]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/select.rs
75ed8ddcefea4f9eceab16aad9ca40b3066e8336
[rust.git] / src / librustc / traits / select.rs
1 //! Candidate selection. See the [rustc guide] for more information on how this works.
2 //!
3 //! [rustc guide]: https://rust-lang.github.io/rustc-guide/traits/resolution.html#selection
4
5 use self::EvaluationResult::*;
6 use self::SelectionCandidate::*;
7
8 use super::coherence::{self, Conflict};
9 use super::project;
10 use super::project::{normalize_with_depth, Normalized, ProjectionCacheKey};
11 use super::util;
12 use super::DerivedObligationCause;
13 use super::Selection;
14 use super::SelectionResult;
15 use super::TraitNotObjectSafe;
16 use super::{BuiltinDerivedObligation, ImplDerivedObligation, ObligationCauseCode};
17 use super::{IntercrateMode, TraitQueryMode};
18 use super::{ObjectCastObligation, Obligation};
19 use super::{ObligationCause, PredicateObligation, TraitObligation};
20 use super::{OutputTypeParameterMismatch, Overflow, SelectionError, Unimplemented};
21 use super::{
22     VtableAutoImpl, VtableBuiltin, VtableClosure, VtableFnPointer, VtableGenerator, VtableImpl,
23     VtableObject, VtableParam, VtableTraitAlias,
24 };
25 use super::{
26     VtableAutoImplData, VtableBuiltinData, VtableClosureData, VtableFnPointerData,
27     VtableGeneratorData, VtableImplData, VtableObjectData, VtableTraitAliasData,
28 };
29
30 use dep_graph::{DepKind, DepNodeIndex};
31 use hir::def_id::DefId;
32 use infer::{InferCtxt, InferOk, TypeFreshener};
33 use middle::lang_items;
34 use mir::interpret::GlobalId;
35 use ty::fast_reject;
36 use ty::relate::{TypeRelation, TraitObjectMode};
37 use ty::subst::{Subst, Substs};
38 use ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable};
39
40 use hir;
41 use rustc_data_structures::bit_set::GrowableBitSet;
42 use rustc_data_structures::sync::Lock;
43 use rustc_target::spec::abi::Abi;
44 use std::cmp;
45 use std::fmt::{self, Display};
46 use std::iter;
47 use std::rc::Rc;
48 use util::nodemap::{FxHashMap, FxHashSet};
49
50 pub struct SelectionContext<'cx, 'gcx: 'cx + 'tcx, 'tcx: 'cx> {
51     infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
52
53     /// Freshener used specifically for entries on the obligation
54     /// stack. This ensures that all entries on the stack at one time
55     /// will have the same set of placeholder entries, which is
56     /// important for checking for trait bounds that recursively
57     /// require themselves.
58     freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
59
60     /// If `true`, indicates that the evaluation should be conservative
61     /// and consider the possibility of types outside this crate.
62     /// This comes up primarily when resolving ambiguity. Imagine
63     /// there is some trait reference `$0: Bar` where `$0` is an
64     /// inference variable. If `intercrate` is true, then we can never
65     /// say for sure that this reference is not implemented, even if
66     /// there are *no impls at all for `Bar`*, because `$0` could be
67     /// bound to some type that in a downstream crate that implements
68     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
69     /// though, we set this to false, because we are only interested
70     /// in types that the user could actually have written --- in
71     /// other words, we consider `$0: Bar` to be unimplemented if
72     /// there is no type that the user could *actually name* that
73     /// would satisfy it. This avoids crippling inference, basically.
74     intercrate: Option<IntercrateMode>,
75
76     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
77
78     /// Controls whether or not to filter out negative impls when selecting.
79     /// This is used in librustdoc to distinguish between the lack of an impl
80     /// and a negative impl
81     allow_negative_impls: bool,
82
83     /// The mode that trait queries run in, which informs our error handling
84     /// policy. In essence, canonicalized queries need their errors propagated
85     /// rather than immediately reported because we do not have accurate spans.
86     query_mode: TraitQueryMode,
87 }
88
89 #[derive(Clone, Debug)]
90 pub enum IntercrateAmbiguityCause {
91     DownstreamCrate {
92         trait_desc: String,
93         self_desc: Option<String>,
94     },
95     UpstreamCrateUpdate {
96         trait_desc: String,
97         self_desc: Option<String>,
98     },
99 }
100
101 impl IntercrateAmbiguityCause {
102     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
103     /// See #23980 for details.
104     pub fn add_intercrate_ambiguity_hint<'a, 'tcx>(
105         &self,
106         err: &mut ::errors::DiagnosticBuilder<'_>,
107     ) {
108         err.note(&self.intercrate_ambiguity_hint());
109     }
110
111     pub fn intercrate_ambiguity_hint(&self) -> String {
112         match self {
113             &IntercrateAmbiguityCause::DownstreamCrate {
114                 ref trait_desc,
115                 ref self_desc,
116             } => {
117                 let self_desc = if let &Some(ref ty) = self_desc {
118                     format!(" for type `{}`", ty)
119                 } else {
120                     String::new()
121                 };
122                 format!(
123                     "downstream crates may implement trait `{}`{}",
124                     trait_desc, self_desc
125                 )
126             }
127             &IntercrateAmbiguityCause::UpstreamCrateUpdate {
128                 ref trait_desc,
129                 ref self_desc,
130             } => {
131                 let self_desc = if let &Some(ref ty) = self_desc {
132                     format!(" for type `{}`", ty)
133                 } else {
134                     String::new()
135                 };
136                 format!(
137                     "upstream crates may add new impl of trait `{}`{} \
138                      in future versions",
139                     trait_desc, self_desc
140                 )
141             }
142         }
143     }
144 }
145
146 // A stack that walks back up the stack frame.
147 struct TraitObligationStack<'prev, 'tcx: 'prev> {
148     obligation: &'prev TraitObligation<'tcx>,
149
150     /// Trait ref from `obligation` but "freshened" with the
151     /// selection-context's freshener. Used to check for recursion.
152     fresh_trait_ref: ty::PolyTraitRef<'tcx>,
153
154     previous: TraitObligationStackList<'prev, 'tcx>,
155 }
156
157 #[derive(Clone, Default)]
158 pub struct SelectionCache<'tcx> {
159     hashmap: Lock<
160         FxHashMap<ty::TraitRef<'tcx>, WithDepNode<SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
161     >,
162 }
163
164 /// The selection process begins by considering all impls, where
165 /// clauses, and so forth that might resolve an obligation.  Sometimes
166 /// we'll be able to say definitively that (e.g.) an impl does not
167 /// apply to the obligation: perhaps it is defined for `usize` but the
168 /// obligation is for `int`. In that case, we drop the impl out of the
169 /// list.  But the other cases are considered *candidates*.
170 ///
171 /// For selection to succeed, there must be exactly one matching
172 /// candidate. If the obligation is fully known, this is guaranteed
173 /// by coherence. However, if the obligation contains type parameters
174 /// or variables, there may be multiple such impls.
175 ///
176 /// It is not a real problem if multiple matching impls exist because
177 /// of type variables - it just means the obligation isn't sufficiently
178 /// elaborated. In that case we report an ambiguity, and the caller can
179 /// try again after more type information has been gathered or report a
180 /// "type annotations required" error.
181 ///
182 /// However, with type parameters, this can be a real problem - type
183 /// parameters don't unify with regular types, but they *can* unify
184 /// with variables from blanket impls, and (unless we know its bounds
185 /// will always be satisfied) picking the blanket impl will be wrong
186 /// for at least *some* substitutions. To make this concrete, if we have
187 ///
188 ///    trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
189 ///    impl<T: fmt::Debug> AsDebug for T {
190 ///        type Out = T;
191 ///        fn debug(self) -> fmt::Debug { self }
192 ///    }
193 ///    fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
194 ///
195 /// we can't just use the impl to resolve the <T as AsDebug> obligation
196 /// - a type from another crate (that doesn't implement fmt::Debug) could
197 /// implement AsDebug.
198 ///
199 /// Because where-clauses match the type exactly, multiple clauses can
200 /// only match if there are unresolved variables, and we can mostly just
201 /// report this ambiguity in that case. This is still a problem - we can't
202 /// *do anything* with ambiguities that involve only regions. This is issue
203 /// #21974.
204 ///
205 /// If a single where-clause matches and there are no inference
206 /// variables left, then it definitely matches and we can just select
207 /// it.
208 ///
209 /// In fact, we even select the where-clause when the obligation contains
210 /// inference variables. The can lead to inference making "leaps of logic",
211 /// for example in this situation:
212 ///
213 ///    pub trait Foo<T> { fn foo(&self) -> T; }
214 ///    impl<T> Foo<()> for T { fn foo(&self) { } }
215 ///    impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
216 ///
217 ///    pub fn foo<T>(t: T) where T: Foo<bool> {
218 ///       println!("{:?}", <T as Foo<_>>::foo(&t));
219 ///    }
220 ///    fn main() { foo(false); }
221 ///
222 /// Here the obligation <T as Foo<$0>> can be matched by both the blanket
223 /// impl and the where-clause. We select the where-clause and unify $0=bool,
224 /// so the program prints "false". However, if the where-clause is omitted,
225 /// the blanket impl is selected, we unify $0=(), and the program prints
226 /// "()".
227 ///
228 /// Exactly the same issues apply to projection and object candidates, except
229 /// that we can have both a projection candidate and a where-clause candidate
230 /// for the same obligation. In that case either would do (except that
231 /// different "leaps of logic" would occur if inference variables are
232 /// present), and we just pick the where-clause. This is, for example,
233 /// required for associated types to work in default impls, as the bounds
234 /// are visible both as projection bounds and as where-clauses from the
235 /// parameter environment.
236 #[derive(PartialEq, Eq, Debug, Clone)]
237 enum SelectionCandidate<'tcx> {
238     /// If has_nested is false, there are no *further* obligations
239     BuiltinCandidate {
240         has_nested: bool,
241     },
242     ParamCandidate(ty::PolyTraitRef<'tcx>),
243     ImplCandidate(DefId),
244     AutoImplCandidate(DefId),
245
246     /// This is a trait matching with a projected type as `Self`, and
247     /// we found an applicable bound in the trait definition.
248     ProjectionCandidate,
249
250     /// Implementation of a `Fn`-family trait by one of the anonymous types
251     /// generated for a `||` expression.
252     ClosureCandidate,
253
254     /// Implementation of a `Generator` trait by one of the anonymous types
255     /// generated for a generator.
256     GeneratorCandidate,
257
258     /// Implementation of a `Fn`-family trait by one of the anonymous
259     /// types generated for a fn pointer type (e.g., `fn(int)->int`)
260     FnPointerCandidate,
261
262     TraitAliasCandidate(DefId),
263
264     ObjectCandidate,
265
266     BuiltinObjectCandidate,
267
268     BuiltinUnsizeCandidate,
269 }
270
271 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
272     type Lifted = SelectionCandidate<'tcx>;
273     fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
274         Some(match *self {
275             BuiltinCandidate { has_nested } => BuiltinCandidate { has_nested },
276             ImplCandidate(def_id) => ImplCandidate(def_id),
277             AutoImplCandidate(def_id) => AutoImplCandidate(def_id),
278             ProjectionCandidate => ProjectionCandidate,
279             ClosureCandidate => ClosureCandidate,
280             GeneratorCandidate => GeneratorCandidate,
281             FnPointerCandidate => FnPointerCandidate,
282             TraitAliasCandidate(def_id) => TraitAliasCandidate(def_id),
283             ObjectCandidate => ObjectCandidate,
284             BuiltinObjectCandidate => BuiltinObjectCandidate,
285             BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
286
287             ParamCandidate(ref trait_ref) => {
288                 return tcx.lift(trait_ref).map(ParamCandidate);
289             }
290         })
291     }
292 }
293
294 struct SelectionCandidateSet<'tcx> {
295     // a list of candidates that definitely apply to the current
296     // obligation (meaning: types unify).
297     vec: Vec<SelectionCandidate<'tcx>>,
298
299     // if this is true, then there were candidates that might or might
300     // not have applied, but we couldn't tell. This occurs when some
301     // of the input types are type variables, in which case there are
302     // various "builtin" rules that might or might not trigger.
303     ambiguous: bool,
304 }
305
306 #[derive(PartialEq, Eq, Debug, Clone)]
307 struct EvaluatedCandidate<'tcx> {
308     candidate: SelectionCandidate<'tcx>,
309     evaluation: EvaluationResult,
310 }
311
312 /// When does the builtin impl for `T: Trait` apply?
313 enum BuiltinImplConditions<'tcx> {
314     /// The impl is conditional on T1,T2,.. : Trait
315     Where(ty::Binder<Vec<Ty<'tcx>>>),
316     /// There is no built-in impl. There may be some other
317     /// candidate (a where-clause or user-defined impl).
318     None,
319     /// It is unknown whether there is an impl.
320     Ambiguous,
321 }
322
323 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
324 /// The result of trait evaluation. The order is important
325 /// here as the evaluation of a list is the maximum of the
326 /// evaluations.
327 ///
328 /// The evaluation results are ordered:
329 ///     - `EvaluatedToOk` implies `EvaluatedToOkModuloRegions`
330 ///       implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
331 ///     - `EvaluatedToErr` implies `EvaluatedToRecur`
332 ///     - the "union" of evaluation results is equal to their maximum -
333 ///     all the "potential success" candidates can potentially succeed,
334 ///     so they are no-ops when unioned with a definite error, and within
335 ///     the categories it's easy to see that the unions are correct.
336 pub enum EvaluationResult {
337     /// Evaluation successful
338     EvaluatedToOk,
339     /// Evaluation successful, but there were unevaluated region obligations
340     EvaluatedToOkModuloRegions,
341     /// Evaluation is known to be ambiguous - it *might* hold for some
342     /// assignment of inference variables, but it might not.
343     ///
344     /// While this has the same meaning as `EvaluatedToUnknown` - we can't
345     /// know whether this obligation holds or not - it is the result we
346     /// would get with an empty stack, and therefore is cacheable.
347     EvaluatedToAmbig,
348     /// Evaluation failed because of recursion involving inference
349     /// variables. We are somewhat imprecise there, so we don't actually
350     /// know the real result.
351     ///
352     /// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
353     EvaluatedToUnknown,
354     /// Evaluation failed because we encountered an obligation we are already
355     /// trying to prove on this branch.
356     ///
357     /// We know this branch can't be a part of a minimal proof-tree for
358     /// the "root" of our cycle, because then we could cut out the recursion
359     /// and maintain a valid proof tree. However, this does not mean
360     /// that all the obligations on this branch do not hold - it's possible
361     /// that we entered this branch "speculatively", and that there
362     /// might be some other way to prove this obligation that does not
363     /// go through this cycle - so we can't cache this as a failure.
364     ///
365     /// For example, suppose we have this:
366     ///
367     /// ```rust,ignore (pseudo-Rust)
368     ///     pub trait Trait { fn xyz(); }
369     ///     // This impl is "useless", but we can still have
370     ///     // an `impl Trait for SomeUnsizedType` somewhere.
371     ///     impl<T: Trait + Sized> Trait for T { fn xyz() {} }
372     ///
373     ///     pub fn foo<T: Trait + ?Sized>() {
374     ///         <T as Trait>::xyz();
375     ///     }
376     /// ```
377     ///
378     /// When checking `foo`, we have to prove `T: Trait`. This basically
379     /// translates into this:
380     ///
381     /// ```plain,ignore
382     ///     (T: Trait + Sized â†’_\impl T: Trait), T: Trait âŠ¢ T: Trait
383     /// ```
384     ///
385     /// When we try to prove it, we first go the first option, which
386     /// recurses. This shows us that the impl is "useless" - it won't
387     /// tell us that `T: Trait` unless it already implemented `Trait`
388     /// by some other means. However, that does not prevent `T: Trait`
389     /// does not hold, because of the bound (which can indeed be satisfied
390     /// by `SomeUnsizedType` from another crate).
391     ///
392     /// FIXME: when an `EvaluatedToRecur` goes past its parent root, we
393     /// ought to convert it to an `EvaluatedToErr`, because we know
394     /// there definitely isn't a proof tree for that obligation. Not
395     /// doing so is still sound - there isn't any proof tree, so the
396     /// branch still can't be a part of a minimal one - but does not
397     /// re-enable caching.
398     EvaluatedToRecur,
399     /// Evaluation failed
400     EvaluatedToErr,
401 }
402
403 impl EvaluationResult {
404     /// True if this evaluation result is known to apply, even
405     /// considering outlives constraints.
406     pub fn must_apply_considering_regions(self) -> bool {
407         self == EvaluatedToOk
408     }
409
410     /// True if this evaluation result is known to apply, ignoring
411     /// outlives constraints.
412     pub fn must_apply_modulo_regions(self) -> bool {
413         self <= EvaluatedToOkModuloRegions
414     }
415
416     pub fn may_apply(self) -> bool {
417         match self {
418             EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToUnknown => {
419                 true
420             }
421
422             EvaluatedToErr | EvaluatedToRecur => false,
423         }
424     }
425
426     fn is_stack_dependent(self) -> bool {
427         match self {
428             EvaluatedToUnknown | EvaluatedToRecur => true,
429
430             EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToErr => false,
431         }
432     }
433 }
434
435 impl_stable_hash_for!(enum self::EvaluationResult {
436     EvaluatedToOk,
437     EvaluatedToOkModuloRegions,
438     EvaluatedToAmbig,
439     EvaluatedToUnknown,
440     EvaluatedToRecur,
441     EvaluatedToErr
442 });
443
444 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
445 /// Indicates that trait evaluation caused overflow.
446 pub struct OverflowError;
447
448 impl_stable_hash_for!(struct OverflowError {});
449
450 impl<'tcx> From<OverflowError> for SelectionError<'tcx> {
451     fn from(OverflowError: OverflowError) -> SelectionError<'tcx> {
452         SelectionError::Overflow
453     }
454 }
455
456 #[derive(Clone, Default)]
457 pub struct EvaluationCache<'tcx> {
458     hashmap: Lock<FxHashMap<ty::PolyTraitRef<'tcx>, WithDepNode<EvaluationResult>>>,
459 }
460
461 impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
462     pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
463         SelectionContext {
464             infcx,
465             freshener: infcx.freshener(),
466             intercrate: None,
467             intercrate_ambiguity_causes: None,
468             allow_negative_impls: false,
469             query_mode: TraitQueryMode::Standard,
470         }
471     }
472
473     pub fn intercrate(
474         infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
475         mode: IntercrateMode,
476     ) -> SelectionContext<'cx, 'gcx, 'tcx> {
477         debug!("intercrate({:?})", mode);
478         SelectionContext {
479             infcx,
480             freshener: infcx.freshener(),
481             intercrate: Some(mode),
482             intercrate_ambiguity_causes: None,
483             allow_negative_impls: false,
484             query_mode: TraitQueryMode::Standard,
485         }
486     }
487
488     pub fn with_negative(
489         infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
490         allow_negative_impls: bool,
491     ) -> SelectionContext<'cx, 'gcx, 'tcx> {
492         debug!("with_negative({:?})", allow_negative_impls);
493         SelectionContext {
494             infcx,
495             freshener: infcx.freshener(),
496             intercrate: None,
497             intercrate_ambiguity_causes: None,
498             allow_negative_impls,
499             query_mode: TraitQueryMode::Standard,
500         }
501     }
502
503     pub fn with_query_mode(
504         infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
505         query_mode: TraitQueryMode,
506     ) -> SelectionContext<'cx, 'gcx, 'tcx> {
507         debug!("with_query_mode({:?})", query_mode);
508         SelectionContext {
509             infcx,
510             freshener: infcx.freshener(),
511             intercrate: None,
512             intercrate_ambiguity_causes: None,
513             allow_negative_impls: false,
514             query_mode,
515         }
516     }
517
518     /// Enables tracking of intercrate ambiguity causes. These are
519     /// used in coherence to give improved diagnostics. We don't do
520     /// this until we detect a coherence error because it can lead to
521     /// false overflow results (#47139) and because it costs
522     /// computation time.
523     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
524         assert!(self.intercrate.is_some());
525         assert!(self.intercrate_ambiguity_causes.is_none());
526         self.intercrate_ambiguity_causes = Some(vec![]);
527         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
528     }
529
530     /// Gets the intercrate ambiguity causes collected since tracking
531     /// was enabled and disables tracking at the same time. If
532     /// tracking is not enabled, just returns an empty vector.
533     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
534         assert!(self.intercrate.is_some());
535         self.intercrate_ambiguity_causes.take().unwrap_or(vec![])
536     }
537
538     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
539         self.infcx
540     }
541
542     pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
543         self.infcx.tcx
544     }
545
546     pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
547         self.infcx
548     }
549
550     ///////////////////////////////////////////////////////////////////////////
551     // Selection
552     //
553     // The selection phase tries to identify *how* an obligation will
554     // be resolved. For example, it will identify which impl or
555     // parameter bound is to be used. The process can be inconclusive
556     // if the self type in the obligation is not fully inferred. Selection
557     // can result in an error in one of two ways:
558     //
559     // 1. If no applicable impl or parameter bound can be found.
560     // 2. If the output type parameters in the obligation do not match
561     //    those specified by the impl/bound. For example, if the obligation
562     //    is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
563     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
564
565     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
566     /// type environment by performing unification.
567     pub fn select(
568         &mut self,
569         obligation: &TraitObligation<'tcx>,
570     ) -> SelectionResult<'tcx, Selection<'tcx>> {
571         debug!("select({:?})", obligation);
572         debug_assert!(!obligation.predicate.has_escaping_bound_vars());
573
574         let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
575
576         let candidate = match self.candidate_from_obligation(&stack) {
577             Err(SelectionError::Overflow) => {
578                 // In standard mode, overflow must have been caught and reported
579                 // earlier.
580                 assert!(self.query_mode == TraitQueryMode::Canonical);
581                 return Err(SelectionError::Overflow);
582             }
583             Err(e) => {
584                 return Err(e);
585             }
586             Ok(None) => {
587                 return Ok(None);
588             }
589             Ok(Some(candidate)) => candidate,
590         };
591
592         match self.confirm_candidate(obligation, candidate) {
593             Err(SelectionError::Overflow) => {
594                 assert!(self.query_mode == TraitQueryMode::Canonical);
595                 Err(SelectionError::Overflow)
596             }
597             Err(e) => Err(e),
598             Ok(candidate) => Ok(Some(candidate)),
599         }
600     }
601
602     ///////////////////////////////////////////////////////////////////////////
603     // EVALUATION
604     //
605     // Tests whether an obligation can be selected or whether an impl
606     // can be applied to particular types. It skips the "confirmation"
607     // step and hence completely ignores output type parameters.
608     //
609     // The result is "true" if the obligation *may* hold and "false" if
610     // we can be sure it does not.
611
612     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
613     pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
614         debug!("predicate_may_hold_fatal({:?})", obligation);
615
616         // This fatal query is a stopgap that should only be used in standard mode,
617         // where we do not expect overflow to be propagated.
618         assert!(self.query_mode == TraitQueryMode::Standard);
619
620         self.evaluate_obligation_recursively(obligation)
621             .expect("Overflow should be caught earlier in standard query mode")
622             .may_apply()
623     }
624
625     /// Evaluates whether the obligation `obligation` can be satisfied and returns
626     /// an `EvaluationResult`.
627     pub fn evaluate_obligation_recursively(
628         &mut self,
629         obligation: &PredicateObligation<'tcx>,
630     ) -> Result<EvaluationResult, OverflowError> {
631         self.evaluation_probe(|this| {
632             this.evaluate_predicate_recursively(TraitObligationStackList::empty(),
633                 obligation.clone())
634         })
635     }
636
637     fn evaluation_probe(
638         &mut self,
639         op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
640     ) -> Result<EvaluationResult, OverflowError> {
641         self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
642             let result = op(self)?;
643             match self.infcx.region_constraints_added_in_snapshot(snapshot) {
644                 None => Ok(result),
645                 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
646             }
647         })
648     }
649
650     /// Evaluates the predicates in `predicates` recursively. Note that
651     /// this applies projections in the predicates, and therefore
652     /// is run within an inference probe.
653     fn evaluate_predicates_recursively<'a, 'o, I>(
654         &mut self,
655         stack: TraitObligationStackList<'o, 'tcx>,
656         predicates: I,
657     ) -> Result<EvaluationResult, OverflowError>
658     where
659         I: IntoIterator<Item = PredicateObligation<'tcx>>,
660         'tcx: 'a,
661     {
662         let mut result = EvaluatedToOk;
663         for obligation in predicates {
664             let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
665             debug!(
666                 "evaluate_predicate_recursively({:?}) = {:?}",
667                 obligation, eval
668             );
669             if let EvaluatedToErr = eval {
670                 // fast-path - EvaluatedToErr is the top of the lattice,
671                 // so we don't need to look on the other predicates.
672                 return Ok(EvaluatedToErr);
673             } else {
674                 result = cmp::max(result, eval);
675             }
676         }
677         Ok(result)
678     }
679
680     fn evaluate_predicate_recursively<'o>(
681         &mut self,
682         previous_stack: TraitObligationStackList<'o, 'tcx>,
683         obligation: PredicateObligation<'tcx>,
684     ) -> Result<EvaluationResult, OverflowError> {
685         debug!("evaluate_predicate_recursively(previous_stack={:?}, obligation={:?})",
686             previous_stack.head(), obligation);
687
688         // Previous_stack stores a TraitObligatiom, while 'obligation' is
689         // a PredicateObligation. These are distinct types, so we can't
690         // use any Option combinator method that would force them to be
691         // the same
692         match previous_stack.head() {
693             Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
694             None => self.check_recursion_limit(&obligation, &obligation)?
695         }
696
697         //self.check_recursion_limit(&obligation, previous_stack.head()
698         //                           .map_or(&obligation, |s| s.obligation))?;
699
700         match obligation.predicate {
701             ty::Predicate::Trait(ref t) => {
702                 debug_assert!(!t.has_escaping_bound_vars());
703                 let mut obligation = obligation.with(t.clone());
704                 obligation.recursion_depth += 1;
705                 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
706             }
707
708             ty::Predicate::Subtype(ref p) => {
709                 // does this code ever run?
710                 match self.infcx
711                     .subtype_predicate(&obligation.cause, obligation.param_env, p)
712                 {
713                     Some(Ok(InferOk { mut obligations, .. })) => {
714                         self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
715                         self.evaluate_predicates_recursively(previous_stack,obligations.into_iter())
716                     }
717                     Some(Err(_)) => Ok(EvaluatedToErr),
718                     None => Ok(EvaluatedToAmbig),
719                 }
720             }
721
722             ty::Predicate::WellFormed(ty) => match ty::wf::obligations(
723                 self.infcx,
724                 obligation.param_env,
725                 obligation.cause.body_id,
726                 ty,
727                 obligation.cause.span,
728             ) {
729                 Some(mut obligations) => {
730                     self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
731                     self.evaluate_predicates_recursively(previous_stack, obligations.into_iter())
732                 }
733                 None => Ok(EvaluatedToAmbig),
734             },
735
736             ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
737                 // we do not consider region relationships when
738                 // evaluating trait matches
739                 Ok(EvaluatedToOkModuloRegions)
740             }
741
742             ty::Predicate::ObjectSafe(trait_def_id) => {
743                 if self.tcx().is_object_safe(trait_def_id) {
744                     Ok(EvaluatedToOk)
745                 } else {
746                     Ok(EvaluatedToErr)
747                 }
748             }
749
750             ty::Predicate::Projection(ref data) => {
751                 let project_obligation = obligation.with(data.clone());
752                 match project::poly_project_and_unify_type(self, &project_obligation) {
753                     Ok(Some(mut subobligations)) => {
754                         self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
755                         let result = self.evaluate_predicates_recursively(
756                             previous_stack,
757                             subobligations.into_iter(),
758                         );
759                         if let Some(key) =
760                             ProjectionCacheKey::from_poly_projection_predicate(self, data)
761                         {
762                             self.infcx.projection_cache.borrow_mut().complete(key);
763                         }
764                         result
765                     }
766                     Ok(None) => Ok(EvaluatedToAmbig),
767                     Err(_) => Ok(EvaluatedToErr),
768                 }
769             }
770
771             ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
772                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
773                     Some(closure_kind) => {
774                         if closure_kind.extends(kind) {
775                             Ok(EvaluatedToOk)
776                         } else {
777                             Ok(EvaluatedToErr)
778                         }
779                     }
780                     None => Ok(EvaluatedToAmbig),
781                 }
782             }
783
784             ty::Predicate::ConstEvaluatable(def_id, substs) => {
785                 let tcx = self.tcx();
786                 match tcx.lift_to_global(&(obligation.param_env, substs)) {
787                     Some((param_env, substs)) => {
788                         let instance =
789                             ty::Instance::resolve(tcx.global_tcx(), param_env, def_id, substs);
790                         if let Some(instance) = instance {
791                             let cid = GlobalId {
792                                 instance,
793                                 promoted: None,
794                             };
795                             match self.tcx().const_eval(param_env.and(cid)) {
796                                 Ok(_) => Ok(EvaluatedToOk),
797                                 Err(_) => Ok(EvaluatedToErr),
798                             }
799                         } else {
800                             Ok(EvaluatedToErr)
801                         }
802                     }
803                     None => {
804                         // Inference variables still left in param_env or substs.
805                         Ok(EvaluatedToAmbig)
806                     }
807                 }
808             }
809         }
810     }
811
812     fn evaluate_trait_predicate_recursively<'o>(
813         &mut self,
814         previous_stack: TraitObligationStackList<'o, 'tcx>,
815         mut obligation: TraitObligation<'tcx>,
816     ) -> Result<EvaluationResult, OverflowError> {
817         debug!("evaluate_trait_predicate_recursively({:?})", obligation);
818
819         if self.intercrate.is_none() && obligation.is_global()
820             && obligation
821                 .param_env
822                 .caller_bounds
823                 .iter()
824                 .all(|bound| bound.needs_subst())
825         {
826             // If a param env has no global bounds, global obligations do not
827             // depend on its particular value in order to work, so we can clear
828             // out the param env and get better caching.
829             debug!(
830                 "evaluate_trait_predicate_recursively({:?}) - in global",
831                 obligation
832             );
833             obligation.param_env = obligation.param_env.without_caller_bounds();
834         }
835
836         let stack = self.push_stack(previous_stack, &obligation);
837         let fresh_trait_ref = stack.fresh_trait_ref;
838         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
839             debug!("CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
840             return Ok(result);
841         }
842
843         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
844         let result = result?;
845
846         debug!("CACHE MISS: EVAL({:?})={:?}", fresh_trait_ref, result);
847         self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
848
849         Ok(result)
850     }
851
852     fn evaluate_stack<'o>(
853         &mut self,
854         stack: &TraitObligationStack<'o, 'tcx>,
855     ) -> Result<EvaluationResult, OverflowError> {
856         // In intercrate mode, whenever any of the types are unbound,
857         // there can always be an impl. Even if there are no impls in
858         // this crate, perhaps the type would be unified with
859         // something from another crate that does provide an impl.
860         //
861         // In intra mode, we must still be conservative. The reason is
862         // that we want to avoid cycles. Imagine an impl like:
863         //
864         //     impl<T:Eq> Eq for Vec<T>
865         //
866         // and a trait reference like `$0 : Eq` where `$0` is an
867         // unbound variable. When we evaluate this trait-reference, we
868         // will unify `$0` with `Vec<$1>` (for some fresh variable
869         // `$1`), on the condition that `$1 : Eq`. We will then wind
870         // up with many candidates (since that are other `Eq` impls
871         // that apply) and try to winnow things down. This results in
872         // a recursive evaluation that `$1 : Eq` -- as you can
873         // imagine, this is just where we started. To avoid that, we
874         // check for unbound variables and return an ambiguous (hence possible)
875         // match if we've seen this trait before.
876         //
877         // This suffices to allow chains like `FnMut` implemented in
878         // terms of `Fn` etc, but we could probably make this more
879         // precise still.
880         let unbound_input_types = stack
881             .fresh_trait_ref
882             .skip_binder()
883             .input_types()
884             .any(|ty| ty.is_fresh());
885         // this check was an imperfect workaround for a bug n the old
886         // intercrate mode, it should be removed when that goes away.
887         if unbound_input_types && self.intercrate == Some(IntercrateMode::Issue43355) {
888             debug!(
889                 "evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
890                 stack.fresh_trait_ref
891             );
892             // Heuristics: show the diagnostics when there are no candidates in crate.
893             if self.intercrate_ambiguity_causes.is_some() {
894                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
895                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
896                     if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
897                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
898                         let self_ty = trait_ref.self_ty();
899                         let cause = IntercrateAmbiguityCause::DownstreamCrate {
900                             trait_desc: trait_ref.to_string(),
901                             self_desc: if self_ty.has_concrete_skeleton() {
902                                 Some(self_ty.to_string())
903                             } else {
904                                 None
905                             },
906                         };
907                         debug!("evaluate_stack: pushing cause = {:?}", cause);
908                         self.intercrate_ambiguity_causes
909                             .as_mut()
910                             .unwrap()
911                             .push(cause);
912                     }
913                 }
914             }
915             return Ok(EvaluatedToAmbig);
916         }
917         if unbound_input_types && stack.iter().skip(1).any(|prev| {
918             stack.obligation.param_env == prev.obligation.param_env
919                 && self.match_fresh_trait_refs(&stack.fresh_trait_ref, &prev.fresh_trait_ref)
920         }) {
921             debug!(
922                 "evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
923                 stack.fresh_trait_ref
924             );
925             return Ok(EvaluatedToUnknown);
926         }
927
928         // If there is any previous entry on the stack that precisely
929         // matches this obligation, then we can assume that the
930         // obligation is satisfied for now (still all other conditions
931         // must be met of course). One obvious case this comes up is
932         // marker traits like `Send`. Think of a linked list:
933         //
934         //    struct List<T> { data: T, next: Option<Box<List<T>>> }
935         //
936         // `Box<List<T>>` will be `Send` if `T` is `Send` and
937         // `Option<Box<List<T>>>` is `Send`, and in turn
938         // `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
939         // `Send`.
940         //
941         // Note that we do this comparison using the `fresh_trait_ref`
942         // fields. Because these have all been freshened using
943         // `self.freshener`, we can be sure that (a) this will not
944         // affect the inferencer state and (b) that if we see two
945         // fresh regions with the same index, they refer to the same
946         // unbound type variable.
947         if let Some(rec_index) = stack.iter()
948                  .skip(1) // skip top-most frame
949                  .position(|prev| stack.obligation.param_env == prev.obligation.param_env &&
950                                   stack.fresh_trait_ref == prev.fresh_trait_ref)
951         {
952             debug!("evaluate_stack({:?}) --> recursive", stack.fresh_trait_ref);
953
954             // Subtle: when checking for a coinductive cycle, we do
955             // not compare using the "freshened trait refs" (which
956             // have erased regions) but rather the fully explicit
957             // trait refs. This is important because it's only a cycle
958             // if the regions match exactly.
959             let cycle = stack.iter().skip(1).take(rec_index + 1);
960             let cycle = cycle.map(|stack| ty::Predicate::Trait(stack.obligation.predicate));
961             if self.coinductive_match(cycle) {
962                 debug!(
963                     "evaluate_stack({:?}) --> recursive, coinductive",
964                     stack.fresh_trait_ref
965                 );
966                 return Ok(EvaluatedToOk);
967             } else {
968                 debug!(
969                     "evaluate_stack({:?}) --> recursive, inductive",
970                     stack.fresh_trait_ref
971                 );
972                 return Ok(EvaluatedToRecur);
973             }
974         }
975
976         match self.candidate_from_obligation(stack) {
977             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
978             Ok(None) => Ok(EvaluatedToAmbig),
979             Err(Overflow) => Err(OverflowError),
980             Err(..) => Ok(EvaluatedToErr),
981         }
982     }
983
984     /// For defaulted traits, we use a co-inductive strategy to solve, so
985     /// that recursion is ok. This routine returns true if the top of the
986     /// stack (`cycle[0]`):
987     ///
988     /// - is a defaulted trait, and
989     /// - it also appears in the backtrace at some position `X`; and,
990     /// - all the predicates at positions `X..` between `X` an the top are
991     ///   also defaulted traits.
992     pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
993     where
994         I: Iterator<Item = ty::Predicate<'tcx>>,
995     {
996         let mut cycle = cycle;
997         cycle.all(|predicate| self.coinductive_predicate(predicate))
998     }
999
1000     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
1001         let result = match predicate {
1002             ty::Predicate::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
1003             _ => false,
1004         };
1005         debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
1006         result
1007     }
1008
1009     /// Further evaluate `candidate` to decide whether all type parameters match and whether nested
1010     /// obligations are met. Returns true if `candidate` remains viable after this further
1011     /// scrutiny.
1012     fn evaluate_candidate<'o>(
1013         &mut self,
1014         stack: &TraitObligationStack<'o, 'tcx>,
1015         candidate: &SelectionCandidate<'tcx>,
1016     ) -> Result<EvaluationResult, OverflowError> {
1017         debug!(
1018             "evaluate_candidate: depth={} candidate={:?}",
1019             stack.obligation.recursion_depth, candidate
1020         );
1021         let result = self.evaluation_probe(|this| {
1022             let candidate = (*candidate).clone();
1023             match this.confirm_candidate(stack.obligation, candidate) {
1024                 Ok(selection) => this.evaluate_predicates_recursively(
1025                     stack.list(),
1026                     selection.nested_obligations().into_iter().map(|o| {
1027                         //o.recursion_depth = 0;
1028                         o
1029                     })
1030                 ),
1031                 Err(..) => Ok(EvaluatedToErr),
1032             }
1033         })?;
1034         debug!(
1035             "evaluate_candidate: depth={} result={:?}",
1036             stack.obligation.recursion_depth, result
1037         );
1038         Ok(result)
1039     }
1040
1041     fn check_evaluation_cache(
1042         &self,
1043         param_env: ty::ParamEnv<'tcx>,
1044         trait_ref: ty::PolyTraitRef<'tcx>,
1045     ) -> Option<EvaluationResult> {
1046         let tcx = self.tcx();
1047         if self.can_use_global_caches(param_env) {
1048             let cache = tcx.evaluation_cache.hashmap.borrow();
1049             if let Some(cached) = cache.get(&trait_ref) {
1050                 return Some(cached.get(tcx));
1051             }
1052         }
1053         self.infcx
1054             .evaluation_cache
1055             .hashmap
1056             .borrow()
1057             .get(&trait_ref)
1058             .map(|v| v.get(tcx))
1059     }
1060
1061     fn insert_evaluation_cache(
1062         &mut self,
1063         param_env: ty::ParamEnv<'tcx>,
1064         trait_ref: ty::PolyTraitRef<'tcx>,
1065         dep_node: DepNodeIndex,
1066         result: EvaluationResult,
1067     ) {
1068         // Avoid caching results that depend on more than just the trait-ref
1069         // - the stack can create recursion.
1070         if result.is_stack_dependent() {
1071             return;
1072         }
1073
1074         if self.can_use_global_caches(param_env) {
1075             if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
1076                 debug!(
1077                     "insert_evaluation_cache(trait_ref={:?}, candidate={:?}) global",
1078                     trait_ref, result,
1079                 );
1080                 // This may overwrite the cache with the same value
1081                 // FIXME: Due to #50507 this overwrites the different values
1082                 // This should be changed to use HashMapExt::insert_same
1083                 // when that is fixed
1084                 self.tcx()
1085                     .evaluation_cache
1086                     .hashmap
1087                     .borrow_mut()
1088                     .insert(trait_ref, WithDepNode::new(dep_node, result));
1089                 return;
1090             }
1091         }
1092
1093         debug!(
1094             "insert_evaluation_cache(trait_ref={:?}, candidate={:?})",
1095             trait_ref, result,
1096         );
1097         self.infcx
1098             .evaluation_cache
1099             .hashmap
1100             .borrow_mut()
1101             .insert(trait_ref, WithDepNode::new(dep_node, result));
1102     }
1103
1104     // Due to caching of projection results, it's possible for a subobligation
1105     // to have a *lower* recursion_depth than the obligation used to create it.
1106     // To ensure that obligation_depth never decreasees, we force all subobligations
1107     // to have at least the depth of the original obligation.
1108     fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(&self, it: I,
1109                                                                            min_depth: usize) {
1110         it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
1111     }
1112
1113     // Check that the recursion limit has not been exceeded.
1114     //
1115     // The weird return type of this function allows it to be used with the 'try' (?)
1116     // operator within certain functions
1117     fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
1118         &self,
1119         obligation: &Obligation<'tcx, T>,
1120         error_obligation: &Obligation<'tcx, V>
1121     ) -> Result<(), OverflowError>  {
1122         let recursion_limit = *self.infcx.tcx.sess.recursion_limit.get();
1123         if obligation.recursion_depth >= recursion_limit {
1124             match self.query_mode {
1125                 TraitQueryMode::Standard => {
1126                     self.infcx().report_overflow_error(error_obligation, true);
1127                 }
1128                 TraitQueryMode::Canonical => {
1129                     return Err(OverflowError);
1130                 }
1131             }
1132         }
1133         Ok(())
1134     }
1135
1136     ///////////////////////////////////////////////////////////////////////////
1137     // CANDIDATE ASSEMBLY
1138     //
1139     // The selection process begins by examining all in-scope impls,
1140     // caller obligations, and so forth and assembling a list of
1141     // candidates. See the [rustc guide] for more details.
1142     //
1143     // [rustc guide]:
1144     // https://rust-lang.github.io/rustc-guide/traits/resolution.html#candidate-assembly
1145
1146     fn candidate_from_obligation<'o>(
1147         &mut self,
1148         stack: &TraitObligationStack<'o, 'tcx>,
1149     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1150         // Watch out for overflow. This intentionally bypasses (and does
1151         // not update) the cache.
1152         self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
1153
1154
1155         // Check the cache. Note that we freshen the trait-ref
1156         // separately rather than using `stack.fresh_trait_ref` --
1157         // this is because we want the unbound variables to be
1158         // replaced with fresh types starting from index 0.
1159         let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate.clone());
1160         debug!(
1161             "candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
1162             cache_fresh_trait_pred, stack
1163         );
1164         debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
1165
1166         if let Some(c) =
1167             self.check_candidate_cache(stack.obligation.param_env, &cache_fresh_trait_pred)
1168         {
1169             debug!("CACHE HIT: SELECT({:?})={:?}", cache_fresh_trait_pred, c);
1170             return c;
1171         }
1172
1173         // If no match, compute result and insert into cache.
1174         let (candidate, dep_node) =
1175             self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
1176
1177         debug!(
1178             "CACHE MISS: SELECT({:?})={:?}",
1179             cache_fresh_trait_pred, candidate
1180         );
1181         self.insert_candidate_cache(
1182             stack.obligation.param_env,
1183             cache_fresh_trait_pred,
1184             dep_node,
1185             candidate.clone(),
1186         );
1187         candidate
1188     }
1189
1190     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1191     where
1192         OP: FnOnce(&mut Self) -> R,
1193     {
1194         let (result, dep_node) = self.tcx()
1195             .dep_graph
1196             .with_anon_task(DepKind::TraitSelect, || op(self));
1197         self.tcx().dep_graph.read_index(dep_node);
1198         (result, dep_node)
1199     }
1200
1201     // Treat negative impls as unimplemented
1202     fn filter_negative_impls(
1203         &self,
1204         candidate: SelectionCandidate<'tcx>,
1205     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1206         if let ImplCandidate(def_id) = candidate {
1207             if !self.allow_negative_impls
1208                 && self.tcx().impl_polarity(def_id) == hir::ImplPolarity::Negative
1209             {
1210                 return Err(Unimplemented);
1211             }
1212         }
1213         Ok(Some(candidate))
1214     }
1215
1216     fn candidate_from_obligation_no_cache<'o>(
1217         &mut self,
1218         stack: &TraitObligationStack<'o, 'tcx>,
1219     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1220         if stack.obligation.predicate.references_error() {
1221             // If we encounter a `Error`, we generally prefer the
1222             // most "optimistic" result in response -- that is, the
1223             // one least likely to report downstream errors. But
1224             // because this routine is shared by coherence and by
1225             // trait selection, there isn't an obvious "right" choice
1226             // here in that respect, so we opt to just return
1227             // ambiguity and let the upstream clients sort it out.
1228             return Ok(None);
1229         }
1230
1231         if let Some(conflict) = self.is_knowable(stack) {
1232             debug!("coherence stage: not knowable");
1233             if self.intercrate_ambiguity_causes.is_some() {
1234                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
1235                 // Heuristics: show the diagnostics when there are no candidates in crate.
1236                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
1237                     let mut no_candidates_apply = true;
1238                     {
1239                         let evaluated_candidates = candidate_set
1240                             .vec
1241                             .iter()
1242                             .map(|c| self.evaluate_candidate(stack, &c));
1243
1244                         for ec in evaluated_candidates {
1245                             match ec {
1246                                 Ok(c) => {
1247                                     if c.may_apply() {
1248                                         no_candidates_apply = false;
1249                                         break;
1250                                     }
1251                                 }
1252                                 Err(e) => return Err(e.into()),
1253                             }
1254                         }
1255                     }
1256
1257                     if !candidate_set.ambiguous && no_candidates_apply {
1258                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1259                         let self_ty = trait_ref.self_ty();
1260                         let trait_desc = trait_ref.to_string();
1261                         let self_desc = if self_ty.has_concrete_skeleton() {
1262                             Some(self_ty.to_string())
1263                         } else {
1264                             None
1265                         };
1266                         let cause = if let Conflict::Upstream = conflict {
1267                             IntercrateAmbiguityCause::UpstreamCrateUpdate {
1268                                 trait_desc,
1269                                 self_desc,
1270                             }
1271                         } else {
1272                             IntercrateAmbiguityCause::DownstreamCrate {
1273                                 trait_desc,
1274                                 self_desc,
1275                             }
1276                         };
1277                         debug!("evaluate_stack: pushing cause = {:?}", cause);
1278                         self.intercrate_ambiguity_causes
1279                             .as_mut()
1280                             .unwrap()
1281                             .push(cause);
1282                     }
1283                 }
1284             }
1285             return Ok(None);
1286         }
1287
1288         let candidate_set = self.assemble_candidates(stack)?;
1289
1290         if candidate_set.ambiguous {
1291             debug!("candidate set contains ambig");
1292             return Ok(None);
1293         }
1294
1295         let mut candidates = candidate_set.vec;
1296
1297         debug!(
1298             "assembled {} candidates for {:?}: {:?}",
1299             candidates.len(),
1300             stack,
1301             candidates
1302         );
1303
1304         // At this point, we know that each of the entries in the
1305         // candidate set is *individually* applicable. Now we have to
1306         // figure out if they contain mutual incompatibilities. This
1307         // frequently arises if we have an unconstrained input type --
1308         // for example, we are looking for $0:Eq where $0 is some
1309         // unconstrained type variable. In that case, we'll get a
1310         // candidate which assumes $0 == int, one that assumes $0 ==
1311         // usize, etc. This spells an ambiguity.
1312
1313         // If there is more than one candidate, first winnow them down
1314         // by considering extra conditions (nested obligations and so
1315         // forth). We don't winnow if there is exactly one
1316         // candidate. This is a relatively minor distinction but it
1317         // can lead to better inference and error-reporting. An
1318         // example would be if there was an impl:
1319         //
1320         //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
1321         //
1322         // and we were to see some code `foo.push_clone()` where `boo`
1323         // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
1324         // we were to winnow, we'd wind up with zero candidates.
1325         // Instead, we select the right impl now but report `Bar does
1326         // not implement Clone`.
1327         if candidates.len() == 1 {
1328             return self.filter_negative_impls(candidates.pop().unwrap());
1329         }
1330
1331         // Winnow, but record the exact outcome of evaluation, which
1332         // is needed for specialization. Propagate overflow if it occurs.
1333         let mut candidates = candidates
1334             .into_iter()
1335             .map(|c| match self.evaluate_candidate(stack, &c) {
1336                 Ok(eval) if eval.may_apply() => Ok(Some(EvaluatedCandidate {
1337                     candidate: c,
1338                     evaluation: eval,
1339                 })),
1340                 Ok(_) => Ok(None),
1341                 Err(OverflowError) => Err(Overflow),
1342             })
1343             .flat_map(Result::transpose)
1344             .collect::<Result<Vec<_>, _>>()?;
1345
1346         debug!(
1347             "winnowed to {} candidates for {:?}: {:?}",
1348             candidates.len(),
1349             stack,
1350             candidates
1351         );
1352
1353         // If there are STILL multiple candidates, we can further
1354         // reduce the list by dropping duplicates -- including
1355         // resolving specializations.
1356         if candidates.len() > 1 {
1357             let mut i = 0;
1358             while i < candidates.len() {
1359                 let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
1360                     self.candidate_should_be_dropped_in_favor_of(&candidates[i], &candidates[j])
1361                 });
1362                 if is_dup {
1363                     debug!(
1364                         "Dropping candidate #{}/{}: {:?}",
1365                         i,
1366                         candidates.len(),
1367                         candidates[i]
1368                     );
1369                     candidates.swap_remove(i);
1370                 } else {
1371                     debug!(
1372                         "Retaining candidate #{}/{}: {:?}",
1373                         i,
1374                         candidates.len(),
1375                         candidates[i]
1376                     );
1377                     i += 1;
1378
1379                     // If there are *STILL* multiple candidates, give up
1380                     // and report ambiguity.
1381                     if i > 1 {
1382                         debug!("multiple matches, ambig");
1383                         return Ok(None);
1384                     }
1385                 }
1386             }
1387         }
1388
1389         // If there are *NO* candidates, then there are no impls --
1390         // that we know of, anyway. Note that in the case where there
1391         // are unbound type variables within the obligation, it might
1392         // be the case that you could still satisfy the obligation
1393         // from another crate by instantiating the type variables with
1394         // a type from another crate that does have an impl. This case
1395         // is checked for in `evaluate_stack` (and hence users
1396         // who might care about this case, like coherence, should use
1397         // that function).
1398         if candidates.is_empty() {
1399             return Err(Unimplemented);
1400         }
1401
1402         // Just one candidate left.
1403         self.filter_negative_impls(candidates.pop().unwrap().candidate)
1404     }
1405
1406     fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1407         debug!("is_knowable(intercrate={:?})", self.intercrate);
1408
1409         if !self.intercrate.is_some() {
1410             return None;
1411         }
1412
1413         let obligation = &stack.obligation;
1414         let predicate = self.infcx()
1415             .resolve_type_vars_if_possible(&obligation.predicate);
1416
1417         // OK to skip binder because of the nature of the
1418         // trait-ref-is-knowable check, which does not care about
1419         // bound regions
1420         let trait_ref = predicate.skip_binder().trait_ref;
1421
1422         let result = coherence::trait_ref_is_knowable(self.tcx(), trait_ref);
1423         if let (
1424             Some(Conflict::Downstream {
1425                 used_to_be_broken: true,
1426             }),
1427             Some(IntercrateMode::Issue43355),
1428         ) = (result, self.intercrate)
1429         {
1430             debug!("is_knowable: IGNORING conflict to be bug-compatible with #43355");
1431             None
1432         } else {
1433             result
1434         }
1435     }
1436
1437     /// Returns true if the global caches can be used.
1438     /// Do note that if the type itself is not in the
1439     /// global tcx, the local caches will be used.
1440     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1441         // If there are any where-clauses in scope, then we always use
1442         // a cache local to this particular scope. Otherwise, we
1443         // switch to a global cache. We used to try and draw
1444         // finer-grained distinctions, but that led to a serious of
1445         // annoying and weird bugs like #22019 and #18290. This simple
1446         // rule seems to be pretty clearly safe and also still retains
1447         // a very high hit rate (~95% when compiling rustc).
1448         if !param_env.caller_bounds.is_empty() {
1449             return false;
1450         }
1451
1452         // Avoid using the master cache during coherence and just rely
1453         // on the local cache. This effectively disables caching
1454         // during coherence. It is really just a simplification to
1455         // avoid us having to fear that coherence results "pollute"
1456         // the master cache. Since coherence executes pretty quickly,
1457         // it's not worth going to more trouble to increase the
1458         // hit-rate I don't think.
1459         if self.intercrate.is_some() {
1460             return false;
1461         }
1462
1463         // Same idea as the above, but for alt trait object modes. These
1464         // should only be used in intercrate mode - better safe than sorry.
1465         if self.infcx.trait_object_mode() != TraitObjectMode::NoSquash {
1466             bug!("using squashing TraitObjectMode outside of intercrate mode? param_env={:?}",
1467                  param_env);
1468         }
1469
1470         // Otherwise, we can use the global cache.
1471         true
1472     }
1473
1474     fn check_candidate_cache(
1475         &mut self,
1476         param_env: ty::ParamEnv<'tcx>,
1477         cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
1478     ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1479         let tcx = self.tcx();
1480         let trait_ref = &cache_fresh_trait_pred.skip_binder().trait_ref;
1481         if self.can_use_global_caches(param_env) {
1482             let cache = tcx.selection_cache.hashmap.borrow();
1483             if let Some(cached) = cache.get(&trait_ref) {
1484                 return Some(cached.get(tcx));
1485             }
1486         }
1487         self.infcx
1488             .selection_cache
1489             .hashmap
1490             .borrow()
1491             .get(trait_ref)
1492             .map(|v| v.get(tcx))
1493     }
1494
1495     /// Determines whether can we safely cache the result
1496     /// of selecting an obligation. This is almost always 'true',
1497     /// except when dealing with certain ParamCandidates.
1498     ///
1499     /// Ordinarily, a ParamCandidate will contain no inference variables,
1500     /// since it was usually produced directly from a DefId. However,
1501     /// certain cases (currently only librustdoc's blanket impl finder),
1502     /// a ParamEnv may be explicitly constructed with inference types.
1503     /// When this is the case, we do *not* want to cache the resulting selection
1504     /// candidate. This is due to the fact that it might not always be possible
1505     /// to equate the obligation's trait ref and the candidate's trait ref,
1506     /// if more constraints end up getting added to an inference variable.
1507     ///
1508     /// Because of this, we always want to re-run the full selection
1509     /// process for our obligation the next time we see it, since
1510     /// we might end up picking a different SelectionCandidate (or none at all)
1511     fn can_cache_candidate(&self,
1512         result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>
1513      ) -> bool {
1514         match result {
1515             Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => {
1516                 !trait_ref.skip_binder().input_types().any(|t| t.walk().any(|t_| t_.is_ty_infer()))
1517             },
1518             _ => true
1519         }
1520     }
1521
1522     fn insert_candidate_cache(
1523         &mut self,
1524         param_env: ty::ParamEnv<'tcx>,
1525         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1526         dep_node: DepNodeIndex,
1527         candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1528     ) {
1529         let tcx = self.tcx();
1530         let trait_ref = cache_fresh_trait_pred.skip_binder().trait_ref;
1531
1532         if !self.can_cache_candidate(&candidate) {
1533             debug!("insert_candidate_cache(trait_ref={:?}, candidate={:?} -\
1534                     candidate is not cacheable", trait_ref, candidate);
1535             return;
1536
1537         }
1538
1539         if self.can_use_global_caches(param_env) {
1540             if let Err(Overflow) = candidate {
1541                 // Don't cache overflow globally; we only produce this
1542                 // in certain modes.
1543             } else if let Some(trait_ref) = tcx.lift_to_global(&trait_ref) {
1544                 if let Some(candidate) = tcx.lift_to_global(&candidate) {
1545                     debug!(
1546                         "insert_candidate_cache(trait_ref={:?}, candidate={:?}) global",
1547                         trait_ref, candidate,
1548                     );
1549                     // This may overwrite the cache with the same value
1550                     tcx.selection_cache
1551                         .hashmap
1552                         .borrow_mut()
1553                         .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1554                     return;
1555                 }
1556             }
1557         }
1558
1559         debug!(
1560             "insert_candidate_cache(trait_ref={:?}, candidate={:?}) local",
1561             trait_ref, candidate,
1562         );
1563         self.infcx
1564             .selection_cache
1565             .hashmap
1566             .borrow_mut()
1567             .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1568     }
1569
1570     fn assemble_candidates<'o>(
1571         &mut self,
1572         stack: &TraitObligationStack<'o, 'tcx>,
1573     ) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
1574         let TraitObligationStack { obligation, .. } = *stack;
1575         let ref obligation = Obligation {
1576             param_env: obligation.param_env,
1577             cause: obligation.cause.clone(),
1578             recursion_depth: obligation.recursion_depth,
1579             predicate: self.infcx()
1580                 .resolve_type_vars_if_possible(&obligation.predicate),
1581         };
1582
1583         if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1584             // Self is a type variable (e.g., `_: AsRef<str>`).
1585             //
1586             // This is somewhat problematic, as the current scheme can't really
1587             // handle it turning to be a projection. This does end up as truly
1588             // ambiguous in most cases anyway.
1589             //
1590             // Take the fast path out - this also improves
1591             // performance by preventing assemble_candidates_from_impls from
1592             // matching every impl for this trait.
1593             return Ok(SelectionCandidateSet {
1594                 vec: vec![],
1595                 ambiguous: true,
1596             });
1597         }
1598
1599         let mut candidates = SelectionCandidateSet {
1600             vec: Vec::new(),
1601             ambiguous: false,
1602         };
1603
1604         self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
1605
1606         // Other bounds. Consider both in-scope bounds from fn decl
1607         // and applicable impls. There is a certain set of precedence rules here.
1608         let def_id = obligation.predicate.def_id();
1609         let lang_items = self.tcx().lang_items();
1610
1611         if lang_items.copy_trait() == Some(def_id) {
1612             debug!(
1613                 "obligation self ty is {:?}",
1614                 obligation.predicate.skip_binder().self_ty()
1615             );
1616
1617             // User-defined copy impls are permitted, but only for
1618             // structs and enums.
1619             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1620
1621             // For other types, we'll use the builtin rules.
1622             let copy_conditions = self.copy_clone_conditions(obligation);
1623             self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1624         } else if lang_items.sized_trait() == Some(def_id) {
1625             // Sized is never implementable by end-users, it is
1626             // always automatically computed.
1627             let sized_conditions = self.sized_conditions(obligation);
1628             self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
1629         } else if lang_items.unsize_trait() == Some(def_id) {
1630             self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1631         } else {
1632             if lang_items.clone_trait() == Some(def_id) {
1633                 // Same builtin conditions as `Copy`, i.e., every type which has builtin support
1634                 // for `Copy` also has builtin support for `Clone`, + tuples and arrays of `Clone`
1635                 // types have builtin support for `Clone`.
1636                 let clone_conditions = self.copy_clone_conditions(obligation);
1637                 self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
1638             }
1639
1640             self.assemble_generator_candidates(obligation, &mut candidates)?;
1641             self.assemble_closure_candidates(obligation, &mut candidates)?;
1642             self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1643             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1644             self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1645         }
1646
1647         self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1648         self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1649         // Auto implementations have lower priority, so we only
1650         // consider triggering a default if there is no other impl that can apply.
1651         if candidates.vec.is_empty() {
1652             self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
1653         }
1654         debug!("candidate list size: {}", candidates.vec.len());
1655         Ok(candidates)
1656     }
1657
1658     fn assemble_candidates_from_projected_tys(
1659         &mut self,
1660         obligation: &TraitObligation<'tcx>,
1661         candidates: &mut SelectionCandidateSet<'tcx>,
1662     ) {
1663         debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1664
1665         // before we go into the whole placeholder thing, just
1666         // quickly check if the self-type is a projection at all.
1667         match obligation.predicate.skip_binder().trait_ref.self_ty().sty {
1668             ty::Projection(_) | ty::Opaque(..) => {}
1669             ty::Infer(ty::TyVar(_)) => {
1670                 span_bug!(
1671                     obligation.cause.span,
1672                     "Self=_ should have been handled by assemble_candidates"
1673                 );
1674             }
1675             _ => return,
1676         }
1677
1678         let result = self.infcx.probe(|_| {
1679             self.match_projection_obligation_against_definition_bounds(obligation)
1680         });
1681
1682         if result {
1683             candidates.vec.push(ProjectionCandidate);
1684         }
1685     }
1686
1687     fn match_projection_obligation_against_definition_bounds(
1688         &mut self,
1689         obligation: &TraitObligation<'tcx>,
1690     ) -> bool {
1691         let poly_trait_predicate = self.infcx()
1692             .resolve_type_vars_if_possible(&obligation.predicate);
1693         let (skol_trait_predicate, _) = self.infcx()
1694             .replace_bound_vars_with_placeholders(&poly_trait_predicate);
1695         debug!(
1696             "match_projection_obligation_against_definition_bounds: \
1697              skol_trait_predicate={:?}",
1698             skol_trait_predicate,
1699         );
1700
1701         let (def_id, substs) = match skol_trait_predicate.trait_ref.self_ty().sty {
1702             ty::Projection(ref data) => (data.trait_ref(self.tcx()).def_id, data.substs),
1703             ty::Opaque(def_id, substs) => (def_id, substs),
1704             _ => {
1705                 span_bug!(
1706                     obligation.cause.span,
1707                     "match_projection_obligation_against_definition_bounds() called \
1708                      but self-ty is not a projection: {:?}",
1709                     skol_trait_predicate.trait_ref.self_ty()
1710                 );
1711             }
1712         };
1713         debug!(
1714             "match_projection_obligation_against_definition_bounds: \
1715              def_id={:?}, substs={:?}",
1716             def_id, substs
1717         );
1718
1719         let predicates_of = self.tcx().predicates_of(def_id);
1720         let bounds = predicates_of.instantiate(self.tcx(), substs);
1721         debug!(
1722             "match_projection_obligation_against_definition_bounds: \
1723              bounds={:?}",
1724             bounds
1725         );
1726
1727         let matching_bound = util::elaborate_predicates(self.tcx(), bounds.predicates)
1728             .filter_to_traits()
1729             .find(|bound| {
1730                 self.infcx.probe(|_| {
1731                     self.match_projection(
1732                         obligation,
1733                         bound.clone(),
1734                         skol_trait_predicate.trait_ref.clone(),
1735                     )
1736                 })
1737             });
1738
1739         debug!(
1740             "match_projection_obligation_against_definition_bounds: \
1741              matching_bound={:?}",
1742             matching_bound
1743         );
1744         match matching_bound {
1745             None => false,
1746             Some(bound) => {
1747                 // Repeat the successful match, if any, this time outside of a probe.
1748                 let result = self.match_projection(
1749                     obligation,
1750                     bound,
1751                     skol_trait_predicate.trait_ref.clone(),
1752                 );
1753
1754                 assert!(result);
1755                 true
1756             }
1757         }
1758     }
1759
1760     fn match_projection(
1761         &mut self,
1762         obligation: &TraitObligation<'tcx>,
1763         trait_bound: ty::PolyTraitRef<'tcx>,
1764         skol_trait_ref: ty::TraitRef<'tcx>,
1765     ) -> bool {
1766         debug_assert!(!skol_trait_ref.has_escaping_bound_vars());
1767         self.infcx
1768             .at(&obligation.cause, obligation.param_env)
1769             .sup(ty::Binder::dummy(skol_trait_ref), trait_bound)
1770             .is_ok()
1771     }
1772
1773     /// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
1774     /// supplied to find out whether it is listed among them.
1775     ///
1776     /// Never affects inference environment.
1777     fn assemble_candidates_from_caller_bounds<'o>(
1778         &mut self,
1779         stack: &TraitObligationStack<'o, 'tcx>,
1780         candidates: &mut SelectionCandidateSet<'tcx>,
1781     ) -> Result<(), SelectionError<'tcx>> {
1782         debug!(
1783             "assemble_candidates_from_caller_bounds({:?})",
1784             stack.obligation
1785         );
1786
1787         let all_bounds = stack
1788             .obligation
1789             .param_env
1790             .caller_bounds
1791             .iter()
1792             .filter_map(|o| o.to_opt_poly_trait_ref());
1793
1794         // micro-optimization: filter out predicates relating to different
1795         // traits.
1796         let matching_bounds =
1797             all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
1798
1799         // keep only those bounds which may apply, and propagate overflow if it occurs
1800         let mut param_candidates = vec![];
1801         for bound in matching_bounds {
1802             let wc = self.evaluate_where_clause(stack, bound.clone())?;
1803             if wc.may_apply() {
1804                 param_candidates.push(ParamCandidate(bound));
1805             }
1806         }
1807
1808         candidates.vec.extend(param_candidates);
1809
1810         Ok(())
1811     }
1812
1813     fn evaluate_where_clause<'o>(
1814         &mut self,
1815         stack: &TraitObligationStack<'o, 'tcx>,
1816         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1817     ) -> Result<EvaluationResult, OverflowError> {
1818         self.evaluation_probe(|this| {
1819             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1820                 Ok(obligations) => {
1821                     this.evaluate_predicates_recursively(stack.list(), obligations.into_iter())
1822                 }
1823                 Err(()) => Ok(EvaluatedToErr),
1824             }
1825         })
1826     }
1827
1828     fn assemble_generator_candidates(
1829         &mut self,
1830         obligation: &TraitObligation<'tcx>,
1831         candidates: &mut SelectionCandidateSet<'tcx>,
1832     ) -> Result<(), SelectionError<'tcx>> {
1833         if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
1834             return Ok(());
1835         }
1836
1837         // OK to skip binder because the substs on generator types never
1838         // touch bound regions, they just capture the in-scope
1839         // type/region parameters
1840         let self_ty = *obligation.self_ty().skip_binder();
1841         match self_ty.sty {
1842             ty::Generator(..) => {
1843                 debug!(
1844                     "assemble_generator_candidates: self_ty={:?} obligation={:?}",
1845                     self_ty, obligation
1846                 );
1847
1848                 candidates.vec.push(GeneratorCandidate);
1849             }
1850             ty::Infer(ty::TyVar(_)) => {
1851                 debug!("assemble_generator_candidates: ambiguous self-type");
1852                 candidates.ambiguous = true;
1853             }
1854             _ => {}
1855         }
1856
1857         Ok(())
1858     }
1859
1860     /// Check for the artificial impl that the compiler will create for an obligation like `X :
1861     /// FnMut<..>` where `X` is a closure type.
1862     ///
1863     /// Note: the type parameters on a closure candidate are modeled as *output* type
1864     /// parameters and hence do not affect whether this trait is a match or not. They will be
1865     /// unified during the confirmation step.
1866     fn assemble_closure_candidates(
1867         &mut self,
1868         obligation: &TraitObligation<'tcx>,
1869         candidates: &mut SelectionCandidateSet<'tcx>,
1870     ) -> Result<(), SelectionError<'tcx>> {
1871         let kind = match self.tcx()
1872             .lang_items()
1873             .fn_trait_kind(obligation.predicate.def_id())
1874         {
1875             Some(k) => k,
1876             None => {
1877                 return Ok(());
1878             }
1879         };
1880
1881         // OK to skip binder because the substs on closure types never
1882         // touch bound regions, they just capture the in-scope
1883         // type/region parameters
1884         match obligation.self_ty().skip_binder().sty {
1885             ty::Closure(closure_def_id, closure_substs) => {
1886                 debug!(
1887                     "assemble_unboxed_candidates: kind={:?} obligation={:?}",
1888                     kind, obligation
1889                 );
1890                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
1891                     Some(closure_kind) => {
1892                         debug!(
1893                             "assemble_unboxed_candidates: closure_kind = {:?}",
1894                             closure_kind
1895                         );
1896                         if closure_kind.extends(kind) {
1897                             candidates.vec.push(ClosureCandidate);
1898                         }
1899                     }
1900                     None => {
1901                         debug!("assemble_unboxed_candidates: closure_kind not yet known");
1902                         candidates.vec.push(ClosureCandidate);
1903                     }
1904                 }
1905             }
1906             ty::Infer(ty::TyVar(_)) => {
1907                 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
1908                 candidates.ambiguous = true;
1909             }
1910             _ => {}
1911         }
1912
1913         Ok(())
1914     }
1915
1916     /// Implement one of the `Fn()` family for a fn pointer.
1917     fn assemble_fn_pointer_candidates(
1918         &mut self,
1919         obligation: &TraitObligation<'tcx>,
1920         candidates: &mut SelectionCandidateSet<'tcx>,
1921     ) -> Result<(), SelectionError<'tcx>> {
1922         // We provide impl of all fn traits for fn pointers.
1923         if self.tcx()
1924             .lang_items()
1925             .fn_trait_kind(obligation.predicate.def_id())
1926             .is_none()
1927         {
1928             return Ok(());
1929         }
1930
1931         // OK to skip binder because what we are inspecting doesn't involve bound regions
1932         let self_ty = *obligation.self_ty().skip_binder();
1933         match self_ty.sty {
1934             ty::Infer(ty::TyVar(_)) => {
1935                 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
1936                 candidates.ambiguous = true; // could wind up being a fn() type
1937             }
1938             // provide an impl, but only for suitable `fn` pointers
1939             ty::FnDef(..) | ty::FnPtr(_) => {
1940                 if let ty::FnSig {
1941                     unsafety: hir::Unsafety::Normal,
1942                     abi: Abi::Rust,
1943                     variadic: false,
1944                     ..
1945                 } = self_ty.fn_sig(self.tcx()).skip_binder()
1946                 {
1947                     candidates.vec.push(FnPointerCandidate);
1948                 }
1949             }
1950             _ => {}
1951         }
1952
1953         Ok(())
1954     }
1955
1956     /// Search for impls that might apply to `obligation`.
1957     fn assemble_candidates_from_impls(
1958         &mut self,
1959         obligation: &TraitObligation<'tcx>,
1960         candidates: &mut SelectionCandidateSet<'tcx>,
1961     ) -> Result<(), SelectionError<'tcx>> {
1962         debug!(
1963             "assemble_candidates_from_impls(obligation={:?})",
1964             obligation
1965         );
1966
1967         self.tcx().for_each_relevant_impl(
1968             obligation.predicate.def_id(),
1969             obligation.predicate.skip_binder().trait_ref.self_ty(),
1970             |impl_def_id| {
1971                 self.infcx.probe(|_| {
1972                     if let Ok(_substs) = self.match_impl(impl_def_id, obligation)
1973                     {
1974                         candidates.vec.push(ImplCandidate(impl_def_id));
1975                     }
1976                 });
1977             },
1978         );
1979
1980         Ok(())
1981     }
1982
1983     fn assemble_candidates_from_auto_impls(
1984         &mut self,
1985         obligation: &TraitObligation<'tcx>,
1986         candidates: &mut SelectionCandidateSet<'tcx>,
1987     ) -> Result<(), SelectionError<'tcx>> {
1988         // OK to skip binder here because the tests we do below do not involve bound regions
1989         let self_ty = *obligation.self_ty().skip_binder();
1990         debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
1991
1992         let def_id = obligation.predicate.def_id();
1993
1994         if self.tcx().trait_is_auto(def_id) {
1995             match self_ty.sty {
1996                 ty::Dynamic(..) => {
1997                     // For object types, we don't know what the closed
1998                     // over types are. This means we conservatively
1999                     // say nothing; a candidate may be added by
2000                     // `assemble_candidates_from_object_ty`.
2001                 }
2002                 ty::Foreign(..) => {
2003                     // Since the contents of foreign types is unknown,
2004                     // we don't add any `..` impl. Default traits could
2005                     // still be provided by a manual implementation for
2006                     // this trait and type.
2007                 }
2008                 ty::Param(..) | ty::Projection(..) => {
2009                     // In these cases, we don't know what the actual
2010                     // type is.  Therefore, we cannot break it down
2011                     // into its constituent types. So we don't
2012                     // consider the `..` impl but instead just add no
2013                     // candidates: this means that typeck will only
2014                     // succeed if there is another reason to believe
2015                     // that this obligation holds. That could be a
2016                     // where-clause or, in the case of an object type,
2017                     // it could be that the object type lists the
2018                     // trait (e.g., `Foo+Send : Send`). See
2019                     // `compile-fail/typeck-default-trait-impl-send-param.rs`
2020                     // for an example of a test case that exercises
2021                     // this path.
2022                 }
2023                 ty::Infer(ty::TyVar(_)) => {
2024                     // the auto impl might apply, we don't know
2025                     candidates.ambiguous = true;
2026                 }
2027                 _ => candidates.vec.push(AutoImplCandidate(def_id.clone())),
2028             }
2029         }
2030
2031         Ok(())
2032     }
2033
2034     /// Search for impls that might apply to `obligation`.
2035     fn assemble_candidates_from_object_ty(
2036         &mut self,
2037         obligation: &TraitObligation<'tcx>,
2038         candidates: &mut SelectionCandidateSet<'tcx>,
2039     ) {
2040         debug!(
2041             "assemble_candidates_from_object_ty(self_ty={:?})",
2042             obligation.self_ty().skip_binder()
2043         );
2044
2045         self.infcx.probe(|_snapshot| {
2046             // The code below doesn't care about regions, and the
2047             // self-ty here doesn't escape this probe, so just erase
2048             // any LBR.
2049             let self_ty = self.tcx().erase_late_bound_regions(&obligation.self_ty());
2050             let poly_trait_ref = match self_ty.sty {
2051                 ty::Dynamic(ref data, ..) => {
2052                     if data.auto_traits()
2053                         .any(|did| did == obligation.predicate.def_id())
2054                     {
2055                         debug!(
2056                             "assemble_candidates_from_object_ty: matched builtin bound, \
2057                              pushing candidate"
2058                         );
2059                         candidates.vec.push(BuiltinObjectCandidate);
2060                         return;
2061                     }
2062
2063                     data.principal().with_self_ty(self.tcx(), self_ty)
2064                 }
2065                 ty::Infer(ty::TyVar(_)) => {
2066                     debug!("assemble_candidates_from_object_ty: ambiguous");
2067                     candidates.ambiguous = true; // could wind up being an object type
2068                     return;
2069                 }
2070                 _ => return,
2071             };
2072
2073             debug!(
2074                 "assemble_candidates_from_object_ty: poly_trait_ref={:?}",
2075                 poly_trait_ref
2076             );
2077
2078             // Count only those upcast versions that match the trait-ref
2079             // we are looking for. Specifically, do not only check for the
2080             // correct trait, but also the correct type parameters.
2081             // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
2082             // but `Foo` is declared as `trait Foo : Bar<u32>`.
2083             let upcast_trait_refs = util::supertraits(self.tcx(), poly_trait_ref)
2084                 .filter(|upcast_trait_ref| {
2085                     self.infcx.probe(|_| {
2086                         let upcast_trait_ref = upcast_trait_ref.clone();
2087                         self.match_poly_trait_ref(obligation, upcast_trait_ref)
2088                             .is_ok()
2089                     })
2090                 })
2091                 .count();
2092
2093             if upcast_trait_refs > 1 {
2094                 // Can be upcast in many ways; need more type information.
2095                 candidates.ambiguous = true;
2096             } else if upcast_trait_refs == 1 {
2097                 candidates.vec.push(ObjectCandidate);
2098             }
2099         })
2100     }
2101
2102     /// Search for unsizing that might apply to `obligation`.
2103     fn assemble_candidates_for_unsizing(
2104         &mut self,
2105         obligation: &TraitObligation<'tcx>,
2106         candidates: &mut SelectionCandidateSet<'tcx>,
2107     ) {
2108         // We currently never consider higher-ranked obligations e.g.
2109         // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
2110         // because they are a priori invalid, and we could potentially add support
2111         // for them later, it's just that there isn't really a strong need for it.
2112         // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
2113         // impl, and those are generally applied to concrete types.
2114         //
2115         // That said, one might try to write a fn with a where clause like
2116         //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
2117         // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
2118         // Still, you'd be more likely to write that where clause as
2119         //     T: Trait
2120         // so it seems ok if we (conservatively) fail to accept that `Unsize`
2121         // obligation above. Should be possible to extend this in the future.
2122         let source = match obligation.self_ty().no_bound_vars() {
2123             Some(t) => t,
2124             None => {
2125                 // Don't add any candidates if there are bound regions.
2126                 return;
2127             }
2128         };
2129         let target = obligation
2130             .predicate
2131             .skip_binder()
2132             .trait_ref
2133             .substs
2134             .type_at(1);
2135
2136         debug!(
2137             "assemble_candidates_for_unsizing(source={:?}, target={:?})",
2138             source, target
2139         );
2140
2141         let may_apply = match (&source.sty, &target.sty) {
2142             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2143             (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
2144                 // Upcasts permit two things:
2145                 //
2146                 // 1. Dropping builtin bounds, e.g., `Foo+Send` to `Foo`
2147                 // 2. Tightening the region bound, e.g., `Foo+'a` to `Foo+'b` if `'a : 'b`
2148                 //
2149                 // Note that neither of these changes requires any
2150                 // change at runtime.  Eventually this will be
2151                 // generalized.
2152                 //
2153                 // We always upcast when we can because of reason
2154                 // #2 (region bounds).
2155                 data_a.principal().def_id() == data_b.principal().def_id()
2156                     && data_b.auto_traits()
2157                     // All of a's auto traits need to be in b's auto traits.
2158                     .all(|b| data_a.auto_traits().any(|a| a == b))
2159             }
2160
2161             // T -> Trait.
2162             (_, &ty::Dynamic(..)) => true,
2163
2164             // Ambiguous handling is below T -> Trait, because inference
2165             // variables can still implement Unsize<Trait> and nested
2166             // obligations will have the final say (likely deferred).
2167             (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
2168                 debug!("assemble_candidates_for_unsizing: ambiguous");
2169                 candidates.ambiguous = true;
2170                 false
2171             }
2172
2173             // [T; n] -> [T].
2174             (&ty::Array(..), &ty::Slice(_)) => true,
2175
2176             // Struct<T> -> Struct<U>.
2177             (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
2178                 def_id_a == def_id_b
2179             }
2180
2181             // (.., T) -> (.., U).
2182             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
2183
2184             _ => false,
2185         };
2186
2187         if may_apply {
2188             candidates.vec.push(BuiltinUnsizeCandidate);
2189         }
2190     }
2191
2192     fn assemble_candidates_for_trait_alias(
2193         &mut self,
2194         obligation: &TraitObligation<'tcx>,
2195         candidates: &mut SelectionCandidateSet<'tcx>,
2196     ) -> Result<(), SelectionError<'tcx>> {
2197         // OK to skip binder here because the tests we do below do not involve bound regions
2198         let self_ty = *obligation.self_ty().skip_binder();
2199         debug!("assemble_candidates_for_trait_alias(self_ty={:?})", self_ty);
2200
2201         let def_id = obligation.predicate.def_id();
2202
2203         if ty::is_trait_alias(self.tcx(), def_id) {
2204             candidates.vec.push(TraitAliasCandidate(def_id.clone()));
2205         }
2206
2207         Ok(())
2208     }
2209
2210     ///////////////////////////////////////////////////////////////////////////
2211     // WINNOW
2212     //
2213     // Winnowing is the process of attempting to resolve ambiguity by
2214     // probing further. During the winnowing process, we unify all
2215     // type variables and then we also attempt to evaluate recursive
2216     // bounds to see if they are satisfied.
2217
2218     /// Returns true if `victim` should be dropped in favor of
2219     /// `other`.  Generally speaking we will drop duplicate
2220     /// candidates and prefer where-clause candidates.
2221     ///
2222     /// See the comment for "SelectionCandidate" for more details.
2223     fn candidate_should_be_dropped_in_favor_of<'o>(
2224         &mut self,
2225         victim: &EvaluatedCandidate<'tcx>,
2226         other: &EvaluatedCandidate<'tcx>,
2227     ) -> bool {
2228         if victim.candidate == other.candidate {
2229             return true;
2230         }
2231
2232         // Check if a bound would previously have been removed when normalizing
2233         // the param_env so that it can be given the lowest priority. See
2234         // #50825 for the motivation for this.
2235         let is_global =
2236             |cand: &ty::PolyTraitRef<'_>| cand.is_global() && !cand.has_late_bound_regions();
2237
2238         match other.candidate {
2239             // Prefer BuiltinCandidate { has_nested: false } to anything else.
2240             // This is a fix for #53123 and prevents winnowing from accidentally extending the
2241             // lifetime of a variable.
2242             BuiltinCandidate { has_nested: false } => true,
2243             ParamCandidate(ref cand) => match victim.candidate {
2244                 AutoImplCandidate(..) => {
2245                     bug!(
2246                         "default implementations shouldn't be recorded \
2247                          when there are other valid candidates"
2248                     );
2249                 }
2250                 // Prefer BuiltinCandidate { has_nested: false } to anything else.
2251                 // This is a fix for #53123 and prevents winnowing from accidentally extending the
2252                 // lifetime of a variable.
2253                 BuiltinCandidate { has_nested: false } => false,
2254                 ImplCandidate(..)
2255                 | ClosureCandidate
2256                 | GeneratorCandidate
2257                 | FnPointerCandidate
2258                 | BuiltinObjectCandidate
2259                 | BuiltinUnsizeCandidate
2260                 | BuiltinCandidate { .. }
2261                 | TraitAliasCandidate(..) => {
2262                     // Global bounds from the where clause should be ignored
2263                     // here (see issue #50825). Otherwise, we have a where
2264                     // clause so don't go around looking for impls.
2265                     !is_global(cand)
2266                 }
2267                 ObjectCandidate | ProjectionCandidate => {
2268                     // Arbitrarily give param candidates priority
2269                     // over projection and object candidates.
2270                     !is_global(cand)
2271                 }
2272                 ParamCandidate(..) => false,
2273             },
2274             ObjectCandidate | ProjectionCandidate => match victim.candidate {
2275                 AutoImplCandidate(..) => {
2276                     bug!(
2277                         "default implementations shouldn't be recorded \
2278                          when there are other valid candidates"
2279                     );
2280                 }
2281                 // Prefer BuiltinCandidate { has_nested: false } to anything else.
2282                 // This is a fix for #53123 and prevents winnowing from accidentally extending the
2283                 // lifetime of a variable.
2284                 BuiltinCandidate { has_nested: false } => false,
2285                 ImplCandidate(..)
2286                 | ClosureCandidate
2287                 | GeneratorCandidate
2288                 | FnPointerCandidate
2289                 | BuiltinObjectCandidate
2290                 | BuiltinUnsizeCandidate
2291                 | BuiltinCandidate { .. }
2292                 | TraitAliasCandidate(..) => true,
2293                 ObjectCandidate | ProjectionCandidate => {
2294                     // Arbitrarily give param candidates priority
2295                     // over projection and object candidates.
2296                     true
2297                 }
2298                 ParamCandidate(ref cand) => is_global(cand),
2299             },
2300             ImplCandidate(other_def) => {
2301                 // See if we can toss out `victim` based on specialization.
2302                 // This requires us to know *for sure* that the `other` impl applies
2303                 // i.e., EvaluatedToOk:
2304                 if other.evaluation.must_apply_modulo_regions() {
2305                     match victim.candidate {
2306                         ImplCandidate(victim_def) => {
2307                             let tcx = self.tcx().global_tcx();
2308                             return tcx.specializes((other_def, victim_def))
2309                                 || tcx.impls_are_allowed_to_overlap(other_def, victim_def);
2310                         }
2311                         ParamCandidate(ref cand) => {
2312                             // Prefer the impl to a global where clause candidate.
2313                             return is_global(cand);
2314                         }
2315                         _ => (),
2316                     }
2317                 }
2318
2319                 false
2320             }
2321             ClosureCandidate
2322             | GeneratorCandidate
2323             | FnPointerCandidate
2324             | BuiltinObjectCandidate
2325             | BuiltinUnsizeCandidate
2326             | BuiltinCandidate { has_nested: true } => {
2327                 match victim.candidate {
2328                     ParamCandidate(ref cand) => {
2329                         // Prefer these to a global where-clause bound
2330                         // (see issue #50825)
2331                         is_global(cand) && other.evaluation.must_apply_modulo_regions()
2332                     }
2333                     _ => false,
2334                 }
2335             }
2336             _ => false,
2337         }
2338     }
2339
2340     ///////////////////////////////////////////////////////////////////////////
2341     // BUILTIN BOUNDS
2342     //
2343     // These cover the traits that are built-in to the language
2344     // itself: `Copy`, `Clone` and `Sized`.
2345
2346     fn assemble_builtin_bound_candidates<'o>(
2347         &mut self,
2348         conditions: BuiltinImplConditions<'tcx>,
2349         candidates: &mut SelectionCandidateSet<'tcx>,
2350     ) -> Result<(), SelectionError<'tcx>> {
2351         match conditions {
2352             BuiltinImplConditions::Where(nested) => {
2353                 debug!("builtin_bound: nested={:?}", nested);
2354                 candidates.vec.push(BuiltinCandidate {
2355                     has_nested: nested.skip_binder().len() > 0,
2356                 });
2357             }
2358             BuiltinImplConditions::None => {}
2359             BuiltinImplConditions::Ambiguous => {
2360                 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
2361                 candidates.ambiguous = true;
2362             }
2363         }
2364
2365         Ok(())
2366     }
2367
2368     fn sized_conditions(
2369         &mut self,
2370         obligation: &TraitObligation<'tcx>,
2371     ) -> BuiltinImplConditions<'tcx> {
2372         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2373
2374         // NOTE: binder moved to (*)
2375         let self_ty = self.infcx
2376             .shallow_resolve(obligation.predicate.skip_binder().self_ty());
2377
2378         match self_ty.sty {
2379             ty::Infer(ty::IntVar(_))
2380             | ty::Infer(ty::FloatVar(_))
2381             | ty::Uint(_)
2382             | ty::Int(_)
2383             | ty::Bool
2384             | ty::Float(_)
2385             | ty::FnDef(..)
2386             | ty::FnPtr(_)
2387             | ty::RawPtr(..)
2388             | ty::Char
2389             | ty::Ref(..)
2390             | ty::Generator(..)
2391             | ty::GeneratorWitness(..)
2392             | ty::Array(..)
2393             | ty::Closure(..)
2394             | ty::Never
2395             | ty::Error => {
2396                 // safe for everything
2397                 Where(ty::Binder::dummy(Vec::new()))
2398             }
2399
2400             ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
2401
2402             ty::Tuple(tys) => Where(ty::Binder::bind(tys.last().into_iter().cloned().collect())),
2403
2404             ty::Adt(def, substs) => {
2405                 let sized_crit = def.sized_constraint(self.tcx());
2406                 // (*) binder moved here
2407                 Where(ty::Binder::bind(
2408                     sized_crit
2409                         .iter()
2410                         .map(|ty| ty.subst(self.tcx(), substs))
2411                         .collect(),
2412                 ))
2413             }
2414
2415             ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
2416             ty::Infer(ty::TyVar(_)) => Ambiguous,
2417
2418             ty::UnnormalizedProjection(..)
2419             | ty::Placeholder(..)
2420             | ty::Bound(..)
2421             | ty::Infer(ty::FreshTy(_))
2422             | ty::Infer(ty::FreshIntTy(_))
2423             | ty::Infer(ty::FreshFloatTy(_)) => {
2424                 bug!(
2425                     "asked to assemble builtin bounds of unexpected type: {:?}",
2426                     self_ty
2427                 );
2428             }
2429         }
2430     }
2431
2432     fn copy_clone_conditions(
2433         &mut self,
2434         obligation: &TraitObligation<'tcx>,
2435     ) -> BuiltinImplConditions<'tcx> {
2436         // NOTE: binder moved to (*)
2437         let self_ty = self.infcx
2438             .shallow_resolve(obligation.predicate.skip_binder().self_ty());
2439
2440         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2441
2442         match self_ty.sty {
2443             ty::Infer(ty::IntVar(_))
2444             | ty::Infer(ty::FloatVar(_))
2445             | ty::FnDef(..)
2446             | ty::FnPtr(_)
2447             | ty::Error => Where(ty::Binder::dummy(Vec::new())),
2448
2449             ty::Uint(_)
2450             | ty::Int(_)
2451             | ty::Bool
2452             | ty::Float(_)
2453             | ty::Char
2454             | ty::RawPtr(..)
2455             | ty::Never
2456             | ty::Ref(_, _, hir::MutImmutable) => {
2457                 // Implementations provided in libcore
2458                 None
2459             }
2460
2461             ty::Dynamic(..)
2462             | ty::Str
2463             | ty::Slice(..)
2464             | ty::Generator(..)
2465             | ty::GeneratorWitness(..)
2466             | ty::Foreign(..)
2467             | ty::Ref(_, _, hir::MutMutable) => None,
2468
2469             ty::Array(element_ty, _) => {
2470                 // (*) binder moved here
2471                 Where(ty::Binder::bind(vec![element_ty]))
2472             }
2473
2474             ty::Tuple(tys) => {
2475                 // (*) binder moved here
2476                 Where(ty::Binder::bind(tys.to_vec()))
2477             }
2478
2479             ty::Closure(def_id, substs) => {
2480                 let trait_id = obligation.predicate.def_id();
2481                 let is_copy_trait = Some(trait_id) == self.tcx().lang_items().copy_trait();
2482                 let is_clone_trait = Some(trait_id) == self.tcx().lang_items().clone_trait();
2483                 if is_copy_trait || is_clone_trait {
2484                     Where(ty::Binder::bind(
2485                         substs.upvar_tys(def_id, self.tcx()).collect(),
2486                     ))
2487                 } else {
2488                     None
2489                 }
2490             }
2491
2492             ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
2493                 // Fallback to whatever user-defined impls exist in this case.
2494                 None
2495             }
2496
2497             ty::Infer(ty::TyVar(_)) => {
2498                 // Unbound type variable. Might or might not have
2499                 // applicable impls and so forth, depending on what
2500                 // those type variables wind up being bound to.
2501                 Ambiguous
2502             }
2503
2504             ty::UnnormalizedProjection(..)
2505             | ty::Placeholder(..)
2506             | ty::Bound(..)
2507             | ty::Infer(ty::FreshTy(_))
2508             | ty::Infer(ty::FreshIntTy(_))
2509             | ty::Infer(ty::FreshFloatTy(_)) => {
2510                 bug!(
2511                     "asked to assemble builtin bounds of unexpected type: {:?}",
2512                     self_ty
2513                 );
2514             }
2515         }
2516     }
2517
2518     /// For default impls, we need to break apart a type into its
2519     /// "constituent types" -- meaning, the types that it contains.
2520     ///
2521     /// Here are some (simple) examples:
2522     ///
2523     /// ```
2524     /// (i32, u32) -> [i32, u32]
2525     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2526     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2527     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2528     /// ```
2529     fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
2530         match t.sty {
2531             ty::Uint(_)
2532             | ty::Int(_)
2533             | ty::Bool
2534             | ty::Float(_)
2535             | ty::FnDef(..)
2536             | ty::FnPtr(_)
2537             | ty::Str
2538             | ty::Error
2539             | ty::Infer(ty::IntVar(_))
2540             | ty::Infer(ty::FloatVar(_))
2541             | ty::Never
2542             | ty::Char => Vec::new(),
2543
2544             ty::UnnormalizedProjection(..)
2545             | ty::Placeholder(..)
2546             | ty::Dynamic(..)
2547             | ty::Param(..)
2548             | ty::Foreign(..)
2549             | ty::Projection(..)
2550             | ty::Bound(..)
2551             | ty::Infer(ty::TyVar(_))
2552             | ty::Infer(ty::FreshTy(_))
2553             | ty::Infer(ty::FreshIntTy(_))
2554             | ty::Infer(ty::FreshFloatTy(_)) => {
2555                 bug!(
2556                     "asked to assemble constituent types of unexpected type: {:?}",
2557                     t
2558                 );
2559             }
2560
2561             ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
2562                 vec![element_ty]
2563             }
2564
2565             ty::Array(element_ty, _) | ty::Slice(element_ty) => vec![element_ty],
2566
2567             ty::Tuple(ref tys) => {
2568                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2569                 tys.to_vec()
2570             }
2571
2572             ty::Closure(def_id, ref substs) => substs.upvar_tys(def_id, self.tcx()).collect(),
2573
2574             ty::Generator(def_id, ref substs, _) => {
2575                 let witness = substs.witness(def_id, self.tcx());
2576                 substs
2577                     .upvar_tys(def_id, self.tcx())
2578                     .chain(iter::once(witness))
2579                     .collect()
2580             }
2581
2582             ty::GeneratorWitness(types) => {
2583                 // This is sound because no regions in the witness can refer to
2584                 // the binder outside the witness. So we'll effectivly reuse
2585                 // the implicit binder around the witness.
2586                 types.skip_binder().to_vec()
2587             }
2588
2589             // for `PhantomData<T>`, we pass `T`
2590             ty::Adt(def, substs) if def.is_phantom_data() => substs.types().collect(),
2591
2592             ty::Adt(def, substs) => def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect(),
2593
2594             ty::Opaque(def_id, substs) => {
2595                 // We can resolve the `impl Trait` to its concrete type,
2596                 // which enforces a DAG between the functions requiring
2597                 // the auto trait bounds in question.
2598                 vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
2599             }
2600         }
2601     }
2602
2603     fn collect_predicates_for_types(
2604         &mut self,
2605         param_env: ty::ParamEnv<'tcx>,
2606         cause: ObligationCause<'tcx>,
2607         recursion_depth: usize,
2608         trait_def_id: DefId,
2609         types: ty::Binder<Vec<Ty<'tcx>>>,
2610     ) -> Vec<PredicateObligation<'tcx>> {
2611         // Because the types were potentially derived from
2612         // higher-ranked obligations they may reference late-bound
2613         // regions. For example, `for<'a> Foo<&'a int> : Copy` would
2614         // yield a type like `for<'a> &'a int`. In general, we
2615         // maintain the invariant that we never manipulate bound
2616         // regions, so we have to process these bound regions somehow.
2617         //
2618         // The strategy is to:
2619         //
2620         // 1. Instantiate those regions to placeholder regions (e.g.,
2621         //    `for<'a> &'a int` becomes `&0 int`.
2622         // 2. Produce something like `&'0 int : Copy`
2623         // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
2624
2625         types
2626             .skip_binder()
2627             .into_iter()
2628             .flat_map(|ty| {
2629                 // binder moved -\
2630                 let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
2631
2632                 self.infcx.in_snapshot(|_| {
2633                     let (skol_ty, _) = self.infcx
2634                         .replace_bound_vars_with_placeholders(&ty);
2635                     let Normalized {
2636                         value: normalized_ty,
2637                         mut obligations,
2638                     } = project::normalize_with_depth(
2639                         self,
2640                         param_env,
2641                         cause.clone(),
2642                         recursion_depth,
2643                         &skol_ty,
2644                     );
2645                     let skol_obligation = self.tcx().predicate_for_trait_def(
2646                         param_env,
2647                         cause.clone(),
2648                         trait_def_id,
2649                         recursion_depth,
2650                         normalized_ty,
2651                         &[],
2652                     );
2653                     obligations.push(skol_obligation);
2654                     obligations
2655                 })
2656             })
2657             .collect()
2658     }
2659
2660     ///////////////////////////////////////////////////////////////////////////
2661     // CONFIRMATION
2662     //
2663     // Confirmation unifies the output type parameters of the trait
2664     // with the values found in the obligation, possibly yielding a
2665     // type error.  See the [rustc guide] for more details.
2666     //
2667     // [rustc guide]:
2668     // https://rust-lang.github.io/rustc-guide/traits/resolution.html#confirmation
2669
2670     fn confirm_candidate(
2671         &mut self,
2672         obligation: &TraitObligation<'tcx>,
2673         candidate: SelectionCandidate<'tcx>,
2674     ) -> Result<Selection<'tcx>, SelectionError<'tcx>> {
2675         debug!("confirm_candidate({:?}, {:?})", obligation, candidate);
2676
2677         match candidate {
2678             BuiltinCandidate { has_nested } => {
2679                 let data = self.confirm_builtin_candidate(obligation, has_nested);
2680                 Ok(VtableBuiltin(data))
2681             }
2682
2683             ParamCandidate(param) => {
2684                 let obligations = self.confirm_param_candidate(obligation, param);
2685                 Ok(VtableParam(obligations))
2686             }
2687
2688             ImplCandidate(impl_def_id) => Ok(VtableImpl(self.confirm_impl_candidate(
2689                 obligation,
2690                 impl_def_id,
2691             ))),
2692
2693             AutoImplCandidate(trait_def_id) => {
2694                 let data = self.confirm_auto_impl_candidate(obligation, trait_def_id);
2695                 Ok(VtableAutoImpl(data))
2696             }
2697
2698             ProjectionCandidate => {
2699                 self.confirm_projection_candidate(obligation);
2700                 Ok(VtableParam(Vec::new()))
2701             }
2702
2703             ClosureCandidate => {
2704                 let vtable_closure = self.confirm_closure_candidate(obligation)?;
2705                 Ok(VtableClosure(vtable_closure))
2706             }
2707
2708             GeneratorCandidate => {
2709                 let vtable_generator = self.confirm_generator_candidate(obligation)?;
2710                 Ok(VtableGenerator(vtable_generator))
2711             }
2712
2713             FnPointerCandidate => {
2714                 let data = self.confirm_fn_pointer_candidate(obligation)?;
2715                 Ok(VtableFnPointer(data))
2716             }
2717
2718             TraitAliasCandidate(alias_def_id) => {
2719                 let data = self.confirm_trait_alias_candidate(obligation, alias_def_id);
2720                 Ok(VtableTraitAlias(data))
2721             }
2722
2723             ObjectCandidate => {
2724                 let data = self.confirm_object_candidate(obligation);
2725                 Ok(VtableObject(data))
2726             }
2727
2728             BuiltinObjectCandidate => {
2729                 // This indicates something like `(Trait+Send) :
2730                 // Send`. In this case, we know that this holds
2731                 // because that's what the object type is telling us,
2732                 // and there's really no additional obligations to
2733                 // prove and no types in particular to unify etc.
2734                 Ok(VtableParam(Vec::new()))
2735             }
2736
2737             BuiltinUnsizeCandidate => {
2738                 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2739                 Ok(VtableBuiltin(data))
2740             }
2741         }
2742     }
2743
2744     fn confirm_projection_candidate(&mut self, obligation: &TraitObligation<'tcx>) {
2745         self.infcx.in_snapshot(|_| {
2746             let result =
2747                 self.match_projection_obligation_against_definition_bounds(obligation);
2748             assert!(result);
2749         })
2750     }
2751
2752     fn confirm_param_candidate(
2753         &mut self,
2754         obligation: &TraitObligation<'tcx>,
2755         param: ty::PolyTraitRef<'tcx>,
2756     ) -> Vec<PredicateObligation<'tcx>> {
2757         debug!("confirm_param_candidate({:?},{:?})", obligation, param);
2758
2759         // During evaluation, we already checked that this
2760         // where-clause trait-ref could be unified with the obligation
2761         // trait-ref. Repeat that unification now without any
2762         // transactional boundary; it should not fail.
2763         match self.match_where_clause_trait_ref(obligation, param.clone()) {
2764             Ok(obligations) => obligations,
2765             Err(()) => {
2766                 bug!(
2767                     "Where clause `{:?}` was applicable to `{:?}` but now is not",
2768                     param,
2769                     obligation
2770                 );
2771             }
2772         }
2773     }
2774
2775     fn confirm_builtin_candidate(
2776         &mut self,
2777         obligation: &TraitObligation<'tcx>,
2778         has_nested: bool,
2779     ) -> VtableBuiltinData<PredicateObligation<'tcx>> {
2780         debug!(
2781             "confirm_builtin_candidate({:?}, {:?})",
2782             obligation, has_nested
2783         );
2784
2785         let lang_items = self.tcx().lang_items();
2786         let obligations = if has_nested {
2787             let trait_def = obligation.predicate.def_id();
2788             let conditions = if Some(trait_def) == lang_items.sized_trait() {
2789                 self.sized_conditions(obligation)
2790             } else if Some(trait_def) == lang_items.copy_trait() {
2791                 self.copy_clone_conditions(obligation)
2792             } else if Some(trait_def) == lang_items.clone_trait() {
2793                 self.copy_clone_conditions(obligation)
2794             } else {
2795                 bug!("unexpected builtin trait {:?}", trait_def)
2796             };
2797             let nested = match conditions {
2798                 BuiltinImplConditions::Where(nested) => nested,
2799                 _ => bug!(
2800                     "obligation {:?} had matched a builtin impl but now doesn't",
2801                     obligation
2802                 ),
2803             };
2804
2805             let cause = obligation.derived_cause(BuiltinDerivedObligation);
2806             self.collect_predicates_for_types(
2807                 obligation.param_env,
2808                 cause,
2809                 obligation.recursion_depth + 1,
2810                 trait_def,
2811                 nested,
2812             )
2813         } else {
2814             vec![]
2815         };
2816
2817         debug!("confirm_builtin_candidate: obligations={:?}", obligations);
2818
2819         VtableBuiltinData {
2820             nested: obligations,
2821         }
2822     }
2823
2824     /// This handles the case where a `auto trait Foo` impl is being used.
2825     /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2826     ///
2827     /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2828     /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2829     fn confirm_auto_impl_candidate(
2830         &mut self,
2831         obligation: &TraitObligation<'tcx>,
2832         trait_def_id: DefId,
2833     ) -> VtableAutoImplData<PredicateObligation<'tcx>> {
2834         debug!(
2835             "confirm_auto_impl_candidate({:?}, {:?})",
2836             obligation, trait_def_id
2837         );
2838
2839         let types = obligation.predicate.map_bound(|inner| {
2840             let self_ty = self.infcx.shallow_resolve(inner.self_ty());
2841             self.constituent_types_for_ty(self_ty)
2842         });
2843         self.vtable_auto_impl(obligation, trait_def_id, types)
2844     }
2845
2846     /// See `confirm_auto_impl_candidate`.
2847     fn vtable_auto_impl(
2848         &mut self,
2849         obligation: &TraitObligation<'tcx>,
2850         trait_def_id: DefId,
2851         nested: ty::Binder<Vec<Ty<'tcx>>>,
2852     ) -> VtableAutoImplData<PredicateObligation<'tcx>> {
2853         debug!("vtable_auto_impl: nested={:?}", nested);
2854
2855         let cause = obligation.derived_cause(BuiltinDerivedObligation);
2856         let mut obligations = self.collect_predicates_for_types(
2857             obligation.param_env,
2858             cause,
2859             obligation.recursion_depth + 1,
2860             trait_def_id,
2861             nested,
2862         );
2863
2864         let trait_obligations: Vec<PredicateObligation<'_>> = self.infcx.in_snapshot(|_| {
2865             let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
2866             let (trait_ref, _) = self.infcx
2867                 .replace_bound_vars_with_placeholders(&poly_trait_ref);
2868             let cause = obligation.derived_cause(ImplDerivedObligation);
2869             self.impl_or_trait_obligations(
2870                 cause,
2871                 obligation.recursion_depth + 1,
2872                 obligation.param_env,
2873                 trait_def_id,
2874                 &trait_ref.substs,
2875             )
2876         });
2877
2878         // Adds the predicates from the trait.  Note that this contains a `Self: Trait`
2879         // predicate as usual.  It won't have any effect since auto traits are coinductive.
2880         obligations.extend(trait_obligations);
2881
2882         debug!("vtable_auto_impl: obligations={:?}", obligations);
2883
2884         VtableAutoImplData {
2885             trait_def_id,
2886             nested: obligations,
2887         }
2888     }
2889
2890     fn confirm_impl_candidate(
2891         &mut self,
2892         obligation: &TraitObligation<'tcx>,
2893         impl_def_id: DefId,
2894     ) -> VtableImplData<'tcx, PredicateObligation<'tcx>> {
2895         debug!("confirm_impl_candidate({:?},{:?})", obligation, impl_def_id);
2896
2897         // First, create the substitutions by matching the impl again,
2898         // this time not in a probe.
2899         self.infcx.in_snapshot(|_| {
2900             let substs = self.rematch_impl(impl_def_id, obligation);
2901             debug!("confirm_impl_candidate: substs={:?}", substs);
2902             let cause = obligation.derived_cause(ImplDerivedObligation);
2903             self.vtable_impl(
2904                 impl_def_id,
2905                 substs,
2906                 cause,
2907                 obligation.recursion_depth + 1,
2908                 obligation.param_env,
2909             )
2910         })
2911     }
2912
2913     fn vtable_impl(
2914         &mut self,
2915         impl_def_id: DefId,
2916         mut substs: Normalized<'tcx, &'tcx Substs<'tcx>>,
2917         cause: ObligationCause<'tcx>,
2918         recursion_depth: usize,
2919         param_env: ty::ParamEnv<'tcx>,
2920     ) -> VtableImplData<'tcx, PredicateObligation<'tcx>> {
2921         debug!(
2922             "vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={})",
2923             impl_def_id, substs, recursion_depth,
2924         );
2925
2926         let mut impl_obligations = self.impl_or_trait_obligations(
2927             cause,
2928             recursion_depth,
2929             param_env,
2930             impl_def_id,
2931             &substs.value,
2932         );
2933
2934         debug!(
2935             "vtable_impl: impl_def_id={:?} impl_obligations={:?}",
2936             impl_def_id, impl_obligations
2937         );
2938
2939         // Because of RFC447, the impl-trait-ref and obligations
2940         // are sufficient to determine the impl substs, without
2941         // relying on projections in the impl-trait-ref.
2942         //
2943         // e.g., `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
2944         impl_obligations.append(&mut substs.obligations);
2945
2946         VtableImplData {
2947             impl_def_id,
2948             substs: substs.value,
2949             nested: impl_obligations,
2950         }
2951     }
2952
2953     fn confirm_object_candidate(
2954         &mut self,
2955         obligation: &TraitObligation<'tcx>,
2956     ) -> VtableObjectData<'tcx, PredicateObligation<'tcx>> {
2957         debug!("confirm_object_candidate({:?})", obligation);
2958
2959         // FIXME(nmatsakis) skipping binder here seems wrong -- we should
2960         // probably flatten the binder from the obligation and the binder
2961         // from the object. Have to try to make a broken test case that
2962         // results.
2963         let self_ty = self.infcx
2964             .shallow_resolve(*obligation.self_ty().skip_binder());
2965         let poly_trait_ref = match self_ty.sty {
2966             ty::Dynamic(ref data, ..) => data.principal().with_self_ty(self.tcx(), self_ty),
2967             _ => span_bug!(obligation.cause.span, "object candidate with non-object"),
2968         };
2969
2970         let mut upcast_trait_ref = None;
2971         let mut nested = vec![];
2972         let vtable_base;
2973
2974         {
2975             let tcx = self.tcx();
2976
2977             // We want to find the first supertrait in the list of
2978             // supertraits that we can unify with, and do that
2979             // unification. We know that there is exactly one in the list
2980             // where we can unify because otherwise select would have
2981             // reported an ambiguity. (When we do find a match, also
2982             // record it for later.)
2983             let nonmatching = util::supertraits(tcx, poly_trait_ref).take_while(
2984                 |&t| match self.infcx.commit_if_ok(|_| self.match_poly_trait_ref(obligation, t)) {
2985                     Ok(obligations) => {
2986                         upcast_trait_ref = Some(t);
2987                         nested.extend(obligations);
2988                         false
2989                     }
2990                     Err(_) => true,
2991                 },
2992             );
2993
2994             // Additionally, for each of the nonmatching predicates that
2995             // we pass over, we sum up the set of number of vtable
2996             // entries, so that we can compute the offset for the selected
2997             // trait.
2998             vtable_base = nonmatching.map(|t| tcx.count_own_vtable_entries(t)).sum();
2999         }
3000
3001         VtableObjectData {
3002             upcast_trait_ref: upcast_trait_ref.unwrap(),
3003             vtable_base,
3004             nested,
3005         }
3006     }
3007
3008     fn confirm_fn_pointer_candidate(
3009         &mut self,
3010         obligation: &TraitObligation<'tcx>,
3011     ) -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3012         debug!("confirm_fn_pointer_candidate({:?})", obligation);
3013
3014         // OK to skip binder; it is reintroduced below
3015         let self_ty = self.infcx
3016             .shallow_resolve(*obligation.self_ty().skip_binder());
3017         let sig = self_ty.fn_sig(self.tcx());
3018         let trait_ref = self.tcx()
3019             .closure_trait_ref_and_return_type(
3020                 obligation.predicate.def_id(),
3021                 self_ty,
3022                 sig,
3023                 util::TupleArgumentsFlag::Yes,
3024             )
3025             .map_bound(|(trait_ref, _)| trait_ref);
3026
3027         let Normalized {
3028             value: trait_ref,
3029             obligations,
3030         } = project::normalize_with_depth(
3031             self,
3032             obligation.param_env,
3033             obligation.cause.clone(),
3034             obligation.recursion_depth + 1,
3035             &trait_ref,
3036         );
3037
3038         self.confirm_poly_trait_refs(
3039             obligation.cause.clone(),
3040             obligation.param_env,
3041             obligation.predicate.to_poly_trait_ref(),
3042             trait_ref,
3043         )?;
3044         Ok(VtableFnPointerData {
3045             fn_ty: self_ty,
3046             nested: obligations,
3047         })
3048     }
3049
3050     fn confirm_trait_alias_candidate(
3051         &mut self,
3052         obligation: &TraitObligation<'tcx>,
3053         alias_def_id: DefId,
3054     ) -> VtableTraitAliasData<'tcx, PredicateObligation<'tcx>> {
3055         debug!(
3056             "confirm_trait_alias_candidate({:?}, {:?})",
3057             obligation, alias_def_id
3058         );
3059
3060         self.infcx.in_snapshot(|_| {
3061             let (predicate, _) = self.infcx()
3062                 .replace_bound_vars_with_placeholders(&obligation.predicate);
3063             let trait_ref = predicate.trait_ref;
3064             let trait_def_id = trait_ref.def_id;
3065             let substs = trait_ref.substs;
3066
3067             let trait_obligations = self.impl_or_trait_obligations(
3068                 obligation.cause.clone(),
3069                 obligation.recursion_depth,
3070                 obligation.param_env,
3071                 trait_def_id,
3072                 &substs,
3073             );
3074
3075             debug!(
3076                 "confirm_trait_alias_candidate: trait_def_id={:?} trait_obligations={:?}",
3077                 trait_def_id, trait_obligations
3078             );
3079
3080             VtableTraitAliasData {
3081                 alias_def_id,
3082                 substs: substs,
3083                 nested: trait_obligations,
3084             }
3085         })
3086     }
3087
3088     fn confirm_generator_candidate(
3089         &mut self,
3090         obligation: &TraitObligation<'tcx>,
3091     ) -> Result<VtableGeneratorData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3092         // OK to skip binder because the substs on generator types never
3093         // touch bound regions, they just capture the in-scope
3094         // type/region parameters
3095         let self_ty = self.infcx
3096             .shallow_resolve(obligation.self_ty().skip_binder());
3097         let (generator_def_id, substs) = match self_ty.sty {
3098             ty::Generator(id, substs, _) => (id, substs),
3099             _ => bug!("closure candidate for non-closure {:?}", obligation),
3100         };
3101
3102         debug!(
3103             "confirm_generator_candidate({:?},{:?},{:?})",
3104             obligation, generator_def_id, substs
3105         );
3106
3107         let trait_ref = self.generator_trait_ref_unnormalized(obligation, generator_def_id, substs);
3108         let Normalized {
3109             value: trait_ref,
3110             mut obligations,
3111         } = normalize_with_depth(
3112             self,
3113             obligation.param_env,
3114             obligation.cause.clone(),
3115             obligation.recursion_depth + 1,
3116             &trait_ref,
3117         );
3118
3119         debug!(
3120             "confirm_generator_candidate(generator_def_id={:?}, \
3121              trait_ref={:?}, obligations={:?})",
3122             generator_def_id, trait_ref, obligations
3123         );
3124
3125         obligations.extend(self.confirm_poly_trait_refs(
3126             obligation.cause.clone(),
3127             obligation.param_env,
3128             obligation.predicate.to_poly_trait_ref(),
3129             trait_ref,
3130         )?);
3131
3132         Ok(VtableGeneratorData {
3133             generator_def_id: generator_def_id,
3134             substs: substs.clone(),
3135             nested: obligations,
3136         })
3137     }
3138
3139     fn confirm_closure_candidate(
3140         &mut self,
3141         obligation: &TraitObligation<'tcx>,
3142     ) -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3143         debug!("confirm_closure_candidate({:?})", obligation);
3144
3145         let kind = self.tcx()
3146             .lang_items()
3147             .fn_trait_kind(obligation.predicate.def_id())
3148             .unwrap_or_else(|| bug!("closure candidate for non-fn trait {:?}", obligation));
3149
3150         // OK to skip binder because the substs on closure types never
3151         // touch bound regions, they just capture the in-scope
3152         // type/region parameters
3153         let self_ty = self.infcx
3154             .shallow_resolve(obligation.self_ty().skip_binder());
3155         let (closure_def_id, substs) = match self_ty.sty {
3156             ty::Closure(id, substs) => (id, substs),
3157             _ => bug!("closure candidate for non-closure {:?}", obligation),
3158         };
3159
3160         let trait_ref = self.closure_trait_ref_unnormalized(obligation, closure_def_id, substs);
3161         let Normalized {
3162             value: trait_ref,
3163             mut obligations,
3164         } = normalize_with_depth(
3165             self,
3166             obligation.param_env,
3167             obligation.cause.clone(),
3168             obligation.recursion_depth + 1,
3169             &trait_ref,
3170         );
3171
3172         debug!(
3173             "confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
3174             closure_def_id, trait_ref, obligations
3175         );
3176
3177         obligations.extend(self.confirm_poly_trait_refs(
3178             obligation.cause.clone(),
3179             obligation.param_env,
3180             obligation.predicate.to_poly_trait_ref(),
3181             trait_ref,
3182         )?);
3183
3184         // FIXME: chalk
3185         if !self.tcx().sess.opts.debugging_opts.chalk {
3186             obligations.push(Obligation::new(
3187                 obligation.cause.clone(),
3188                 obligation.param_env,
3189                 ty::Predicate::ClosureKind(closure_def_id, substs, kind),
3190             ));
3191         }
3192
3193         Ok(VtableClosureData {
3194             closure_def_id,
3195             substs: substs.clone(),
3196             nested: obligations,
3197         })
3198     }
3199
3200     /// In the case of closure types and fn pointers,
3201     /// we currently treat the input type parameters on the trait as
3202     /// outputs. This means that when we have a match we have only
3203     /// considered the self type, so we have to go back and make sure
3204     /// to relate the argument types too.  This is kind of wrong, but
3205     /// since we control the full set of impls, also not that wrong,
3206     /// and it DOES yield better error messages (since we don't report
3207     /// errors as if there is no applicable impl, but rather report
3208     /// errors are about mismatched argument types.
3209     ///
3210     /// Here is an example. Imagine we have a closure expression
3211     /// and we desugared it so that the type of the expression is
3212     /// `Closure`, and `Closure` expects an int as argument. Then it
3213     /// is "as if" the compiler generated this impl:
3214     ///
3215     ///     impl Fn(int) for Closure { ... }
3216     ///
3217     /// Now imagine our obligation is `Fn(usize) for Closure`. So far
3218     /// we have matched the self-type `Closure`. At this point we'll
3219     /// compare the `int` to `usize` and generate an error.
3220     ///
3221     /// Note that this checking occurs *after* the impl has selected,
3222     /// because these output type parameters should not affect the
3223     /// selection of the impl. Therefore, if there is a mismatch, we
3224     /// report an error to the user.
3225     fn confirm_poly_trait_refs(
3226         &mut self,
3227         obligation_cause: ObligationCause<'tcx>,
3228         obligation_param_env: ty::ParamEnv<'tcx>,
3229         obligation_trait_ref: ty::PolyTraitRef<'tcx>,
3230         expected_trait_ref: ty::PolyTraitRef<'tcx>,
3231     ) -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3232         let obligation_trait_ref = obligation_trait_ref.clone();
3233         self.infcx
3234             .at(&obligation_cause, obligation_param_env)
3235             .sup(obligation_trait_ref, expected_trait_ref)
3236             .map(|InferOk { obligations, .. }| obligations)
3237             .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
3238     }
3239
3240     fn confirm_builtin_unsize_candidate(
3241         &mut self,
3242         obligation: &TraitObligation<'tcx>,
3243     ) -> Result<VtableBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3244         let tcx = self.tcx();
3245
3246         // assemble_candidates_for_unsizing should ensure there are no late bound
3247         // regions here. See the comment there for more details.
3248         let source = self.infcx
3249             .shallow_resolve(obligation.self_ty().no_bound_vars().unwrap());
3250         let target = obligation
3251             .predicate
3252             .skip_binder()
3253             .trait_ref
3254             .substs
3255             .type_at(1);
3256         let target = self.infcx.shallow_resolve(target);
3257
3258         debug!(
3259             "confirm_builtin_unsize_candidate(source={:?}, target={:?})",
3260             source, target
3261         );
3262
3263         let mut nested = vec![];
3264         match (&source.sty, &target.sty) {
3265             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
3266             (&ty::Dynamic(ref data_a, r_a), &ty::Dynamic(ref data_b, r_b)) => {
3267                 // See assemble_candidates_for_unsizing for more info.
3268                 let existential_predicates = data_a.map_bound(|data_a| {
3269                     let iter = iter::once(ty::ExistentialPredicate::Trait(data_a.principal()))
3270                         .chain(
3271                             data_a
3272                                 .projection_bounds()
3273                                 .map(|x| ty::ExistentialPredicate::Projection(x)),
3274                         )
3275                         .chain(
3276                             data_b
3277                                 .auto_traits()
3278                                 .map(ty::ExistentialPredicate::AutoTrait),
3279                         );
3280                     tcx.mk_existential_predicates(iter)
3281                 });
3282                 let source_trait = tcx.mk_dynamic(existential_predicates, r_b);
3283                 let InferOk { obligations, .. } = self.infcx
3284                     .at(&obligation.cause, obligation.param_env)
3285                     .sup(target, source_trait)
3286                     .map_err(|_| Unimplemented)?;
3287                 nested.extend(obligations);
3288
3289                 // Register one obligation for 'a: 'b.
3290                 let cause = ObligationCause::new(
3291                     obligation.cause.span,
3292                     obligation.cause.body_id,
3293                     ObjectCastObligation(target),
3294                 );
3295                 let outlives = ty::OutlivesPredicate(r_a, r_b);
3296                 nested.push(Obligation::with_depth(
3297                     cause,
3298                     obligation.recursion_depth + 1,
3299                     obligation.param_env,
3300                     ty::Binder::bind(outlives).to_predicate(),
3301                 ));
3302             }
3303
3304             // T -> Trait.
3305             (_, &ty::Dynamic(ref data, r)) => {
3306                 let mut object_dids = data.auto_traits()
3307                     .chain(iter::once(data.principal().def_id()));
3308                 if let Some(did) = object_dids.find(|did| !tcx.is_object_safe(*did)) {
3309                     return Err(TraitNotObjectSafe(did));
3310                 }
3311
3312                 let cause = ObligationCause::new(
3313                     obligation.cause.span,
3314                     obligation.cause.body_id,
3315                     ObjectCastObligation(target),
3316                 );
3317
3318                 let predicate_to_obligation = |predicate| {
3319                     Obligation::with_depth(
3320                         cause.clone(),
3321                         obligation.recursion_depth + 1,
3322                         obligation.param_env,
3323                         predicate,
3324                     )
3325                 };
3326
3327                 // Create obligations:
3328                 //  - Casting T to Trait
3329                 //  - For all the various builtin bounds attached to the object cast. (In other
3330                 //  words, if the object type is Foo+Send, this would create an obligation for the
3331                 //  Send check.)
3332                 //  - Projection predicates
3333                 nested.extend(
3334                     data.iter()
3335                         .map(|d| predicate_to_obligation(d.with_self_ty(tcx, source))),
3336                 );
3337
3338                 // We can only make objects from sized types.
3339                 let tr = ty::TraitRef {
3340                     def_id: tcx.require_lang_item(lang_items::SizedTraitLangItem),
3341                     substs: tcx.mk_substs_trait(source, &[]),
3342                 };
3343                 nested.push(predicate_to_obligation(tr.to_predicate()));
3344
3345                 // If the type is `Foo+'a`, ensures that the type
3346                 // being cast to `Foo+'a` outlives `'a`:
3347                 let outlives = ty::OutlivesPredicate(source, r);
3348                 nested.push(predicate_to_obligation(
3349                     ty::Binder::dummy(outlives).to_predicate(),
3350                 ));
3351             }
3352
3353             // [T; n] -> [T].
3354             (&ty::Array(a, _), &ty::Slice(b)) => {
3355                 let InferOk { obligations, .. } = self.infcx
3356                     .at(&obligation.cause, obligation.param_env)
3357                     .eq(b, a)
3358                     .map_err(|_| Unimplemented)?;
3359                 nested.extend(obligations);
3360             }
3361
3362             // Struct<T> -> Struct<U>.
3363             (&ty::Adt(def, substs_a), &ty::Adt(_, substs_b)) => {
3364                 let fields = def.all_fields()
3365                     .map(|f| tcx.type_of(f.did))
3366                     .collect::<Vec<_>>();
3367
3368                 // The last field of the structure has to exist and contain type parameters.
3369                 let field = if let Some(&field) = fields.last() {
3370                     field
3371                 } else {
3372                     return Err(Unimplemented);
3373                 };
3374                 let mut ty_params = GrowableBitSet::new_empty();
3375                 let mut found = false;
3376                 for ty in field.walk() {
3377                     if let ty::Param(p) = ty.sty {
3378                         ty_params.insert(p.idx as usize);
3379                         found = true;
3380                     }
3381                 }
3382                 if !found {
3383                     return Err(Unimplemented);
3384                 }
3385
3386                 // Replace type parameters used in unsizing with
3387                 // Error and ensure they do not affect any other fields.
3388                 // This could be checked after type collection for any struct
3389                 // with a potentially unsized trailing field.
3390                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3391                     if ty_params.contains(i) {
3392                         tcx.types.err.into()
3393                     } else {
3394                         k
3395                     }
3396                 });
3397                 let substs = tcx.mk_substs(params);
3398                 for &ty in fields.split_last().unwrap().1 {
3399                     if ty.subst(tcx, substs).references_error() {
3400                         return Err(Unimplemented);
3401                     }
3402                 }
3403
3404                 // Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
3405                 let inner_source = field.subst(tcx, substs_a);
3406                 let inner_target = field.subst(tcx, substs_b);
3407
3408                 // Check that the source struct with the target's
3409                 // unsized parameters is equal to the target.
3410                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3411                     if ty_params.contains(i) {
3412                         substs_b.type_at(i).into()
3413                     } else {
3414                         k
3415                     }
3416                 });
3417                 let new_struct = tcx.mk_adt(def, tcx.mk_substs(params));
3418                 let InferOk { obligations, .. } = self.infcx
3419                     .at(&obligation.cause, obligation.param_env)
3420                     .eq(target, new_struct)
3421                     .map_err(|_| Unimplemented)?;
3422                 nested.extend(obligations);
3423
3424                 // Construct the nested Field<T>: Unsize<Field<U>> predicate.
3425                 nested.push(tcx.predicate_for_trait_def(
3426                     obligation.param_env,
3427                     obligation.cause.clone(),
3428                     obligation.predicate.def_id(),
3429                     obligation.recursion_depth + 1,
3430                     inner_source,
3431                     &[inner_target.into()],
3432                 ));
3433             }
3434
3435             // (.., T) -> (.., U).
3436             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => {
3437                 assert_eq!(tys_a.len(), tys_b.len());
3438
3439                 // The last field of the tuple has to exist.
3440                 let (&a_last, a_mid) = if let Some(x) = tys_a.split_last() {
3441                     x
3442                 } else {
3443                     return Err(Unimplemented);
3444                 };
3445                 let &b_last = tys_b.last().unwrap();
3446
3447                 // Check that the source tuple with the target's
3448                 // last element is equal to the target.
3449                 let new_tuple = tcx.mk_tup(a_mid.iter().cloned().chain(iter::once(b_last)));
3450                 let InferOk { obligations, .. } = self.infcx
3451                     .at(&obligation.cause, obligation.param_env)
3452                     .eq(target, new_tuple)
3453                     .map_err(|_| Unimplemented)?;
3454                 nested.extend(obligations);
3455
3456                 // Construct the nested T: Unsize<U> predicate.
3457                 nested.push(tcx.predicate_for_trait_def(
3458                     obligation.param_env,
3459                     obligation.cause.clone(),
3460                     obligation.predicate.def_id(),
3461                     obligation.recursion_depth + 1,
3462                     a_last,
3463                     &[b_last.into()],
3464                 ));
3465             }
3466
3467             _ => bug!(),
3468         };
3469
3470         Ok(VtableBuiltinData { nested })
3471     }
3472
3473     ///////////////////////////////////////////////////////////////////////////
3474     // Matching
3475     //
3476     // Matching is a common path used for both evaluation and
3477     // confirmation.  It basically unifies types that appear in impls
3478     // and traits. This does affect the surrounding environment;
3479     // therefore, when used during evaluation, match routines must be
3480     // run inside of a `probe()` so that their side-effects are
3481     // contained.
3482
3483     fn rematch_impl(
3484         &mut self,
3485         impl_def_id: DefId,
3486         obligation: &TraitObligation<'tcx>,
3487     ) -> Normalized<'tcx, &'tcx Substs<'tcx>> {
3488         match self.match_impl(impl_def_id, obligation) {
3489             Ok(substs) => substs,
3490             Err(()) => {
3491                 bug!(
3492                     "Impl {:?} was matchable against {:?} but now is not",
3493                     impl_def_id,
3494                     obligation
3495                 );
3496             }
3497         }
3498     }
3499
3500     fn match_impl(
3501         &mut self,
3502         impl_def_id: DefId,
3503         obligation: &TraitObligation<'tcx>,
3504     ) -> Result<Normalized<'tcx, &'tcx Substs<'tcx>>, ()> {
3505         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
3506
3507         // Before we create the substitutions and everything, first
3508         // consider a "quick reject". This avoids creating more types
3509         // and so forth that we need to.
3510         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
3511             return Err(());
3512         }
3513
3514         let (skol_obligation, _) = self.infcx()
3515             .replace_bound_vars_with_placeholders(&obligation.predicate);
3516         let skol_obligation_trait_ref = skol_obligation.trait_ref;
3517
3518         let impl_substs = self.infcx
3519             .fresh_substs_for_item(obligation.cause.span, impl_def_id);
3520
3521         let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
3522
3523         let Normalized {
3524             value: impl_trait_ref,
3525             obligations: mut nested_obligations,
3526         } = project::normalize_with_depth(
3527             self,
3528             obligation.param_env,
3529             obligation.cause.clone(),
3530             obligation.recursion_depth + 1,
3531             &impl_trait_ref,
3532         );
3533
3534         debug!(
3535             "match_impl(impl_def_id={:?}, obligation={:?}, \
3536              impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
3537             impl_def_id, obligation, impl_trait_ref, skol_obligation_trait_ref
3538         );
3539
3540         let InferOk { obligations, .. } = self.infcx
3541             .at(&obligation.cause, obligation.param_env)
3542             .eq(skol_obligation_trait_ref, impl_trait_ref)
3543             .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
3544         nested_obligations.extend(obligations);
3545
3546         debug!("match_impl: success impl_substs={:?}", impl_substs);
3547         Ok(Normalized {
3548             value: impl_substs,
3549             obligations: nested_obligations,
3550         })
3551     }
3552
3553     fn fast_reject_trait_refs(
3554         &mut self,
3555         obligation: &TraitObligation<'_>,
3556         impl_trait_ref: &ty::TraitRef<'_>,
3557     ) -> bool {
3558         // We can avoid creating type variables and doing the full
3559         // substitution if we find that any of the input types, when
3560         // simplified, do not match.
3561
3562         obligation
3563             .predicate
3564             .skip_binder()
3565             .input_types()
3566             .zip(impl_trait_ref.input_types())
3567             .any(|(obligation_ty, impl_ty)| {
3568                 let simplified_obligation_ty =
3569                     fast_reject::simplify_type(self.tcx(), obligation_ty, true);
3570                 let simplified_impl_ty = fast_reject::simplify_type(self.tcx(), impl_ty, false);
3571
3572                 simplified_obligation_ty.is_some()
3573                     && simplified_impl_ty.is_some()
3574                     && simplified_obligation_ty != simplified_impl_ty
3575             })
3576     }
3577
3578     /// Normalize `where_clause_trait_ref` and try to match it against
3579     /// `obligation`.  If successful, return any predicates that
3580     /// result from the normalization. Normalization is necessary
3581     /// because where-clauses are stored in the parameter environment
3582     /// unnormalized.
3583     fn match_where_clause_trait_ref(
3584         &mut self,
3585         obligation: &TraitObligation<'tcx>,
3586         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
3587     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
3588         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
3589     }
3590
3591     /// Returns `Ok` if `poly_trait_ref` being true implies that the
3592     /// obligation is satisfied.
3593     fn match_poly_trait_ref(
3594         &mut self,
3595         obligation: &TraitObligation<'tcx>,
3596         poly_trait_ref: ty::PolyTraitRef<'tcx>,
3597     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
3598         debug!(
3599             "match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
3600             obligation, poly_trait_ref
3601         );
3602
3603         self.infcx
3604             .at(&obligation.cause, obligation.param_env)
3605             .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
3606             .map(|InferOk { obligations, .. }| obligations)
3607             .map_err(|_| ())
3608     }
3609
3610     ///////////////////////////////////////////////////////////////////////////
3611     // Miscellany
3612
3613     fn match_fresh_trait_refs(
3614         &self,
3615         previous: &ty::PolyTraitRef<'tcx>,
3616         current: &ty::PolyTraitRef<'tcx>,
3617     ) -> bool {
3618         let mut matcher = ty::_match::Match::new(
3619             self.tcx(), self.infcx.trait_object_mode());
3620         matcher.relate(previous, current).is_ok()
3621     }
3622
3623     fn push_stack<'o, 's: 'o>(
3624         &mut self,
3625         previous_stack: TraitObligationStackList<'s, 'tcx>,
3626         obligation: &'o TraitObligation<'tcx>,
3627     ) -> TraitObligationStack<'o, 'tcx> {
3628         let fresh_trait_ref = obligation
3629             .predicate
3630             .to_poly_trait_ref()
3631             .fold_with(&mut self.freshener);
3632
3633         TraitObligationStack {
3634             obligation,
3635             fresh_trait_ref,
3636             previous: previous_stack,
3637         }
3638     }
3639
3640     fn closure_trait_ref_unnormalized(
3641         &mut self,
3642         obligation: &TraitObligation<'tcx>,
3643         closure_def_id: DefId,
3644         substs: ty::ClosureSubsts<'tcx>,
3645     ) -> ty::PolyTraitRef<'tcx> {
3646         debug!(
3647             "closure_trait_ref_unnormalized(obligation={:?}, closure_def_id={:?}, substs={:?})",
3648             obligation, closure_def_id, substs,
3649         );
3650         let closure_type = self.infcx.closure_sig(closure_def_id, substs);
3651
3652         debug!(
3653             "closure_trait_ref_unnormalized: closure_type = {:?}",
3654             closure_type
3655         );
3656
3657         // (1) Feels icky to skip the binder here, but OTOH we know
3658         // that the self-type is an unboxed closure type and hence is
3659         // in fact unparameterized (or at least does not reference any
3660         // regions bound in the obligation). Still probably some
3661         // refactoring could make this nicer.
3662         self.tcx()
3663             .closure_trait_ref_and_return_type(
3664                 obligation.predicate.def_id(),
3665                 obligation.predicate.skip_binder().self_ty(), // (1)
3666                 closure_type,
3667                 util::TupleArgumentsFlag::No,
3668             )
3669             .map_bound(|(trait_ref, _)| trait_ref)
3670     }
3671
3672     fn generator_trait_ref_unnormalized(
3673         &mut self,
3674         obligation: &TraitObligation<'tcx>,
3675         closure_def_id: DefId,
3676         substs: ty::GeneratorSubsts<'tcx>,
3677     ) -> ty::PolyTraitRef<'tcx> {
3678         let gen_sig = substs.poly_sig(closure_def_id, self.tcx());
3679
3680         // (1) Feels icky to skip the binder here, but OTOH we know
3681         // that the self-type is an generator type and hence is
3682         // in fact unparameterized (or at least does not reference any
3683         // regions bound in the obligation). Still probably some
3684         // refactoring could make this nicer.
3685
3686         self.tcx()
3687             .generator_trait_ref_and_outputs(
3688                 obligation.predicate.def_id(),
3689                 obligation.predicate.skip_binder().self_ty(), // (1)
3690                 gen_sig,
3691             )
3692             .map_bound(|(trait_ref, ..)| trait_ref)
3693     }
3694
3695     /// Returns the obligations that are implied by instantiating an
3696     /// impl or trait. The obligations are substituted and fully
3697     /// normalized. This is used when confirming an impl or default
3698     /// impl.
3699     fn impl_or_trait_obligations(
3700         &mut self,
3701         cause: ObligationCause<'tcx>,
3702         recursion_depth: usize,
3703         param_env: ty::ParamEnv<'tcx>,
3704         def_id: DefId,         // of impl or trait
3705         substs: &Substs<'tcx>, // for impl or trait
3706     ) -> Vec<PredicateObligation<'tcx>> {
3707         debug!("impl_or_trait_obligations(def_id={:?})", def_id);
3708         let tcx = self.tcx();
3709
3710         // To allow for one-pass evaluation of the nested obligation,
3711         // each predicate must be preceded by the obligations required
3712         // to normalize it.
3713         // for example, if we have:
3714         //    impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
3715         // the impl will have the following predicates:
3716         //    <V as Iterator>::Item = U,
3717         //    U: Iterator, U: Sized,
3718         //    V: Iterator, V: Sized,
3719         //    <U as Iterator>::Item: Copy
3720         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
3721         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
3722         // `$1: Copy`, so we must ensure the obligations are emitted in
3723         // that order.
3724         let predicates = tcx.predicates_of(def_id);
3725         assert_eq!(predicates.parent, None);
3726         let mut predicates: Vec<_> = predicates
3727             .predicates
3728             .iter()
3729             .flat_map(|(predicate, _)| {
3730                 let predicate = normalize_with_depth(
3731                     self,
3732                     param_env,
3733                     cause.clone(),
3734                     recursion_depth,
3735                     &predicate.subst(tcx, substs),
3736                 );
3737                 predicate.obligations.into_iter().chain(Some(Obligation {
3738                     cause: cause.clone(),
3739                     recursion_depth,
3740                     param_env,
3741                     predicate: predicate.value,
3742                 }))
3743             })
3744             .collect();
3745
3746         // We are performing deduplication here to avoid exponential blowups
3747         // (#38528) from happening, but the real cause of the duplication is
3748         // unknown. What we know is that the deduplication avoids exponential
3749         // amount of predicates being propagated when processing deeply nested
3750         // types.
3751         //
3752         // This code is hot enough that it's worth avoiding the allocation
3753         // required for the FxHashSet when possible. Special-casing lengths 0,
3754         // 1 and 2 covers roughly 75--80% of the cases.
3755         if predicates.len() <= 1 {
3756             // No possibility of duplicates.
3757         } else if predicates.len() == 2 {
3758             // Only two elements. Drop the second if they are equal.
3759             if predicates[0] == predicates[1] {
3760                 predicates.truncate(1);
3761             }
3762         } else {
3763             // Three or more elements. Use a general deduplication process.
3764             let mut seen = FxHashSet::default();
3765             predicates.retain(|i| seen.insert(i.clone()));
3766         }
3767
3768         predicates
3769     }
3770 }
3771
3772 impl<'tcx> TraitObligation<'tcx> {
3773     #[allow(unused_comparisons)]
3774     pub fn derived_cause(
3775         &self,
3776         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
3777     ) -> ObligationCause<'tcx> {
3778         /*!
3779          * Creates a cause for obligations that are derived from
3780          * `obligation` by a recursive search (e.g., for a builtin
3781          * bound, or eventually a `auto trait Foo`). If `obligation`
3782          * is itself a derived obligation, this is just a clone, but
3783          * otherwise we create a "derived obligation" cause so as to
3784          * keep track of the original root obligation for error
3785          * reporting.
3786          */
3787
3788         let obligation = self;
3789
3790         // NOTE(flaper87): As of now, it keeps track of the whole error
3791         // chain. Ideally, we should have a way to configure this either
3792         // by using -Z verbose or just a CLI argument.
3793         if obligation.recursion_depth >= 0 {
3794             let derived_cause = DerivedObligationCause {
3795                 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
3796                 parent_code: Rc::new(obligation.cause.code.clone()),
3797             };
3798             let derived_code = variant(derived_cause);
3799             ObligationCause::new(
3800                 obligation.cause.span,
3801                 obligation.cause.body_id,
3802                 derived_code,
3803             )
3804         } else {
3805             obligation.cause.clone()
3806         }
3807     }
3808 }
3809
3810 impl<'tcx> SelectionCache<'tcx> {
3811     /// Actually frees the underlying memory in contrast to what stdlib containers do on `clear`
3812     pub fn clear(&self) {
3813         *self.hashmap.borrow_mut() = Default::default();
3814     }
3815 }
3816
3817 impl<'tcx> EvaluationCache<'tcx> {
3818     /// Actually frees the underlying memory in contrast to what stdlib containers do on `clear`
3819     pub fn clear(&self) {
3820         *self.hashmap.borrow_mut() = Default::default();
3821     }
3822 }
3823
3824 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
3825     fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
3826         TraitObligationStackList::with(self)
3827     }
3828
3829     fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
3830         self.list()
3831     }
3832 }
3833
3834 #[derive(Copy, Clone)]
3835 struct TraitObligationStackList<'o, 'tcx: 'o> {
3836     head: Option<&'o TraitObligationStack<'o, 'tcx>>,
3837 }
3838
3839 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
3840     fn empty() -> TraitObligationStackList<'o, 'tcx> {
3841         TraitObligationStackList { head: None }
3842     }
3843
3844     fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
3845         TraitObligationStackList { head: Some(r) }
3846     }
3847
3848     fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3849         self.head
3850     }
3851 }
3852
3853 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
3854     type Item = &'o TraitObligationStack<'o, 'tcx>;
3855
3856     fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
3857         match self.head {
3858             Some(o) => {
3859                 *self = o.previous;
3860                 Some(o)
3861             }
3862             None => None,
3863         }
3864     }
3865 }
3866
3867 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
3868     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3869         write!(f, "TraitObligationStack({:?})", self.obligation)
3870     }
3871 }
3872
3873 #[derive(Clone, Eq, PartialEq)]
3874 pub struct WithDepNode<T> {
3875     dep_node: DepNodeIndex,
3876     cached_value: T,
3877 }
3878
3879 impl<T: Clone> WithDepNode<T> {
3880     pub fn new(dep_node: DepNodeIndex, cached_value: T) -> Self {
3881         WithDepNode {
3882             dep_node,
3883             cached_value,
3884         }
3885     }
3886
3887     pub fn get(&self, tcx: TyCtxt<'_, '_, '_>) -> T {
3888         tcx.dep_graph.read_index(self.dep_node);
3889         self.cached_value.clone()
3890     }
3891 }