101     // Additionally, methods like ty::wf::obligations and
1102     // InferCtxt.subtype_predicate produce subobligations without
1103     // taking in a 'parent' depth, causing the generated subobligations
1104     // to have a recursion_depth of 0
1105     //
1106     // To ensure that obligation_depth never decreasees, we force all subobligations
1107     // to have at least the depth of the original obligation.
1108     fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(&self, it: I,
1109                                                                            min_depth: usize) {
1110         it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
1111     }
1112
1113     // Check that the recursion limit has not been exceeded.
1114     //
1115     // The weird return type of this function allows it to be used with the 'try' (?)
1116     // operator within certain functions
1117     fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
1118         &self,
1119         obligation: &Obligation<'tcx, T>,
1120         error_obligation: &Obligation<'tcx, V>
1121     ) -> Result<(), OverflowError>  {
1122         let recursion_limit = *self.infcx.tcx.sess.recursion_limit.get();
1123         if obligation.recursion_depth >= recursion_limit {
1124             match self.query_mode {
1125                 TraitQueryMode::Standard => {
1126                     self.infcx().report_overflow_error(error_obligation, true);
1127                 }
1128                 TraitQueryMode::Canonical => {
1129                     return Err(OverflowError);
1130                 }
1131             }
1132         }
1133         Ok(())
1134     }
1135
1136     ///////////////////////////////////////////////////////////////////////////
1137     // CANDIDATE ASSEMBLY
1138     //
1139     // The selection process begins by examining all in-scope impls,
1140     // caller obligations, and so forth and assembling a list of
1141     // candidates. See the [rustc guide] for more details.
1142     //
1143     // [rustc guide]:
1144     // https://rust-lang.github.io/rustc-guide/traits/resolution.html#candidate-assembly
1145
1146     fn candidate_from_obligation<'o>(
1147         &mut self,
1148         stack: &TraitObligationStack<'o, 'tcx>,
1149     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1150         // Watch out for overflow. This intentionally bypasses (and does
1151         // not update) the cache.
1152         self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
1153
1154
1155         // Check the cache. Note that we freshen the trait-ref
1156         // separately rather than using `stack.fresh_trait_ref` --
1157         // this is because we want the unbound variables to be
1158         // replaced with fresh types starting from index 0.
1159         let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate.clone());
1160         debug!(
1161             "candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
1162             cache_fresh_trait_pred, stack
1163         );
1164         debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
1165
1166         if let Some(c) =
1167             self.check_candidate_cache(stack.obligation.param_env, &cache_fresh_trait_pred)
1168         {
1169             debug!("CACHE HIT: SELECT({:?})={:?}", cache_fresh_trait_pred, c);
1170             return c;
1171         }
1172
1173         // If no match, compute result and insert into cache.
1174         let (candidate, dep_node) =
1175             self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
1176
1177         debug!(
1178             "CACHE MISS: SELECT({:?})={:?}",
1179             cache_fresh_trait_pred, candidate
1180         );
1181         self.insert_candidate_cache(
1182             stack.obligation.param_env,
1183             cache_fresh_trait_pred,
1184             dep_node,
1185             candidate.clone(),
1186         );
1187         candidate
1188     }
1189
1190     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1191     where
1192         OP: FnOnce(&mut Self) -> R,
1193     {
1194         let (result, dep_node) = self.tcx()
1195             .dep_graph
1196             .with_anon_task(DepKind::TraitSelect, || op(self));
1197         self.tcx().dep_graph.read_index(dep_node);
1198         (result, dep_node)
1199     }
1200
1201     // Treat negative impls as unimplemented
1202     fn filter_negative_impls(
1203         &self,
1204         candidate: SelectionCandidate<'tcx>,
1205     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1206         if let ImplCandidate(def_id) = candidate {
1207             if !self.allow_negative_impls
1208                 && self.tcx().impl_polarity(def_id) == hir::ImplPolarity::Negative
1209             {
1210                 return Err(Unimplemented);
1211             }
1212         }
1213         Ok(Some(candidate))
1214     }
1215
1216     fn candidate_from_obligation_no_cache<'o>(
1217         &mut self,
1218         stack: &TraitObligationStack<'o, 'tcx>,
1219     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1220         if stack.obligation.predicate.references_error() {
1221             // If we encounter a `Error`, we generally prefer the
1222             // most "optimistic" result in response -- that is, the
1223             // one least likely to report downstream errors. But
1224             // because this routine is shared by coherence and by
1225             // trait selection, there isn't an obvious "right" choice
1226             // here in that respect, so we opt to just return
1227             // ambiguity and let the upstream clients sort it out.
1228             return Ok(None);
1229         }
1230
1231         if let Some(conflict) = self.is_knowable(stack) {
1232             debug!("coherence stage: not knowable");
1233             if self.intercrate_ambiguity_causes.is_some() {
1234                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
1235                 // Heuristics: show the diagnostics when there are no candidates in crate.
1236                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
1237                     let mut no_candidates_apply = true;
1238                     {
1239                         let evaluated_candidates = candidate_set
1240                             .vec
1241                             .iter()
1242                             .map(|c| self.evaluate_candidate(stack, &c));
1243
1244                         for ec in evaluated_candidates {
1245                             match ec {
1246                                 Ok(c) => {
1247                                     if c.may_apply() {
1248                                         no_candidates_apply = false;
1249                                         break;
1250                                     }
1251                                 }
1252                                 Err(e) => return Err(e.into()),
1253                             }
1254                         }
1255                     }
1256
1257                     if !candidate_set.ambiguous && no_candidates_apply {
1258                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1259                         let self_ty = trait_ref.self_ty();
1260                         let trait_desc = trait_ref.to_string();
1261                         let self_desc = if self_ty.has_concrete_skeleton() {
1262                             Some(self_ty.to_string())
1263                         } else {
1264                             None
1265                         };
1266                         let cause = if let Conflict::Upstream = conflict {
1267                             IntercrateAmbiguityCause::UpstreamCrateUpdate {
1268                                 trait_desc,
1269                                 self_desc,
1270                             }
1271                         } else {
1272                             IntercrateAmbiguityCause::DownstreamCrate {
1273                                 trait_desc,
1274                                 self_desc,
1275                             }
1276                         };
1277                         debug!("evaluate_stack: pushing cause = {:?}", cause);
1278                         self.intercrate_ambiguity_causes
1279                             .as_mut()
1280                             .unwrap()
1281                             .push(cause);
1282                     }
1283                 }
1284             }
1285             return Ok(None);
1286         }
1287
1288         let candidate_set = self.assemble_candidates(stack)?;
1289
1290         if candidate_set.ambiguous {
1291             debug!("candidate set contains ambig");
1292             return Ok(None);
1293         }
1294
1295         let mut candidates = candidate_set.vec;
1296
1297         debug!(
1298             "assembled {} candidates for {:?}: {:?}",
1299             candidates.len(),
1300             stack,
1301             candidates
1302         );
1303
1304         // At this point, we know that each of the entries in the
1305         // candidate set is *individually* applicable. Now we have to
1306         // figure out if they contain mutual incompatibilities. This
1307         // frequently arises if we have an unconstrained input type --
1308         // for example, we are looking for $0:Eq where $0 is some
1309         // unconstrained type variable. In that case, we'll get a
1310         // candidate which assumes $0 == int, one that assumes $0 ==
1311         // usize, etc. This spells an ambiguity.
1312
1313         // If there is more than one candidate, first winnow them down
1314         // by considering extra conditions (nested obligations and so
1315         // forth). We don't winnow if there is exactly one
1316         // candidate. This is a relatively minor distinction but it
1317         // can lead to better inference and error-reporting. An
1318         // example would be if there was an impl:
1319         //
1320         //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
1321         //
1322         // and we were to see some code `foo.push_clone()` where `boo`
1323         // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
1324         // we were to winnow, we'd wind up with zero candidates.
1325         // Instead, we select the right impl now but report `Bar does
1326         // not implement Clone`.
1327         if candidates.len() == 1 {
1328             return self.filter_negative_impls(candidates.pop().unwrap());
1329         }
1330
1331         // Winnow, but record the exact outcome of evaluation, which
1332         // is needed for specialization. Propagate overflow if it occurs.
1333         let mut candidates = candidates
1334             .into_iter()
1335             .map(|c| match self.evaluate_candidate(stack, &c) {
1336                 Ok(eval) if eval.may_apply() => Ok(Some(EvaluatedCandidate {
1337                     candidate: c,
1338                     evaluation: eval,
1339                 })),
1340                 Ok(_) => Ok(None),
1341                 Err(OverflowError) => Err(Overflow),
1342             })
1343             .flat_map(Result::transpose)
1344             .collect::<Result<Vec<_>, _>>()?;
1345
1346         debug!(
1347             "winnowed to {} candidates for {:?}: {:?}",
1348             candidates.len(),
1349             stack,
1350             candidates
1351         );
1352
1353         // If there are STILL multiple candidates, we can further
1354         // reduce the list by dropping duplicates -- including
1355         // resolving specializations.
1356         if candidates.len() > 1 {
1357             let mut i = 0;
1358             while i < candidates.len() {
1359                 let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
1360                     self.candidate_should_be_dropped_in_favor_of(&candidates[i], &candidates[j])
1361                 });
1362                 if is_dup {
1363                     debug!(
1364                         "Dropping candidate #{}/{}: {:?}",
1365                         i,
1366                         candidates.len(),
1367                         candidates[i]
1368                     );
1369                     candidates.swap_remove(i);
1370                 } else {
1371                     debug!(
1372                         "Retaining candidate #{}/{}: {:?}",
1373                         i,
1374                         candidates.len(),
1375                         candidates[i]
1376                     );
1377                     i += 1;
1378
1379                     // If there are *STILL* multiple candidates, give up
1380                     // and report ambiguity.
1381                     if i > 1 {
1382                         debug!("multiple matches, ambig");
1383                         return Ok(None);
1384                     }
1385                 }
1386             }
1387         }
1388
1389         // If there are *NO* candidates, then there are no impls --
1390         // that we know of, anyway. Note that in the case where there
1391         // are unbound type variables within the obligation, it might
1392         // be the case that you could still satisfy the obligation
1393         // from another crate by instantiating the type variables with
1394         // a type from another crate that does have an impl. This case
1395         // is checked for in `evaluate_stack` (and hence users
1396         // who might care about this case, like coherence, should use
1397         // that function).
1398         if candidates.is_empty() {
1399             return Err(Unimplemented);
1400         }
1401
1402         // Just one candidate left.
1403         self.filter_negative_impls(candidates.pop().unwrap().candidate)
1404     }
1405
1406     fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1407         debug!("is_knowable(intercrate={:?})", self.intercrate);
1408
1409         if !self.intercrate.is_some() {
1410             return None;
1411         }
1412
1413         let obligation = &stack.obligation;
1414         let predicate = self.infcx()
1415             .resolve_type_vars_if_possible(&obligation.predicate);
1416
1417         // OK to skip binder because of the nature of the
1418         // trait-ref-is-knowable check, which does not care about
1419         // bound regions
1420         let trait_ref = predicate.skip_binder().trait_ref;
1421
1422         let result = coherence::trait_ref_is_knowable(self.tcx(), trait_ref);
1423         if let (
1424             Some(Conflict::Downstream {
1425                 used_to_be_broken: true,
1426             }),
1427             Some(IntercrateMode::Issue43355),
1428         ) = (result, self.intercrate)
1429         {
1430             debug!("is_knowable: IGNORING conflict to be bug-compatible with #43355");
1431             None
1432         } else {
1433             result
1434         }
1435     }
1436
1437     /// Returns true if the global caches can be used.
1438     /// Do note that if the type itself is not in the
1439     /// global tcx, the local caches will be used.
1440     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1441         // If there are any where-clauses in scope, then we always use
1442         // a cache local to this particular scope. Otherwise, we
1443         // switch to a global cache. We used to try and draw
1444         // finer-grained distinctions, but that led to a serious of
1445         // annoying and weird bugs like #22019 and #18290. This simple
1446         // rule seems to be pretty clearly safe and also still retains
1447         // a very high hit rate (~95% when compiling rustc).
1448         if !param_env.caller_bounds.is_empty() {
1449             return false;
1450         }
1451
1452         // Avoid using the master cache during coherence and just rely
1453         // on the local cache. This effectively disables caching
1454         // during coherence. It is really just a simplification to
1455         // avoid us having to fear that coherence results "pollute"
1456         // the master cache. Since coherence executes pretty quickly,
1457         // it's not worth going to more trouble to increase the
1458         // hit-rate I don't think.
1459         if self.intercrate.is_some() {
1460             return false;
1461         }
1462
1463         // Otherwise, we can use the global cache.
1464         true
1465     }
1466
1467     fn check_candidate_cache(
1468         &mut self,
1469         param_env: ty::ParamEnv<'tcx>,
1470         cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
1471     ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1472         let tcx = self.tcx();
1473         let trait_ref = &cache_fresh_trait_pred.skip_binder().trait_ref;
1474         if self.can_use_global_caches(param_env) {
1475             let cache = tcx.selection_cache.hashmap.borrow();
1476             if let Some(cached) = cache.get(&trait_ref) {
1477                 return Some(cached.get(tcx));
1478             }
1479         }
1480         self.infcx
1481             .selection_cache
1482             .hashmap
1483             .borrow()
1484             .get(trait_ref)
1485             .map(|v| v.get(tcx))
1486     }
1487
1488     /// Determines whether can we safely cache the result
1489     /// of selecting an obligation. This is almost always 'true',
1490     /// except when dealing with certain ParamCandidates.
1491     ///
1492     /// Ordinarily, a ParamCandidate will contain no inference variables,
1493     /// since it was usually produced directly from a DefId. However,
1494     /// certain cases (currently only librustdoc's blanket impl finder),
1495     /// a ParamEnv may be explicitly constructed with inference types.
1496     /// When this is the case, we do *not* want to cache the resulting selection
1497     /// candidate. This is due to the fact that it might not always be possible
1498     /// to equate the obligation's trait ref and the candidate's trait ref,
1499     /// if more constraints end up getting added to an inference variable.
1500     ///
1501     /// Because of this, we always want to re-run the full selection
1502     /// process for our obligation the next time we see it, since
1503     /// we might end up picking a different SelectionCandidate (or none at all)
1504     fn can_cache_candidate(&self,
1505         result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>
1506      ) -> bool {
1507         match result {
1508             Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => {
1509                 !trait_ref.skip_binder().input_types().any(|t| t.walk().any(|t_| t_.is_ty_infer()))
1510             },
1511             _ => true
1512         }
1513     }
1514
1515     fn insert_candidate_cache(
1516         &mut self,
1517         param_env: ty::ParamEnv<'tcx>,
1518         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1519         dep_node: DepNodeIndex,
1520         candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1521     ) {
1522         let tcx = self.tcx();
1523         let trait_ref = cache_fresh_trait_pred.skip_binder().trait_ref;
1524
1525         if !self.can_cache_candidate(&candidate) {
1526             debug!("insert_candidate_cache(trait_ref={:?}, candidate={:?} -\
1527                     candidate is not cacheable", trait_ref, candidate);
1528             return;
1529
1530         }
1531
1532         if self.can_use_global_caches(param_env) {
1533             if let Err(Overflow) = candidate {
1534                 // Don't cache overflow globally; we only produce this
1535                 // in certain modes.
1536             } else if let Some(trait_ref) = tcx.lift_to_global(&trait_ref) {
1537                 if let Some(candidate) = tcx.lift_to_global(&candidate) {
1538                     debug!(
1539                         "insert_candidate_cache(trait_ref={:?}, candidate={:?}) global",
1540                         trait_ref, candidate,
1541                     );
1542                     // This may overwrite the cache with the same value
1543                     tcx.selection_cache
1544                         .hashmap
1545                         .borrow_mut()
1546                         .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1547                     return;
1548                 }
1549             }
1550         }
1551
1552         debug!(
1553             "insert_candidate_cache(trait_ref={:?}, candidate={:?}) local",
1554             trait_ref, candidate,
1555         );
1556         self.infcx
1557             .selection_cache
1558             .hashmap
1559             .borrow_mut()
1560             .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1561     }
1562
1563     fn assemble_candidates<'o>(
1564         &mut self,
1565         stack: &TraitObligationStack<'o, 'tcx>,
1566     ) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
1567         let TraitObligationStack { obligation, .. } = *stack;
1568         let ref obligation = Obligation {
1569             param_env: obligation.param_env,
1570             cause: obligation.cause.clone(),
1571             recursion_depth: obligation.recursion_depth,
1572             predicate: self.infcx()
1573                 .resolve_type_vars_if_possible(&obligation.predicate),
1574         };
1575
1576         if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1577             // Self is a type variable (e.g., `_: AsRef<str>`).
1578             //
1579             // This is somewhat problematic, as the current scheme can't really
1580             // handle it turning to be a projection. This does end up as truly
1581             // ambiguous in most cases anyway.
1582             //
1583             // Take the fast path out - this also improves
1584             // performance by preventing assemble_candidates_from_impls from
1585             // matching every impl for this trait.
1586             return Ok(SelectionCandidateSet {
1587                 vec: vec![],
1588                 ambiguous: true,
1589             });
1590         }
1591
1592         let mut candidates = SelectionCandidateSet {
1593             vec: Vec::new(),
1594             ambiguous: false,
1595         };
1596
1597         self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
1598
1599         // Other bounds. Consider both in-scope bounds from fn decl
1600         // and applicable impls. There is a certain set of precedence rules here.
1601         let def_id = obligation.predicate.def_id();
1602         let lang_items = self.tcx().lang_items();
1603
1604         if lang_items.copy_trait() == Some(def_id) {
1605             debug!(
1606                 "obligation self ty is {:?}",
1607                 obligation.predicate.skip_binder().self_ty()
1608             );
1609
1610             // User-defined copy impls are permitted, but only for
1611             // structs and enums.
1612             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1613
1614             // For other types, we'll use the builtin rules.
1615             let copy_conditions = self.copy_clone_conditions(obligation);
1616             self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1617         } else if lang_items.sized_trait() == Some(def_id) {
1618             // Sized is never implementable by end-users, it is
1619             // always automatically computed.
1620             let sized_conditions = self.sized_conditions(obligation);
1621             self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
1622         } else if lang_items.unsize_trait() == Some(def_id) {
1623             self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1624         } else {
1625             if lang_items.clone_trait() == Some(def_id) {
1626                 // Same builtin conditions as `Copy`, i.e., every type which has builtin support
1627                 // for `Copy` also has builtin support for `Clone`, + tuples and arrays of `Clone`
1628                 // types have builtin support for `Clone`.
1629                 let clone_conditions = self.copy_clone_conditions(obligation);
1630                 self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
1631             }
1632
1633             self.assemble_generator_candidates(obligation, &mut candidates)?;
1634             self.assemble_closure_candidates(obligation, &mut candidates)?;
1635             self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1636             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1637             self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1638         }
1639
1640         self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1641         self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1642         // Auto implementations have lower priority, so we only
1643         // consider triggering a default if there is no other impl that can apply.
1644         if candidates.vec.is_empty() {
1645             self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
1646         }
1647         debug!("candidate list size: {}", candidates.vec.len());
1648         Ok(candidates)
1649     }
1650
1651     fn assemble_candidates_from_projected_tys(
1652         &mut self,
1653         obligation: &TraitObligation<'tcx>,
1654         candidates: &mut SelectionCandidateSet<'tcx>,
1655     ) {
1656         debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1657
1658         // before we go into the whole placeholder thing, just
1659         // quickly check if the self-type is a projection at all.
1660         match obligation.predicate.skip_binder().trait_ref.self_ty().sty {
1661             ty::Projection(_) | ty::Opaque(..) => {}
1662             ty::Infer(ty::TyVar(_)) => {
1663                 span_bug!(
1664                     obligation.cause.span,
1665                     "Self=_ should have been handled by assemble_candidates"
1666                 );
1667             }
1668             _ => return,
1669         }
1670
1671         let result = self.infcx.probe(|_| {
1672             self.match_projection_obligation_against_definition_bounds(obligation)
1673         });
1674
1675         if result {
1676             candidates.vec.push(ProjectionCandidate);
1677         }
1678     }
1679
1680     fn match_projection_obligation_against_definition_bounds(
1681         &mut self,
1682         obligation: &TraitObligation<'tcx>,
1683     ) -> bool {
1684         let poly_trait_predicate = self.infcx()
1685             .resolve_type_vars_if_possible(&obligation.predicate);
1686         let (skol_trait_predicate, _) = self.infcx()
1687             .replace_bound_vars_with_placeholders(&poly_trait_predicate);
1688         debug!(
1689             "match_projection_obligation_against_definition_bounds: \
1690              skol_trait_predicate={:?}",
1691             skol_trait_predicate,
1692         );
1693
1694         let (def_id, substs) = match skol_trait_predicate.trait_ref.self_ty().sty {
1695             ty::Projection(ref data) => (data.trait_ref(self.tcx()).def_id, data.substs),
1696             ty::Opaque(def_id, substs) => (def_id, substs),
1697             _ => {
1698                 span_bug!(
1699                     obligation.cause.span,
1700                     "match_projection_obligation_against_definition_bounds() called \
1701                      but self-ty is not a projection: {:?}",
1702                     skol_trait_predicate.trait_ref.self_ty()
1703                 );
1704             }
1705         };
1706         debug!(
1707             "match_projection_obligation_against_definition_bounds: \
1708              def_id={:?}, substs={:?}",
1709             def_id, substs
1710         );
1711
1712         let predicates_of = self.tcx().predicates_of(def_id);
1713         let bounds = predicates_of.instantiate(self.tcx(), substs);
1714         debug!(
1715             "match_projection_obligation_against_definition_bounds: \
1716              bounds={:?}",
1717             bounds
1718         );
1719
1720         let matching_bound = util::elaborate_predicates(self.tcx(), bounds.predicates)
1721             .filter_to_traits()
1722             .find(|bound| {
1723                 self.infcx.probe(|_| {
1724                     self.match_projection(
1725                         obligation,
1726                         bound.clone(),
1727                         skol_trait_predicate.trait_ref.clone(),
1728                     )
1729                 })
1730             });
1731
1732         debug!(
1733             "match_projection_obligation_against_definition_bounds: \
1734              matching_bound={:?}",
1735             matching_bound
1736         );
1737         match matching_bound {
1738             None => false,
1739             Some(bound) => {
1740                 // Repeat the successful match, if any, this time outside of a probe.
1741                 let result = self.match_projection(
1742                     obligation,
1743                     bound,
1744                     skol_trait_predicate.trait_ref.clone(),
1745                 );
1746
1747                 assert!(result);
1748                 true
1749             }
1750         }
1751     }
1752
1753     fn match_projection(
1754         &mut self,
1755         obligation: &TraitObligation<'tcx>,
1756         trait_bound: ty::PolyTraitRef<'tcx>,
1757         skol_trait_ref: ty::TraitRef<'tcx>,
1758     ) -> bool {
1759         debug_assert!(!skol_trait_ref.has_escaping_bound_vars());
1760         self.infcx
1761             .at(&obligation.cause, obligation.param_env)
1762             .sup(ty::Binder::dummy(skol_trait_ref), trait_bound)
1763             .is_ok()
1764     }
1765
1766     /// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
1767     /// supplied to find out whether it is listed among them.
1768     ///
1769     /// Never affects inference environment.
1770     fn assemble_candidates_from_caller_bounds<'o>(
1771         &mut self,
1772         stack: &TraitObligationStack<'o, 'tcx>,
1773         candidates: &mut SelectionCandidateSet<'tcx>,
1774     ) -> Result<(), SelectionError<'tcx>> {
1775         debug!(
1776             "assemble_candidates_from_caller_bounds({:?})",
1777             stack.obligation
1778         );
1779
1780         let all_bounds = stack
1781             .obligation
1782             .param_env
1783             .caller_bounds
1784             .iter()
1785             .filter_map(|o| o.to_opt_poly_trait_ref());
1786
1787         // micro-optimization: filter out predicates relating to different
1788         // traits.
1789         let matching_bounds =
1790             all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
1791
1792         // keep only those bounds which may apply, and propagate overflow if it occurs
1793         let mut param_candidates = vec![];
1794         for bound in matching_bounds {
1795             let wc = self.evaluate_where_clause(stack, bound.clone())?;
1796             if wc.may_apply() {
1797                 param_candidates.push(ParamCandidate(bound));
1798             }
1799         }
1800
1801         candidates.vec.extend(param_candidates);
1802
1803         Ok(())
1804     }
1805
1806     fn evaluate_where_clause<'o>(
1807         &mut self,
1808         stack: &TraitObligationStack<'o, 'tcx>,
1809         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1810     ) -> Result<EvaluationResult, OverflowError> {
1811         self.evaluation_probe(|this| {
1812             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1813                 Ok(obligations) => {
1814                     this.evaluate_predicates_recursively(stack.list(), obligations.into_iter())
1815                 }
1816                 Err(()) => Ok(EvaluatedToErr),
1817             }
1818         })
1819     }
1820
1821     fn assemble_generator_candidates(
1822         &mut self,
1823         obligation: &TraitObligation<'tcx>,
1824         candidates: &mut SelectionCandidateSet<'tcx>,
1825     ) -> Result<(), SelectionError<'tcx>> {
1826         if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
1827             return Ok(());
1828         }
1829
1830         // OK to skip binder because the substs on generator types never
1831         // touch bound regions, they just capture the in-scope
1832         // type/region parameters
1833         let self_ty = *obligation.self_ty().skip_binder();
1834         match self_ty.sty {
1835             ty::Generator(..) => {
1836                 debug!(
1837                     "assemble_generator_candidates: self_ty={:?} obligation={:?}",
1838                     self_ty, obligation
1839                 );
1840
1841                 candidates.vec.push(GeneratorCandidate);
1842             }
1843             ty::Infer(ty::TyVar(_)) => {
1844                 debug!("assemble_generator_candidates: ambiguous self-type");
1845                 candidates.ambiguous = true;
1846             }
1847             _ => {}
1848         }
1849
1850         Ok(())
1851     }
1852
1853     /// Check for the artificial impl that the compiler will create for an obligation like `X :
1854     /// FnMut<..>` where `X` is a closure type.
1855     ///
1856     /// Note: the type parameters on a closure candidate are modeled as *output* type
1857     /// parameters and hence do not affect whether this trait is a match or not. They will be
1858     /// unified during the confirmation step.
1859     fn assemble_closure_candidates(
1860         &mut self,
1861         obligation: &TraitObligation<'tcx>,
1862         candidates: &mut SelectionCandidateSet<'tcx>,
1863     ) -> Result<(), SelectionError<'tcx>> {
1864         let kind = match self.tcx()
1865             .lang_items()
1866             .fn_trait_kind(obligation.predicate.def_id())
1867         {
1868             Some(k) => k,
1869             None => {
1870                 return Ok(());
1871             }
1872         };
1873
1874         // OK to skip binder because the substs on closure types never
1875         // touch bound regions, they just capture the in-scope
1876         // type/region parameters
1877         match obligation.self_ty().skip_binder().sty {
1878             ty::Closure(closure_def_id, closure_substs) => {
1879                 debug!(
1880                     "assemble_unboxed_candidates: kind={:?} obligation={:?}",
1881                     kind, obligation
1882                 );
1883                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
1884                     Some(closure_kind) => {
1885                         debug!(
1886                             "assemble_unboxed_candidates: closure_kind = {:?}",
1887                             closure_kind
1888                         );
1889                         if closure_kind.extends(kind) {
1890                             candidates.vec.push(ClosureCandidate);
1891                         }
1892                     }
1893                     None => {
1894                         debug!("assemble_unboxed_candidates: closure_kind not yet known");
1895                         candidates.vec.push(ClosureCandidate);
1896                     }
1897                 }
1898             }
1899             ty::Infer(ty::TyVar(_)) => {
1900                 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
1901                 candidates.ambiguous = true;
1902             }
1903             _ => {}
1904         }
1905
1906         Ok(())
1907     }
1908
1909     /// Implement one of the `Fn()` family for a fn pointer.
1910     fn assemble_fn_pointer_candidates(
1911         &mut self,
1912         obligation: &TraitObligation<'tcx>,
1913         candidates: &mut SelectionCandidateSet<'tcx>,
1914     ) -> Result<(), SelectionError<'tcx>> {
1915         // We provide impl of all fn traits for fn pointers.
1916         if self.tcx()
1917             .lang_items()
1918             .fn_trait_kind(obligation.predicate.def_id())
1919             .is_none()
1920         {
1921             return Ok(());
1922         }
1923
1924         // OK to skip binder because what we are inspecting doesn't involve bound regions
1925         let self_ty = *obligation.self_ty().skip_binder();
1926         match self_ty.sty {
1927             ty::Infer(ty::TyVar(_)) => {
1928                 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
1929                 candidates.ambiguous = true; // could wind up being a fn() type
1930             }
1931             // provide an impl, but only for suitable `fn` pointers
1932             ty::FnDef(..) | ty::FnPtr(_) => {
1933                 if let ty::FnSig {
1934                     unsafety: hir::Unsafety::Normal,
1935                     abi: Abi::Rust,
1936                     variadic: false,
1937                     ..
1938                 } = self_ty.fn_sig(self.tcx()).skip_binder()
1939                 {
1940                     candidates.vec.push(FnPointerCandidate);
1941                 }
1942             }
1943             _ => {}
1944         }
1945
1946         Ok(())
1947     }
1948
1949     /// Search for impls that might apply to `obligation`.
1950     fn assemble_candidates_from_impls(
1951         &mut self,
1952         obligation: &TraitObligation<'tcx>,
1953         candidates: &mut SelectionCandidateSet<'tcx>,
1954     ) -> Result<(), SelectionError<'tcx>> {
1955         debug!(
1956             "assemble_candidates_from_impls(obligation={:?})",
1957             obligation
1958         );
1959
1960         self.tcx().for_each_relevant_impl(
1961             obligation.predicate.def_id(),
1962             obligation.predicate.skip_binder().trait_ref.self_ty(),
1963             |impl_def_id| {
1964                 self.infcx.probe(|_| {
1965                     if let Ok(_substs) = self.match_impl(impl_def_id, obligation)
1966                     {
1967                         candidates.vec.push(ImplCandidate(impl_def_id));
1968                     }
1969                 });
1970             },
1971         );
1972
1973         Ok(())
1974     }
1975
1976     fn assemble_candidates_from_auto_impls(
1977         &mut self,
1978         obligation: &TraitObligation<'tcx>,
1979         candidates: &mut SelectionCandidateSet<'tcx>,
1980     ) -> Result<(), SelectionError<'tcx>> {
1981         // OK to skip binder here because the tests we do below do not involve bound regions
1982         let self_ty = *obligation.self_ty().skip_binder();
1983         debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
1984
1985         let def_id = obligation.predicate.def_id();
1986
1987         if self.tcx().trait_is_auto(def_id) {
1988             match self_ty.sty {
1989                 ty::Dynamic(..) => {
1990                     // For object types, we don't know what the closed
1991                     // over types are. This means we conservatively
1992                     // say nothing; a candidate may be added by
1993                     // `assemble_candidates_from_object_ty`.
1994                 }
1995                 ty::Foreign(..) => {
1996                     // Since the contents of foreign types is unknown,
1997                     // we don't add any `..` impl. Default traits could
1998                     // still be provided by a manual implementation for
1999                     // this trait and type.
2000                 }
2001                 ty::Param(..) | ty::Projection(..) => {
2002                     // In these cases, we don't know what the actual
2003                     // type is.  Therefore, we cannot break it down
2004                     // into its constituent types. So we don't
2005                     // consider the `..` impl but instead just add no
2006                     // candidates: this means that typeck will only
2007                     // succeed if there is another reason to believe
2008                     // that this obligation holds. That could be a
2009                     // where-clause or, in the case of an object type,
2010                     // it could be that the object type lists the
2011                     // trait (e.g., `Foo+Send : Send`). See
2012                     // `compile-fail/typeck-default-trait-impl-send-param.rs`
2013                     // for an example of a test case that exercises
2014                     // this path.
2015                 }
2016                 ty::Infer(ty::TyVar(_)) => {
2017                     // the auto impl might apply, we don't know
2018                     candidates.ambiguous = true;
2019                 }
2020                 _ => candidates.vec.push(AutoImplCandidate(def_id.clone())),
2021             }
2022         }
2023
2024         Ok(())
2025     }
2026
2027     /// Search for impls that might apply to `obligation`.
2028     fn assemble_candidates_from_object_ty(
2029         &mut self,
2030         obligation: &TraitObligation<'tcx>,
2031         candidates: &mut SelectionCandidateSet<'tcx>,
2032     ) {
2033         debug!(
2034             "assemble_candidates_from_object_ty(self_ty={:?})",
2035             obligation.self_ty().skip_binder()
2036         );
2037
2038         self.infcx.probe(|_snapshot| {
2039             // The code below doesn't care about regions, and the
2040             // self-ty here doesn't escape this probe, so just erase
2041             // any LBR.
2042             let self_ty = self.tcx().erase_late_bound_regions(&obligation.self_ty());
2043             let poly_trait_ref = match self_ty.sty {
2044                 ty::Dynamic(ref data, ..) => {
2045                     if data.auto_traits()
2046                         .any(|did| did == obligation.predicate.def_id())
2047                     {
2048                         debug!(
2049                             "assemble_candidates_from_object_ty: matched builtin bound, \
2050                              pushing candidate"
2051                         );
2052                         candidates.vec.push(BuiltinObjectCandidate);
2053                         return;
2054                     }
2055
2056                     if let Some(principal) = data.principal() {
2057                         principal.with_self_ty(self.tcx(), self_ty)
2058                     } else {
2059                         // Only auto-trait bounds exist.
2060                         return;
2061                     }
2062                 }
2063                 ty::Infer(ty::TyVar(_)) => {
2064                     debug!("assemble_candidates_from_object_ty: ambiguous");
2065                     candidates.ambiguous = true; // could wind up being an object type
2066                     return;
2067                 }
2068                 _ => return,
2069             };
2070
2071             debug!(
2072                 "assemble_candidates_from_object_ty: poly_trait_ref={:?}",
2073                 poly_trait_ref
2074             );
2075
2076             // Count only those upcast versions that match the trait-ref
2077             // we are looking for. Specifically, do not only check for the
2078             // correct trait, but also the correct type parameters.
2079             // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
2080             // but `Foo` is declared as `trait Foo : Bar<u32>`.
2081             let upcast_trait_refs = util::supertraits(self.tcx(), poly_trait_ref)
2082                 .filter(|upcast_trait_ref| {
2083                     self.infcx.probe(|_| {
2084                         let upcast_trait_ref = upcast_trait_ref.clone();
2085                         self.match_poly_trait_ref(obligation, upcast_trait_ref)
2086                             .is_ok()
2087                     })
2088                 })
2089                 .count();
2090
2091             if upcast_trait_refs > 1 {
2092                 // Can be upcast in many ways; need more type information.
2093                 candidates.ambiguous = true;
2094             } else if upcast_trait_refs == 1 {
2095                 candidates.vec.push(ObjectCandidate);
2096             }
2097         })
2098     }
2099
2100     /// Search for unsizing that might apply to `obligation`.
2101     fn assemble_candidates_for_unsizing(
2102         &mut self,
2103         obligation: &TraitObligation<'tcx>,
2104         candidates: &mut SelectionCandidateSet<'tcx>,
2105     ) {
2106         // We currently never consider higher-ranked obligations e.g.
2107         // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
2108         // because they are a priori invalid, and we could potentially add support
2109         // for them later, it's just that there isn't really a strong need for it.
2110         // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
2111         // impl, and those are generally applied to concrete types.
2112         //
2113         // That said, one might try to write a fn with a where clause like
2114         //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
2115         // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
2116         // Still, you'd be more likely to write that where clause as
2117         //     T: Trait
2118         // so it seems ok if we (conservatively) fail to accept that `Unsize`
2119         // obligation above. Should be possible to extend this in the future.
2120         let source = match obligation.self_ty().no_bound_vars() {
2121             Some(t) => t,
2122             None => {
2123                 // Don't add any candidates if there are bound regions.
2124                 return;
2125             }
2126         };
2127         let target = obligation
2128             .predicate
2129             .skip_binder()
2130             .trait_ref
2131             .substs
2132             .type_at(1);
2133
2134         debug!(
2135             "assemble_candidates_for_unsizing(source={:?}, target={:?})",
2136             source, target
2137         );
2138
2139         let may_apply = match (&source.sty, &target.sty) {
2140             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2141             (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
2142                 // Upcasts permit two things:
2143                 //
2144                 // 1. Dropping builtin bounds, e.g., `Foo+Send` to `Foo`
2145                 // 2. Tightening the region bound, e.g., `Foo+'a` to `Foo+'b` if `'a : 'b`
2146                 //
2147                 // Note that neither of these changes requires any
2148                 // change at runtime.  Eventually this will be
2149                 // generalized.
2150                 //
2151                 // We always upcast when we can because of reason
2152                 // #2 (region bounds).
2153                 data_a.principal_def_id() == data_b.principal_def_id()
2154                     && data_b.auto_traits()
2155                     // All of a's auto traits need to be in b's auto traits.
2156                     .all(|b| data_a.auto_traits().any(|a| a == b))
2157             }
2158
2159             // T -> Trait.
2160             (_, &ty::Dynamic(..)) => true,
2161
2162             // Ambiguous handling is below T -> Trait, because inference
2163             // variables can still implement Unsize<Trait> and nested
2164             // obligations will have the final say (likely deferred).
2165             (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
2166                 debug!("assemble_candidates_for_unsizing: ambiguous");
2167                 candidates.ambiguous = true;
2168                 false
2169             }
2170
2171             // [T; n] -> [T].
2172             (&ty::Array(..), &ty::Slice(_)) => true,
2173
2174             // Struct<T> -> Struct<U>.
2175             (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
2176                 def_id_a == def_id_b
2177             }
2178
2179             // (.., T) -> (.., U).
2180             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
2181
2182             _ => false,
2183         };
2184
2185         if may_apply {
2186             candidates.vec.push(BuiltinUnsizeCandidate);
2187         }
2188     }
2189
2190     fn assemble_candidates_for_trait_alias(
2191         &mut self,
2192         obligation: &TraitObligation<'tcx>,
2193         candidates: &mut SelectionCandidateSet<'tcx>,
2194     ) -> Result<(), SelectionError<'tcx>> {
2195         // OK to skip binder here because the tests we do below do not involve bound regions
2196         let self_ty = *obligation.self_ty().skip_binder();
2197         debug!("assemble_candidates_for_trait_alias(self_ty={:?})", self_ty);
2198
2199         let def_id = obligation.predicate.def_id();
2200
2201         if self.tcx().is_trait_alias(def_id) {
2202             candidates.vec.push(TraitAliasCandidate(def_id.clone()));
2203         }
2204
2205         Ok(())
2206     }
2207
2208     ///////////////////////////////////////////////////////////////////////////
2209     // WINNOW
2210     //
2211     // Winnowing is the process of attempting to resolve ambiguity by
2212     // probing further. During the winnowing process, we unify all
2213     // type variables and then we also attempt to evaluate recursive
2214     // bounds to see if they are satisfied.
2215
2216     /// Returns true if `victim` should be dropped in favor of
2217     /// `other`.  Generally speaking we will drop duplicate
2218     /// candidates and prefer where-clause candidates.
2219     ///
2220     /// See the comment for "SelectionCandidate" for more details.
2221     fn candidate_should_be_dropped_in_favor_of<'o>(
2222         &mut self,
2223         victim: &EvaluatedCandidate<'tcx>,
2224         other: &EvaluatedCandidate<'tcx>,
2225     ) -> bool {
2226         if victim.candidate == other.candidate {
2227             return true;
2228         }
2229
2230         // Check if a bound would previously have been removed when normalizing
2231         // the param_env so that it can be given the lowest priority. See
2232         // #50825 for the motivation for this.
2233         let is_global =
2234             |cand: &ty::PolyTraitRef<'_>| cand.is_global() && !cand.has_late_bound_regions();
2235
2236         match other.candidate {
2237             // Prefer BuiltinCandidate { has_nested: false } to anything else.
2238             // This is a fix for #53123 and prevents winnowing from accidentally extending the
2239             // lifetime of a variable.
2240             BuiltinCandidate { has_nested: false } => true,
2241             ParamCandidate(ref cand) => match victim.candidate {
2242                 AutoImplCandidate(..) => {
2243                     bug!(
2244                         "default implementations shouldn't be recorded \
2245                          when there are other valid candidates"
2246                     );
2247                 }
2248                 // Prefer BuiltinCandidate { has_nested: false } to anything else.
2249                 // This is a fix for #53123 and prevents winnowing from accidentally extending the
2250                 // lifetime of a variable.
2251                 BuiltinCandidate { has_nested: false } => false,
2252                 ImplCandidate(..)
2253                 | ClosureCandidate
2254                 | GeneratorCandidate
2255                 | FnPointerCandidate
2256                 | BuiltinObjectCandidate
2257                 | BuiltinUnsizeCandidate
2258                 | BuiltinCandidate { .. }
2259                 | TraitAliasCandidate(..) => {
2260                     // Global bounds from the where clause should be ignored
2261                     // here (see issue #50825). Otherwise, we have a where
2262                     // clause so don't go around looking for impls.
2263                     !is_global(cand)
2264                 }
2265                 ObjectCandidate | ProjectionCandidate => {
2266                     // Arbitrarily give param candidates priority
2267                     // over projection and object candidates.
2268                     !is_global(cand)
2269                 }
2270                 ParamCandidate(..) => false,
2271             },
2272             ObjectCandidate | ProjectionCandidate => match victim.candidate {
2273                 AutoImplCandidate(..) => {
2274                     bug!(
2275                         "default implementations shouldn't be recorded \
2276                          when there are other valid candidates"
2277                     );
2278                 }
2279                 // Prefer BuiltinCandidate { has_nested: false } to anything else.
2280                 // This is a fix for #53123 and prevents winnowing from accidentally extending the
2281                 // lifetime of a variable.
2282                 BuiltinCandidate { has_nested: false } => false,
2283                 ImplCandidate(..)
2284                 | ClosureCandidate
2285                 | GeneratorCandidate
2286                 | FnPointerCandidate
2287                 | BuiltinObjectCandidate
2288                 | BuiltinUnsizeCandidate
2289                 | BuiltinCandidate { .. }
2290                 | TraitAliasCandidate(..) => true,
2291                 ObjectCandidate | ProjectionCandidate => {
2292                     // Arbitrarily give param candidates priority
2293                     // over projection and object candidates.
2294                     true
2295                 }
2296                 ParamCandidate(ref cand) => is_global(cand),
2297             },
2298             ImplCandidate(other_def) => {
2299                 // See if we can toss out `victim` based on specialization.
2300                 // This requires us to know *for sure* that the `other` impl applies
2301                 // i.e., EvaluatedToOk:
2302                 if other.evaluation.must_apply_modulo_regions() {
2303                     match victim.candidate {
2304                         ImplCandidate(victim_def) => {
2305                             let tcx = self.tcx().global_tcx();
2306                             return tcx.specializes((other_def, victim_def))
2307                                 || tcx.impls_are_allowed_to_overlap(
2308                                     other_def, victim_def).is_some();
2309                         }
2310                         ParamCandidate(ref cand) => {
2311                             // Prefer the impl to a global where clause candidate.
2312                             return is_global(cand);
2313                         }
2314                         _ => (),
2315                     }
2316                 }
2317
2318                 false
2319             }
2320             ClosureCandidate
2321             | GeneratorCandidate
2322             | FnPointerCandidate
2323             | BuiltinObjectCandidate
2324             | BuiltinUnsizeCandidate
2325             | BuiltinCandidate { has_nested: true } => {
2326                 match victim.candidate {
2327                     ParamCandidate(ref cand) => {
2328                         // Prefer these to a global where-clause bound
2329                         // (see issue #50825)
2330                         is_global(cand) && other.evaluation.must_apply_modulo_regions()
2331                     }
2332                     _ => false,
2333                 }
2334             }
2335             _ => false,
2336         }
2337     }
2338
2339     ///////////////////////////////////////////////////////////////////////////
2340     // BUILTIN BOUNDS
2341     //
2342     // These cover the traits that are built-in to the language
2343     // itself: `Copy`, `Clone` and `Sized`.
2344
2345     fn assemble_builtin_bound_candidates<'o>(
2346         &mut self,
2347         conditions: BuiltinImplConditions<'tcx>,
2348         candidates: &mut SelectionCandidateSet<'tcx>,
2349     ) -> Result<(), SelectionError<'tcx>> {
2350         match conditions {
2351             BuiltinImplConditions::Where(nested) => {
2352                 debug!("builtin_bound: nested={:?}", nested);
2353                 candidates.vec.push(BuiltinCandidate {
2354                     has_nested: nested.skip_binder().len() > 0,
2355                 });
2356             }
2357             BuiltinImplConditions::None => {}
2358             BuiltinImplConditions::Ambiguous => {
2359                 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
2360                 candidates.ambiguous = true;
2361             }
2362         }
2363
2364         Ok(())
2365     }
2366
2367     fn sized_conditions(
2368         &mut self,
2369         obligation: &TraitObligation<'tcx>,
2370     ) -> BuiltinImplConditions<'tcx> {
2371         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2372
2373         // NOTE: binder moved to (*)
2374         let self_ty = self.infcx
2375             .shallow_resolve(obligation.predicate.skip_binder().self_ty());
2376
2377         match self_ty.sty {
2378             ty::Infer(ty::IntVar(_))
2379             | ty::Infer(ty::FloatVar(_))
2380             | ty::Uint(_)
2381             | ty::Int(_)
2382             | ty::Bool
2383             | ty::Float(_)
2384             | ty::FnDef(..)
2385             | ty::FnPtr(_)
2386             | ty::RawPtr(..)
2387             | ty::Char
2388             | ty::Ref(..)
2389             | ty::Generator(..)
2390             | ty::GeneratorWitness(..)
2391             | ty::Array(..)
2392             | ty::Closure(..)
2393             | ty::Never
2394             | ty::Error => {
2395                 // safe for everything
2396                 Where(ty::Binder::dummy(Vec::new()))
2397             }
2398
2399             ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
2400
2401             ty::Tuple(tys) => Where(ty::Binder::bind(tys.last().into_iter().cloned().collect())),
2402
2403             ty::Adt(def, substs) => {
2404                 let sized_crit = def.sized_constraint(self.tcx());
2405                 // (*) binder moved here
2406                 Where(ty::Binder::bind(
2407                     sized_crit
2408                         .iter()
2409                         .map(|ty| ty.subst(self.tcx(), substs))
2410                         .collect(),
2411                 ))
2412             }
2413
2414             ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
2415             ty::Infer(ty::TyVar(_)) => Ambiguous,
2416
2417             ty::UnnormalizedProjection(..)
2418             | ty::Placeholder(..)
2419             | ty::Bound(..)
2420             | ty::Infer(ty::FreshTy(_))
2421             | ty::Infer(ty::FreshIntTy(_))
2422             | ty::Infer(ty::FreshFloatTy(_)) => {
2423                 bug!(
2424                     "asked to assemble builtin bounds of unexpected type: {:?}",
2425                     self_ty
2426                 );
2427             }
2428         }
2429     }
2430
2431     fn copy_clone_conditions(
2432         &mut self,
2433         obligation: &TraitObligation<'tcx>,
2434     ) -> BuiltinImplConditions<'tcx> {
2435         // NOTE: binder moved to (*)
2436         let self_ty = self.infcx
2437             .shallow_resolve(obligation.predicate.skip_binder().self_ty());
2438
2439         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2440
2441         match self_ty.sty {
2442             ty::Infer(ty::IntVar(_))
2443             | ty::Infer(ty::FloatVar(_))
2444             | ty::FnDef(..)
2445             | ty::FnPtr(_)
2446             | ty::Error => Where(ty::Binder::dummy(Vec::new())),
2447
2448             ty::Uint(_)
2449             | ty::Int(_)
2450             | ty::Bool
2451             | ty::Float(_)
2452             | ty::Char
2453             | ty::RawPtr(..)
2454             | ty::Never
2455             | ty::Ref(_, _, hir::MutImmutable) => {
2456                 // Implementations provided in libcore
2457                 None
2458             }
2459
2460             ty::Dynamic(..)
2461             | ty::Str
2462             | ty::Slice(..)
2463             | ty::Generator(..)
2464             | ty::GeneratorWitness(..)
2465             | ty::Foreign(..)
2466             | ty::Ref(_, _, hir::MutMutable) => None,
2467
2468             ty::Array(element_ty, _) => {
2469                 // (*) binder moved here
2470                 Where(ty::Binder::bind(vec![element_ty]))
2471             }
2472
2473             ty::Tuple(tys) => {
2474                 // (*) binder moved here
2475                 Where(ty::Binder::bind(tys.to_vec()))
2476             }
2477
2478             ty::Closure(def_id, substs) => {
2479                 let trait_id = obligation.predicate.def_id();
2480                 let is_copy_trait = Some(trait_id) == self.tcx().lang_items().copy_trait();
2481                 let is_clone_trait = Some(trait_id) == self.tcx().lang_items().clone_trait();
2482                 if is_copy_trait || is_clone_trait {
2483                     Where(ty::Binder::bind(
2484                         substs.upvar_tys(def_id, self.tcx()).collect(),
2485                     ))
2486                 } else {
2487                     None
2488                 }
2489             }
2490
2491             ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
2492                 // Fallback to whatever user-defined impls exist in this case.
2493                 None
2494             }
2495
2496             ty::Infer(ty::TyVar(_)) => {
2497                 // Unbound type variable. Might or might not have
2498                 // applicable impls and so forth, depending on what
2499                 // those type variables wind up being bound to.
2500                 Ambiguous
2501             }
2502
2503             ty::UnnormalizedProjection(..)
2504             | ty::Placeholder(..)
2505             | ty::Bound(..)
2506             | ty::Infer(ty::FreshTy(_))
2507             | ty::Infer(ty::FreshIntTy(_))
2508             | ty::Infer(ty::FreshFloatTy(_)) => {
2509                 bug!(
2510                     "asked to assemble builtin bounds of unexpected type: {:?}",
2511                     self_ty
2512                 );
2513             }
2514         }
2515     }
2516
2517     /// For default impls, we need to break apart a type into its
2518     /// "constituent types" -- meaning, the types that it contains.
2519     ///
2520     /// Here are some (simple) examples:
2521     ///
2522     /// ```
2523     /// (i32, u32) -> [i32, u32]
2524     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2525     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2526     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2527     /// ```
2528     fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
2529         match t.sty {
2530             ty::Uint(_)
2531             | ty::Int(_)
2532             | ty::Bool
2533             | ty::Float(_)
2534             | ty::FnDef(..)
2535             | ty::FnPtr(_)
2536             | ty::Str
2537             | ty::Error
2538             | ty::Infer(ty::IntVar(_))
2539             | ty::Infer(ty::FloatVar(_))
2540             | ty::Never
2541             | ty::Char => Vec::new(),
2542
2543             ty::UnnormalizedProjection(..)
2544             | ty::Placeholder(..)
2545             | ty::Dynamic(..)
2546             | ty::Param(..)
2547             | ty::Foreign(..)
2548             | ty::Projection(..)
2549             | ty::Bound(..)
2550             | ty::Infer(ty::TyVar(_))
2551             | ty::Infer(ty::FreshTy(_))
2552             | ty::Infer(ty::FreshIntTy(_))
2553             | ty::Infer(ty::FreshFloatTy(_)) => {
2554                 bug!(
2555                     "asked to assemble constituent types of unexpected type: {:?}",
2556                     t
2557                 );
2558             }
2559
2560             ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
2561                 vec![element_ty]
2562             }
2563
2564             ty::Array(element_ty, _) | ty::Slice(element_ty) => vec![element_ty],
2565
2566             ty::Tuple(ref tys) => {
2567                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2568                 tys.to_vec()
2569             }
2570
2571             ty::Closure(def_id, ref substs) => substs.upvar_tys(def_id, self.tcx()).collect(),
2572
2573             ty::Generator(def_id, ref substs, _) => {
2574                 let witness = substs.witness(def_id, self.tcx());
2575                 substs
2576                     .upvar_tys(def_id, self.tcx())
2577                     .chain(iter::once(witness))
2578                     .collect()
2579             }
2580
2581             ty::GeneratorWitness(types) => {
2582                 // This is sound because no regions in the witness can refer to
2583                 // the binder outside the witness. So we'll effectivly reuse
2584                 // the implicit binder around the witness.
2585                 types.skip_binder().to_vec()
2586             }
2587
2588             // for `PhantomData<T>`, we pass `T`
2589             ty::Adt(def, substs) if def.is_phantom_data() => substs.types().collect(),
2590
2591             ty::Adt(def, substs) => def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect(),
2592
2593             ty::Opaque(def_id, substs) => {
2594                 // We can resolve the `impl Trait` to its concrete type,
2595                 // which enforces a DAG between the functions requiring
2596                 // the auto trait bounds in question.
2597                 vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
2598             }
2599         }
2600     }
2601
2602     fn collect_predicates_for_types(
2603         &mut self,
2604         param_env: ty::ParamEnv<'tcx>,
2605         cause: ObligationCause<'tcx>,
2606         recursion_depth: usize,
2607         trait_def_id: DefId,
2608         types: ty::Binder<Vec<Ty<'tcx>>>,
2609     ) -> Vec<PredicateObligation<'tcx>> {
2610         // Because the types were potentially derived from
2611         // higher-ranked obligations they may reference late-bound
2612         // regions. For example, `for<'a> Foo<&'a int> : Copy` would
2613         // yield a type like `for<'a> &'a int`. In general, we
2614         // maintain the invariant that we never manipulate bound
2615         // regions, so we have to process these bound regions somehow.
2616         //
2617         // The strategy is to:
2618         //
2619         // 1. Instantiate those regions to placeholder regions (e.g.,
2620         //    `for<'a> &'a int` becomes `&0 int`.
2621         // 2. Produce something like `&'0 int : Copy`
2622         // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
2623
2624         types
2625             .skip_binder()
2626             .into_iter()
2627             .flat_map(|ty| {
2628                 // binder moved -\
2629                 let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
2630
2631                 self.infcx.in_snapshot(|_| {
2632                     let (skol_ty, _) = self.infcx
2633                         .replace_bound_vars_with_placeholders(&ty);
2634                     let Normalized {
2635                         value: normalized_ty,
2636                         mut obligations,
2637                     } = project::normalize_with_depth(
2638                         self,
2639                         param_env,
2640                         cause.clone(),
2641                         recursion_depth,
2642                         &skol_ty,
2643                     );
2644                     let skol_obligation = self.tcx().predicate_for_trait_def(
2645                         param_env,
2646                         cause.clone(),
2647                         trait_def_id,
2648                         recursion_depth,
2649                         normalized_ty,
2650                         &[],
2651                     );
2652                     obligations.push(skol_obligation);
2653                     obligations
2654                 })
2655             })
2656             .collect()
2657     }
2658
2659     ///////////////////////////////////////////////////////////////////////////
2660     // CONFIRMATION
2661     //
2662     // Confirmation unifies the output type parameters of the trait
2663     // with the values found in the obligation, possibly yielding a
2664     // type error.  See the [rustc guide] for more details.
2665     //
2666     // [rustc guide]:
2667     // https://rust-lang.github.io/rustc-guide/traits/resolution.html#confirmation
2668
2669     fn confirm_candidate(
2670         &mut self,
2671         obligation: &TraitObligation<'tcx>,
2672         candidate: SelectionCandidate<'tcx>,
2673     ) -> Result<Selection<'tcx>, SelectionError<'tcx>> {
2674         debug!("confirm_candidate({:?}, {:?})", obligation, candidate);
2675
2676         match candidate {
2677             BuiltinCandidate { has_nested } => {
2678                 let data = self.confirm_builtin_candidate(obligation, has_nested);
2679                 Ok(VtableBuiltin(data))
2680             }
2681
2682             ParamCandidate(param) => {
2683                 let obligations = self.confirm_param_candidate(obligation, param);
2684                 Ok(VtableParam(obligations))
2685             }
2686
2687             ImplCandidate(impl_def_id) => Ok(VtableImpl(self.confirm_impl_candidate(
2688                 obligation,
2689                 impl_def_id,
2690             ))),
2691
2692             AutoImplCandidate(trait_def_id) => {
2693                 let data = self.confirm_auto_impl_candidate(obligation, trait_def_id);
2694                 Ok(VtableAutoImpl(data))
2695             }
2696
2697             ProjectionCandidate => {
2698                 self.confirm_projection_candidate(obligation);
2699                 Ok(VtableParam(Vec::new()))
2700             }
2701
2702             ClosureCandidate => {
2703                 let vtable_closure = self.confirm_closure_candidate(obligation)?;
2704                 Ok(VtableClosure(vtable_closure))
2705             }
2706
2707             GeneratorCandidate => {
2708                 let vtable_generator = self.confirm_generator_candidate(obligation)?;
2709                 Ok(VtableGenerator(vtable_generator))
2710             }
2711
2712             FnPointerCandidate => {
2713                 let data = self.confirm_fn_pointer_candidate(obligation)?;
2714                 Ok(VtableFnPointer(data))
2715             }
2716
2717             TraitAliasCandidate(alias_def_id) => {
2718                 let data = self.confirm_trait_alias_candidate(obligation, alias_def_id);
2719                 Ok(VtableTraitAlias(data))
2720             }
2721
2722             ObjectCandidate => {
2723                 let data = self.confirm_object_candidate(obligation);
2724                 Ok(VtableObject(data))
2725             }
2726
2727             BuiltinObjectCandidate => {
2728                 // This indicates something like `(Trait+Send) :
2729                 // Send`. In this case, we know that this holds
2730                 // because that's what the object type is telling us,
2731                 // and there's really no additional obligations to
2732                 // prove and no types in particular to unify etc.
2733                 Ok(VtableParam(Vec::new()))
2734             }
2735
2736             BuiltinUnsizeCandidate => {
2737                 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2738                 Ok(VtableBuiltin(data))
2739             }
2740         }
2741     }
2742
2743     fn confirm_projection_candidate(&mut self, obligation: &TraitObligation<'tcx>) {
2744         self.infcx.in_snapshot(|_| {
2745             let result =
2746                 self.match_projection_obligation_against_definition_bounds(obligation);
2747             assert!(result);
2748         })
2749     }
2750
2751     fn confirm_param_candidate(
2752         &mut self,
2753         obligation: &TraitObligation<'tcx>,
2754         param: ty::PolyTraitRef<'tcx>,
2755     ) -> Vec<PredicateObligation<'tcx>> {
2756         debug!("confirm_param_candidate({:?},{:?})", obligation, param);
2757
2758         // During evaluation, we already checked that this
2759         // where-clause trait-ref could be unified with the obligation
2760         // trait-ref. Repeat that unification now without any
2761         // transactional boundary; it should not fail.
2762         match self.match_where_clause_trait_ref(obligation, param.clone()) {
2763             Ok(obligations) => obligations,
2764             Err(()) => {
2765                 bug!(
2766                     "Where clause `{:?}` was applicable to `{:?}` but now is not",
2767                     param,
2768                     obligation
2769                 );
2770             }
2771         }
2772     }
2773
2774     fn confirm_builtin_candidate(
2775         &mut self,
2776         obligation: &TraitObligation<'tcx>,
2777         has_nested: bool,
2778     ) -> VtableBuiltinData<PredicateObligation<'tcx>> {
2779         debug!(
2780             "confirm_builtin_candidate({:?}, {:?})",
2781             obligation, has_nested
2782         );
2783
2784         let lang_items = self.tcx().lang_items();
2785         let obligations = if has_nested {
2786             let trait_def = obligation.predicate.def_id();
2787             let conditions = if Some(trait_def) == lang_items.sized_trait() {
2788                 self.sized_conditions(obligation)
2789             } else if Some(trait_def) == lang_items.copy_trait() {
2790                 self.copy_clone_conditions(obligation)
2791             } else if Some(trait_def) == lang_items.clone_trait() {
2792                 self.copy_clone_conditions(obligation)
2793             } else {
2794                 bug!("unexpected builtin trait {:?}", trait_def)
2795             };
2796             let nested = match conditions {
2797                 BuiltinImplConditions::Where(nested) => nested,
2798                 _ => bug!(
2799                     "obligation {:?} had matched a builtin impl but now doesn't",
2800                     obligation
2801                 ),
2802             };
2803
2804             let cause = obligation.derived_cause(BuiltinDerivedObligation);
2805             self.collect_predicates_for_types(
2806                 obligation.param_env,
2807                 cause,
2808                 obligation.recursion_depth + 1,
2809                 trait_def,
2810                 nested,
2811             )
2812         } else {
2813             vec![]
2814         };
2815
2816         debug!("confirm_builtin_candidate: obligations={:?}", obligations);
2817
2818         VtableBuiltinData {
2819             nested: obligations,
2820         }
2821     }
2822
2823     /// This handles the case where a `auto trait Foo` impl is being used.
2824     /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2825     ///
2826     /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2827     /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2828     fn confirm_auto_impl_candidate(
2829         &mut self,
2830         obligation: &TraitObligation<'tcx>,
2831         trait_def_id: DefId,
2832     ) -> VtableAutoImplData<PredicateObligation<'tcx>> {
2833         debug!(
2834             "confirm_auto_impl_candidate({:?}, {:?})",
2835             obligation, trait_def_id
2836         );
2837
2838         let types = obligation.predicate.map_bound(|inner| {
2839             let self_ty = self.infcx.shallow_resolve(inner.self_ty());
2840             self.constituent_types_for_ty(self_ty)
2841         });
2842         self.vtable_auto_impl(obligation, trait_def_id, types)
2843     }
2844
2845     /// See `confirm_auto_impl_candidate`.
2846     fn vtable_auto_impl(
2847         &mut self,
2848         obligation: &TraitObligation<'tcx>,
2849         trait_def_id: DefId,
2850         nested: ty::Binder<Vec<Ty<'tcx>>>,
2851     ) -> VtableAutoImplData<PredicateObligation<'tcx>> {
2852         debug!("vtable_auto_impl: nested={:?}", nested);
2853
2854         let cause = obligation.derived_cause(BuiltinDerivedObligation);
2855         let mut obligations = self.collect_predicates_for_types(
2856             obligation.param_env,
2857             cause,
2858             obligation.recursion_depth + 1,
2859             trait_def_id,
2860             nested,
2861         );
2862
2863         let trait_obligations: Vec<PredicateObligation<'_>> = self.infcx.in_snapshot(|_| {
2864             let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
2865             let (trait_ref, _) = self.infcx
2866                 .replace_bound_vars_with_placeholders(&poly_trait_ref);
2867             let cause = obligation.derived_cause(ImplDerivedObligation);
2868             self.impl_or_trait_obligations(
2869                 cause,
2870                 obligation.recursion_depth + 1,
2871                 obligation.param_env,
2872                 trait_def_id,
2873                 &trait_ref.substs,
2874             )
2875         });
2876
2877         // Adds the predicates from the trait.  Note that this contains a `Self: Trait`
2878         // predicate as usual.  It won't have any effect since auto traits are coinductive.
2879         obligations.extend(trait_obligations);
2880
2881         debug!("vtable_auto_impl: obligations={:?}", obligations);
2882
2883         VtableAutoImplData {
2884             trait_def_id,
2885             nested: obligations,
2886         }
2887     }
2888
2889     fn confirm_impl_candidate(
2890         &mut self,
2891         obligation: &TraitObligation<'tcx>,
2892         impl_def_id: DefId,
2893     ) -> VtableImplData<'tcx, PredicateObligation<'tcx>> {
2894         debug!("confirm_impl_candidate({:?},{:?})", obligation, impl_def_id);
2895
2896         // First, create the substitutions by matching the impl again,
2897         // this time not in a probe.
2898         self.infcx.in_snapshot(|_| {
2899             let substs = self.rematch_impl(impl_def_id, obligation);
2900             debug!("confirm_impl_candidate: substs={:?}", substs);
2901             let cause = obligation.derived_cause(ImplDerivedObligation);
2902             self.vtable_impl(
2903                 impl_def_id,
2904                 substs,
2905                 cause,
2906                 obligation.recursion_depth + 1,
2907                 obligation.param_env,
2908             )
2909         })
2910     }
2911
2912     fn vtable_impl(
2913         &mut self,
2914         impl_def_id: DefId,
2915         mut substs: Normalized<'tcx, &'tcx Substs<'tcx>>,
2916         cause: ObligationCause<'tcx>,
2917         recursion_depth: usize,
2918         param_env: ty::ParamEnv<'tcx>,
2919     ) -> VtableImplData<'tcx, PredicateObligation<'tcx>> {
2920         debug!(
2921             "vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={})",
2922             impl_def_id, substs, recursion_depth,
2923         );
2924
2925         let mut impl_obligations = self.impl_or_trait_obligations(
2926             cause,
2927             recursion_depth,
2928             param_env,
2929             impl_def_id,
2930             &substs.value,
2931         );
2932
2933         debug!(
2934             "vtable_impl: impl_def_id={:?} impl_obligations={:?}",
2935             impl_def_id, impl_obligations
2936         );
2937
2938         // Because of RFC447, the impl-trait-ref and obligations
2939         // are sufficient to determine the impl substs, without
2940         // relying on projections in the impl-trait-ref.
2941         //
2942         // e.g., `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
2943         impl_obligations.append(&mut substs.obligations);
2944
2945         VtableImplData {
2946             impl_def_id,
2947             substs: substs.value,
2948             nested: impl_obligations,
2949         }
2950     }
2951
2952     fn confirm_object_candidate(
2953         &mut self,
2954         obligation: &TraitObligation<'tcx>,
2955     ) -> VtableObjectData<'tcx, PredicateObligation<'tcx>> {
2956         debug!("confirm_object_candidate({:?})", obligation);
2957
2958         // FIXME(nmatsakis) skipping binder here seems wrong -- we should
2959         // probably flatten the binder from the obligation and the binder
2960         // from the object. Have to try to make a broken test case that
2961         // results.
2962         let self_ty = self.infcx
2963             .shallow_resolve(*obligation.self_ty().skip_binder());
2964         let poly_trait_ref = match self_ty.sty {
2965             ty::Dynamic(ref data, ..) =>
2966                 data.principal().unwrap_or_else(|| {
2967                     span_bug!(obligation.cause.span, "object candidate with no principal")
2968                 }).with_self_ty(self.tcx(), self_ty),
2969             _ => span_bug!(obligation.cause.span, "object candidate with non-object"),
2970         };
2971
2972         let mut upcast_trait_ref = None;
2973         let mut nested = vec![];
2974         let vtable_base;
2975
2976         {
2977             let tcx = self.tcx();
2978
2979             // We want to find the first supertrait in the list of
2980             // supertraits that we can unify with, and do that
2981             // unification. We know that there is exactly one in the list
2982             // where we can unify because otherwise select would have
2983             // reported an ambiguity. (When we do find a match, also
2984             // record it for later.)
2985             let nonmatching = util::supertraits(tcx, poly_trait_ref).take_while(
2986                 |&t| match self.infcx.commit_if_ok(|_| self.match_poly_trait_ref(obligation, t)) {
2987                     Ok(obligations) => {
2988                         upcast_trait_ref = Some(t);
2989                         nested.extend(obligations);
2990                         false
2991                     }
2992                     Err(_) => true,
2993                 },
2994             );
2995
2996             // Additionally, for each of the nonmatching predicates that
2997             // we pass over, we sum up the set of number of vtable
2998             // entries, so that we can compute the offset for the selected
2999             // trait.
3000             vtable_base = nonmatching.map(|t| tcx.count_own_vtable_entries(t)).sum();
3001         }
3002
3003         VtableObjectData {
3004             upcast_trait_ref: upcast_trait_ref.unwrap(),
3005             vtable_base,
3006             nested,
3007         }
3008     }
3009
3010     fn confirm_fn_pointer_candidate(
3011         &mut self,
3012         obligation: &TraitObligation<'tcx>,
3013     ) -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3014         debug!("confirm_fn_pointer_candidate({:?})", obligation);
3015
3016         // OK to skip binder; it is reintroduced below
3017         let self_ty = self.infcx
3018             .shallow_resolve(*obligation.self_ty().skip_binder());
3019         let sig = self_ty.fn_sig(self.tcx());
3020         let trait_ref = self.tcx()
3021             .closure_trait_ref_and_return_type(
3022                 obligation.predicate.def_id(),
3023                 self_ty,
3024                 sig,
3025                 util::TupleArgumentsFlag::Yes,
3026             )
3027             .map_bound(|(trait_ref, _)| trait_ref);
3028
3029         let Normalized {
3030             value: trait_ref,
3031             obligations,
3032         } = project::normalize_with_depth(
3033             self,
3034             obligation.param_env,
3035             obligation.cause.clone(),
3036             obligation.recursion_depth + 1,
3037             &trait_ref,
3038         );
3039
3040         self.confirm_poly_trait_refs(
3041             obligation.cause.clone(),
3042             obligation.param_env,
3043             obligation.predicate.to_poly_trait_ref(),
3044             trait_ref,
3045         )?;
3046         Ok(VtableFnPointerData {
3047             fn_ty: self_ty,
3048             nested: obligations,
3049         })
3050     }
3051
3052     fn confirm_trait_alias_candidate(
3053         &mut self,
3054         obligation: &TraitObligation<'tcx>,
3055         alias_def_id: DefId,
3056     ) -> VtableTraitAliasData<'tcx, PredicateObligation<'tcx>> {
3057         debug!(
3058             "confirm_trait_alias_candidate({:?}, {:?})",
3059             obligation, alias_def_id
3060         );
3061
3062         self.infcx.in_snapshot(|_| {
3063             let (predicate, _) = self.infcx()
3064                 .replace_bound_vars_with_placeholders(&obligation.predicate);
3065             let trait_ref = predicate.trait_ref;
3066             let trait_def_id = trait_ref.def_id;
3067             let substs = trait_ref.substs;
3068
3069             let trait_obligations = self.impl_or_trait_obligations(
3070                 obligation.cause.clone(),
3071                 obligation.recursion_depth,
3072                 obligation.param_env,
3073                 trait_def_id,
3074                 &substs,
3075             );
3076
3077             debug!(
3078                 "confirm_trait_alias_candidate: trait_def_id={:?} trait_obligations={:?}",
3079                 trait_def_id, trait_obligations
3080             );
3081
3082             VtableTraitAliasData {
3083                 alias_def_id,
3084                 substs: substs,
3085                 nested: trait_obligations,
3086             }
3087         })
3088     }
3089
3090     fn confirm_generator_candidate(
3091         &mut self,
3092         obligation: &TraitObligation<'tcx>,
3093     ) -> Result<VtableGeneratorData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3094         // OK to skip binder because the substs on generator types never
3095         // touch bound regions, they just capture the in-scope
3096         // type/region parameters
3097         let self_ty = self.infcx
3098             .shallow_resolve(obligation.self_ty().skip_binder());
3099         let (generator_def_id, substs) = match self_ty.sty {
3100             ty::Generator(id, substs, _) => (id, substs),
3101             _ => bug!("closure candidate for non-closure {:?}", obligation),
3102         };
3103
3104         debug!(
3105             "confirm_generator_candidate({:?},{:?},{:?})",
3106             obligation, generator_def_id, substs
3107         );
3108
3109         let trait_ref = self.generator_trait_ref_unnormalized(obligation, generator_def_id, substs);
3110         let Normalized {
3111             value: trait_ref,
3112             mut obligations,
3113         } = normalize_with_depth(
3114             self,
3115             obligation.param_env,
3116             obligation.cause.clone(),
3117             obligation.recursion_depth + 1,
3118             &trait_ref,
3119         );
3120
3121         debug!(
3122             "confirm_generator_candidate(generator_def_id={:?}, \
3123              trait_ref={:?}, obligations={:?})",
3124             generator_def_id, trait_ref, obligations
3125         );
3126
3127         obligations.extend(self.confirm_poly_trait_refs(
3128             obligation.cause.clone(),
3129             obligation.param_env,
3130             obligation.predicate.to_poly_trait_ref(),
3131             trait_ref,
3132         )?);
3133
3134         Ok(VtableGeneratorData {
3135             generator_def_id: generator_def_id,
3136             substs: substs.clone(),
3137             nested: obligations,
3138         })
3139     }
3140
3141     fn confirm_closure_candidate(
3142         &mut self,
3143         obligation: &TraitObligation<'tcx>,
3144     ) -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3145         debug!("confirm_closure_candidate({:?})", obligation);
3146
3147         let kind = self.tcx()
3148             .lang_items()
3149             .fn_trait_kind(obligation.predicate.def_id())
3150             .unwrap_or_else(|| bug!("closure candidate for non-fn trait {:?}", obligation));
3151
3152         // OK to skip binder because the substs on closure types never
3153         // touch bound regions, they just capture the in-scope
3154         // type/region parameters
3155         let self_ty = self.infcx
3156             .shallow_resolve(obligation.self_ty().skip_binder());
3157         let (closure_def_id, substs) = match self_ty.sty {
3158             ty::Closure(id, substs) => (id, substs),
3159             _ => bug!("closure candidate for non-closure {:?}", obligation),
3160         };
3161
3162         let trait_ref = self.closure_trait_ref_unnormalized(obligation, closure_def_id, substs);
3163         let Normalized {
3164             value: trait_ref,
3165             mut obligations,
3166         } = normalize_with_depth(
3167             self,
3168             obligation.param_env,
3169             obligation.cause.clone(),
3170             obligation.recursion_depth + 1,
3171             &trait_ref,
3172         );
3173
3174         debug!(
3175             "confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
3176             closure_def_id, trait_ref, obligations
3177         );
3178
3179         obligations.extend(self.confirm_poly_trait_refs(
3180             obligation.cause.clone(),
3181             obligation.param_env,
3182             obligation.predicate.to_poly_trait_ref(),
3183             trait_ref,
3184         )?);
3185
3186         // FIXME: chalk
3187         if !self.tcx().sess.opts.debugging_opts.chalk {
3188             obligations.push(Obligation::new(
3189                 obligation.cause.clone(),
3190                 obligation.param_env,
3191                 ty::Predicate::ClosureKind(closure_def_id, substs, kind),
3192             ));
3193         }
3194
3195         Ok(VtableClosureData {
3196             closure_def_id,
3197             substs: substs.clone(),
3198             nested: obligations,
3199         })
3200     }
3201
3202     /// In the case of closure types and fn pointers,
3203     /// we currently treat the input type parameters on the trait as
3204     /// outputs. This means that when we have a match we have only
3205     /// considered the self type, so we have to go back and make sure
3206     /// to relate the argument types too.  This is kind of wrong, but
3207     /// since we control the full set of impls, also not that wrong,
3208     /// and it DOES yield better error messages (since we don't report
3209     /// errors as if there is no applicable impl, but rather report
3210     /// errors are about mismatched argument types.
3211     ///
3212     /// Here is an example. Imagine we have a closure expression
3213     /// and we desugared it so that the type of the expression is
3214     /// `Closure`, and `Closure` expects an int as argument. Then it
3215     /// is "as if" the compiler generated this impl:
3216     ///
3217     ///     impl Fn(int) for Closure { ... }
3218     ///
3219     /// Now imagine our obligation is `Fn(usize) for Closure`. So far
3220     /// we have matched the self-type `Closure`. At this point we'll
3221     /// compare the `int` to `usize` and generate an error.
3222     ///
3223     /// Note that this checking occurs *after* the impl has selected,
3224     /// because these output type parameters should not affect the
3225     /// selection of the impl. Therefore, if there is a mismatch, we
3226     /// report an error to the user.
3227     fn confirm_poly_trait_refs(
3228         &mut self,
3229         obligation_cause: ObligationCause<'tcx>,
3230         obligation_param_env: ty::ParamEnv<'tcx>,
3231         obligation_trait_ref: ty::PolyTraitRef<'tcx>,
3232         expected_trait_ref: ty::PolyTraitRef<'tcx>,
3233     ) -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3234         let obligation_trait_ref = obligation_trait_ref.clone();
3235         self.infcx
3236             .at(&obligation_cause, obligation_param_env)
3237             .sup(obligation_trait_ref, expected_trait_ref)
3238             .map(|InferOk { obligations, .. }| obligations)
3239             .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
3240     }
3241
3242     fn confirm_builtin_unsize_candidate(
3243         &mut self,
3244         obligation: &TraitObligation<'tcx>,
3245     ) -> Result<VtableBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3246         let tcx = self.tcx();
3247
3248         // assemble_candidates_for_unsizing should ensure there are no late bound
3249         // regions here. See the comment there for more details.
3250         let source = self.infcx
3251             .shallow_resolve(obligation.self_ty().no_bound_vars().unwrap());
3252         let target = obligation
3253             .predicate
3254             .skip_binder()
3255             .trait_ref
3256             .substs
3257             .type_at(1);
3258         let target = self.infcx.shallow_resolve(target);
3259
3260         debug!(
3261             "confirm_builtin_unsize_candidate(source={:?}, target={:?})",
3262             source, target
3263         );
3264
3265         let mut nested = vec![];
3266         match (&source.sty, &target.sty) {
3267             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
3268             (&ty::Dynamic(ref data_a, r_a), &ty::Dynamic(ref data_b, r_b)) => {
3269                 // See assemble_candidates_for_unsizing for more info.
3270                 let existential_predicates = data_a.map_bound(|data_a| {
3271                     let iter =
3272                         data_a.principal().map(|x| ty::ExistentialPredicate::Trait(x))
3273                         .into_iter().chain(
3274                             data_a
3275                                 .projection_bounds()
3276                                 .map(|x| ty::ExistentialPredicate::Projection(x)),
3277                         )
3278                         .chain(
3279                             data_b
3280                                 .auto_traits()
3281                                 .map(ty::ExistentialPredicate::AutoTrait),
3282                         );
3283                     tcx.mk_existential_predicates(iter)
3284                 });
3285                 let source_trait = tcx.mk_dynamic(existential_predicates, r_b);
3286                 let InferOk { obligations, .. } = self.infcx
3287                     .at(&obligation.cause, obligation.param_env)
3288                     .sup(target, source_trait)
3289                     .map_err(|_| Unimplemented)?;
3290                 nested.extend(obligations);
3291
3292                 // Register one obligation for 'a: 'b.
3293                 let cause = ObligationCause::new(
3294                     obligation.cause.span,
3295                     obligation.cause.body_id,
3296                     ObjectCastObligation(target),
3297                 );
3298                 let outlives = ty::OutlivesPredicate(r_a, r_b);
3299                 nested.push(Obligation::with_depth(
3300                     cause,
3301                     obligation.recursion_depth + 1,
3302                     obligation.param_env,
3303                     ty::Binder::bind(outlives).to_predicate(),
3304                 ));
3305             }
3306
3307             // T -> Trait.
3308             (_, &ty::Dynamic(ref data, r)) => {
3309                 let mut object_dids = data.auto_traits()
3310                     .chain(data.principal_def_id());
3311                 if let Some(did) = object_dids.find(|did| !tcx.is_object_safe(*did)) {
3312                     return Err(TraitNotObjectSafe(did));
3313                 }
3314
3315                 let cause = ObligationCause::new(
3316                     obligation.cause.span,
3317                     obligation.cause.body_id,
3318                     ObjectCastObligation(target),
3319                 );
3320
3321                 let predicate_to_obligation = |predicate| {
3322                     Obligation::with_depth(
3323                         cause.clone(),
3324                         obligation.recursion_depth + 1,
3325                         obligation.param_env,
3326                         predicate,
3327                     )
3328                 };
3329
3330                 // Create obligations:
3331                 //  - Casting T to Trait
3332                 //  - For all the various builtin bounds attached to the object cast. (In other
3333                 //  words, if the object type is Foo+Send, this would create an obligation for the
3334                 //  Send check.)
3335                 //  - Projection predicates
3336                 nested.extend(
3337                     data.iter()
3338                         .map(|d| predicate_to_obligation(d.with_self_ty(tcx, source))),
3339                 );
3340
3341                 // We can only make objects from sized types.
3342                 let tr = ty::TraitRef {
3343                     def_id: tcx.require_lang_item(lang_items::SizedTraitLangItem),
3344                     substs: tcx.mk_substs_trait(source, &[]),
3345                 };
3346                 nested.push(predicate_to_obligation(tr.to_predicate()));
3347
3348                 // If the type is `Foo+'a`, ensures that the type
3349                 // being cast to `Foo+'a` outlives `'a`:
3350                 let outlives = ty::OutlivesPredicate(source, r);
3351                 nested.push(predicate_to_obligation(
3352                     ty::Binder::dummy(outlives).to_predicate(),
3353                 ));
3354             }
3355
3356             // [T; n] -> [T].
3357             (&ty::Array(a, _), &ty::Slice(b)) => {
3358                 let InferOk { obligations, .. } = self.infcx
3359                     .at(&obligation.cause, obligation.param_env)
3360                     .eq(b, a)
3361                     .map_err(|_| Unimplemented)?;
3362                 nested.extend(obligations);
3363             }
3364
3365             // Struct<T> -> Struct<U>.
3366             (&ty::Adt(def, substs_a), &ty::Adt(_, substs_b)) => {
3367                 let fields = def.all_fields()
3368                     .map(|f| tcx.type_of(f.did))
3369                     .collect::<Vec<_>>();
3370
3371                 // The last field of the structure has to exist and contain type parameters.
3372                 let field = if let Some(&field) = fields.last() {
3373                     field
3374                 } else {
3375                     return Err(Unimplemented);
3376                 };
3377                 let mut ty_params = GrowableBitSet::new_empty();
3378                 let mut found = false;
3379                 for ty in field.walk() {
3380                     if let ty::Param(p) = ty.sty {
3381                         ty_params.insert(p.idx as usize);
3382                         found = true;
3383                     }
3384                 }
3385                 if !found {
3386                     return Err(Unimplemented);
3387                 }
3388
3389                 // Replace type parameters used in unsizing with
3390                 // Error and ensure they do not affect any other fields.
3391                 // This could be checked after type collection for any struct
3392                 // with a potentially unsized trailing field.
3393                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3394                     if ty_params.contains(i) {
3395                         tcx.types.err.into()
3396                     } else {
3397                         k
3398                     }
3399                 });
3400                 let substs = tcx.mk_substs(params);
3401                 for &ty in fields.split_last().unwrap().1 {
3402                     if ty.subst(tcx, substs).references_error() {
3403                         return Err(Unimplemented);
3404                     }
3405                 }
3406
3407                 // Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
3408                 let inner_source = field.subst(tcx, substs_a);
3409                 let inner_target = field.subst(tcx, substs_b);
3410
3411                 // Check that the source struct with the target's
3412                 // unsized parameters is equal to the target.
3413                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3414                     if ty_params.contains(i) {
3415                         substs_b.type_at(i).into()
3416                     } else {
3417                         k
3418                     }
3419                 });
3420                 let new_struct = tcx.mk_adt(def, tcx.mk_substs(params));
3421                 let InferOk { obligations, .. } = self.infcx
3422                     .at(&obligation.cause, obligation.param_env)
3423                     .eq(target, new_struct)
3424                     .map_err(|_| Unimplemented)?;
3425                 nested.extend(obligations);
3426
3427                 // Construct the nested Field<T>: Unsize<Field<U>> predicate.
3428                 nested.push(tcx.predicate_for_trait_def(
3429                     obligation.param_env,
3430                     obligation.cause.clone(),
3431                     obligation.predicate.def_id(),
3432                     obligation.recursion_depth + 1,
3433                     inner_source,
3434                     &[inner_target.into()],
3435                 ));
3436             }
3437
3438             // (.., T) -> (.., U).
3439             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => {
3440                 assert_eq!(tys_a.len(), tys_b.len());
3441
3442                 // The last field of the tuple has to exist.
3443                 let (&a_last, a_mid) = if let Some(x) = tys_a.split_last() {
3444                     x
3445                 } else {
3446                     return Err(Unimplemented);
3447                 };
3448                 let &b_last = tys_b.last().unwrap();
3449
3450                 // Check that the source tuple with the target's
3451                 // last element is equal to the target.
3452                 let new_tuple = tcx.mk_tup(a_mid.iter().cloned().chain(iter::once(b_last)));
3453                 let InferOk { obligations, .. } = self.infcx
3454                     .at(&obligation.cause, obligation.param_env)
3455                     .eq(target, new_tuple)
3456                     .map_err(|_| Unimplemented)?;
3457                 nested.extend(obligations);
3458
3459                 // Construct the nested T: Unsize<U> predicate.
3460                 nested.push(tcx.predicate_for_trait_def(
3461                     obligation.param_env,
3462                     obligation.cause.clone(),
3463                     obligation.predicate.def_id(),
3464                     obligation.recursion_depth + 1,
3465                     a_last,
3466                     &[b_last.into()],
3467                 ));
3468             }
3469
3470             _ => bug!(),
3471         };
3472
3473         Ok(VtableBuiltinData { nested })
3474     }
3475
3476     ///////////////////////////////////////////////////////////////////////////
3477     // Matching
3478     //
3479     // Matching is a common path used for both evaluation and
3480     // confirmation.  It basically unifies types that appear in impls
3481     // and traits. This does affect the surrounding environment;
3482     // therefore, when used during evaluation, match routines must be
3483     // run inside of a `probe()` so that their side-effects are
3484     // contained.
3485
3486     fn rematch_impl(
3487         &mut self,
3488         impl_def_id: DefId,
3489         obligation: &TraitObligation<'tcx>,
3490     ) -> Normalized<'tcx, &'tcx Substs<'tcx>> {
3491         match self.match_impl(impl_def_id, obligation) {
3492             Ok(substs) => substs,
3493             Err(()) => {
3494                 bug!(
3495                     "Impl {:?} was matchable against {:?} but now is not",
3496                     impl_def_id,
3497                     obligation
3498                 );
3499             }
3500         }
3501     }
3502
3503     fn match_impl(
3504         &mut self,
3505         impl_def_id: DefId,
3506         obligation: &TraitObligation<'tcx>,
3507     ) -> Result<Normalized<'tcx, &'tcx Substs<'tcx>>, ()> {
3508         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
3509
3510         // Before we create the substitutions and everything, first
3511         // consider a "quick reject". This avoids creating more types
3512         // and so forth that we need to.
3513         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
3514             return Err(());
3515         }
3516
3517         let (skol_obligation, _) = self.infcx()
3518             .replace_bound_vars_with_placeholders(&obligation.predicate);
3519         let skol_obligation_trait_ref = skol_obligation.trait_ref;
3520
3521         let impl_substs = self.infcx
3522             .fresh_substs_for_item(obligation.cause.span, impl_def_id);
3523
3524         let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
3525
3526         let Normalized {
3527             value: impl_trait_ref,
3528             obligations: mut nested_obligations,
3529         } = project::normalize_with_depth(
3530             self,
3531             obligation.param_env,
3532             obligation.cause.clone(),
3533             obligation.recursion_depth + 1,
3534             &impl_trait_ref,
3535         );
3536
3537         debug!(
3538             "match_impl(impl_def_id={:?}, obligation={:?}, \
3539              impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
3540             impl_def_id, obligation, impl_trait_ref, skol_obligation_trait_ref
3541         );
3542
3543         let InferOk { obligations, .. } = self.infcx
3544             .at(&obligation.cause, obligation.param_env)
3545             .eq(skol_obligation_trait_ref, impl_trait_ref)
3546             .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
3547         nested_obligations.extend(obligations);
3548
3549         debug!("match_impl: success impl_substs={:?}", impl_substs);
3550         Ok(Normalized {
3551             value: impl_substs,
3552             obligations: nested_obligations,
3553         })
3554     }
3555
3556     fn fast_reject_trait_refs(
3557         &mut self,
3558         obligation: &TraitObligation<'_>,
3559         impl_trait_ref: &ty::TraitRef<'_>,
3560     ) -> bool {
3561         // We can avoid creating type variables and doing the full
3562         // substitution if we find that any of the input types, when
3563         // simplified, do not match.
3564
3565         obligation
3566             .predicate
3567             .skip_binder()
3568             .input_types()
3569             .zip(impl_trait_ref.input_types())
3570             .any(|(obligation_ty, impl_ty)| {
3571                 let simplified_obligation_ty =
3572                     fast_reject::simplify_type(self.tcx(), obligation_ty, true);
3573                 let simplified_impl_ty = fast_reject::simplify_type(self.tcx(), impl_ty, false);
3574
3575                 simplified_obligation_ty.is_some()
3576                     && simplified_impl_ty.is_some()
3577                     && simplified_obligation_ty != simplified_impl_ty
3578             })
3579     }
3580
3581     /// Normalize `where_clause_trait_ref` and try to match it against
3582     /// `obligation`.  If successful, return any predicates that
3583     /// result from the normalization. Normalization is necessary
3584     /// because where-clauses are stored in the parameter environment
3585     /// unnormalized.
3586     fn match_where_clause_trait_ref(
3587         &mut self,
3588         obligation: &TraitObligation<'tcx>,
3589         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
3590     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
3591         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
3592     }
3593
3594     /// Returns `Ok` if `poly_trait_ref` being true implies that the
3595     /// obligation is satisfied.
3596     fn match_poly_trait_ref(
3597         &mut self,
3598         obligation: &TraitObligation<'tcx>,
3599         poly_trait_ref: ty::PolyTraitRef<'tcx>,
3600     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
3601         debug!(
3602             "match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
3603             obligation, poly_trait_ref
3604         );
3605
3606         self.infcx
3607             .at(&obligation.cause, obligation.param_env)
3608             .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
3609             .map(|InferOk { obligations, .. }| obligations)
3610             .map_err(|_| ())
3611     }
3612
3613     ///////////////////////////////////////////////////////////////////////////
3614     // Miscellany
3615
3616     fn match_fresh_trait_refs(
3617         &self,
3618         previous: &ty::PolyTraitRef<'tcx>,
3619         current: &ty::PolyTraitRef<'tcx>,
3620     ) -> bool {
3621         let mut matcher = ty::_match::Match::new(self.tcx());
3622         matcher.relate(previous, current).is_ok()
3623     }
3624
3625     fn push_stack<'o, 's: 'o>(
3626         &mut self,
3627         previous_stack: TraitObligationStackList<'s, 'tcx>,
3628         obligation: &'o TraitObligation<'tcx>,
3629     ) -> TraitObligationStack<'o, 'tcx> {
3630         let fresh_trait_ref = obligation
3631             .predicate
3632             .to_poly_trait_ref()
3633             .fold_with(&mut self.freshener);
3634
3635         TraitObligationStack {
3636             obligation,
3637             fresh_trait_ref,
3638             previous: previous_stack,
3639         }
3640     }
3641
3642     fn closure_trait_ref_unnormalized(
3643         &mut self,
3644         obligation: &TraitObligation<'tcx>,
3645         closure_def_id: DefId,
3646         substs: ty::ClosureSubsts<'tcx>,
3647     ) -> ty::PolyTraitRef<'tcx> {
3648         debug!(
3649             "closure_trait_ref_unnormalized(obligation={:?}, closure_def_id={:?}, substs={:?})",
3650             obligation, closure_def_id, substs,
3651         );
3652         let closure_type = self.infcx.closure_sig(closure_def_id, substs);
3653
3654         debug!(
3655             "closure_trait_ref_unnormalized: closure_type = {:?}",
3656             closure_type
3657         );
3658
3659         // (1) Feels icky to skip the binder here, but OTOH we know
3660         // that the self-type is an unboxed closure type and hence is
3661         // in fact unparameterized (or at least does not reference any
3662         // regions bound in the obligation). Still probably some
3663         // refactoring could make this nicer.
3664         self.tcx()
3665             .closure_trait_ref_and_return_type(
3666                 obligation.predicate.def_id(),
3667                 obligation.predicate.skip_binder().self_ty(), // (1)
3668                 closure_type,
3669                 util::TupleArgumentsFlag::No,
3670             )
3671             .map_bound(|(trait_ref, _)| trait_ref)
3672     }
3673
3674     fn generator_trait_ref_unnormalized(
3675         &mut self,
3676         obligation: &TraitObligation<'tcx>,
3677         closure_def_id: DefId,
3678         substs: ty::GeneratorSubsts<'tcx>,
3679     ) -> ty::PolyTraitRef<'tcx> {
3680         let gen_sig = substs.poly_sig(closure_def_id, self.tcx());
3681
3682         // (1) Feels icky to skip the binder here, but OTOH we know
3683         // that the self-type is an generator type and hence is
3684         // in fact unparameterized (or at least does not reference any
3685         // regions bound in the obligation). Still probably some
3686         // refactoring could make this nicer.
3687
3688         self.tcx()
3689             .generator_trait_ref_and_outputs(
3690                 obligation.predicate.def_id(),
3691                 obligation.predicate.skip_binder().self_ty(), // (1)
3692                 gen_sig,
3693             )
3694             .map_bound(|(trait_ref, ..)| trait_ref)
3695     }
3696
3697     /// Returns the obligations that are implied by instantiating an
3698     /// impl or trait. The obligations are substituted and fully
3699     /// normalized. This is used when confirming an impl or default
3700     /// impl.
3701     fn impl_or_trait_obligations(
3702         &mut self,
3703         cause: ObligationCause<'tcx>,
3704         recursion_depth: usize,
3705         param_env: ty::ParamEnv<'tcx>,
3706         def_id: DefId,         // of impl or trait
3707         substs: &Substs<'tcx>, // for impl or trait
3708     ) -> Vec<PredicateObligation<'tcx>> {
3709         debug!("impl_or_trait_obligations(def_id={:?})", def_id);
3710         let tcx = self.tcx();
3711
3712         // To allow for one-pass evaluation of the nested obligation,
3713         // each predicate must be preceded by the obligations required
3714         // to normalize it.
3715         // for example, if we have:
3716         //    impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
3717         // the impl will have the following predicates:
3718         //    <V as Iterator>::Item = U,
3719         //    U: Iterator, U: Sized,
3720         //    V: Iterator, V: Sized,
3721         //    <U as Iterator>::Item: Copy
3722         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
3723         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
3724         // `$1: Copy`, so we must ensure the obligations are emitted in
3725         // that order.
3726         let predicates = tcx.predicates_of(def_id);
3727         assert_eq!(predicates.parent, None);
3728         let mut predicates: Vec<_> = predicates
3729             .predicates
3730             .iter()
3731             .flat_map(|(predicate, _)| {
3732                 let predicate = normalize_with_depth(
3733                     self,
3734                     param_env,
3735                     cause.clone(),
3736                     recursion_depth,
3737                     &predicate.subst(tcx, substs),
3738                 );
3739                 predicate.obligations.into_iter().chain(Some(Obligation {
3740                     cause: cause.clone(),
3741                     recursion_depth,
3742                     param_env,
3743                     predicate: predicate.value,
3744                 }))
3745             })
3746             .collect();
3747
3748         // We are performing deduplication here to avoid exponential blowups
3749         // (#38528) from happening, but the real cause of the duplication is
3750         // unknown. What we know is that the deduplication avoids exponential
3751         // amount of predicates being propagated when processing deeply nested
3752         // types.
3753         //
3754         // This code is hot enough that it's worth avoiding the allocation
3755         // required for the FxHashSet when possible. Special-casing lengths 0,
3756         // 1 and 2 covers roughly 75--80% of the cases.
3757         if predicates.len() <= 1 {
3758             // No possibility of duplicates.
3759         } else if predicates.len() == 2 {
3760             // Only two elements. Drop the second if they are equal.
3761             if predicates[0] == predicates[1] {
3762                 predicates.truncate(1);
3763             }
3764         } else {
3765             // Three or more elements. Use a general deduplication process.
3766             let mut seen = FxHashSet::default();
3767             predicates.retain(|i| seen.insert(i.clone()));
3768         }
3769
3770         predicates
3771     }
3772 }
3773
3774 impl<'tcx> TraitObligation<'tcx> {
3775     #[allow(unused_comparisons)]
3776     pub fn derived_cause(
3777         &self,
3778         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
3779     ) -> ObligationCause<'tcx> {
3780         /*!
3781          * Creates a cause for obligations that are derived from
3782          * `obligation` by a recursive search (e.g., for a builtin
3783          * bound, or eventually a `auto trait Foo`). If `obligation`
3784          * is itself a derived obligation, this is just a clone, but
3785          * otherwise we create a "derived obligation" cause so as to
3786          * keep track of the original root obligation for error
3787          * reporting.
3788          */
3789
3790         let obligation = self;
3791
3792         // NOTE(flaper87): As of now, it keeps track of the whole error
3793         // chain. Ideally, we should have a way to configure this either
3794         // by using -Z verbose or just a CLI argument.
3795         if obligation.recursion_depth >= 0 {
3796             let derived_cause = DerivedObligationCause {
3797                 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
3798                 parent_code: Rc::new(obligation.cause.code.clone()),
3799             };
3800             let derived_code = variant(derived_cause);
3801             ObligationCause::new(
3802                 obligation.cause.span,
3803                 obligation.cause.body_id,
3804                 derived_code,
3805             )
3806         } else {
3807             obligation.cause.clone()
3808         }
3809     }
3810 }
3811
3812 impl<'tcx> SelectionCache<'tcx> {
3813     /// Actually frees the underlying memory in contrast to what stdlib containers do on `clear`
3814     pub fn clear(&self) {
3815         *self.hashmap.borrow_mut() = Default::default();
3816     }
3817 }
3818
3819 impl<'tcx> EvaluationCache<'tcx> {
3820     /// Actually frees the underlying memory in contrast to what stdlib containers do on `clear`
3821     pub fn clear(&self) {
3822         *self.hashmap.borrow_mut() = Default::default();
3823     }
3824 }
3825
3826 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
3827     fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
3828         TraitObligationStackList::with(self)
3829     }
3830
3831     fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
3832         self.list()
3833     }
3834 }
3835
3836 #[derive(Copy, Clone)]
3837 struct TraitObligationStackList<'o, 'tcx: 'o> {
3838     head: Option<&'o TraitObligationStack<'o, 'tcx>>,
3839 }
3840
3841 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
3842     fn empty() -> TraitObligationStackList<'o, 'tcx> {
3843         TraitObligationStackList { head: None }
3844     }
3845
3846     fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3847         TraitObligationStackList { head: Some(r) }
3848     }
3849
3850     fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3851         self.head
3852     }
3853 }
3854
3855 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
3856     type Item = &'o TraitObligationStack<'o, 'tcx>;
3857
3858     fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3859         match self.head {
3860             Some(o) => {
3861                 *self = o.previous;
3862                 Some(o)
3863             }
3864             None => None,
3865         }
3866     }
3867 }
3868
3869 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
3870     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3871         write!(f, "TraitObligationStack({:?})", self.obligation)
3872     }
3873 }
3874
3875 #[derive(Clone, Eq, PartialEq)]
3876 pub struct WithDepNode<T> {
3877     dep_node: DepNodeIndex,
3878     cached_value: T,
3879 }
3880
3881 impl<T: Clone> WithDepNode<T> {
3882     pub fn new(dep_node: DepNodeIndex, cached_value: T) -> Self {
3883         WithDepNode {
3884             dep_node,
3885             cached_value,
3886         }
3887     }
3888
3889     pub fn get(&self, tcx: TyCtxt<'_, '_, '_>) -> T {
3890         tcx.dep_graph.read_index(self.dep_node);
3891         self.cached_value.clone()
3892     }
3893 }