]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/select.rs
Auto merge of #50433 - nrc:update, r=alexcrichton
[rust.git] / src / librustc / traits / select.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! See [rustc guide] for more info on how this works.
12 //!
13 //! [rustc guide]: https://rust-lang-nursery.github.io/rustc-guide/trait-resolution.html#selection
14
15 use self::SelectionCandidate::*;
16 use self::EvaluationResult::*;
17
18 use super::coherence::{self, Conflict};
19 use super::DerivedObligationCause;
20 use super::{IntercrateMode, TraitQueryMode};
21 use super::project;
22 use super::project::{normalize_with_depth, Normalized, ProjectionCacheKey};
23 use super::{PredicateObligation, TraitObligation, ObligationCause};
24 use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
25 use super::{SelectionError, Unimplemented, OutputTypeParameterMismatch, Overflow};
26 use super::{ObjectCastObligation, Obligation};
27 use super::TraitNotObjectSafe;
28 use super::Selection;
29 use super::SelectionResult;
30 use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure, VtableGenerator,
31             VtableFnPointer, VtableObject, VtableAutoImpl};
32 use super::{VtableImplData, VtableObjectData, VtableBuiltinData, VtableGeneratorData,
33             VtableClosureData, VtableAutoImplData, VtableFnPointerData};
34 use super::util;
35
36 use dep_graph::{DepNodeIndex, DepKind};
37 use hir::def_id::DefId;
38 use infer;
39 use infer::{InferCtxt, InferOk, TypeFreshener};
40 use ty::subst::{Kind, Subst, Substs};
41 use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
42 use ty::fast_reject;
43 use ty::relate::TypeRelation;
44 use middle::lang_items;
45 use mir::interpret::{GlobalId};
46
47 use rustc_data_structures::bitvec::BitVector;
48 use std::iter;
49 use std::cell::RefCell;
50 use std::cmp;
51 use std::fmt;
52 use std::mem;
53 use std::rc::Rc;
54 use rustc_target::spec::abi::Abi;
55 use hir;
56 use util::nodemap::{FxHashMap, FxHashSet};
57
58
59 pub struct SelectionContext<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
60     infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
61
62     /// Freshener used specifically for skolemizing entries on the
63     /// obligation stack. This ensures that all entries on the stack
64     /// at one time will have the same set of skolemized entries,
65     /// which is important for checking for trait bounds that
66     /// recursively require themselves.
67     freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
68
69     /// If true, indicates that the evaluation should be conservative
70     /// and consider the possibility of types outside this crate.
71     /// This comes up primarily when resolving ambiguity. Imagine
72     /// there is some trait reference `$0 : Bar` where `$0` is an
73     /// inference variable. If `intercrate` is true, then we can never
74     /// say for sure that this reference is not implemented, even if
75     /// there are *no impls at all for `Bar`*, because `$0` could be
76     /// bound to some type that in a downstream crate that implements
77     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
78     /// though, we set this to false, because we are only interested
79     /// in types that the user could actually have written --- in
80     /// other words, we consider `$0 : Bar` to be unimplemented if
81     /// there is no type that the user could *actually name* that
82     /// would satisfy it. This avoids crippling inference, basically.
83     intercrate: Option<IntercrateMode>,
84
85     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
86
87     /// Controls whether or not to filter out negative impls when selecting.
88     /// This is used in librustdoc to distinguish between the lack of an impl
89     /// and a negative impl
90     allow_negative_impls: bool,
91
92     /// The mode that trait queries run in, which informs our error handling
93     /// policy. In essence, canonicalized queries need their errors propagated
94     /// rather than immediately reported because we do not have accurate spans.
95     query_mode: TraitQueryMode,
96 }
97
98 #[derive(Clone, Debug)]
99 pub enum IntercrateAmbiguityCause {
100     DownstreamCrate {
101         trait_desc: String,
102         self_desc: Option<String>,
103     },
104     UpstreamCrateUpdate {
105         trait_desc: String,
106         self_desc: Option<String>,
107     },
108 }
109
110 impl IntercrateAmbiguityCause {
111     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
112     /// See #23980 for details.
113     pub fn add_intercrate_ambiguity_hint<'a, 'tcx>(&self,
114                                                    err: &mut ::errors::DiagnosticBuilder) {
115         err.note(&self.intercrate_ambiguity_hint());
116     }
117
118     pub fn intercrate_ambiguity_hint(&self) -> String {
119         match self {
120             &IntercrateAmbiguityCause::DownstreamCrate { ref trait_desc, ref self_desc } => {
121                 let self_desc = if let &Some(ref ty) = self_desc {
122                     format!(" for type `{}`", ty)
123                 } else { "".to_string() };
124                 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
125             }
126             &IntercrateAmbiguityCause::UpstreamCrateUpdate { ref trait_desc, ref self_desc } => {
127                 let self_desc = if let &Some(ref ty) = self_desc {
128                     format!(" for type `{}`", ty)
129                 } else { "".to_string() };
130                 format!("upstream crates may add new impl of trait `{}`{} \
131                          in future versions",
132                         trait_desc, self_desc)
133             }
134         }
135     }
136 }
137
138 // A stack that walks back up the stack frame.
139 struct TraitObligationStack<'prev, 'tcx: 'prev> {
140     obligation: &'prev TraitObligation<'tcx>,
141
142     /// Trait ref from `obligation` but skolemized with the
143     /// selection-context's freshener. Used to check for recursion.
144     fresh_trait_ref: ty::PolyTraitRef<'tcx>,
145
146     previous: TraitObligationStackList<'prev, 'tcx>,
147 }
148
149 #[derive(Clone)]
150 pub struct SelectionCache<'tcx> {
151     hashmap: RefCell<FxHashMap<ty::TraitRef<'tcx>,
152                                WithDepNode<SelectionResult<'tcx, SelectionCandidate<'tcx>>>>>,
153 }
154
155 /// The selection process begins by considering all impls, where
156 /// clauses, and so forth that might resolve an obligation.  Sometimes
157 /// we'll be able to say definitively that (e.g.) an impl does not
158 /// apply to the obligation: perhaps it is defined for `usize` but the
159 /// obligation is for `int`. In that case, we drop the impl out of the
160 /// list.  But the other cases are considered *candidates*.
161 ///
162 /// For selection to succeed, there must be exactly one matching
163 /// candidate. If the obligation is fully known, this is guaranteed
164 /// by coherence. However, if the obligation contains type parameters
165 /// or variables, there may be multiple such impls.
166 ///
167 /// It is not a real problem if multiple matching impls exist because
168 /// of type variables - it just means the obligation isn't sufficiently
169 /// elaborated. In that case we report an ambiguity, and the caller can
170 /// try again after more type information has been gathered or report a
171 /// "type annotations required" error.
172 ///
173 /// However, with type parameters, this can be a real problem - type
174 /// parameters don't unify with regular types, but they *can* unify
175 /// with variables from blanket impls, and (unless we know its bounds
176 /// will always be satisfied) picking the blanket impl will be wrong
177 /// for at least *some* substitutions. To make this concrete, if we have
178 ///
179 ///    trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
180 ///    impl<T: fmt::Debug> AsDebug for T {
181 ///        type Out = T;
182 ///        fn debug(self) -> fmt::Debug { self }
183 ///    }
184 ///    fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
185 ///
186 /// we can't just use the impl to resolve the <T as AsDebug> obligation
187 /// - a type from another crate (that doesn't implement fmt::Debug) could
188 /// implement AsDebug.
189 ///
190 /// Because where-clauses match the type exactly, multiple clauses can
191 /// only match if there are unresolved variables, and we can mostly just
192 /// report this ambiguity in that case. This is still a problem - we can't
193 /// *do anything* with ambiguities that involve only regions. This is issue
194 /// #21974.
195 ///
196 /// If a single where-clause matches and there are no inference
197 /// variables left, then it definitely matches and we can just select
198 /// it.
199 ///
200 /// In fact, we even select the where-clause when the obligation contains
201 /// inference variables. The can lead to inference making "leaps of logic",
202 /// for example in this situation:
203 ///
204 ///    pub trait Foo<T> { fn foo(&self) -> T; }
205 ///    impl<T> Foo<()> for T { fn foo(&self) { } }
206 ///    impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
207 ///
208 ///    pub fn foo<T>(t: T) where T: Foo<bool> {
209 ///       println!("{:?}", <T as Foo<_>>::foo(&t));
210 ///    }
211 ///    fn main() { foo(false); }
212 ///
213 /// Here the obligation <T as Foo<$0>> can be matched by both the blanket
214 /// impl and the where-clause. We select the where-clause and unify $0=bool,
215 /// so the program prints "false". However, if the where-clause is omitted,
216 /// the blanket impl is selected, we unify $0=(), and the program prints
217 /// "()".
218 ///
219 /// Exactly the same issues apply to projection and object candidates, except
220 /// that we can have both a projection candidate and a where-clause candidate
221 /// for the same obligation. In that case either would do (except that
222 /// different "leaps of logic" would occur if inference variables are
223 /// present), and we just pick the where-clause. This is, for example,
224 /// required for associated types to work in default impls, as the bounds
225 /// are visible both as projection bounds and as where-clauses from the
226 /// parameter environment.
227 #[derive(PartialEq,Eq,Debug,Clone)]
228 enum SelectionCandidate<'tcx> {
229     BuiltinCandidate { has_nested: bool },
230     ParamCandidate(ty::PolyTraitRef<'tcx>),
231     ImplCandidate(DefId),
232     AutoImplCandidate(DefId),
233
234     /// This is a trait matching with a projected type as `Self`, and
235     /// we found an applicable bound in the trait definition.
236     ProjectionCandidate,
237
238     /// Implementation of a `Fn`-family trait by one of the anonymous types
239     /// generated for a `||` expression.
240     ClosureCandidate,
241
242     /// Implementation of a `Generator` trait by one of the anonymous types
243     /// generated for a generator.
244     GeneratorCandidate,
245
246     /// Implementation of a `Fn`-family trait by one of the anonymous
247     /// types generated for a fn pointer type (e.g., `fn(int)->int`)
248     FnPointerCandidate,
249
250     ObjectCandidate,
251
252     BuiltinObjectCandidate,
253
254     BuiltinUnsizeCandidate,
255 }
256
257 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
258     type Lifted = SelectionCandidate<'tcx>;
259     fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
260         Some(match *self {
261             BuiltinCandidate { has_nested } => {
262                 BuiltinCandidate {
263                     has_nested,
264                 }
265             }
266             ImplCandidate(def_id) => ImplCandidate(def_id),
267             AutoImplCandidate(def_id) => AutoImplCandidate(def_id),
268             ProjectionCandidate => ProjectionCandidate,
269             FnPointerCandidate => FnPointerCandidate,
270             ObjectCandidate => ObjectCandidate,
271             BuiltinObjectCandidate => BuiltinObjectCandidate,
272             BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
273             ClosureCandidate => ClosureCandidate,
274             GeneratorCandidate => GeneratorCandidate,
275
276             ParamCandidate(ref trait_ref) => {
277                 return tcx.lift(trait_ref).map(ParamCandidate);
278             }
279         })
280     }
281 }
282
283 struct SelectionCandidateSet<'tcx> {
284     // a list of candidates that definitely apply to the current
285     // obligation (meaning: types unify).
286     vec: Vec<SelectionCandidate<'tcx>>,
287
288     // if this is true, then there were candidates that might or might
289     // not have applied, but we couldn't tell. This occurs when some
290     // of the input types are type variables, in which case there are
291     // various "builtin" rules that might or might not trigger.
292     ambiguous: bool,
293 }
294
295 #[derive(PartialEq,Eq,Debug,Clone)]
296 struct EvaluatedCandidate<'tcx> {
297     candidate: SelectionCandidate<'tcx>,
298     evaluation: EvaluationResult,
299 }
300
301 /// When does the builtin impl for `T: Trait` apply?
302 enum BuiltinImplConditions<'tcx> {
303     /// The impl is conditional on T1,T2,.. : Trait
304     Where(ty::Binder<Vec<Ty<'tcx>>>),
305     /// There is no built-in impl. There may be some other
306     /// candidate (a where-clause or user-defined impl).
307     None,
308     /// There is *no* impl for this, builtin or not. Ignore
309     /// all where-clauses.
310     Never,
311     /// It is unknown whether there is an impl.
312     Ambiguous
313 }
314
315 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
316 /// The result of trait evaluation. The order is important
317 /// here as the evaluation of a list is the maximum of the
318 /// evaluations.
319 ///
320 /// The evaluation results are ordered:
321 ///     - `EvaluatedToOk` implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
322 ///     - `EvaluatedToErr` implies `EvaluatedToRecur`
323 ///     - the "union" of evaluation results is equal to their maximum -
324 ///     all the "potential success" candidates can potentially succeed,
325 ///     so they are no-ops when unioned with a definite error, and within
326 ///     the categories it's easy to see that the unions are correct.
327 pub enum EvaluationResult {
328     /// Evaluation successful
329     EvaluatedToOk,
330     /// Evaluation is known to be ambiguous - it *might* hold for some
331     /// assignment of inference variables, but it might not.
332     ///
333     /// While this has the same meaning as `EvaluatedToUnknown` - we can't
334     /// know whether this obligation holds or not - it is the result we
335     /// would get with an empty stack, and therefore is cacheable.
336     EvaluatedToAmbig,
337     /// Evaluation failed because of recursion involving inference
338     /// variables. We are somewhat imprecise there, so we don't actually
339     /// know the real result.
340     ///
341     /// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
342     EvaluatedToUnknown,
343     /// Evaluation failed because we encountered an obligation we are already
344     /// trying to prove on this branch.
345     ///
346     /// We know this branch can't be a part of a minimal proof-tree for
347     /// the "root" of our cycle, because then we could cut out the recursion
348     /// and maintain a valid proof tree. However, this does not mean
349     /// that all the obligations on this branch do not hold - it's possible
350     /// that we entered this branch "speculatively", and that there
351     /// might be some other way to prove this obligation that does not
352     /// go through this cycle - so we can't cache this as a failure.
353     ///
354     /// For example, suppose we have this:
355     ///
356     /// ```rust,ignore (pseudo-Rust)
357     ///     pub trait Trait { fn xyz(); }
358     ///     // This impl is "useless", but we can still have
359     ///     // an `impl Trait for SomeUnsizedType` somewhere.
360     ///     impl<T: Trait + Sized> Trait for T { fn xyz() {} }
361     ///
362     ///     pub fn foo<T: Trait + ?Sized>() {
363     ///         <T as Trait>::xyz();
364     ///     }
365     /// ```
366     ///
367     /// When checking `foo`, we have to prove `T: Trait`. This basically
368     /// translates into this:
369     ///
370     /// ```plain,ignore
371     ///     (T: Trait + Sized â†’_\impl T: Trait), T: Trait âŠ¢ T: Trait
372     /// ```
373     ///
374     /// When we try to prove it, we first go the first option, which
375     /// recurses. This shows us that the impl is "useless" - it won't
376     /// tell us that `T: Trait` unless it already implemented `Trait`
377     /// by some other means. However, that does not prevent `T: Trait`
378     /// does not hold, because of the bound (which can indeed be satisfied
379     /// by `SomeUnsizedType` from another crate).
380     ///
381     /// FIXME: when an `EvaluatedToRecur` goes past its parent root, we
382     /// ought to convert it to an `EvaluatedToErr`, because we know
383     /// there definitely isn't a proof tree for that obligation. Not
384     /// doing so is still sound - there isn't any proof tree, so the
385     /// branch still can't be a part of a minimal one - but does not
386     /// re-enable caching.
387     EvaluatedToRecur,
388     /// Evaluation failed
389     EvaluatedToErr,
390 }
391
392 impl EvaluationResult {
393     pub fn may_apply(self) -> bool {
394         match self {
395             EvaluatedToOk |
396             EvaluatedToAmbig |
397             EvaluatedToUnknown => true,
398
399             EvaluatedToErr |
400             EvaluatedToRecur => false
401         }
402     }
403
404     fn is_stack_dependent(self) -> bool {
405         match self {
406             EvaluatedToUnknown |
407             EvaluatedToRecur => true,
408
409             EvaluatedToOk |
410             EvaluatedToAmbig |
411             EvaluatedToErr => false,
412         }
413     }
414 }
415
416 impl_stable_hash_for!(enum self::EvaluationResult {
417     EvaluatedToOk,
418     EvaluatedToAmbig,
419     EvaluatedToUnknown,
420     EvaluatedToRecur,
421     EvaluatedToErr
422 });
423
424 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
425 /// Indicates that trait evaluation caused overflow.
426 pub struct OverflowError;
427
428 impl_stable_hash_for!(struct OverflowError { });
429
430 impl<'tcx> From<OverflowError> for SelectionError<'tcx> {
431     fn from(OverflowError: OverflowError) -> SelectionError<'tcx> {
432         SelectionError::Overflow
433     }
434 }
435
436 #[derive(Clone)]
437 pub struct EvaluationCache<'tcx> {
438     hashmap: RefCell<FxHashMap<ty::PolyTraitRef<'tcx>, WithDepNode<EvaluationResult>>>
439 }
440
441 impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
442     pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
443         SelectionContext {
444             infcx,
445             freshener: infcx.freshener(),
446             intercrate: None,
447             intercrate_ambiguity_causes: None,
448             allow_negative_impls: false,
449             query_mode: TraitQueryMode::Standard,
450         }
451     }
452
453     pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
454                       mode: IntercrateMode) -> SelectionContext<'cx, 'gcx, 'tcx> {
455         debug!("intercrate({:?})", mode);
456         SelectionContext {
457             infcx,
458             freshener: infcx.freshener(),
459             intercrate: Some(mode),
460             intercrate_ambiguity_causes: None,
461             allow_negative_impls: false,
462             query_mode: TraitQueryMode::Standard,
463         }
464     }
465
466     pub fn with_negative(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
467                          allow_negative_impls: bool) -> SelectionContext<'cx, 'gcx, 'tcx> {
468         debug!("with_negative({:?})", allow_negative_impls);
469         SelectionContext {
470             infcx,
471             freshener: infcx.freshener(),
472             intercrate: None,
473             intercrate_ambiguity_causes: None,
474             allow_negative_impls,
475             query_mode: TraitQueryMode::Standard,
476         }
477     }
478
479     pub fn with_query_mode(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
480                            query_mode: TraitQueryMode) -> SelectionContext<'cx, 'gcx, 'tcx> {
481         debug!("with_query_mode({:?})", query_mode);
482         SelectionContext {
483             infcx,
484             freshener: infcx.freshener(),
485             intercrate: None,
486             intercrate_ambiguity_causes: None,
487             allow_negative_impls: false,
488             query_mode,
489         }
490     }
491
492     /// Enables tracking of intercrate ambiguity causes. These are
493     /// used in coherence to give improved diagnostics. We don't do
494     /// this until we detect a coherence error because it can lead to
495     /// false overflow results (#47139) and because it costs
496     /// computation time.
497     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
498         assert!(self.intercrate.is_some());
499         assert!(self.intercrate_ambiguity_causes.is_none());
500         self.intercrate_ambiguity_causes = Some(vec![]);
501         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
502     }
503
504     /// Gets the intercrate ambiguity causes collected since tracking
505     /// was enabled and disables tracking at the same time. If
506     /// tracking is not enabled, just returns an empty vector.
507     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
508         assert!(self.intercrate.is_some());
509         self.intercrate_ambiguity_causes.take().unwrap_or(vec![])
510     }
511
512     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
513         self.infcx
514     }
515
516     pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
517         self.infcx.tcx
518     }
519
520     pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
521         self.infcx
522     }
523
524     /// Wraps the inference context's in_snapshot s.t. snapshot handling is only from the selection
525     /// context's self.
526     fn in_snapshot<R, F>(&mut self, f: F) -> R
527         where F: FnOnce(&mut Self, &infer::CombinedSnapshot<'cx, 'tcx>) -> R
528     {
529         self.infcx.in_snapshot(|snapshot| f(self, snapshot))
530     }
531
532     /// Wraps a probe s.t. obligations collected during it are ignored and old obligations are
533     /// retained.
534     fn probe<R, F>(&mut self, f: F) -> R
535         where F: FnOnce(&mut Self, &infer::CombinedSnapshot<'cx, 'tcx>) -> R
536     {
537         self.infcx.probe(|snapshot| f(self, snapshot))
538     }
539
540     /// Wraps a commit_if_ok s.t. obligations collected during it are not returned in selection if
541     /// the transaction fails and s.t. old obligations are retained.
542     fn commit_if_ok<T, E, F>(&mut self, f: F) -> Result<T, E> where
543         F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> Result<T, E>
544     {
545         self.infcx.commit_if_ok(|snapshot| f(self, snapshot))
546     }
547
548
549     ///////////////////////////////////////////////////////////////////////////
550     // Selection
551     //
552     // The selection phase tries to identify *how* an obligation will
553     // be resolved. For example, it will identify which impl or
554     // parameter bound is to be used. The process can be inconclusive
555     // if the self type in the obligation is not fully inferred. Selection
556     // can result in an error in one of two ways:
557     //
558     // 1. If no applicable impl or parameter bound can be found.
559     // 2. If the output type parameters in the obligation do not match
560     //    those specified by the impl/bound. For example, if the obligation
561     //    is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
562     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
563
564     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
565     /// type environment by performing unification.
566     pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
567                   -> SelectionResult<'tcx, Selection<'tcx>> {
568         debug!("select({:?})", obligation);
569         assert!(!obligation.predicate.has_escaping_regions());
570
571         let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
572
573         let candidate = match self.candidate_from_obligation(&stack) {
574             Err(SelectionError::Overflow) => {
575                 // In standard mode, overflow must have been caught and reported
576                 // earlier.
577                 assert!(self.query_mode == TraitQueryMode::Canonical);
578                 return Err(SelectionError::Overflow);
579             },
580             Err(e) => { return Err(e); },
581             Ok(None) => { return Ok(None); },
582             Ok(Some(candidate)) => candidate
583         };
584
585         match self.confirm_candidate(obligation, candidate) {
586             Err(SelectionError::Overflow) => {
587                 assert!(self.query_mode == TraitQueryMode::Canonical);
588                 return Err(SelectionError::Overflow);
589             },
590             Err(e) => Err(e),
591             Ok(candidate) => Ok(Some(candidate))
592         }
593     }
594
595     ///////////////////////////////////////////////////////////////////////////
596     // EVALUATION
597     //
598     // Tests whether an obligation can be selected or whether an impl
599     // can be applied to particular types. It skips the "confirmation"
600     // step and hence completely ignores output type parameters.
601     //
602     // The result is "true" if the obligation *may* hold and "false" if
603     // we can be sure it does not.
604
605     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
606     pub fn predicate_may_hold_fatal(&mut self,
607                                     obligation: &PredicateObligation<'tcx>)
608                                     -> bool
609     {
610         debug!("predicate_may_hold_fatal({:?})",
611                obligation);
612
613         // This fatal query is a stopgap that should only be used in standard mode,
614         // where we do not expect overflow to be propagated.
615         assert!(self.query_mode == TraitQueryMode::Standard);
616
617         self.evaluate_obligation_recursively(obligation)
618             .expect("Overflow should be caught earlier in standard query mode")
619             .may_apply()
620     }
621
622     /// Evaluates whether the obligation `obligation` can be satisfied and returns
623     /// an `EvaluationResult`.
624     pub fn evaluate_obligation_recursively(&mut self,
625                                            obligation: &PredicateObligation<'tcx>)
626                                            -> Result<EvaluationResult, OverflowError>
627     {
628         self.probe(|this, _| {
629             this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
630         })
631     }
632
633     /// Evaluates the predicates in `predicates` recursively. Note that
634     /// this applies projections in the predicates, and therefore
635     /// is run within an inference probe.
636     fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
637                                                 stack: TraitObligationStackList<'o, 'tcx>,
638                                                 predicates: I)
639                                                 -> Result<EvaluationResult, OverflowError>
640         where I : IntoIterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
641     {
642         let mut result = EvaluatedToOk;
643         for obligation in predicates {
644             let eval = self.evaluate_predicate_recursively(stack, obligation)?;
645             debug!("evaluate_predicate_recursively({:?}) = {:?}",
646                    obligation, eval);
647             if let EvaluatedToErr = eval {
648                 // fast-path - EvaluatedToErr is the top of the lattice,
649                 // so we don't need to look on the other predicates.
650                 return Ok(EvaluatedToErr);
651             } else {
652                 result = cmp::max(result, eval);
653             }
654         }
655         Ok(result)
656     }
657
658     fn evaluate_predicate_recursively<'o>(&mut self,
659                                           previous_stack: TraitObligationStackList<'o, 'tcx>,
660                                           obligation: &PredicateObligation<'tcx>)
661                                            -> Result<EvaluationResult, OverflowError>
662     {
663         debug!("evaluate_predicate_recursively({:?})",
664                obligation);
665
666         match obligation.predicate {
667             ty::Predicate::Trait(ref t) => {
668                 assert!(!t.has_escaping_regions());
669                 let obligation = obligation.with(t.clone());
670                 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
671             }
672
673             ty::Predicate::Subtype(ref p) => {
674                 // does this code ever run?
675                 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
676                     Some(Ok(InferOk { obligations, .. })) => {
677                         self.evaluate_predicates_recursively(previous_stack, &obligations)
678                     },
679                     Some(Err(_)) => Ok(EvaluatedToErr),
680                     None => Ok(EvaluatedToAmbig),
681                 }
682             }
683
684             ty::Predicate::WellFormed(ty) => {
685                 match ty::wf::obligations(self.infcx,
686                                           obligation.param_env,
687                                           obligation.cause.body_id,
688                                           ty, obligation.cause.span) {
689                     Some(obligations) =>
690                         self.evaluate_predicates_recursively(previous_stack, obligations.iter()),
691                     None =>
692                         Ok(EvaluatedToAmbig),
693                 }
694             }
695
696             ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
697                 // we do not consider region relationships when
698                 // evaluating trait matches
699                 Ok(EvaluatedToOk)
700             }
701
702             ty::Predicate::ObjectSafe(trait_def_id) => {
703                 if self.tcx().is_object_safe(trait_def_id) {
704                     Ok(EvaluatedToOk)
705                 } else {
706                     Ok(EvaluatedToErr)
707                 }
708             }
709
710             ty::Predicate::Projection(ref data) => {
711                 let project_obligation = obligation.with(data.clone());
712                 match project::poly_project_and_unify_type(self, &project_obligation) {
713                     Ok(Some(subobligations)) => {
714                         let result = self.evaluate_predicates_recursively(previous_stack,
715                                                                           subobligations.iter());
716                         if let Some(key) =
717                             ProjectionCacheKey::from_poly_projection_predicate(self, data)
718                         {
719                             self.infcx.projection_cache.borrow_mut().complete(key);
720                         }
721                         result
722                     }
723                     Ok(None) => {
724                         Ok(EvaluatedToAmbig)
725                     }
726                     Err(_) => {
727                         Ok(EvaluatedToErr)
728                     }
729                 }
730             }
731
732             ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
733                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
734                     Some(closure_kind) => {
735                         if closure_kind.extends(kind) {
736                             Ok(EvaluatedToOk)
737                         } else {
738                             Ok(EvaluatedToErr)
739                         }
740                     }
741                     None => {
742                         Ok(EvaluatedToAmbig)
743                     }
744                 }
745             }
746
747             ty::Predicate::ConstEvaluatable(def_id, substs) => {
748                 let tcx = self.tcx();
749                 match tcx.lift_to_global(&(obligation.param_env, substs)) {
750                     Some((param_env, substs)) => {
751                         let instance = ty::Instance::resolve(
752                             tcx.global_tcx(),
753                             param_env,
754                             def_id,
755                             substs,
756                         );
757                         if let Some(instance) = instance {
758                             let cid = GlobalId {
759                                 instance,
760                                 promoted: None
761                             };
762                             match self.tcx().const_eval(param_env.and(cid)) {
763                                 Ok(_) => Ok(EvaluatedToOk),
764                                 Err(_) => Ok(EvaluatedToErr)
765                             }
766                         } else {
767                             Ok(EvaluatedToErr)
768                         }
769                     }
770                     None => {
771                         // Inference variables still left in param_env or substs.
772                         Ok(EvaluatedToAmbig)
773                     }
774                 }
775             }
776         }
777     }
778
779     fn evaluate_trait_predicate_recursively<'o>(&mut self,
780                                                 previous_stack: TraitObligationStackList<'o, 'tcx>,
781                                                 mut obligation: TraitObligation<'tcx>)
782                                                 -> Result<EvaluationResult, OverflowError>
783     {
784         debug!("evaluate_trait_predicate_recursively({:?})",
785                obligation);
786
787         if !self.intercrate.is_some() && obligation.is_global() {
788             // If a param env is consistent, global obligations do not depend on its particular
789             // value in order to work, so we can clear out the param env and get better
790             // caching. (If the current param env is inconsistent, we don't care what happens).
791             debug!("evaluate_trait_predicate_recursively({:?}) - in global", obligation);
792             obligation.param_env = obligation.param_env.without_caller_bounds();
793         }
794
795         let stack = self.push_stack(previous_stack, &obligation);
796         let fresh_trait_ref = stack.fresh_trait_ref;
797         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
798             debug!("CACHE HIT: EVAL({:?})={:?}",
799                    fresh_trait_ref,
800                    result);
801             return Ok(result);
802         }
803
804         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
805         let result = result?;
806
807         debug!("CACHE MISS: EVAL({:?})={:?}",
808                fresh_trait_ref,
809                result);
810         self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
811
812         Ok(result)
813     }
814
815     fn evaluate_stack<'o>(&mut self,
816                           stack: &TraitObligationStack<'o, 'tcx>)
817                           -> Result<EvaluationResult, OverflowError>
818     {
819         // In intercrate mode, whenever any of the types are unbound,
820         // there can always be an impl. Even if there are no impls in
821         // this crate, perhaps the type would be unified with
822         // something from another crate that does provide an impl.
823         //
824         // In intra mode, we must still be conservative. The reason is
825         // that we want to avoid cycles. Imagine an impl like:
826         //
827         //     impl<T:Eq> Eq for Vec<T>
828         //
829         // and a trait reference like `$0 : Eq` where `$0` is an
830         // unbound variable. When we evaluate this trait-reference, we
831         // will unify `$0` with `Vec<$1>` (for some fresh variable
832         // `$1`), on the condition that `$1 : Eq`. We will then wind
833         // up with many candidates (since that are other `Eq` impls
834         // that apply) and try to winnow things down. This results in
835         // a recursive evaluation that `$1 : Eq` -- as you can
836         // imagine, this is just where we started. To avoid that, we
837         // check for unbound variables and return an ambiguous (hence possible)
838         // match if we've seen this trait before.
839         //
840         // This suffices to allow chains like `FnMut` implemented in
841         // terms of `Fn` etc, but we could probably make this more
842         // precise still.
843         let unbound_input_types =
844             stack.fresh_trait_ref.skip_binder().input_types().any(|ty| ty.is_fresh());
845         // this check was an imperfect workaround for a bug n the old
846         // intercrate mode, it should be removed when that goes away.
847         if unbound_input_types &&
848             self.intercrate == Some(IntercrateMode::Issue43355)
849         {
850             debug!("evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
851                    stack.fresh_trait_ref);
852             // Heuristics: show the diagnostics when there are no candidates in crate.
853             if self.intercrate_ambiguity_causes.is_some() {
854                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
855                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
856                     if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
857                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
858                         let self_ty = trait_ref.self_ty();
859                         let cause = IntercrateAmbiguityCause::DownstreamCrate {
860                             trait_desc: trait_ref.to_string(),
861                             self_desc: if self_ty.has_concrete_skeleton() {
862                                 Some(self_ty.to_string())
863                             } else {
864                                 None
865                             },
866                         };
867                         debug!("evaluate_stack: pushing cause = {:?}", cause);
868                         self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
869                     }
870                 }
871             }
872             return Ok(EvaluatedToAmbig);
873         }
874         if unbound_input_types &&
875               stack.iter().skip(1).any(
876                   |prev| stack.obligation.param_env == prev.obligation.param_env &&
877                       self.match_fresh_trait_refs(&stack.fresh_trait_ref,
878                                                   &prev.fresh_trait_ref))
879         {
880             debug!("evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
881                    stack.fresh_trait_ref);
882             return Ok(EvaluatedToUnknown);
883         }
884
885         // If there is any previous entry on the stack that precisely
886         // matches this obligation, then we can assume that the
887         // obligation is satisfied for now (still all other conditions
888         // must be met of course). One obvious case this comes up is
889         // marker traits like `Send`. Think of a linked list:
890         //
891         //    struct List<T> { data: T, next: Option<Box<List<T>>> {
892         //
893         // `Box<List<T>>` will be `Send` if `T` is `Send` and
894         // `Option<Box<List<T>>>` is `Send`, and in turn
895         // `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
896         // `Send`.
897         //
898         // Note that we do this comparison using the `fresh_trait_ref`
899         // fields. Because these have all been skolemized using
900         // `self.freshener`, we can be sure that (a) this will not
901         // affect the inferencer state and (b) that if we see two
902         // skolemized types with the same index, they refer to the
903         // same unbound type variable.
904         if let Some(rec_index) =
905             stack.iter()
906             .skip(1) // skip top-most frame
907             .position(|prev| stack.obligation.param_env == prev.obligation.param_env &&
908                       stack.fresh_trait_ref == prev.fresh_trait_ref)
909         {
910             debug!("evaluate_stack({:?}) --> recursive",
911                    stack.fresh_trait_ref);
912             let cycle = stack.iter().skip(1).take(rec_index+1);
913             let cycle = cycle.map(|stack| ty::Predicate::Trait(stack.obligation.predicate));
914             if self.coinductive_match(cycle) {
915                 debug!("evaluate_stack({:?}) --> recursive, coinductive",
916                        stack.fresh_trait_ref);
917                 return Ok(EvaluatedToOk);
918             } else {
919                 debug!("evaluate_stack({:?}) --> recursive, inductive",
920                        stack.fresh_trait_ref);
921                 return Ok(EvaluatedToRecur);
922             }
923         }
924
925         match self.candidate_from_obligation(stack) {
926             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
927             Ok(None) => Ok(EvaluatedToAmbig),
928             Err(Overflow) => Err(OverflowError),
929             Err(..) => Ok(EvaluatedToErr)
930         }
931     }
932
933     /// For defaulted traits, we use a co-inductive strategy to solve, so
934     /// that recursion is ok. This routine returns true if the top of the
935     /// stack (`cycle[0]`):
936     ///
937     /// - is a defaulted trait, and
938     /// - it also appears in the backtrace at some position `X`; and,
939     /// - all the predicates at positions `X..` between `X` an the top are
940     ///   also defaulted traits.
941     pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
942         where I: Iterator<Item=ty::Predicate<'tcx>>
943     {
944         let mut cycle = cycle;
945         cycle.all(|predicate| self.coinductive_predicate(predicate))
946     }
947
948     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
949         let result = match predicate {
950             ty::Predicate::Trait(ref data) => {
951                 self.tcx().trait_is_auto(data.def_id())
952             }
953             _ => {
954                 false
955             }
956         };
957         debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
958         result
959     }
960
961     /// Further evaluate `candidate` to decide whether all type parameters match and whether nested
962     /// obligations are met. Returns true if `candidate` remains viable after this further
963     /// scrutiny.
964     fn evaluate_candidate<'o>(&mut self,
965                               stack: &TraitObligationStack<'o, 'tcx>,
966                               candidate: &SelectionCandidate<'tcx>)
967                               -> Result<EvaluationResult, OverflowError>
968     {
969         debug!("evaluate_candidate: depth={} candidate={:?}",
970                stack.obligation.recursion_depth, candidate);
971         let result = self.probe(|this, _| {
972             let candidate = (*candidate).clone();
973             match this.confirm_candidate(stack.obligation, candidate) {
974                 Ok(selection) => {
975                     this.evaluate_predicates_recursively(
976                         stack.list(),
977                         selection.nested_obligations().iter())
978                 }
979                 Err(..) => Ok(EvaluatedToErr)
980             }
981         })?;
982         debug!("evaluate_candidate: depth={} result={:?}",
983                stack.obligation.recursion_depth, result);
984         Ok(result)
985     }
986
987     fn check_evaluation_cache(&self,
988                               param_env: ty::ParamEnv<'tcx>,
989                               trait_ref: ty::PolyTraitRef<'tcx>)
990                               -> Option<EvaluationResult>
991     {
992         let tcx = self.tcx();
993         if self.can_use_global_caches(param_env) {
994             let cache = tcx.evaluation_cache.hashmap.borrow();
995             if let Some(cached) = cache.get(&trait_ref) {
996                 return Some(cached.get(tcx));
997             }
998         }
999         self.infcx.evaluation_cache.hashmap
1000                                    .borrow()
1001                                    .get(&trait_ref)
1002                                    .map(|v| v.get(tcx))
1003     }
1004
1005     fn insert_evaluation_cache(&mut self,
1006                                param_env: ty::ParamEnv<'tcx>,
1007                                trait_ref: ty::PolyTraitRef<'tcx>,
1008                                dep_node: DepNodeIndex,
1009                                result: EvaluationResult)
1010     {
1011         // Avoid caching results that depend on more than just the trait-ref
1012         // - the stack can create recursion.
1013         if result.is_stack_dependent() {
1014             return;
1015         }
1016
1017         if self.can_use_global_caches(param_env) {
1018             let mut cache = self.tcx().evaluation_cache.hashmap.borrow_mut();
1019             if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
1020                 debug!(
1021                     "insert_evaluation_cache(trait_ref={:?}, candidate={:?}) global",
1022                     trait_ref,
1023                     result,
1024                 );
1025                 cache.insert(trait_ref, WithDepNode::new(dep_node, result));
1026                 return;
1027             }
1028         }
1029
1030         debug!(
1031             "insert_evaluation_cache(trait_ref={:?}, candidate={:?})",
1032             trait_ref,
1033             result,
1034         );
1035         self.infcx.evaluation_cache.hashmap
1036                                    .borrow_mut()
1037                                    .insert(trait_ref, WithDepNode::new(dep_node, result));
1038     }
1039
1040     ///////////////////////////////////////////////////////////////////////////
1041     // CANDIDATE ASSEMBLY
1042     //
1043     // The selection process begins by examining all in-scope impls,
1044     // caller obligations, and so forth and assembling a list of
1045     // candidates. See [rustc guide] for more details.
1046     //
1047     // [rustc guide]:
1048     // https://rust-lang-nursery.github.io/rustc-guide/trait-resolution.html#candidate-assembly
1049
1050     fn candidate_from_obligation<'o>(&mut self,
1051                                      stack: &TraitObligationStack<'o, 'tcx>)
1052                                      -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
1053     {
1054         // Watch out for overflow. This intentionally bypasses (and does
1055         // not update) the cache.
1056         let recursion_limit = *self.infcx.tcx.sess.recursion_limit.get();
1057         if stack.obligation.recursion_depth >= recursion_limit {
1058             match self.query_mode {
1059                 TraitQueryMode::Standard => {
1060                     self.infcx().report_overflow_error(&stack.obligation, true);
1061                 },
1062                 TraitQueryMode::Canonical => {
1063                     return Err(Overflow);
1064                 },
1065             }
1066         }
1067
1068         // Check the cache. Note that we skolemize the trait-ref
1069         // separately rather than using `stack.fresh_trait_ref` -- this
1070         // is because we want the unbound variables to be replaced
1071         // with fresh skolemized types starting from index 0.
1072         let cache_fresh_trait_pred =
1073             self.infcx.freshen(stack.obligation.predicate.clone());
1074         debug!("candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
1075                cache_fresh_trait_pred,
1076                stack);
1077         assert!(!stack.obligation.predicate.has_escaping_regions());
1078
1079         if let Some(c) = self.check_candidate_cache(stack.obligation.param_env,
1080                                                     &cache_fresh_trait_pred) {
1081             debug!("CACHE HIT: SELECT({:?})={:?}",
1082                    cache_fresh_trait_pred,
1083                    c);
1084             return c;
1085         }
1086
1087         // If no match, compute result and insert into cache.
1088         let (candidate, dep_node) = self.in_task(|this| {
1089             this.candidate_from_obligation_no_cache(stack)
1090         });
1091
1092         debug!("CACHE MISS: SELECT({:?})={:?}",
1093                cache_fresh_trait_pred, candidate);
1094         self.insert_candidate_cache(stack.obligation.param_env,
1095                                     cache_fresh_trait_pred,
1096                                     dep_node,
1097                                     candidate.clone());
1098         candidate
1099     }
1100
1101     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1102         where OP: FnOnce(&mut Self) -> R
1103     {
1104         let (result, dep_node) = self.tcx().dep_graph.with_anon_task(DepKind::TraitSelect, || {
1105             op(self)
1106         });
1107         self.tcx().dep_graph.read_index(dep_node);
1108         (result, dep_node)
1109     }
1110
1111     // Treat negative impls as unimplemented
1112     fn filter_negative_impls(&self, candidate: SelectionCandidate<'tcx>)
1113                              -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1114         if let ImplCandidate(def_id) = candidate {
1115             if !self.allow_negative_impls &&
1116                 self.tcx().impl_polarity(def_id) == hir::ImplPolarity::Negative {
1117                 return Err(Unimplemented)
1118             }
1119         }
1120         Ok(Some(candidate))
1121     }
1122
1123     fn candidate_from_obligation_no_cache<'o>(&mut self,
1124                                               stack: &TraitObligationStack<'o, 'tcx>)
1125                                               -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
1126     {
1127         if stack.obligation.predicate.references_error() {
1128             // If we encounter a `TyError`, we generally prefer the
1129             // most "optimistic" result in response -- that is, the
1130             // one least likely to report downstream errors. But
1131             // because this routine is shared by coherence and by
1132             // trait selection, there isn't an obvious "right" choice
1133             // here in that respect, so we opt to just return
1134             // ambiguity and let the upstream clients sort it out.
1135             return Ok(None);
1136         }
1137
1138         match self.is_knowable(stack) {
1139             None => {}
1140             Some(conflict) => {
1141                 debug!("coherence stage: not knowable");
1142                 if self.intercrate_ambiguity_causes.is_some() {
1143                     debug!("evaluate_stack: intercrate_ambiguity_causes is some");
1144                     // Heuristics: show the diagnostics when there are no candidates in crate.
1145                     if let Ok(candidate_set) = self.assemble_candidates(stack) {
1146                         let no_candidates_apply =
1147                             candidate_set
1148                             .vec
1149                             .iter()
1150                             .map(|c| self.evaluate_candidate(stack, &c))
1151                             .collect::<Result<Vec<_>, OverflowError>>()?
1152                             .iter()
1153                             .all(|r| !r.may_apply());
1154                         if !candidate_set.ambiguous && no_candidates_apply {
1155                             let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1156                             let self_ty = trait_ref.self_ty();
1157                             let trait_desc = trait_ref.to_string();
1158                             let self_desc = if self_ty.has_concrete_skeleton() {
1159                                 Some(self_ty.to_string())
1160                             } else {
1161                                 None
1162                             };
1163                             let cause = if let Conflict::Upstream = conflict {
1164                                 IntercrateAmbiguityCause::UpstreamCrateUpdate {
1165                                     trait_desc,
1166                                     self_desc,
1167                                 }
1168                             } else {
1169                                 IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
1170                             };
1171                             debug!("evaluate_stack: pushing cause = {:?}", cause);
1172                             self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
1173                         }
1174                     }
1175                 }
1176                 return Ok(None);
1177             }
1178         }
1179
1180         let candidate_set = self.assemble_candidates(stack)?;
1181
1182         if candidate_set.ambiguous {
1183             debug!("candidate set contains ambig");
1184             return Ok(None);
1185         }
1186
1187         let mut candidates = candidate_set.vec;
1188
1189         debug!("assembled {} candidates for {:?}: {:?}",
1190                candidates.len(),
1191                stack,
1192                candidates);
1193
1194         // At this point, we know that each of the entries in the
1195         // candidate set is *individually* applicable. Now we have to
1196         // figure out if they contain mutual incompatibilities. This
1197         // frequently arises if we have an unconstrained input type --
1198         // for example, we are looking for $0:Eq where $0 is some
1199         // unconstrained type variable. In that case, we'll get a
1200         // candidate which assumes $0 == int, one that assumes $0 ==
1201         // usize, etc. This spells an ambiguity.
1202
1203         // If there is more than one candidate, first winnow them down
1204         // by considering extra conditions (nested obligations and so
1205         // forth). We don't winnow if there is exactly one
1206         // candidate. This is a relatively minor distinction but it
1207         // can lead to better inference and error-reporting. An
1208         // example would be if there was an impl:
1209         //
1210         //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
1211         //
1212         // and we were to see some code `foo.push_clone()` where `boo`
1213         // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
1214         // we were to winnow, we'd wind up with zero candidates.
1215         // Instead, we select the right impl now but report `Bar does
1216         // not implement Clone`.
1217         if candidates.len() == 1 {
1218             return self.filter_negative_impls(candidates.pop().unwrap());
1219         }
1220
1221         // Winnow, but record the exact outcome of evaluation, which
1222         // is needed for specialization. Propagate overflow if it occurs.
1223         let candidates: Result<Vec<Option<EvaluatedCandidate>>, _> = candidates
1224             .into_iter()
1225             .map(|c| match self.evaluate_candidate(stack, &c) {
1226                 Ok(eval) if eval.may_apply() => Ok(Some(EvaluatedCandidate {
1227                     candidate: c,
1228                     evaluation: eval,
1229                 })),
1230                 Ok(_) => Ok(None),
1231                 Err(OverflowError) => Err(Overflow),
1232             })
1233             .collect();
1234
1235         let mut candidates: Vec<EvaluatedCandidate> =
1236             candidates?.into_iter().filter_map(|c| c).collect();
1237
1238         // If there are STILL multiple candidate, we can further
1239         // reduce the list by dropping duplicates -- including
1240         // resolving specializations.
1241         if candidates.len() > 1 {
1242             let mut i = 0;
1243             while i < candidates.len() {
1244                 let is_dup =
1245                     (0..candidates.len())
1246                     .filter(|&j| i != j)
1247                     .any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
1248                                                                           &candidates[j]));
1249                 if is_dup {
1250                     debug!("Dropping candidate #{}/{}: {:?}",
1251                            i, candidates.len(), candidates[i]);
1252                     candidates.swap_remove(i);
1253                 } else {
1254                     debug!("Retaining candidate #{}/{}: {:?}",
1255                            i, candidates.len(), candidates[i]);
1256                     i += 1;
1257
1258                     // If there are *STILL* multiple candidates, give up
1259                     // and report ambiguity.
1260                     if i > 1 {
1261                         debug!("multiple matches, ambig");
1262                         return Ok(None);
1263                     }
1264                 }
1265             }
1266         }
1267
1268         // If there are *NO* candidates, then there are no impls --
1269         // that we know of, anyway. Note that in the case where there
1270         // are unbound type variables within the obligation, it might
1271         // be the case that you could still satisfy the obligation
1272         // from another crate by instantiating the type variables with
1273         // a type from another crate that does have an impl. This case
1274         // is checked for in `evaluate_stack` (and hence users
1275         // who might care about this case, like coherence, should use
1276         // that function).
1277         if candidates.is_empty() {
1278             return Err(Unimplemented);
1279         }
1280
1281         // Just one candidate left.
1282         self.filter_negative_impls(candidates.pop().unwrap().candidate)
1283     }
1284
1285     fn is_knowable<'o>(&mut self,
1286                        stack: &TraitObligationStack<'o, 'tcx>)
1287                        -> Option<Conflict>
1288     {
1289         debug!("is_knowable(intercrate={:?})", self.intercrate);
1290
1291         if !self.intercrate.is_some() {
1292             return None;
1293         }
1294
1295         let obligation = &stack.obligation;
1296         let predicate = self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
1297
1298         // ok to skip binder because of the nature of the
1299         // trait-ref-is-knowable check, which does not care about
1300         // bound regions
1301         let trait_ref = predicate.skip_binder().trait_ref;
1302
1303         let result = coherence::trait_ref_is_knowable(self.tcx(), trait_ref);
1304         if let (Some(Conflict::Downstream { used_to_be_broken: true }),
1305                 Some(IntercrateMode::Issue43355)) = (result, self.intercrate) {
1306             debug!("is_knowable: IGNORING conflict to be bug-compatible with #43355");
1307             None
1308         } else {
1309             result
1310         }
1311     }
1312
1313     /// Returns true if the global caches can be used.
1314     /// Do note that if the type itself is not in the
1315     /// global tcx, the local caches will be used.
1316     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1317         // If there are any where-clauses in scope, then we always use
1318         // a cache local to this particular scope. Otherwise, we
1319         // switch to a global cache. We used to try and draw
1320         // finer-grained distinctions, but that led to a serious of
1321         // annoying and weird bugs like #22019 and #18290. This simple
1322         // rule seems to be pretty clearly safe and also still retains
1323         // a very high hit rate (~95% when compiling rustc).
1324         if !param_env.caller_bounds.is_empty() {
1325             return false;
1326         }
1327
1328         // Avoid using the master cache during coherence and just rely
1329         // on the local cache. This effectively disables caching
1330         // during coherence. It is really just a simplification to
1331         // avoid us having to fear that coherence results "pollute"
1332         // the master cache. Since coherence executes pretty quickly,
1333         // it's not worth going to more trouble to increase the
1334         // hit-rate I don't think.
1335         if self.intercrate.is_some() {
1336             return false;
1337         }
1338
1339         // Otherwise, we can use the global cache.
1340         true
1341     }
1342
1343     fn check_candidate_cache(&mut self,
1344                              param_env: ty::ParamEnv<'tcx>,
1345                              cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
1346                              -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
1347     {
1348         let tcx = self.tcx();
1349         let trait_ref = &cache_fresh_trait_pred.skip_binder().trait_ref;
1350         if self.can_use_global_caches(param_env) {
1351             let cache = tcx.selection_cache.hashmap.borrow();
1352             if let Some(cached) = cache.get(&trait_ref) {
1353                 return Some(cached.get(tcx));
1354             }
1355         }
1356         self.infcx.selection_cache.hashmap
1357                                   .borrow()
1358                                   .get(trait_ref)
1359                                   .map(|v| v.get(tcx))
1360     }
1361
1362     fn insert_candidate_cache(&mut self,
1363                               param_env: ty::ParamEnv<'tcx>,
1364                               cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1365                               dep_node: DepNodeIndex,
1366                               candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
1367     {
1368         let tcx = self.tcx();
1369         let trait_ref = cache_fresh_trait_pred.skip_binder().trait_ref;
1370         if self.can_use_global_caches(param_env) {
1371             let mut cache = tcx.selection_cache.hashmap.borrow_mut();
1372             if let Some(trait_ref) = tcx.lift_to_global(&trait_ref) {
1373                 if let Some(candidate) = tcx.lift_to_global(&candidate) {
1374                     debug!(
1375                         "insert_candidate_cache(trait_ref={:?}, candidate={:?}) global",
1376                         trait_ref,
1377                         candidate,
1378                     );
1379                     cache.insert(trait_ref, WithDepNode::new(dep_node, candidate));
1380                     return;
1381                 }
1382             }
1383         }
1384
1385         debug!(
1386             "insert_candidate_cache(trait_ref={:?}, candidate={:?}) local",
1387             trait_ref,
1388             candidate,
1389         );
1390         self.infcx.selection_cache.hashmap
1391                                   .borrow_mut()
1392                                   .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1393     }
1394
1395     fn assemble_candidates<'o>(&mut self,
1396                                stack: &TraitObligationStack<'o, 'tcx>)
1397                                -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
1398     {
1399         let TraitObligationStack { obligation, .. } = *stack;
1400         let ref obligation = Obligation {
1401             param_env: obligation.param_env,
1402             cause: obligation.cause.clone(),
1403             recursion_depth: obligation.recursion_depth,
1404             predicate: self.infcx().resolve_type_vars_if_possible(&obligation.predicate)
1405         };
1406
1407         if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1408             // Self is a type variable (e.g. `_: AsRef<str>`).
1409             //
1410             // This is somewhat problematic, as the current scheme can't really
1411             // handle it turning to be a projection. This does end up as truly
1412             // ambiguous in most cases anyway.
1413             //
1414             // Take the fast path out - this also improves
1415             // performance by preventing assemble_candidates_from_impls from
1416             // matching every impl for this trait.
1417             return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
1418         }
1419
1420         let mut candidates = SelectionCandidateSet {
1421             vec: Vec::new(),
1422             ambiguous: false
1423         };
1424
1425         // Other bounds. Consider both in-scope bounds from fn decl
1426         // and applicable impls. There is a certain set of precedence rules here.
1427
1428         let def_id = obligation.predicate.def_id();
1429         let lang_items = self.tcx().lang_items();
1430         if lang_items.copy_trait() == Some(def_id) {
1431             debug!("obligation self ty is {:?}",
1432                    obligation.predicate.skip_binder().self_ty());
1433
1434             // User-defined copy impls are permitted, but only for
1435             // structs and enums.
1436             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1437
1438             // For other types, we'll use the builtin rules.
1439             let copy_conditions = self.copy_clone_conditions(obligation);
1440             self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1441         } else if lang_items.sized_trait() == Some(def_id) {
1442             // Sized is never implementable by end-users, it is
1443             // always automatically computed.
1444             let sized_conditions = self.sized_conditions(obligation);
1445             self.assemble_builtin_bound_candidates(sized_conditions,
1446                                                    &mut candidates)?;
1447          } else if lang_items.unsize_trait() == Some(def_id) {
1448              self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1449          } else {
1450              if lang_items.clone_trait() == Some(def_id) {
1451                  // Same builtin conditions as `Copy`, i.e. every type which has builtin support
1452                  // for `Copy` also has builtin support for `Clone`, + tuples and arrays of `Clone`
1453                  // types have builtin support for `Clone`.
1454                  let clone_conditions = self.copy_clone_conditions(obligation);
1455                  self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
1456              }
1457
1458              self.assemble_generator_candidates(obligation, &mut candidates)?;
1459              self.assemble_closure_candidates(obligation, &mut candidates)?;
1460              self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1461              self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1462              self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1463         }
1464
1465         self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1466         self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1467         // Auto implementations have lower priority, so we only
1468         // consider triggering a default if there is no other impl that can apply.
1469         if candidates.vec.is_empty() {
1470             self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
1471         }
1472         debug!("candidate list size: {}", candidates.vec.len());
1473         Ok(candidates)
1474     }
1475
1476     fn assemble_candidates_from_projected_tys(&mut self,
1477                                               obligation: &TraitObligation<'tcx>,
1478                                               candidates: &mut SelectionCandidateSet<'tcx>)
1479     {
1480         debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1481
1482         // before we go into the whole skolemization thing, just
1483         // quickly check if the self-type is a projection at all.
1484         match obligation.predicate.skip_binder().trait_ref.self_ty().sty {
1485             ty::TyProjection(_) | ty::TyAnon(..) => {}
1486             ty::TyInfer(ty::TyVar(_)) => {
1487                 span_bug!(obligation.cause.span,
1488                     "Self=_ should have been handled by assemble_candidates");
1489             }
1490             _ => return
1491         }
1492
1493         let result = self.probe(|this, snapshot| {
1494             this.match_projection_obligation_against_definition_bounds(obligation,
1495                                                                        snapshot)
1496         });
1497
1498         if result {
1499             candidates.vec.push(ProjectionCandidate);
1500         }
1501     }
1502
1503     fn match_projection_obligation_against_definition_bounds(
1504         &mut self,
1505         obligation: &TraitObligation<'tcx>,
1506         snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
1507         -> bool
1508     {
1509         let poly_trait_predicate =
1510             self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
1511         let (skol_trait_predicate, skol_map) =
1512             self.infcx().skolemize_late_bound_regions(&poly_trait_predicate);
1513         debug!("match_projection_obligation_against_definition_bounds: \
1514                 skol_trait_predicate={:?} skol_map={:?}",
1515                skol_trait_predicate,
1516                skol_map);
1517
1518         let (def_id, substs) = match skol_trait_predicate.trait_ref.self_ty().sty {
1519             ty::TyProjection(ref data) =>
1520                 (data.trait_ref(self.tcx()).def_id, data.substs),
1521             ty::TyAnon(def_id, substs) => (def_id, substs),
1522             _ => {
1523                 span_bug!(
1524                     obligation.cause.span,
1525                     "match_projection_obligation_against_definition_bounds() called \
1526                      but self-ty not a projection: {:?}",
1527                     skol_trait_predicate.trait_ref.self_ty());
1528             }
1529         };
1530         debug!("match_projection_obligation_against_definition_bounds: \
1531                 def_id={:?}, substs={:?}",
1532                def_id, substs);
1533
1534         let predicates_of = self.tcx().predicates_of(def_id);
1535         let bounds = predicates_of.instantiate(self.tcx(), substs);
1536         debug!("match_projection_obligation_against_definition_bounds: \
1537                 bounds={:?}",
1538                bounds);
1539
1540         let matching_bound =
1541             util::elaborate_predicates(self.tcx(), bounds.predicates)
1542             .filter_to_traits()
1543             .find(
1544                 |bound| self.probe(
1545                     |this, _| this.match_projection(obligation,
1546                                                     bound.clone(),
1547                                                     skol_trait_predicate.trait_ref.clone(),
1548                                                     &skol_map,
1549                                                     snapshot)));
1550
1551         debug!("match_projection_obligation_against_definition_bounds: \
1552                 matching_bound={:?}",
1553                matching_bound);
1554         match matching_bound {
1555             None => false,
1556             Some(bound) => {
1557                 // Repeat the successful match, if any, this time outside of a probe.
1558                 let result = self.match_projection(obligation,
1559                                                    bound,
1560                                                    skol_trait_predicate.trait_ref.clone(),
1561                                                    &skol_map,
1562                                                    snapshot);
1563
1564                 self.infcx.pop_skolemized(skol_map, snapshot);
1565
1566                 assert!(result);
1567                 true
1568             }
1569         }
1570     }
1571
1572     fn match_projection(&mut self,
1573                         obligation: &TraitObligation<'tcx>,
1574                         trait_bound: ty::PolyTraitRef<'tcx>,
1575                         skol_trait_ref: ty::TraitRef<'tcx>,
1576                         skol_map: &infer::SkolemizationMap<'tcx>,
1577                         snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
1578                         -> bool
1579     {
1580         assert!(!skol_trait_ref.has_escaping_regions());
1581         if let Err(_) = self.infcx.at(&obligation.cause, obligation.param_env)
1582                                   .sup(ty::Binder::dummy(skol_trait_ref), trait_bound) {
1583             return false;
1584         }
1585
1586         self.infcx.leak_check(false, obligation.cause.span, skol_map, snapshot).is_ok()
1587     }
1588
1589     /// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
1590     /// supplied to find out whether it is listed among them.
1591     ///
1592     /// Never affects inference environment.
1593     fn assemble_candidates_from_caller_bounds<'o>(&mut self,
1594                                                   stack: &TraitObligationStack<'o, 'tcx>,
1595                                                   candidates: &mut SelectionCandidateSet<'tcx>)
1596                                                   -> Result<(),SelectionError<'tcx>>
1597     {
1598         debug!("assemble_candidates_from_caller_bounds({:?})",
1599                stack.obligation);
1600
1601         let all_bounds =
1602             stack.obligation.param_env.caller_bounds
1603                                       .iter()
1604                                       .filter_map(|o| o.to_opt_poly_trait_ref());
1605
1606         // micro-optimization: filter out predicates relating to different
1607         // traits.
1608         let matching_bounds =
1609             all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
1610
1611         // keep only those bounds which may apply, and propagate overflow if it occurs
1612         let mut param_candidates = vec![];
1613         for bound in matching_bounds {
1614             let wc = self.evaluate_where_clause(stack, bound.clone())?;
1615             if wc.may_apply() {
1616                 param_candidates.push(ParamCandidate(bound));
1617             }
1618         }
1619
1620         candidates.vec.extend(param_candidates);
1621
1622         Ok(())
1623     }
1624
1625     fn evaluate_where_clause<'o>(&mut self,
1626                                  stack: &TraitObligationStack<'o, 'tcx>,
1627                                  where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
1628                                  -> Result<EvaluationResult, OverflowError>
1629     {
1630         self.probe(move |this, _| {
1631             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1632                 Ok(obligations) => {
1633                     this.evaluate_predicates_recursively(stack.list(), obligations.iter())
1634                 }
1635                 Err(()) => Ok(EvaluatedToErr)
1636             }
1637         })
1638     }
1639
1640     fn assemble_generator_candidates(&mut self,
1641                                    obligation: &TraitObligation<'tcx>,
1642                                    candidates: &mut SelectionCandidateSet<'tcx>)
1643                                    -> Result<(),SelectionError<'tcx>>
1644     {
1645         if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
1646             return Ok(());
1647         }
1648
1649         // ok to skip binder because the substs on generator types never
1650         // touch bound regions, they just capture the in-scope
1651         // type/region parameters
1652         let self_ty = *obligation.self_ty().skip_binder();
1653         match self_ty.sty {
1654             ty::TyGenerator(..) => {
1655                 debug!("assemble_generator_candidates: self_ty={:?} obligation={:?}",
1656                        self_ty,
1657                        obligation);
1658
1659                 candidates.vec.push(GeneratorCandidate);
1660                 Ok(())
1661             }
1662             ty::TyInfer(ty::TyVar(_)) => {
1663                 debug!("assemble_generator_candidates: ambiguous self-type");
1664                 candidates.ambiguous = true;
1665                 return Ok(());
1666             }
1667             _ => { return Ok(()); }
1668         }
1669     }
1670
1671     /// Check for the artificial impl that the compiler will create for an obligation like `X :
1672     /// FnMut<..>` where `X` is a closure type.
1673     ///
1674     /// Note: the type parameters on a closure candidate are modeled as *output* type
1675     /// parameters and hence do not affect whether this trait is a match or not. They will be
1676     /// unified during the confirmation step.
1677     fn assemble_closure_candidates(&mut self,
1678                                    obligation: &TraitObligation<'tcx>,
1679                                    candidates: &mut SelectionCandidateSet<'tcx>)
1680                                    -> Result<(),SelectionError<'tcx>>
1681     {
1682         let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()) {
1683             Some(k) => k,
1684             None => { return Ok(()); }
1685         };
1686
1687         // ok to skip binder because the substs on closure types never
1688         // touch bound regions, they just capture the in-scope
1689         // type/region parameters
1690         match obligation.self_ty().skip_binder().sty {
1691             ty::TyClosure(closure_def_id, closure_substs) => {
1692                 debug!("assemble_unboxed_candidates: kind={:?} obligation={:?}",
1693                        kind, obligation);
1694                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
1695                     Some(closure_kind) => {
1696                         debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
1697                         if closure_kind.extends(kind) {
1698                             candidates.vec.push(ClosureCandidate);
1699                         }
1700                     }
1701                     None => {
1702                         debug!("assemble_unboxed_candidates: closure_kind not yet known");
1703                         candidates.vec.push(ClosureCandidate);
1704                     }
1705                 };
1706                 Ok(())
1707             }
1708             ty::TyInfer(ty::TyVar(_)) => {
1709                 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
1710                 candidates.ambiguous = true;
1711                 return Ok(());
1712             }
1713             _ => { return Ok(()); }
1714         }
1715     }
1716
1717     /// Implement one of the `Fn()` family for a fn pointer.
1718     fn assemble_fn_pointer_candidates(&mut self,
1719                                       obligation: &TraitObligation<'tcx>,
1720                                       candidates: &mut SelectionCandidateSet<'tcx>)
1721                                       -> Result<(),SelectionError<'tcx>>
1722     {
1723         // We provide impl of all fn traits for fn pointers.
1724         if self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()).is_none() {
1725             return Ok(());
1726         }
1727
1728         // ok to skip binder because what we are inspecting doesn't involve bound regions
1729         let self_ty = *obligation.self_ty().skip_binder();
1730         match self_ty.sty {
1731             ty::TyInfer(ty::TyVar(_)) => {
1732                 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
1733                 candidates.ambiguous = true; // could wind up being a fn() type
1734             }
1735
1736             // provide an impl, but only for suitable `fn` pointers
1737             ty::TyFnDef(..) | ty::TyFnPtr(_) => {
1738                 if let ty::FnSig {
1739                     unsafety: hir::Unsafety::Normal,
1740                     abi: Abi::Rust,
1741                     variadic: false,
1742                     ..
1743                 } = self_ty.fn_sig(self.tcx()).skip_binder() {
1744                     candidates.vec.push(FnPointerCandidate);
1745                 }
1746             }
1747
1748             _ => { }
1749         }
1750
1751         Ok(())
1752     }
1753
1754     /// Search for impls that might apply to `obligation`.
1755     fn assemble_candidates_from_impls(&mut self,
1756                                       obligation: &TraitObligation<'tcx>,
1757                                       candidates: &mut SelectionCandidateSet<'tcx>)
1758                                       -> Result<(), SelectionError<'tcx>>
1759     {
1760         debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
1761
1762         self.tcx().for_each_relevant_impl(
1763             obligation.predicate.def_id(),
1764             obligation.predicate.skip_binder().trait_ref.self_ty(),
1765             |impl_def_id| {
1766                 self.probe(|this, snapshot| { /* [1] */
1767                     match this.match_impl(impl_def_id, obligation, snapshot) {
1768                         Ok(skol_map) => {
1769                             candidates.vec.push(ImplCandidate(impl_def_id));
1770
1771                             // NB: we can safely drop the skol map
1772                             // since we are in a probe [1]
1773                             mem::drop(skol_map);
1774                         }
1775                         Err(_) => { }
1776                     }
1777                 });
1778             }
1779         );
1780
1781         Ok(())
1782     }
1783
1784     fn assemble_candidates_from_auto_impls(&mut self,
1785                                               obligation: &TraitObligation<'tcx>,
1786                                               candidates: &mut SelectionCandidateSet<'tcx>)
1787                                               -> Result<(), SelectionError<'tcx>>
1788     {
1789         // OK to skip binder here because the tests we do below do not involve bound regions
1790         let self_ty = *obligation.self_ty().skip_binder();
1791         debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
1792
1793         let def_id = obligation.predicate.def_id();
1794
1795         if self.tcx().trait_is_auto(def_id) {
1796             match self_ty.sty {
1797                 ty::TyDynamic(..) => {
1798                     // For object types, we don't know what the closed
1799                     // over types are. This means we conservatively
1800                     // say nothing; a candidate may be added by
1801                     // `assemble_candidates_from_object_ty`.
1802                 }
1803                 ty::TyForeign(..) => {
1804                     // Since the contents of foreign types is unknown,
1805                     // we don't add any `..` impl. Default traits could
1806                     // still be provided by a manual implementation for
1807                     // this trait and type.
1808                 }
1809                 ty::TyParam(..) |
1810                 ty::TyProjection(..) => {
1811                     // In these cases, we don't know what the actual
1812                     // type is.  Therefore, we cannot break it down
1813                     // into its constituent types. So we don't
1814                     // consider the `..` impl but instead just add no
1815                     // candidates: this means that typeck will only
1816                     // succeed if there is another reason to believe
1817                     // that this obligation holds. That could be a
1818                     // where-clause or, in the case of an object type,
1819                     // it could be that the object type lists the
1820                     // trait (e.g. `Foo+Send : Send`). See
1821                     // `compile-fail/typeck-default-trait-impl-send-param.rs`
1822                     // for an example of a test case that exercises
1823                     // this path.
1824                 }
1825                 ty::TyInfer(ty::TyVar(_)) => {
1826                     // the auto impl might apply, we don't know
1827                     candidates.ambiguous = true;
1828                 }
1829                 _ => {
1830                     candidates.vec.push(AutoImplCandidate(def_id.clone()))
1831                 }
1832             }
1833         }
1834
1835         Ok(())
1836     }
1837
1838     /// Search for impls that might apply to `obligation`.
1839     fn assemble_candidates_from_object_ty(&mut self,
1840                                           obligation: &TraitObligation<'tcx>,
1841                                           candidates: &mut SelectionCandidateSet<'tcx>)
1842     {
1843         debug!("assemble_candidates_from_object_ty(self_ty={:?})",
1844                obligation.self_ty().skip_binder());
1845
1846         // Object-safety candidates are only applicable to object-safe
1847         // traits. Including this check is useful because it helps
1848         // inference in cases of traits like `BorrowFrom`, which are
1849         // not object-safe, and which rely on being able to infer the
1850         // self-type from one of the other inputs. Without this check,
1851         // these cases wind up being considered ambiguous due to a
1852         // (spurious) ambiguity introduced here.
1853         let predicate_trait_ref = obligation.predicate.to_poly_trait_ref();
1854         if !self.tcx().is_object_safe(predicate_trait_ref.def_id()) {
1855             return;
1856         }
1857
1858         self.probe(|this, _snapshot| {
1859             // the code below doesn't care about regions, and the
1860             // self-ty here doesn't escape this probe, so just erase
1861             // any LBR.
1862             let self_ty = this.tcx().erase_late_bound_regions(&obligation.self_ty());
1863             let poly_trait_ref = match self_ty.sty {
1864                 ty::TyDynamic(ref data, ..) => {
1865                     if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
1866                         debug!("assemble_candidates_from_object_ty: matched builtin bound, \
1867                                     pushing candidate");
1868                         candidates.vec.push(BuiltinObjectCandidate);
1869                         return;
1870                     }
1871
1872                     match data.principal() {
1873                         Some(p) => p.with_self_ty(this.tcx(), self_ty),
1874                         None => return,
1875                     }
1876                 }
1877                 ty::TyInfer(ty::TyVar(_)) => {
1878                     debug!("assemble_candidates_from_object_ty: ambiguous");
1879                     candidates.ambiguous = true; // could wind up being an object type
1880                     return;
1881                 }
1882                 _ => {
1883                     return;
1884                 }
1885             };
1886
1887             debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}",
1888                    poly_trait_ref);
1889
1890             // Count only those upcast versions that match the trait-ref
1891             // we are looking for. Specifically, do not only check for the
1892             // correct trait, but also the correct type parameters.
1893             // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
1894             // but `Foo` is declared as `trait Foo : Bar<u32>`.
1895             let upcast_trait_refs =
1896                 util::supertraits(this.tcx(), poly_trait_ref)
1897                 .filter(|upcast_trait_ref| {
1898                     this.probe(|this, _| {
1899                         let upcast_trait_ref = upcast_trait_ref.clone();
1900                         this.match_poly_trait_ref(obligation, upcast_trait_ref).is_ok()
1901                     })
1902                 })
1903                 .count();
1904
1905             if upcast_trait_refs > 1 {
1906                 // can be upcast in many ways; need more type information
1907                 candidates.ambiguous = true;
1908             } else if upcast_trait_refs == 1 {
1909                 candidates.vec.push(ObjectCandidate);
1910             }
1911         })
1912     }
1913
1914     /// Search for unsizing that might apply to `obligation`.
1915     fn assemble_candidates_for_unsizing(&mut self,
1916                                         obligation: &TraitObligation<'tcx>,
1917                                         candidates: &mut SelectionCandidateSet<'tcx>) {
1918         // We currently never consider higher-ranked obligations e.g.
1919         // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
1920         // because they are a priori invalid, and we could potentially add support
1921         // for them later, it's just that there isn't really a strong need for it.
1922         // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
1923         // impl, and those are generally applied to concrete types.
1924         //
1925         // That said, one might try to write a fn with a where clause like
1926         //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
1927         // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
1928         // Still, you'd be more likely to write that where clause as
1929         //     T: Trait
1930         // so it seems ok if we (conservatively) fail to accept that `Unsize`
1931         // obligation above. Should be possible to extend this in the future.
1932         let source = match obligation.self_ty().no_late_bound_regions() {
1933             Some(t) => t,
1934             None => {
1935                 // Don't add any candidates if there are bound regions.
1936                 return;
1937             }
1938         };
1939         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
1940
1941         debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})",
1942                source, target);
1943
1944         let may_apply = match (&source.sty, &target.sty) {
1945             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
1946             (&ty::TyDynamic(ref data_a, ..), &ty::TyDynamic(ref data_b, ..)) => {
1947                 // Upcasts permit two things:
1948                 //
1949                 // 1. Dropping builtin bounds, e.g. `Foo+Send` to `Foo`
1950                 // 2. Tightening the region bound, e.g. `Foo+'a` to `Foo+'b` if `'a : 'b`
1951                 //
1952                 // Note that neither of these changes requires any
1953                 // change at runtime.  Eventually this will be
1954                 // generalized.
1955                 //
1956                 // We always upcast when we can because of reason
1957                 // #2 (region bounds).
1958                 match (data_a.principal(), data_b.principal()) {
1959                     (Some(a), Some(b)) => a.def_id() == b.def_id() &&
1960                         data_b.auto_traits()
1961                             // All of a's auto traits need to be in b's auto traits.
1962                             .all(|b| data_a.auto_traits().any(|a| a == b)),
1963                     _ => false
1964                 }
1965             }
1966
1967             // T -> Trait.
1968             (_, &ty::TyDynamic(..)) => true,
1969
1970             // Ambiguous handling is below T -> Trait, because inference
1971             // variables can still implement Unsize<Trait> and nested
1972             // obligations will have the final say (likely deferred).
1973             (&ty::TyInfer(ty::TyVar(_)), _) |
1974             (_, &ty::TyInfer(ty::TyVar(_))) => {
1975                 debug!("assemble_candidates_for_unsizing: ambiguous");
1976                 candidates.ambiguous = true;
1977                 false
1978             }
1979
1980             // [T; n] -> [T].
1981             (&ty::TyArray(..), &ty::TySlice(_)) => true,
1982
1983             // Struct<T> -> Struct<U>.
1984             (&ty::TyAdt(def_id_a, _), &ty::TyAdt(def_id_b, _)) if def_id_a.is_struct() => {
1985                 def_id_a == def_id_b
1986             }
1987
1988             // (.., T) -> (.., U).
1989             (&ty::TyTuple(tys_a), &ty::TyTuple(tys_b)) => {
1990                 tys_a.len() == tys_b.len()
1991             }
1992
1993             _ => false
1994         };
1995
1996         if may_apply {
1997             candidates.vec.push(BuiltinUnsizeCandidate);
1998         }
1999     }
2000
2001     ///////////////////////////////////////////////////////////////////////////
2002     // WINNOW
2003     //
2004     // Winnowing is the process of attempting to resolve ambiguity by
2005     // probing further. During the winnowing process, we unify all
2006     // type variables (ignoring skolemization) and then we also
2007     // attempt to evaluate recursive bounds to see if they are
2008     // satisfied.
2009
2010     /// Returns true if `candidate_i` should be dropped in favor of
2011     /// `candidate_j`.  Generally speaking we will drop duplicate
2012     /// candidates and prefer where-clause candidates.
2013     /// Returns true if `victim` should be dropped in favor of
2014     /// `other`.  Generally speaking we will drop duplicate
2015     /// candidates and prefer where-clause candidates.
2016     ///
2017     /// See the comment for "SelectionCandidate" for more details.
2018     fn candidate_should_be_dropped_in_favor_of<'o>(
2019         &mut self,
2020         victim: &EvaluatedCandidate<'tcx>,
2021         other: &EvaluatedCandidate<'tcx>)
2022         -> bool
2023     {
2024         if victim.candidate == other.candidate {
2025             return true;
2026         }
2027
2028         match other.candidate {
2029             ObjectCandidate |
2030             ParamCandidate(_) | ProjectionCandidate => match victim.candidate {
2031                 AutoImplCandidate(..) => {
2032                     bug!(
2033                         "default implementations shouldn't be recorded \
2034                          when there are other valid candidates");
2035                 }
2036                 ImplCandidate(..) |
2037                 ClosureCandidate |
2038                 GeneratorCandidate |
2039                 FnPointerCandidate |
2040                 BuiltinObjectCandidate |
2041                 BuiltinUnsizeCandidate |
2042                 BuiltinCandidate { .. } => {
2043                     // We have a where-clause so don't go around looking
2044                     // for impls.
2045                     true
2046                 }
2047                 ObjectCandidate |
2048                 ProjectionCandidate => {
2049                     // Arbitrarily give param candidates priority
2050                     // over projection and object candidates.
2051                     true
2052                 },
2053                 ParamCandidate(..) => false,
2054             },
2055             ImplCandidate(other_def) => {
2056                 // See if we can toss out `victim` based on specialization.
2057                 // This requires us to know *for sure* that the `other` impl applies
2058                 // i.e. EvaluatedToOk:
2059                 if other.evaluation == EvaluatedToOk {
2060                     if let ImplCandidate(victim_def) = victim.candidate {
2061                         let tcx = self.tcx().global_tcx();
2062                         return tcx.specializes((other_def, victim_def)) ||
2063                             tcx.impls_are_allowed_to_overlap(other_def, victim_def);
2064                     }
2065                 }
2066
2067                 false
2068             },
2069             _ => false
2070         }
2071     }
2072
2073     ///////////////////////////////////////////////////////////////////////////
2074     // BUILTIN BOUNDS
2075     //
2076     // These cover the traits that are built-in to the language
2077     // itself.  This includes `Copy` and `Sized` for sure. For the
2078     // moment, it also includes `Send` / `Sync` and a few others, but
2079     // those will hopefully change to library-defined traits in the
2080     // future.
2081
2082     // HACK: if this returns an error, selection exits without considering
2083     // other impls.
2084     fn assemble_builtin_bound_candidates<'o>(&mut self,
2085                                              conditions: BuiltinImplConditions<'tcx>,
2086                                              candidates: &mut SelectionCandidateSet<'tcx>)
2087                                              -> Result<(),SelectionError<'tcx>>
2088     {
2089         match conditions {
2090             BuiltinImplConditions::Where(nested) => {
2091                 debug!("builtin_bound: nested={:?}", nested);
2092                 candidates.vec.push(BuiltinCandidate {
2093                     has_nested: nested.skip_binder().len() > 0
2094                 });
2095                 Ok(())
2096             }
2097             BuiltinImplConditions::None => { Ok(()) }
2098             BuiltinImplConditions::Ambiguous => {
2099                 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
2100                 Ok(candidates.ambiguous = true)
2101             }
2102             BuiltinImplConditions::Never => { Err(Unimplemented) }
2103         }
2104     }
2105
2106     fn sized_conditions(&mut self, obligation: &TraitObligation<'tcx>)
2107                      -> BuiltinImplConditions<'tcx>
2108     {
2109         use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
2110
2111         // NOTE: binder moved to (*)
2112         let self_ty = self.infcx.shallow_resolve(
2113             obligation.predicate.skip_binder().self_ty());
2114
2115         match self_ty.sty {
2116             ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
2117             ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
2118             ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyRawPtr(..) |
2119             ty::TyChar | ty::TyRef(..) | ty::TyGenerator(..) |
2120             ty::TyGeneratorWitness(..) | ty::TyArray(..) | ty::TyClosure(..) |
2121             ty::TyNever | ty::TyError => {
2122                 // safe for everything
2123                 Where(ty::Binder::dummy(Vec::new()))
2124             }
2125
2126             ty::TyStr | ty::TySlice(_) | ty::TyDynamic(..) | ty::TyForeign(..) => Never,
2127
2128             ty::TyTuple(tys) => {
2129                 Where(ty::Binder::bind(tys.last().into_iter().cloned().collect()))
2130             }
2131
2132             ty::TyAdt(def, substs) => {
2133                 let sized_crit = def.sized_constraint(self.tcx());
2134                 // (*) binder moved here
2135                 Where(ty::Binder::bind(
2136                     sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
2137                 ))
2138             }
2139
2140             ty::TyProjection(_) | ty::TyParam(_) | ty::TyAnon(..) => None,
2141             ty::TyInfer(ty::TyVar(_)) => Ambiguous,
2142
2143             ty::TyInfer(ty::CanonicalTy(_)) |
2144             ty::TyInfer(ty::FreshTy(_)) |
2145             ty::TyInfer(ty::FreshIntTy(_)) |
2146             ty::TyInfer(ty::FreshFloatTy(_)) => {
2147                 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
2148                      self_ty);
2149             }
2150         }
2151     }
2152
2153     fn copy_clone_conditions(&mut self, obligation: &TraitObligation<'tcx>)
2154                      -> BuiltinImplConditions<'tcx>
2155     {
2156         // NOTE: binder moved to (*)
2157         let self_ty = self.infcx.shallow_resolve(
2158             obligation.predicate.skip_binder().self_ty());
2159
2160         use self::BuiltinImplConditions::{Ambiguous, None, Never, Where};
2161
2162         match self_ty.sty {
2163             ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
2164             ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyError => {
2165                 Where(ty::Binder::dummy(Vec::new()))
2166             }
2167
2168             ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
2169             ty::TyChar | ty::TyRawPtr(..) | ty::TyNever |
2170             ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutImmutable }) => {
2171                 // Implementations provided in libcore
2172                 None
2173             }
2174
2175             ty::TyDynamic(..) | ty::TyStr | ty::TySlice(..) |
2176             ty::TyGenerator(..) | ty::TyGeneratorWitness(..) | ty::TyForeign(..) |
2177             ty::TyRef(_, ty::TypeAndMut { ty: _, mutbl: hir::MutMutable }) => {
2178                 Never
2179             }
2180
2181             ty::TyArray(element_ty, _) => {
2182                 // (*) binder moved here
2183                 Where(ty::Binder::bind(vec![element_ty]))
2184             }
2185
2186             ty::TyTuple(tys) => {
2187                 // (*) binder moved here
2188                 Where(ty::Binder::bind(tys.to_vec()))
2189             }
2190
2191             ty::TyClosure(def_id, substs) => {
2192                 let trait_id = obligation.predicate.def_id();
2193                 let is_copy_trait = Some(trait_id) == self.tcx().lang_items().copy_trait();
2194                 let is_clone_trait = Some(trait_id) == self.tcx().lang_items().clone_trait();
2195                 if is_copy_trait || is_clone_trait {
2196                     Where(ty::Binder::bind(substs.upvar_tys(def_id, self.tcx()).collect()))
2197                 } else {
2198                     Never
2199                 }
2200             }
2201
2202             ty::TyAdt(..) | ty::TyProjection(..) | ty::TyParam(..) | ty::TyAnon(..) => {
2203                 // Fallback to whatever user-defined impls exist in this case.
2204                 None
2205             }
2206
2207             ty::TyInfer(ty::TyVar(_)) => {
2208                 // Unbound type variable. Might or might not have
2209                 // applicable impls and so forth, depending on what
2210                 // those type variables wind up being bound to.
2211                 Ambiguous
2212             }
2213
2214             ty::TyInfer(ty::CanonicalTy(_)) |
2215             ty::TyInfer(ty::FreshTy(_)) |
2216             ty::TyInfer(ty::FreshIntTy(_)) |
2217             ty::TyInfer(ty::FreshFloatTy(_)) => {
2218                 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
2219                      self_ty);
2220             }
2221         }
2222     }
2223
2224     /// For default impls, we need to break apart a type into its
2225     /// "constituent types" -- meaning, the types that it contains.
2226     ///
2227     /// Here are some (simple) examples:
2228     ///
2229     /// ```
2230     /// (i32, u32) -> [i32, u32]
2231     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2232     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2233     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2234     /// ```
2235     fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
2236         match t.sty {
2237             ty::TyUint(_) |
2238             ty::TyInt(_) |
2239             ty::TyBool |
2240             ty::TyFloat(_) |
2241             ty::TyFnDef(..) |
2242             ty::TyFnPtr(_) |
2243             ty::TyStr |
2244             ty::TyError |
2245             ty::TyInfer(ty::IntVar(_)) |
2246             ty::TyInfer(ty::FloatVar(_)) |
2247             ty::TyNever |
2248             ty::TyChar => {
2249                 Vec::new()
2250             }
2251
2252             ty::TyDynamic(..) |
2253             ty::TyParam(..) |
2254             ty::TyForeign(..) |
2255             ty::TyProjection(..) |
2256             ty::TyInfer(ty::CanonicalTy(_)) |
2257             ty::TyInfer(ty::TyVar(_)) |
2258             ty::TyInfer(ty::FreshTy(_)) |
2259             ty::TyInfer(ty::FreshIntTy(_)) |
2260             ty::TyInfer(ty::FreshFloatTy(_)) => {
2261                 bug!("asked to assemble constituent types of unexpected type: {:?}",
2262                      t);
2263             }
2264
2265             ty::TyRawPtr(ty::TypeAndMut { ty: element_ty, ..}) |
2266             ty::TyRef(_, ty::TypeAndMut { ty: element_ty, ..}) => {
2267                 vec![element_ty]
2268             },
2269
2270             ty::TyArray(element_ty, _) | ty::TySlice(element_ty) => {
2271                 vec![element_ty]
2272             }
2273
2274             ty::TyTuple(ref tys) => {
2275                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2276                 tys.to_vec()
2277             }
2278
2279             ty::TyClosure(def_id, ref substs) => {
2280                 substs.upvar_tys(def_id, self.tcx()).collect()
2281             }
2282
2283             ty::TyGenerator(def_id, ref substs, interior) => {
2284                 substs.upvar_tys(def_id, self.tcx()).chain(iter::once(interior.witness)).collect()
2285             }
2286
2287             ty::TyGeneratorWitness(types) => {
2288                 // This is sound because no regions in the witness can refer to
2289                 // the binder outside the witness. So we'll effectivly reuse
2290                 // the implicit binder around the witness.
2291                 types.skip_binder().to_vec()
2292             }
2293
2294             // for `PhantomData<T>`, we pass `T`
2295             ty::TyAdt(def, substs) if def.is_phantom_data() => {
2296                 substs.types().collect()
2297             }
2298
2299             ty::TyAdt(def, substs) => {
2300                 def.all_fields()
2301                     .map(|f| f.ty(self.tcx(), substs))
2302                     .collect()
2303             }
2304
2305             ty::TyAnon(def_id, substs) => {
2306                 // We can resolve the `impl Trait` to its concrete type,
2307                 // which enforces a DAG between the functions requiring
2308                 // the auto trait bounds in question.
2309                 vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
2310             }
2311         }
2312     }
2313
2314     fn collect_predicates_for_types(&mut self,
2315                                     param_env: ty::ParamEnv<'tcx>,
2316                                     cause: ObligationCause<'tcx>,
2317                                     recursion_depth: usize,
2318                                     trait_def_id: DefId,
2319                                     types: ty::Binder<Vec<Ty<'tcx>>>)
2320                                     -> Vec<PredicateObligation<'tcx>>
2321     {
2322         // Because the types were potentially derived from
2323         // higher-ranked obligations they may reference late-bound
2324         // regions. For example, `for<'a> Foo<&'a int> : Copy` would
2325         // yield a type like `for<'a> &'a int`. In general, we
2326         // maintain the invariant that we never manipulate bound
2327         // regions, so we have to process these bound regions somehow.
2328         //
2329         // The strategy is to:
2330         //
2331         // 1. Instantiate those regions to skolemized regions (e.g.,
2332         //    `for<'a> &'a int` becomes `&0 int`.
2333         // 2. Produce something like `&'0 int : Copy`
2334         // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
2335
2336         types.skip_binder().into_iter().flat_map(|ty| { // binder moved -\
2337             let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
2338
2339             self.in_snapshot(|this, snapshot| {
2340                 let (skol_ty, skol_map) =
2341                     this.infcx().skolemize_late_bound_regions(&ty);
2342                 let Normalized { value: normalized_ty, mut obligations } =
2343                     project::normalize_with_depth(this,
2344                                                   param_env,
2345                                                   cause.clone(),
2346                                                   recursion_depth,
2347                                                   &skol_ty);
2348                 let skol_obligation =
2349                     this.tcx().predicate_for_trait_def(param_env,
2350                                                        cause.clone(),
2351                                                        trait_def_id,
2352                                                        recursion_depth,
2353                                                        normalized_ty,
2354                                                        &[]);
2355                 obligations.push(skol_obligation);
2356                 this.infcx().plug_leaks(skol_map, snapshot, obligations)
2357             })
2358         }).collect()
2359     }
2360
2361     ///////////////////////////////////////////////////////////////////////////
2362     // CONFIRMATION
2363     //
2364     // Confirmation unifies the output type parameters of the trait
2365     // with the values found in the obligation, possibly yielding a
2366     // type error.  See [rustc guide] for more details.
2367     //
2368     // [rustc guide]:
2369     // https://rust-lang-nursery.github.io/rustc-guide/trait-resolution.html#confirmation
2370
2371     fn confirm_candidate(&mut self,
2372                          obligation: &TraitObligation<'tcx>,
2373                          candidate: SelectionCandidate<'tcx>)
2374                          -> Result<Selection<'tcx>,SelectionError<'tcx>>
2375     {
2376         debug!("confirm_candidate({:?}, {:?})",
2377                obligation,
2378                candidate);
2379
2380         match candidate {
2381             BuiltinCandidate { has_nested } => {
2382                 let data = self.confirm_builtin_candidate(obligation, has_nested);
2383                 Ok(VtableBuiltin(data))
2384             }
2385
2386             ParamCandidate(param) => {
2387                 let obligations = self.confirm_param_candidate(obligation, param);
2388                 Ok(VtableParam(obligations))
2389             }
2390
2391             AutoImplCandidate(trait_def_id) => {
2392                 let data = self.confirm_auto_impl_candidate(obligation, trait_def_id);
2393                 Ok(VtableAutoImpl(data))
2394             }
2395
2396             ImplCandidate(impl_def_id) => {
2397                 Ok(VtableImpl(self.confirm_impl_candidate(obligation, impl_def_id)))
2398             }
2399
2400             ClosureCandidate => {
2401                 let vtable_closure = self.confirm_closure_candidate(obligation)?;
2402                 Ok(VtableClosure(vtable_closure))
2403             }
2404
2405             GeneratorCandidate => {
2406                 let vtable_generator = self.confirm_generator_candidate(obligation)?;
2407                 Ok(VtableGenerator(vtable_generator))
2408             }
2409
2410             BuiltinObjectCandidate => {
2411                 // This indicates something like `(Trait+Send) :
2412                 // Send`. In this case, we know that this holds
2413                 // because that's what the object type is telling us,
2414                 // and there's really no additional obligations to
2415                 // prove and no types in particular to unify etc.
2416                 Ok(VtableParam(Vec::new()))
2417             }
2418
2419             ObjectCandidate => {
2420                 let data = self.confirm_object_candidate(obligation);
2421                 Ok(VtableObject(data))
2422             }
2423
2424             FnPointerCandidate => {
2425                 let data =
2426                     self.confirm_fn_pointer_candidate(obligation)?;
2427                 Ok(VtableFnPointer(data))
2428             }
2429
2430             ProjectionCandidate => {
2431                 self.confirm_projection_candidate(obligation);
2432                 Ok(VtableParam(Vec::new()))
2433             }
2434
2435             BuiltinUnsizeCandidate => {
2436                 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2437                 Ok(VtableBuiltin(data))
2438             }
2439         }
2440     }
2441
2442     fn confirm_projection_candidate(&mut self,
2443                                     obligation: &TraitObligation<'tcx>)
2444     {
2445         self.in_snapshot(|this, snapshot| {
2446             let result =
2447                 this.match_projection_obligation_against_definition_bounds(obligation,
2448                                                                            snapshot);
2449             assert!(result);
2450         })
2451     }
2452
2453     fn confirm_param_candidate(&mut self,
2454                                obligation: &TraitObligation<'tcx>,
2455                                param: ty::PolyTraitRef<'tcx>)
2456                                -> Vec<PredicateObligation<'tcx>>
2457     {
2458         debug!("confirm_param_candidate({:?},{:?})",
2459                obligation,
2460                param);
2461
2462         // During evaluation, we already checked that this
2463         // where-clause trait-ref could be unified with the obligation
2464         // trait-ref. Repeat that unification now without any
2465         // transactional boundary; it should not fail.
2466         match self.match_where_clause_trait_ref(obligation, param.clone()) {
2467             Ok(obligations) => obligations,
2468             Err(()) => {
2469                 bug!("Where clause `{:?}` was applicable to `{:?}` but now is not",
2470                      param,
2471                      obligation);
2472             }
2473         }
2474     }
2475
2476     fn confirm_builtin_candidate(&mut self,
2477                                  obligation: &TraitObligation<'tcx>,
2478                                  has_nested: bool)
2479                                  -> VtableBuiltinData<PredicateObligation<'tcx>>
2480     {
2481         debug!("confirm_builtin_candidate({:?}, {:?})",
2482                obligation, has_nested);
2483
2484         let lang_items = self.tcx().lang_items();
2485         let obligations = if has_nested {
2486             let trait_def = obligation.predicate.def_id();
2487             let conditions = match trait_def {
2488                 _ if Some(trait_def) == lang_items.sized_trait() => {
2489                     self.sized_conditions(obligation)
2490                 }
2491                 _ if Some(trait_def) == lang_items.copy_trait() => {
2492                     self.copy_clone_conditions(obligation)
2493                 }
2494                 _ if Some(trait_def) == lang_items.clone_trait() => {
2495                     self.copy_clone_conditions(obligation)
2496                 }
2497                 _ => bug!("unexpected builtin trait {:?}", trait_def)
2498             };
2499             let nested = match conditions {
2500                 BuiltinImplConditions::Where(nested) => nested,
2501                 _ => bug!("obligation {:?} had matched a builtin impl but now doesn't",
2502                           obligation)
2503             };
2504
2505             let cause = obligation.derived_cause(BuiltinDerivedObligation);
2506             self.collect_predicates_for_types(obligation.param_env,
2507                                               cause,
2508                                               obligation.recursion_depth+1,
2509                                               trait_def,
2510                                               nested)
2511         } else {
2512             vec![]
2513         };
2514
2515         debug!("confirm_builtin_candidate: obligations={:?}",
2516                obligations);
2517
2518         VtableBuiltinData { nested: obligations }
2519     }
2520
2521     /// This handles the case where a `auto trait Foo` impl is being used.
2522     /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2523     ///
2524     /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2525     /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2526     fn confirm_auto_impl_candidate(&mut self,
2527                                    obligation: &TraitObligation<'tcx>,
2528                                    trait_def_id: DefId)
2529                                    -> VtableAutoImplData<PredicateObligation<'tcx>>
2530     {
2531         debug!("confirm_auto_impl_candidate({:?}, {:?})",
2532                obligation,
2533                trait_def_id);
2534
2535         let types = obligation.predicate.map_bound(|inner| {
2536             let self_ty = self.infcx.shallow_resolve(inner.self_ty());
2537             self.constituent_types_for_ty(self_ty)
2538         });
2539         self.vtable_auto_impl(obligation, trait_def_id, types)
2540     }
2541
2542     /// See `confirm_auto_impl_candidate`
2543     fn vtable_auto_impl(&mut self,
2544                            obligation: &TraitObligation<'tcx>,
2545                            trait_def_id: DefId,
2546                            nested: ty::Binder<Vec<Ty<'tcx>>>)
2547                            -> VtableAutoImplData<PredicateObligation<'tcx>>
2548     {
2549         debug!("vtable_auto_impl: nested={:?}", nested);
2550
2551         let cause = obligation.derived_cause(BuiltinDerivedObligation);
2552         let mut obligations = self.collect_predicates_for_types(
2553             obligation.param_env,
2554             cause,
2555             obligation.recursion_depth+1,
2556             trait_def_id,
2557             nested);
2558
2559         let trait_obligations = self.in_snapshot(|this, snapshot| {
2560             let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
2561             let (trait_ref, skol_map) =
2562                 this.infcx().skolemize_late_bound_regions(&poly_trait_ref);
2563             let cause = obligation.derived_cause(ImplDerivedObligation);
2564             this.impl_or_trait_obligations(cause,
2565                                            obligation.recursion_depth + 1,
2566                                            obligation.param_env,
2567                                            trait_def_id,
2568                                            &trait_ref.substs,
2569                                            skol_map,
2570                                            snapshot)
2571         });
2572
2573         obligations.extend(trait_obligations);
2574
2575         debug!("vtable_auto_impl: obligations={:?}", obligations);
2576
2577         VtableAutoImplData {
2578             trait_def_id,
2579             nested: obligations
2580         }
2581     }
2582
2583     fn confirm_impl_candidate(&mut self,
2584                               obligation: &TraitObligation<'tcx>,
2585                               impl_def_id: DefId)
2586                               -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2587     {
2588         debug!("confirm_impl_candidate({:?},{:?})",
2589                obligation,
2590                impl_def_id);
2591
2592         // First, create the substitutions by matching the impl again,
2593         // this time not in a probe.
2594         self.in_snapshot(|this, snapshot| {
2595             let (substs, skol_map) =
2596                 this.rematch_impl(impl_def_id, obligation,
2597                                   snapshot);
2598             debug!("confirm_impl_candidate substs={:?}", substs);
2599             let cause = obligation.derived_cause(ImplDerivedObligation);
2600             this.vtable_impl(impl_def_id,
2601                              substs,
2602                              cause,
2603                              obligation.recursion_depth + 1,
2604                              obligation.param_env,
2605                              skol_map,
2606                              snapshot)
2607         })
2608     }
2609
2610     fn vtable_impl(&mut self,
2611                    impl_def_id: DefId,
2612                    mut substs: Normalized<'tcx, &'tcx Substs<'tcx>>,
2613                    cause: ObligationCause<'tcx>,
2614                    recursion_depth: usize,
2615                    param_env: ty::ParamEnv<'tcx>,
2616                    skol_map: infer::SkolemizationMap<'tcx>,
2617                    snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
2618                    -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2619     {
2620         debug!("vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={}, skol_map={:?})",
2621                impl_def_id,
2622                substs,
2623                recursion_depth,
2624                skol_map);
2625
2626         let mut impl_obligations =
2627             self.impl_or_trait_obligations(cause,
2628                                            recursion_depth,
2629                                            param_env,
2630                                            impl_def_id,
2631                                            &substs.value,
2632                                            skol_map,
2633                                            snapshot);
2634
2635         debug!("vtable_impl: impl_def_id={:?} impl_obligations={:?}",
2636                impl_def_id,
2637                impl_obligations);
2638
2639         // Because of RFC447, the impl-trait-ref and obligations
2640         // are sufficient to determine the impl substs, without
2641         // relying on projections in the impl-trait-ref.
2642         //
2643         // e.g. `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
2644         impl_obligations.append(&mut substs.obligations);
2645
2646         VtableImplData { impl_def_id,
2647                          substs: substs.value,
2648                          nested: impl_obligations }
2649     }
2650
2651     fn confirm_object_candidate(&mut self,
2652                                 obligation: &TraitObligation<'tcx>)
2653                                 -> VtableObjectData<'tcx, PredicateObligation<'tcx>>
2654     {
2655         debug!("confirm_object_candidate({:?})",
2656                obligation);
2657
2658         // FIXME skipping binder here seems wrong -- we should
2659         // probably flatten the binder from the obligation and the
2660         // binder from the object. Have to try to make a broken test
2661         // case that results. -nmatsakis
2662         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2663         let poly_trait_ref = match self_ty.sty {
2664             ty::TyDynamic(ref data, ..) => {
2665                 data.principal().unwrap().with_self_ty(self.tcx(), self_ty)
2666             }
2667             _ => {
2668                 span_bug!(obligation.cause.span,
2669                           "object candidate with non-object");
2670             }
2671         };
2672
2673         let mut upcast_trait_ref = None;
2674         let mut nested = vec![];
2675         let vtable_base;
2676
2677         {
2678             let tcx = self.tcx();
2679
2680             // We want to find the first supertrait in the list of
2681             // supertraits that we can unify with, and do that
2682             // unification. We know that there is exactly one in the list
2683             // where we can unify because otherwise select would have
2684             // reported an ambiguity. (When we do find a match, also
2685             // record it for later.)
2686             let nonmatching =
2687                 util::supertraits(tcx, poly_trait_ref)
2688                 .take_while(|&t| {
2689                     match
2690                         self.commit_if_ok(
2691                             |this, _| this.match_poly_trait_ref(obligation, t))
2692                     {
2693                         Ok(obligations) => {
2694                             upcast_trait_ref = Some(t);
2695                             nested.extend(obligations);
2696                             false
2697                         }
2698                         Err(_) => { true }
2699                     }
2700                 });
2701
2702             // Additionally, for each of the nonmatching predicates that
2703             // we pass over, we sum up the set of number of vtable
2704             // entries, so that we can compute the offset for the selected
2705             // trait.
2706             vtable_base =
2707                 nonmatching.map(|t| tcx.count_own_vtable_entries(t))
2708                            .sum();
2709
2710         }
2711
2712         VtableObjectData {
2713             upcast_trait_ref: upcast_trait_ref.unwrap(),
2714             vtable_base,
2715             nested,
2716         }
2717     }
2718
2719     fn confirm_fn_pointer_candidate(&mut self, obligation: &TraitObligation<'tcx>)
2720         -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
2721     {
2722         debug!("confirm_fn_pointer_candidate({:?})",
2723                obligation);
2724
2725         // ok to skip binder; it is reintroduced below
2726         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2727         let sig = self_ty.fn_sig(self.tcx());
2728         let trait_ref =
2729             self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
2730                                                          self_ty,
2731                                                          sig,
2732                                                          util::TupleArgumentsFlag::Yes)
2733             .map_bound(|(trait_ref, _)| trait_ref);
2734
2735         let Normalized { value: trait_ref, obligations } =
2736             project::normalize_with_depth(self,
2737                                           obligation.param_env,
2738                                           obligation.cause.clone(),
2739                                           obligation.recursion_depth + 1,
2740                                           &trait_ref);
2741
2742         self.confirm_poly_trait_refs(obligation.cause.clone(),
2743                                      obligation.param_env,
2744                                      obligation.predicate.to_poly_trait_ref(),
2745                                      trait_ref)?;
2746         Ok(VtableFnPointerData { fn_ty: self_ty, nested: obligations })
2747     }
2748
2749     fn confirm_generator_candidate(&mut self,
2750                                    obligation: &TraitObligation<'tcx>)
2751                                    -> Result<VtableGeneratorData<'tcx, PredicateObligation<'tcx>>,
2752                                            SelectionError<'tcx>>
2753     {
2754         // ok to skip binder because the substs on generator types never
2755         // touch bound regions, they just capture the in-scope
2756         // type/region parameters
2757         let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2758         let (closure_def_id, substs) = match self_ty.sty {
2759             ty::TyGenerator(id, substs, _) => (id, substs),
2760             _ => bug!("closure candidate for non-closure {:?}", obligation)
2761         };
2762
2763         debug!("confirm_generator_candidate({:?},{:?},{:?})",
2764                obligation,
2765                closure_def_id,
2766                substs);
2767
2768         let trait_ref =
2769             self.generator_trait_ref_unnormalized(obligation, closure_def_id, substs);
2770         let Normalized {
2771             value: trait_ref,
2772             mut obligations
2773         } = normalize_with_depth(self,
2774                                  obligation.param_env,
2775                                  obligation.cause.clone(),
2776                                  obligation.recursion_depth+1,
2777                                  &trait_ref);
2778
2779         debug!("confirm_generator_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
2780                closure_def_id,
2781                trait_ref,
2782                obligations);
2783
2784         obligations.extend(
2785             self.confirm_poly_trait_refs(obligation.cause.clone(),
2786                                         obligation.param_env,
2787                                         obligation.predicate.to_poly_trait_ref(),
2788                                         trait_ref)?);
2789
2790         Ok(VtableGeneratorData {
2791             closure_def_id: closure_def_id,
2792             substs: substs.clone(),
2793             nested: obligations
2794         })
2795     }
2796
2797     fn confirm_closure_candidate(&mut self,
2798                                  obligation: &TraitObligation<'tcx>)
2799                                  -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>,
2800                                            SelectionError<'tcx>>
2801     {
2802         debug!("confirm_closure_candidate({:?})", obligation);
2803
2804         let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()) {
2805             Some(k) => k,
2806             None => bug!("closure candidate for non-fn trait {:?}", obligation)
2807         };
2808
2809         // ok to skip binder because the substs on closure types never
2810         // touch bound regions, they just capture the in-scope
2811         // type/region parameters
2812         let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2813         let (closure_def_id, substs) = match self_ty.sty {
2814             ty::TyClosure(id, substs) => (id, substs),
2815             _ => bug!("closure candidate for non-closure {:?}", obligation)
2816         };
2817
2818         let trait_ref =
2819             self.closure_trait_ref_unnormalized(obligation, closure_def_id, substs);
2820         let Normalized {
2821             value: trait_ref,
2822             mut obligations
2823         } = normalize_with_depth(self,
2824                                  obligation.param_env,
2825                                  obligation.cause.clone(),
2826                                  obligation.recursion_depth+1,
2827                                  &trait_ref);
2828
2829         debug!("confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
2830                closure_def_id,
2831                trait_ref,
2832                obligations);
2833
2834         obligations.extend(
2835             self.confirm_poly_trait_refs(obligation.cause.clone(),
2836                                         obligation.param_env,
2837                                         obligation.predicate.to_poly_trait_ref(),
2838                                         trait_ref)?);
2839
2840         obligations.push(Obligation::new(
2841             obligation.cause.clone(),
2842             obligation.param_env,
2843             ty::Predicate::ClosureKind(closure_def_id, substs, kind)));
2844
2845         Ok(VtableClosureData {
2846             closure_def_id,
2847             substs: substs.clone(),
2848             nested: obligations
2849         })
2850     }
2851
2852     /// In the case of closure types and fn pointers,
2853     /// we currently treat the input type parameters on the trait as
2854     /// outputs. This means that when we have a match we have only
2855     /// considered the self type, so we have to go back and make sure
2856     /// to relate the argument types too.  This is kind of wrong, but
2857     /// since we control the full set of impls, also not that wrong,
2858     /// and it DOES yield better error messages (since we don't report
2859     /// errors as if there is no applicable impl, but rather report
2860     /// errors are about mismatched argument types.
2861     ///
2862     /// Here is an example. Imagine we have a closure expression
2863     /// and we desugared it so that the type of the expression is
2864     /// `Closure`, and `Closure` expects an int as argument. Then it
2865     /// is "as if" the compiler generated this impl:
2866     ///
2867     ///     impl Fn(int) for Closure { ... }
2868     ///
2869     /// Now imagine our obligation is `Fn(usize) for Closure`. So far
2870     /// we have matched the self-type `Closure`. At this point we'll
2871     /// compare the `int` to `usize` and generate an error.
2872     ///
2873     /// Note that this checking occurs *after* the impl has selected,
2874     /// because these output type parameters should not affect the
2875     /// selection of the impl. Therefore, if there is a mismatch, we
2876     /// report an error to the user.
2877     fn confirm_poly_trait_refs(&mut self,
2878                                obligation_cause: ObligationCause<'tcx>,
2879                                obligation_param_env: ty::ParamEnv<'tcx>,
2880                                obligation_trait_ref: ty::PolyTraitRef<'tcx>,
2881                                expected_trait_ref: ty::PolyTraitRef<'tcx>)
2882                                -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>>
2883     {
2884         let obligation_trait_ref = obligation_trait_ref.clone();
2885         self.infcx
2886             .at(&obligation_cause, obligation_param_env)
2887             .sup(obligation_trait_ref, expected_trait_ref)
2888             .map(|InferOk { obligations, .. }| obligations)
2889             .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
2890     }
2891
2892     fn confirm_builtin_unsize_candidate(&mut self,
2893                                         obligation: &TraitObligation<'tcx>,)
2894         -> Result<VtableBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>>
2895     {
2896         let tcx = self.tcx();
2897
2898         // assemble_candidates_for_unsizing should ensure there are no late bound
2899         // regions here. See the comment there for more details.
2900         let source = self.infcx.shallow_resolve(
2901             obligation.self_ty().no_late_bound_regions().unwrap());
2902         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
2903         let target = self.infcx.shallow_resolve(target);
2904
2905         debug!("confirm_builtin_unsize_candidate(source={:?}, target={:?})",
2906                source, target);
2907
2908         let mut nested = vec![];
2909         match (&source.sty, &target.sty) {
2910             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2911             (&ty::TyDynamic(ref data_a, r_a), &ty::TyDynamic(ref data_b, r_b)) => {
2912                 // See assemble_candidates_for_unsizing for more info.
2913                 let existential_predicates = data_a.map_bound(|data_a| {
2914                     let principal = data_a.principal();
2915                     let iter = principal.into_iter().map(ty::ExistentialPredicate::Trait)
2916                         .chain(data_a.projection_bounds()
2917                             .map(|x| ty::ExistentialPredicate::Projection(x)))
2918                         .chain(data_b.auto_traits().map(ty::ExistentialPredicate::AutoTrait));
2919                     tcx.mk_existential_predicates(iter)
2920                 });
2921                 let new_trait = tcx.mk_dynamic(existential_predicates, r_b);
2922                 let InferOk { obligations, .. } =
2923                     self.infcx.at(&obligation.cause, obligation.param_env)
2924                               .eq(target, new_trait)
2925                               .map_err(|_| Unimplemented)?;
2926                 nested.extend(obligations);
2927
2928                 // Register one obligation for 'a: 'b.
2929                 let cause = ObligationCause::new(obligation.cause.span,
2930                                                  obligation.cause.body_id,
2931                                                  ObjectCastObligation(target));
2932                 let outlives = ty::OutlivesPredicate(r_a, r_b);
2933                 nested.push(Obligation::with_depth(cause,
2934                                                    obligation.recursion_depth + 1,
2935                                                    obligation.param_env,
2936                                                    ty::Binder::bind(outlives).to_predicate()));
2937             }
2938
2939             // T -> Trait.
2940             (_, &ty::TyDynamic(ref data, r)) => {
2941                 let mut object_dids =
2942                     data.auto_traits().chain(data.principal().map(|p| p.def_id()));
2943                 if let Some(did) = object_dids.find(|did| {
2944                     !tcx.is_object_safe(*did)
2945                 }) {
2946                     return Err(TraitNotObjectSafe(did))
2947                 }
2948
2949                 let cause = ObligationCause::new(obligation.cause.span,
2950                                                  obligation.cause.body_id,
2951                                                  ObjectCastObligation(target));
2952                 let mut push = |predicate| {
2953                     nested.push(Obligation::with_depth(cause.clone(),
2954                                                        obligation.recursion_depth + 1,
2955                                                        obligation.param_env,
2956                                                        predicate));
2957                 };
2958
2959                 // Create obligations:
2960                 //  - Casting T to Trait
2961                 //  - For all the various builtin bounds attached to the object cast. (In other
2962                 //  words, if the object type is Foo+Send, this would create an obligation for the
2963                 //  Send check.)
2964                 //  - Projection predicates
2965                 for predicate in data.iter() {
2966                     push(predicate.with_self_ty(tcx, source));
2967                 }
2968
2969                 // We can only make objects from sized types.
2970                 let tr = ty::TraitRef {
2971                     def_id: tcx.require_lang_item(lang_items::SizedTraitLangItem),
2972                     substs: tcx.mk_substs_trait(source, &[]),
2973                 };
2974                 push(tr.to_predicate());
2975
2976                 // If the type is `Foo+'a`, ensures that the type
2977                 // being cast to `Foo+'a` outlives `'a`:
2978                 let outlives = ty::OutlivesPredicate(source, r);
2979                 push(ty::Binder::dummy(outlives).to_predicate());
2980             }
2981
2982             // [T; n] -> [T].
2983             (&ty::TyArray(a, _), &ty::TySlice(b)) => {
2984                 let InferOk { obligations, .. } =
2985                     self.infcx.at(&obligation.cause, obligation.param_env)
2986                               .eq(b, a)
2987                               .map_err(|_| Unimplemented)?;
2988                 nested.extend(obligations);
2989             }
2990
2991             // Struct<T> -> Struct<U>.
2992             (&ty::TyAdt(def, substs_a), &ty::TyAdt(_, substs_b)) => {
2993                 let fields = def
2994                     .all_fields()
2995                     .map(|f| tcx.type_of(f.did))
2996                     .collect::<Vec<_>>();
2997
2998                 // The last field of the structure has to exist and contain type parameters.
2999                 let field = if let Some(&field) = fields.last() {
3000                     field
3001                 } else {
3002                     return Err(Unimplemented);
3003                 };
3004                 let mut ty_params = BitVector::new(substs_a.types().count());
3005                 let mut found = false;
3006                 for ty in field.walk() {
3007                     if let ty::TyParam(p) = ty.sty {
3008                         ty_params.insert(p.idx as usize);
3009                         found = true;
3010                     }
3011                 }
3012                 if !found {
3013                     return Err(Unimplemented);
3014                 }
3015
3016                 // Replace type parameters used in unsizing with
3017                 // TyError and ensure they do not affect any other fields.
3018                 // This could be checked after type collection for any struct
3019                 // with a potentially unsized trailing field.
3020                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3021                     if ty_params.contains(i) {
3022                         Kind::from(tcx.types.err)
3023                     } else {
3024                         k
3025                     }
3026                 });
3027                 let substs = tcx.mk_substs(params);
3028                 for &ty in fields.split_last().unwrap().1 {
3029                     if ty.subst(tcx, substs).references_error() {
3030                         return Err(Unimplemented);
3031                     }
3032                 }
3033
3034                 // Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
3035                 let inner_source = field.subst(tcx, substs_a);
3036                 let inner_target = field.subst(tcx, substs_b);
3037
3038                 // Check that the source struct with the target's
3039                 // unsized parameters is equal to the target.
3040                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3041                     if ty_params.contains(i) {
3042                         substs_b.type_at(i).into()
3043                     } else {
3044                         k
3045                     }
3046                 });
3047                 let new_struct = tcx.mk_adt(def, tcx.mk_substs(params));
3048                 let InferOk { obligations, .. } =
3049                     self.infcx.at(&obligation.cause, obligation.param_env)
3050                               .eq(target, new_struct)
3051                               .map_err(|_| Unimplemented)?;
3052                 nested.extend(obligations);
3053
3054                 // Construct the nested Field<T>: Unsize<Field<U>> predicate.
3055                 nested.push(tcx.predicate_for_trait_def(
3056                     obligation.param_env,
3057                     obligation.cause.clone(),
3058                     obligation.predicate.def_id(),
3059                     obligation.recursion_depth + 1,
3060                     inner_source,
3061                     &[inner_target]));
3062             }
3063
3064             // (.., T) -> (.., U).
3065             (&ty::TyTuple(tys_a), &ty::TyTuple(tys_b)) => {
3066                 assert_eq!(tys_a.len(), tys_b.len());
3067
3068                 // The last field of the tuple has to exist.
3069                 let (a_last, a_mid) = if let Some(x) = tys_a.split_last() {
3070                     x
3071                 } else {
3072                     return Err(Unimplemented);
3073                 };
3074                 let b_last = tys_b.last().unwrap();
3075
3076                 // Check that the source tuple with the target's
3077                 // last element is equal to the target.
3078                 let new_tuple = tcx.mk_tup(a_mid.iter().chain(Some(b_last)));
3079                 let InferOk { obligations, .. } =
3080                     self.infcx.at(&obligation.cause, obligation.param_env)
3081                               .eq(target, new_tuple)
3082                               .map_err(|_| Unimplemented)?;
3083                 nested.extend(obligations);
3084
3085                 // Construct the nested T: Unsize<U> predicate.
3086                 nested.push(tcx.predicate_for_trait_def(
3087                     obligation.param_env,
3088                     obligation.cause.clone(),
3089                     obligation.predicate.def_id(),
3090                     obligation.recursion_depth + 1,
3091                     a_last,
3092                     &[b_last]));
3093             }
3094
3095             _ => bug!()
3096         };
3097
3098         Ok(VtableBuiltinData { nested: nested })
3099     }
3100
3101     ///////////////////////////////////////////////////////////////////////////
3102     // Matching
3103     //
3104     // Matching is a common path used for both evaluation and
3105     // confirmation.  It basically unifies types that appear in impls
3106     // and traits. This does affect the surrounding environment;
3107     // therefore, when used during evaluation, match routines must be
3108     // run inside of a `probe()` so that their side-effects are
3109     // contained.
3110
3111     fn rematch_impl(&mut self,
3112                     impl_def_id: DefId,
3113                     obligation: &TraitObligation<'tcx>,
3114                     snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
3115                     -> (Normalized<'tcx, &'tcx Substs<'tcx>>,
3116                         infer::SkolemizationMap<'tcx>)
3117     {
3118         match self.match_impl(impl_def_id, obligation, snapshot) {
3119             Ok((substs, skol_map)) => (substs, skol_map),
3120             Err(()) => {
3121                 bug!("Impl {:?} was matchable against {:?} but now is not",
3122                      impl_def_id,
3123                      obligation);
3124             }
3125         }
3126     }
3127
3128     fn match_impl(&mut self,
3129                   impl_def_id: DefId,
3130                   obligation: &TraitObligation<'tcx>,
3131                   snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
3132                   -> Result<(Normalized<'tcx, &'tcx Substs<'tcx>>,
3133                              infer::SkolemizationMap<'tcx>), ()>
3134     {
3135         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
3136
3137         // Before we create the substitutions and everything, first
3138         // consider a "quick reject". This avoids creating more types
3139         // and so forth that we need to.
3140         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
3141             return Err(());
3142         }
3143
3144         let (skol_obligation, skol_map) = self.infcx().skolemize_late_bound_regions(
3145             &obligation.predicate);
3146         let skol_obligation_trait_ref = skol_obligation.trait_ref;
3147
3148         let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span,
3149                                                            impl_def_id);
3150
3151         let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
3152                                                   impl_substs);
3153
3154         let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
3155             project::normalize_with_depth(self,
3156                                           obligation.param_env,
3157                                           obligation.cause.clone(),
3158                                           obligation.recursion_depth + 1,
3159                                           &impl_trait_ref);
3160
3161         debug!("match_impl(impl_def_id={:?}, obligation={:?}, \
3162                impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
3163                impl_def_id,
3164                obligation,
3165                impl_trait_ref,
3166                skol_obligation_trait_ref);
3167
3168         let InferOk { obligations, .. } =
3169             self.infcx.at(&obligation.cause, obligation.param_env)
3170                       .eq(skol_obligation_trait_ref, impl_trait_ref)
3171                       .map_err(|e| {
3172                           debug!("match_impl: failed eq_trait_refs due to `{}`", e);
3173                           ()
3174                       })?;
3175         nested_obligations.extend(obligations);
3176
3177         if let Err(e) = self.infcx.leak_check(false,
3178                                               obligation.cause.span,
3179                                               &skol_map,
3180                                               snapshot) {
3181             debug!("match_impl: failed leak check due to `{}`", e);
3182             return Err(());
3183         }
3184
3185         debug!("match_impl: success impl_substs={:?}", impl_substs);
3186         Ok((Normalized {
3187             value: impl_substs,
3188             obligations: nested_obligations
3189         }, skol_map))
3190     }
3191
3192     fn fast_reject_trait_refs(&mut self,
3193                               obligation: &TraitObligation,
3194                               impl_trait_ref: &ty::TraitRef)
3195                               -> bool
3196     {
3197         // We can avoid creating type variables and doing the full
3198         // substitution if we find that any of the input types, when
3199         // simplified, do not match.
3200
3201         obligation.predicate.skip_binder().input_types()
3202             .zip(impl_trait_ref.input_types())
3203             .any(|(obligation_ty, impl_ty)| {
3204                 let simplified_obligation_ty =
3205                     fast_reject::simplify_type(self.tcx(), obligation_ty, true);
3206                 let simplified_impl_ty =
3207                     fast_reject::simplify_type(self.tcx(), impl_ty, false);
3208
3209                 simplified_obligation_ty.is_some() &&
3210                     simplified_impl_ty.is_some() &&
3211                     simplified_obligation_ty != simplified_impl_ty
3212             })
3213     }
3214
3215     /// Normalize `where_clause_trait_ref` and try to match it against
3216     /// `obligation`.  If successful, return any predicates that
3217     /// result from the normalization. Normalization is necessary
3218     /// because where-clauses are stored in the parameter environment
3219     /// unnormalized.
3220     fn match_where_clause_trait_ref(&mut self,
3221                                     obligation: &TraitObligation<'tcx>,
3222                                     where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
3223                                     -> Result<Vec<PredicateObligation<'tcx>>,()>
3224     {
3225         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
3226     }
3227
3228     /// Returns `Ok` if `poly_trait_ref` being true implies that the
3229     /// obligation is satisfied.
3230     fn match_poly_trait_ref(&mut self,
3231                             obligation: &TraitObligation<'tcx>,
3232                             poly_trait_ref: ty::PolyTraitRef<'tcx>)
3233                             -> Result<Vec<PredicateObligation<'tcx>>,()>
3234     {
3235         debug!("match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
3236                obligation,
3237                poly_trait_ref);
3238
3239         self.infcx.at(&obligation.cause, obligation.param_env)
3240                   .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
3241                   .map(|InferOk { obligations, .. }| obligations)
3242                   .map_err(|_| ())
3243     }
3244
3245     ///////////////////////////////////////////////////////////////////////////
3246     // Miscellany
3247
3248     fn match_fresh_trait_refs(&self,
3249                               previous: &ty::PolyTraitRef<'tcx>,
3250                               current: &ty::PolyTraitRef<'tcx>)
3251                               -> bool
3252     {
3253         let mut matcher = ty::_match::Match::new(self.tcx());
3254         matcher.relate(previous, current).is_ok()
3255     }
3256
3257     fn push_stack<'o,'s:'o>(&mut self,
3258                             previous_stack: TraitObligationStackList<'s, 'tcx>,
3259                             obligation: &'o TraitObligation<'tcx>)
3260                             -> TraitObligationStack<'o, 'tcx>
3261     {
3262         let fresh_trait_ref =
3263             obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
3264
3265         TraitObligationStack {
3266             obligation,
3267             fresh_trait_ref,
3268             previous: previous_stack,
3269         }
3270     }
3271
3272     fn closure_trait_ref_unnormalized(&mut self,
3273                                       obligation: &TraitObligation<'tcx>,
3274                                       closure_def_id: DefId,
3275                                       substs: ty::ClosureSubsts<'tcx>)
3276                                       -> ty::PolyTraitRef<'tcx>
3277     {
3278         let closure_type = self.infcx.closure_sig(closure_def_id, substs);
3279
3280         // (1) Feels icky to skip the binder here, but OTOH we know
3281         // that the self-type is an unboxed closure type and hence is
3282         // in fact unparameterized (or at least does not reference any
3283         // regions bound in the obligation). Still probably some
3284         // refactoring could make this nicer.
3285
3286         self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
3287                                                      obligation.predicate
3288                                                          .skip_binder().self_ty(), // (1)
3289                                                      closure_type,
3290                                                      util::TupleArgumentsFlag::No)
3291             .map_bound(|(trait_ref, _)| trait_ref)
3292     }
3293
3294     fn generator_trait_ref_unnormalized(&mut self,
3295                                       obligation: &TraitObligation<'tcx>,
3296                                       closure_def_id: DefId,
3297                                       substs: ty::ClosureSubsts<'tcx>)
3298                                       -> ty::PolyTraitRef<'tcx>
3299     {
3300         let gen_sig = substs.generator_poly_sig(closure_def_id, self.tcx());
3301
3302         // (1) Feels icky to skip the binder here, but OTOH we know
3303         // that the self-type is an generator type and hence is
3304         // in fact unparameterized (or at least does not reference any
3305         // regions bound in the obligation). Still probably some
3306         // refactoring could make this nicer.
3307
3308         self.tcx().generator_trait_ref_and_outputs(obligation.predicate.def_id(),
3309                                                    obligation.predicate
3310                                                        .skip_binder().self_ty(), // (1)
3311                                                    gen_sig)
3312             .map_bound(|(trait_ref, ..)| trait_ref)
3313     }
3314
3315     /// Returns the obligations that are implied by instantiating an
3316     /// impl or trait. The obligations are substituted and fully
3317     /// normalized. This is used when confirming an impl or default
3318     /// impl.
3319     fn impl_or_trait_obligations(&mut self,
3320                                  cause: ObligationCause<'tcx>,
3321                                  recursion_depth: usize,
3322                                  param_env: ty::ParamEnv<'tcx>,
3323                                  def_id: DefId, // of impl or trait
3324                                  substs: &Substs<'tcx>, // for impl or trait
3325                                  skol_map: infer::SkolemizationMap<'tcx>,
3326                                  snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
3327                                  -> Vec<PredicateObligation<'tcx>>
3328     {
3329         debug!("impl_or_trait_obligations(def_id={:?})", def_id);
3330         let tcx = self.tcx();
3331
3332         // To allow for one-pass evaluation of the nested obligation,
3333         // each predicate must be preceded by the obligations required
3334         // to normalize it.
3335         // for example, if we have:
3336         //    impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
3337         // the impl will have the following predicates:
3338         //    <V as Iterator>::Item = U,
3339         //    U: Iterator, U: Sized,
3340         //    V: Iterator, V: Sized,
3341         //    <U as Iterator>::Item: Copy
3342         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
3343         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
3344         // `$1: Copy`, so we must ensure the obligations are emitted in
3345         // that order.
3346         let predicates = tcx.predicates_of(def_id);
3347         assert_eq!(predicates.parent, None);
3348         let mut predicates: Vec<_> = predicates.predicates.iter().flat_map(|predicate| {
3349             let predicate = normalize_with_depth(self, param_env, cause.clone(), recursion_depth,
3350                                                  &predicate.subst(tcx, substs));
3351             predicate.obligations.into_iter().chain(
3352                 Some(Obligation {
3353                     cause: cause.clone(),
3354                     recursion_depth,
3355                     param_env,
3356                     predicate: predicate.value
3357                 }))
3358         }).collect();
3359         // We are performing deduplication here to avoid exponential blowups
3360         // (#38528) from happening, but the real cause of the duplication is
3361         // unknown. What we know is that the deduplication avoids exponential
3362         // amount of predicates being propogated when processing deeply nested
3363         // types.
3364         let mut seen = FxHashSet();
3365         predicates.retain(|i| seen.insert(i.clone()));
3366         self.infcx().plug_leaks(skol_map, snapshot, predicates)
3367     }
3368 }
3369
3370 impl<'tcx> TraitObligation<'tcx> {
3371     #[allow(unused_comparisons)]
3372     pub fn derived_cause(&self,
3373                         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
3374                         -> ObligationCause<'tcx>
3375     {
3376         /*!
3377          * Creates a cause for obligations that are derived from
3378          * `obligation` by a recursive search (e.g., for a builtin
3379          * bound, or eventually a `auto trait Foo`). If `obligation`
3380          * is itself a derived obligation, this is just a clone, but
3381          * otherwise we create a "derived obligation" cause so as to
3382          * keep track of the original root obligation for error
3383          * reporting.
3384          */
3385
3386         let obligation = self;
3387
3388         // NOTE(flaper87): As of now, it keeps track of the whole error
3389         // chain. Ideally, we should have a way to configure this either
3390         // by using -Z verbose or just a CLI argument.
3391         if obligation.recursion_depth >= 0 {
3392             let derived_cause = DerivedObligationCause {
3393                 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
3394                 parent_code: Rc::new(obligation.cause.code.clone())
3395             };
3396             let derived_code = variant(derived_cause);
3397             ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
3398         } else {
3399             obligation.cause.clone()
3400         }
3401     }
3402 }
3403
3404 impl<'tcx> SelectionCache<'tcx> {
3405     pub fn new() -> SelectionCache<'tcx> {
3406         SelectionCache {
3407             hashmap: RefCell::new(FxHashMap())
3408         }
3409     }
3410
3411     pub fn clear(&self) {
3412         *self.hashmap.borrow_mut() = FxHashMap()
3413     }
3414 }
3415
3416 impl<'tcx> EvaluationCache<'tcx> {
3417     pub fn new() -> EvaluationCache<'tcx> {
3418         EvaluationCache {
3419             hashmap: RefCell::new(FxHashMap())
3420         }
3421     }
3422
3423     pub fn clear(&self) {
3424         *self.hashmap.borrow_mut() = FxHashMap()
3425     }
3426 }
3427
3428 impl<'o,'tcx> TraitObligationStack<'o,'tcx> {
3429     fn list(&'o self) -> TraitObligationStackList<'o,'tcx> {
3430         TraitObligationStackList::with(self)
3431     }
3432
3433     fn iter(&'o self) -> TraitObligationStackList<'o,'tcx> {
3434         self.list()
3435     }
3436 }
3437
3438 #[derive(Copy, Clone)]
3439 struct TraitObligationStackList<'o,'tcx:'o> {
3440     head: Option<&'o TraitObligationStack<'o,'tcx>>
3441 }
3442
3443 impl<'o,'tcx> TraitObligationStackList<'o,'tcx> {
3444     fn empty() -> TraitObligationStackList<'o,'tcx> {
3445         TraitObligationStackList { head: None }
3446     }
3447
3448     fn with(r: &'o TraitObligationStack<'o,'tcx>) -> TraitObligationStackList<'o,'tcx> {
3449         TraitObligationStackList { head: Some(r) }
3450     }
3451 }
3452
3453 impl<'o,'tcx> Iterator for TraitObligationStackList<'o,'tcx>{
3454     type Item = &'o TraitObligationStack<'o,'tcx>;
3455
3456     fn next(&mut self) -> Option<&'o TraitObligationStack<'o,'tcx>> {
3457         match self.head {
3458             Some(o) => {
3459                 *self = o.previous;
3460                 Some(o)
3461             }
3462             None => None
3463         }
3464     }
3465 }
3466
3467 impl<'o,'tcx> fmt::Debug for TraitObligationStack<'o,'tcx> {
3468     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
3469         write!(f, "TraitObligationStack({:?})", self.obligation)
3470     }
3471 }
3472
3473 #[derive(Clone)]
3474 pub struct WithDepNode<T> {
3475     dep_node: DepNodeIndex,
3476     cached_value: T
3477 }
3478
3479 impl<T: Clone> WithDepNode<T> {
3480     pub fn new(dep_node: DepNodeIndex, cached_value: T) -> Self {
3481         WithDepNode { dep_node, cached_value }
3482     }
3483
3484     pub fn get(&self, tcx: TyCtxt) -> T {
3485         tcx.dep_graph.read_index(self.dep_node);
3486         self.cached_value.clone()
3487     }
3488 }