]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/select.rs
Auto merge of #68057 - Aaron1011:fix/marker-trait-selection, r=matthewjasper
[rust.git] / src / librustc / traits / select.rs
1 // ignore-tidy-filelength
2
3 //! Candidate selection. See the [rustc guide] for more information on how this works.
4 //!
5 //! [rustc guide]: https://rust-lang.github.io/rustc-guide/traits/resolution.html#selection
6
7 use self::EvaluationResult::*;
8 use self::SelectionCandidate::*;
9
10 use super::coherence::{self, Conflict};
11 use super::project;
12 use super::project::{normalize_with_depth, Normalized, ProjectionCacheKey};
13 use super::util;
14 use super::util::{closure_trait_ref_and_return_type, predicate_for_trait_def};
15 use super::wf;
16 use super::DerivedObligationCause;
17 use super::Selection;
18 use super::SelectionResult;
19 use super::TraitNotObjectSafe;
20 use super::{BuiltinDerivedObligation, ImplDerivedObligation, ObligationCauseCode};
21 use super::{IntercrateMode, TraitQueryMode};
22 use super::{ObjectCastObligation, Obligation};
23 use super::{ObligationCause, PredicateObligation, TraitObligation};
24 use super::{OutputTypeParameterMismatch, Overflow, SelectionError, Unimplemented};
25 use super::{
26     VtableAutoImpl, VtableBuiltin, VtableClosure, VtableFnPointer, VtableGenerator, VtableImpl,
27     VtableObject, VtableParam, VtableTraitAlias,
28 };
29 use super::{
30     VtableAutoImplData, VtableBuiltinData, VtableClosureData, VtableFnPointerData,
31     VtableGeneratorData, VtableImplData, VtableObjectData, VtableTraitAliasData,
32 };
33
34 use crate::dep_graph::{DepKind, DepNodeIndex};
35 use crate::infer::{CombinedSnapshot, InferCtxt, InferOk, PlaceholderMap, TypeFreshener};
36 use crate::middle::lang_items;
37 use crate::ty::fast_reject;
38 use crate::ty::relate::TypeRelation;
39 use crate::ty::subst::{Subst, SubstsRef};
40 use crate::ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable};
41 use rustc_hir::def_id::DefId;
42
43 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
44 use rustc_data_structures::sync::Lock;
45 use rustc_hir as hir;
46 use rustc_index::bit_set::GrowableBitSet;
47 use rustc_span::symbol::sym;
48 use rustc_target::spec::abi::Abi;
49 use std::cell::{Cell, RefCell};
50 use std::cmp;
51 use std::fmt::{self, Display};
52 use std::iter;
53 use std::rc::Rc;
54 use syntax::attr;
55
56 pub struct SelectionContext<'cx, 'tcx> {
57     infcx: &'cx InferCtxt<'cx, 'tcx>,
58
59     /// Freshener used specifically for entries on the obligation
60     /// stack. This ensures that all entries on the stack at one time
61     /// will have the same set of placeholder entries, which is
62     /// important for checking for trait bounds that recursively
63     /// require themselves.
64     freshener: TypeFreshener<'cx, 'tcx>,
65
66     /// If `true`, indicates that the evaluation should be conservative
67     /// and consider the possibility of types outside this crate.
68     /// This comes up primarily when resolving ambiguity. Imagine
69     /// there is some trait reference `$0: Bar` where `$0` is an
70     /// inference variable. If `intercrate` is true, then we can never
71     /// say for sure that this reference is not implemented, even if
72     /// there are *no impls at all for `Bar`*, because `$0` could be
73     /// bound to some type that in a downstream crate that implements
74     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
75     /// though, we set this to false, because we are only interested
76     /// in types that the user could actually have written --- in
77     /// other words, we consider `$0: Bar` to be unimplemented if
78     /// there is no type that the user could *actually name* that
79     /// would satisfy it. This avoids crippling inference, basically.
80     intercrate: Option<IntercrateMode>,
81
82     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
83
84     /// Controls whether or not to filter out negative impls when selecting.
85     /// This is used in librustdoc to distinguish between the lack of an impl
86     /// and a negative impl
87     allow_negative_impls: bool,
88
89     /// The mode that trait queries run in, which informs our error handling
90     /// policy. In essence, canonicalized queries need their errors propagated
91     /// rather than immediately reported because we do not have accurate spans.
92     query_mode: TraitQueryMode,
93 }
94
95 #[derive(Clone, Debug)]
96 pub enum IntercrateAmbiguityCause {
97     DownstreamCrate { trait_desc: String, self_desc: Option<String> },
98     UpstreamCrateUpdate { trait_desc: String, self_desc: Option<String> },
99     ReservationImpl { message: String },
100 }
101
102 impl IntercrateAmbiguityCause {
103     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
104     /// See #23980 for details.
105     pub fn add_intercrate_ambiguity_hint(&self, err: &mut rustc_errors::DiagnosticBuilder<'_>) {
106         err.note(&self.intercrate_ambiguity_hint());
107     }
108
109     pub fn intercrate_ambiguity_hint(&self) -> String {
110         match self {
111             &IntercrateAmbiguityCause::DownstreamCrate { ref trait_desc, ref self_desc } => {
112                 let self_desc = if let &Some(ref ty) = self_desc {
113                     format!(" for type `{}`", ty)
114                 } else {
115                     String::new()
116                 };
117                 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
118             }
119             &IntercrateAmbiguityCause::UpstreamCrateUpdate { ref trait_desc, ref self_desc } => {
120                 let self_desc = if let &Some(ref ty) = self_desc {
121                     format!(" for type `{}`", ty)
122                 } else {
123                     String::new()
124                 };
125                 format!(
126                     "upstream crates may add a new impl of trait `{}`{} \
127                      in future versions",
128                     trait_desc, self_desc
129                 )
130             }
131             &IntercrateAmbiguityCause::ReservationImpl { ref message } => message.clone(),
132         }
133     }
134 }
135
136 // A stack that walks back up the stack frame.
137 struct TraitObligationStack<'prev, 'tcx> {
138     obligation: &'prev TraitObligation<'tcx>,
139
140     /// The trait ref from `obligation` but "freshened" with the
141     /// selection-context's freshener. Used to check for recursion.
142     fresh_trait_ref: ty::PolyTraitRef<'tcx>,
143
144     /// Starts out equal to `depth` -- if, during evaluation, we
145     /// encounter a cycle, then we will set this flag to the minimum
146     /// depth of that cycle for all participants in the cycle. These
147     /// participants will then forego caching their results. This is
148     /// not the most efficient solution, but it addresses #60010. The
149     /// problem we are trying to prevent:
150     ///
151     /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
152     /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
153     /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
154     ///
155     /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
156     /// is `EvaluatedToOk`; this is because they were only considered
157     /// ok on the premise that if `A: AutoTrait` held, but we indeed
158     /// encountered a problem (later on) with `A: AutoTrait. So we
159     /// currently set a flag on the stack node for `B: AutoTrait` (as
160     /// well as the second instance of `A: AutoTrait`) to suppress
161     /// caching.
162     ///
163     /// This is a simple, targeted fix. A more-performant fix requires
164     /// deeper changes, but would permit more caching: we could
165     /// basically defer caching until we have fully evaluated the
166     /// tree, and then cache the entire tree at once. In any case, the
167     /// performance impact here shouldn't be so horrible: every time
168     /// this is hit, we do cache at least one trait, so we only
169     /// evaluate each member of a cycle up to N times, where N is the
170     /// length of the cycle. This means the performance impact is
171     /// bounded and we shouldn't have any terrible worst-cases.
172     reached_depth: Cell<usize>,
173
174     previous: TraitObligationStackList<'prev, 'tcx>,
175
176     /// The number of parent frames plus one (thus, the topmost frame has depth 1).
177     depth: usize,
178
179     /// The depth-first number of this node in the search graph -- a
180     /// pre-order index. Basically, a freshly incremented counter.
181     dfn: usize,
182 }
183
184 #[derive(Clone, Default)]
185 pub struct SelectionCache<'tcx> {
186     hashmap: Lock<
187         FxHashMap<
188             ty::ParamEnvAnd<'tcx, ty::TraitRef<'tcx>>,
189             WithDepNode<SelectionResult<'tcx, SelectionCandidate<'tcx>>>,
190         >,
191     >,
192 }
193
194 /// The selection process begins by considering all impls, where
195 /// clauses, and so forth that might resolve an obligation. Sometimes
196 /// we'll be able to say definitively that (e.g.) an impl does not
197 /// apply to the obligation: perhaps it is defined for `usize` but the
198 /// obligation is for `int`. In that case, we drop the impl out of the
199 /// list. But the other cases are considered *candidates*.
200 ///
201 /// For selection to succeed, there must be exactly one matching
202 /// candidate. If the obligation is fully known, this is guaranteed
203 /// by coherence. However, if the obligation contains type parameters
204 /// or variables, there may be multiple such impls.
205 ///
206 /// It is not a real problem if multiple matching impls exist because
207 /// of type variables - it just means the obligation isn't sufficiently
208 /// elaborated. In that case we report an ambiguity, and the caller can
209 /// try again after more type information has been gathered or report a
210 /// "type annotations needed" error.
211 ///
212 /// However, with type parameters, this can be a real problem - type
213 /// parameters don't unify with regular types, but they *can* unify
214 /// with variables from blanket impls, and (unless we know its bounds
215 /// will always be satisfied) picking the blanket impl will be wrong
216 /// for at least *some* substitutions. To make this concrete, if we have
217 ///
218 ///    trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
219 ///    impl<T: fmt::Debug> AsDebug for T {
220 ///        type Out = T;
221 ///        fn debug(self) -> fmt::Debug { self }
222 ///    }
223 ///    fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
224 ///
225 /// we can't just use the impl to resolve the `<T as AsDebug>` obligation
226 /// -- a type from another crate (that doesn't implement `fmt::Debug`) could
227 /// implement `AsDebug`.
228 ///
229 /// Because where-clauses match the type exactly, multiple clauses can
230 /// only match if there are unresolved variables, and we can mostly just
231 /// report this ambiguity in that case. This is still a problem - we can't
232 /// *do anything* with ambiguities that involve only regions. This is issue
233 /// #21974.
234 ///
235 /// If a single where-clause matches and there are no inference
236 /// variables left, then it definitely matches and we can just select
237 /// it.
238 ///
239 /// In fact, we even select the where-clause when the obligation contains
240 /// inference variables. The can lead to inference making "leaps of logic",
241 /// for example in this situation:
242 ///
243 ///    pub trait Foo<T> { fn foo(&self) -> T; }
244 ///    impl<T> Foo<()> for T { fn foo(&self) { } }
245 ///    impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
246 ///
247 ///    pub fn foo<T>(t: T) where T: Foo<bool> {
248 ///       println!("{:?}", <T as Foo<_>>::foo(&t));
249 ///    }
250 ///    fn main() { foo(false); }
251 ///
252 /// Here the obligation `<T as Foo<$0>>` can be matched by both the blanket
253 /// impl and the where-clause. We select the where-clause and unify `$0=bool`,
254 /// so the program prints "false". However, if the where-clause is omitted,
255 /// the blanket impl is selected, we unify `$0=()`, and the program prints
256 /// "()".
257 ///
258 /// Exactly the same issues apply to projection and object candidates, except
259 /// that we can have both a projection candidate and a where-clause candidate
260 /// for the same obligation. In that case either would do (except that
261 /// different "leaps of logic" would occur if inference variables are
262 /// present), and we just pick the where-clause. This is, for example,
263 /// required for associated types to work in default impls, as the bounds
264 /// are visible both as projection bounds and as where-clauses from the
265 /// parameter environment.
266 #[derive(PartialEq, Eq, Debug, Clone, TypeFoldable)]
267 enum SelectionCandidate<'tcx> {
268     BuiltinCandidate {
269         /// `false` if there are no *further* obligations.
270         has_nested: bool,
271     },
272     ParamCandidate(ty::PolyTraitRef<'tcx>),
273     ImplCandidate(DefId),
274     AutoImplCandidate(DefId),
275
276     /// This is a trait matching with a projected type as `Self`, and
277     /// we found an applicable bound in the trait definition.
278     ProjectionCandidate,
279
280     /// Implementation of a `Fn`-family trait by one of the anonymous types
281     /// generated for a `||` expression.
282     ClosureCandidate,
283
284     /// Implementation of a `Generator` trait by one of the anonymous types
285     /// generated for a generator.
286     GeneratorCandidate,
287
288     /// Implementation of a `Fn`-family trait by one of the anonymous
289     /// types generated for a fn pointer type (e.g., `fn(int) -> int`)
290     FnPointerCandidate,
291
292     TraitAliasCandidate(DefId),
293
294     ObjectCandidate,
295
296     BuiltinObjectCandidate,
297
298     BuiltinUnsizeCandidate,
299 }
300
301 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
302     type Lifted = SelectionCandidate<'tcx>;
303     fn lift_to_tcx(&self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
304         Some(match *self {
305             BuiltinCandidate { has_nested } => BuiltinCandidate { has_nested },
306             ImplCandidate(def_id) => ImplCandidate(def_id),
307             AutoImplCandidate(def_id) => AutoImplCandidate(def_id),
308             ProjectionCandidate => ProjectionCandidate,
309             ClosureCandidate => ClosureCandidate,
310             GeneratorCandidate => GeneratorCandidate,
311             FnPointerCandidate => FnPointerCandidate,
312             TraitAliasCandidate(def_id) => TraitAliasCandidate(def_id),
313             ObjectCandidate => ObjectCandidate,
314             BuiltinObjectCandidate => BuiltinObjectCandidate,
315             BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
316
317             ParamCandidate(ref trait_ref) => {
318                 return tcx.lift(trait_ref).map(ParamCandidate);
319             }
320         })
321     }
322 }
323
324 struct SelectionCandidateSet<'tcx> {
325     // A list of candidates that definitely apply to the current
326     // obligation (meaning: types unify).
327     vec: Vec<SelectionCandidate<'tcx>>,
328
329     // If `true`, then there were candidates that might or might
330     // not have applied, but we couldn't tell. This occurs when some
331     // of the input types are type variables, in which case there are
332     // various "builtin" rules that might or might not trigger.
333     ambiguous: bool,
334 }
335
336 #[derive(PartialEq, Eq, Debug, Clone)]
337 struct EvaluatedCandidate<'tcx> {
338     candidate: SelectionCandidate<'tcx>,
339     evaluation: EvaluationResult,
340 }
341
342 /// When does the builtin impl for `T: Trait` apply?
343 enum BuiltinImplConditions<'tcx> {
344     /// The impl is conditional on `T1, T2, ...: Trait`.
345     Where(ty::Binder<Vec<Ty<'tcx>>>),
346     /// There is no built-in impl. There may be some other
347     /// candidate (a where-clause or user-defined impl).
348     None,
349     /// It is unknown whether there is an impl.
350     Ambiguous,
351 }
352
353 /// The result of trait evaluation. The order is important
354 /// here as the evaluation of a list is the maximum of the
355 /// evaluations.
356 ///
357 /// The evaluation results are ordered:
358 ///     - `EvaluatedToOk` implies `EvaluatedToOkModuloRegions`
359 ///       implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
360 ///     - `EvaluatedToErr` implies `EvaluatedToRecur`
361 ///     - the "union" of evaluation results is equal to their maximum -
362 ///     all the "potential success" candidates can potentially succeed,
363 ///     so they are noops when unioned with a definite error, and within
364 ///     the categories it's easy to see that the unions are correct.
365 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq, HashStable)]
366 pub enum EvaluationResult {
367     /// Evaluation successful.
368     EvaluatedToOk,
369     /// Evaluation successful, but there were unevaluated region obligations.
370     EvaluatedToOkModuloRegions,
371     /// Evaluation is known to be ambiguous -- it *might* hold for some
372     /// assignment of inference variables, but it might not.
373     ///
374     /// While this has the same meaning as `EvaluatedToUnknown` -- we can't
375     /// know whether this obligation holds or not -- it is the result we
376     /// would get with an empty stack, and therefore is cacheable.
377     EvaluatedToAmbig,
378     /// Evaluation failed because of recursion involving inference
379     /// variables. We are somewhat imprecise there, so we don't actually
380     /// know the real result.
381     ///
382     /// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
383     EvaluatedToUnknown,
384     /// Evaluation failed because we encountered an obligation we are already
385     /// trying to prove on this branch.
386     ///
387     /// We know this branch can't be a part of a minimal proof-tree for
388     /// the "root" of our cycle, because then we could cut out the recursion
389     /// and maintain a valid proof tree. However, this does not mean
390     /// that all the obligations on this branch do not hold -- it's possible
391     /// that we entered this branch "speculatively", and that there
392     /// might be some other way to prove this obligation that does not
393     /// go through this cycle -- so we can't cache this as a failure.
394     ///
395     /// For example, suppose we have this:
396     ///
397     /// ```rust,ignore (pseudo-Rust)
398     /// pub trait Trait { fn xyz(); }
399     /// // This impl is "useless", but we can still have
400     /// // an `impl Trait for SomeUnsizedType` somewhere.
401     /// impl<T: Trait + Sized> Trait for T { fn xyz() {} }
402     ///
403     /// pub fn foo<T: Trait + ?Sized>() {
404     ///     <T as Trait>::xyz();
405     /// }
406     /// ```
407     ///
408     /// When checking `foo`, we have to prove `T: Trait`. This basically
409     /// translates into this:
410     ///
411     /// ```plain,ignore
412     /// (T: Trait + Sized â†’_\impl T: Trait), T: Trait âŠ¢ T: Trait
413     /// ```
414     ///
415     /// When we try to prove it, we first go the first option, which
416     /// recurses. This shows us that the impl is "useless" -- it won't
417     /// tell us that `T: Trait` unless it already implemented `Trait`
418     /// by some other means. However, that does not prevent `T: Trait`
419     /// does not hold, because of the bound (which can indeed be satisfied
420     /// by `SomeUnsizedType` from another crate).
421     //
422     // FIXME: when an `EvaluatedToRecur` goes past its parent root, we
423     // ought to convert it to an `EvaluatedToErr`, because we know
424     // there definitely isn't a proof tree for that obligation. Not
425     // doing so is still sound -- there isn't any proof tree, so the
426     // branch still can't be a part of a minimal one -- but does not re-enable caching.
427     EvaluatedToRecur,
428     /// Evaluation failed.
429     EvaluatedToErr,
430 }
431
432 impl EvaluationResult {
433     /// Returns `true` if this evaluation result is known to apply, even
434     /// considering outlives constraints.
435     pub fn must_apply_considering_regions(self) -> bool {
436         self == EvaluatedToOk
437     }
438
439     /// Returns `true` if this evaluation result is known to apply, ignoring
440     /// outlives constraints.
441     pub fn must_apply_modulo_regions(self) -> bool {
442         self <= EvaluatedToOkModuloRegions
443     }
444
445     pub fn may_apply(self) -> bool {
446         match self {
447             EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToUnknown => {
448                 true
449             }
450
451             EvaluatedToErr | EvaluatedToRecur => false,
452         }
453     }
454
455     fn is_stack_dependent(self) -> bool {
456         match self {
457             EvaluatedToUnknown | EvaluatedToRecur => true,
458
459             EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToErr => false,
460         }
461     }
462 }
463
464 /// Indicates that trait evaluation caused overflow.
465 #[derive(Copy, Clone, Debug, PartialEq, Eq, HashStable)]
466 pub struct OverflowError;
467
468 impl<'tcx> From<OverflowError> for SelectionError<'tcx> {
469     fn from(OverflowError: OverflowError) -> SelectionError<'tcx> {
470         SelectionError::Overflow
471     }
472 }
473
474 #[derive(Clone, Default)]
475 pub struct EvaluationCache<'tcx> {
476     hashmap: Lock<
477         FxHashMap<ty::ParamEnvAnd<'tcx, ty::PolyTraitRef<'tcx>>, WithDepNode<EvaluationResult>>,
478     >,
479 }
480
481 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
482     pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
483         SelectionContext {
484             infcx,
485             freshener: infcx.freshener(),
486             intercrate: None,
487             intercrate_ambiguity_causes: None,
488             allow_negative_impls: false,
489             query_mode: TraitQueryMode::Standard,
490         }
491     }
492
493     pub fn intercrate(
494         infcx: &'cx InferCtxt<'cx, 'tcx>,
495         mode: IntercrateMode,
496     ) -> SelectionContext<'cx, 'tcx> {
497         debug!("intercrate({:?})", mode);
498         SelectionContext {
499             infcx,
500             freshener: infcx.freshener(),
501             intercrate: Some(mode),
502             intercrate_ambiguity_causes: None,
503             allow_negative_impls: false,
504             query_mode: TraitQueryMode::Standard,
505         }
506     }
507
508     pub fn with_negative(
509         infcx: &'cx InferCtxt<'cx, 'tcx>,
510         allow_negative_impls: bool,
511     ) -> SelectionContext<'cx, 'tcx> {
512         debug!("with_negative({:?})", allow_negative_impls);
513         SelectionContext {
514             infcx,
515             freshener: infcx.freshener(),
516             intercrate: None,
517             intercrate_ambiguity_causes: None,
518             allow_negative_impls,
519             query_mode: TraitQueryMode::Standard,
520         }
521     }
522
523     pub fn with_query_mode(
524         infcx: &'cx InferCtxt<'cx, 'tcx>,
525         query_mode: TraitQueryMode,
526     ) -> SelectionContext<'cx, 'tcx> {
527         debug!("with_query_mode({:?})", query_mode);
528         SelectionContext {
529             infcx,
530             freshener: infcx.freshener(),
531             intercrate: None,
532             intercrate_ambiguity_causes: None,
533             allow_negative_impls: false,
534             query_mode,
535         }
536     }
537
538     /// Enables tracking of intercrate ambiguity causes. These are
539     /// used in coherence to give improved diagnostics. We don't do
540     /// this until we detect a coherence error because it can lead to
541     /// false overflow results (#47139) and because it costs
542     /// computation time.
543     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
544         assert!(self.intercrate.is_some());
545         assert!(self.intercrate_ambiguity_causes.is_none());
546         self.intercrate_ambiguity_causes = Some(vec![]);
547         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
548     }
549
550     /// Gets the intercrate ambiguity causes collected since tracking
551     /// was enabled and disables tracking at the same time. If
552     /// tracking is not enabled, just returns an empty vector.
553     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
554         assert!(self.intercrate.is_some());
555         self.intercrate_ambiguity_causes.take().unwrap_or(vec![])
556     }
557
558     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
559         self.infcx
560     }
561
562     pub fn tcx(&self) -> TyCtxt<'tcx> {
563         self.infcx.tcx
564     }
565
566     pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'tcx> {
567         self.infcx
568     }
569
570     ///////////////////////////////////////////////////////////////////////////
571     // Selection
572     //
573     // The selection phase tries to identify *how* an obligation will
574     // be resolved. For example, it will identify which impl or
575     // parameter bound is to be used. The process can be inconclusive
576     // if the self type in the obligation is not fully inferred. Selection
577     // can result in an error in one of two ways:
578     //
579     // 1. If no applicable impl or parameter bound can be found.
580     // 2. If the output type parameters in the obligation do not match
581     //    those specified by the impl/bound. For example, if the obligation
582     //    is `Vec<Foo>: Iterable<Bar>`, but the impl specifies
583     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
584
585     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
586     /// type environment by performing unification.
587     pub fn select(
588         &mut self,
589         obligation: &TraitObligation<'tcx>,
590     ) -> SelectionResult<'tcx, Selection<'tcx>> {
591         debug!("select({:?})", obligation);
592         debug_assert!(!obligation.predicate.has_escaping_bound_vars());
593
594         let pec = &ProvisionalEvaluationCache::default();
595         let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
596
597         let candidate = match self.candidate_from_obligation(&stack) {
598             Err(SelectionError::Overflow) => {
599                 // In standard mode, overflow must have been caught and reported
600                 // earlier.
601                 assert!(self.query_mode == TraitQueryMode::Canonical);
602                 return Err(SelectionError::Overflow);
603             }
604             Err(e) => {
605                 return Err(e);
606             }
607             Ok(None) => {
608                 return Ok(None);
609             }
610             Ok(Some(candidate)) => candidate,
611         };
612
613         match self.confirm_candidate(obligation, candidate) {
614             Err(SelectionError::Overflow) => {
615                 assert!(self.query_mode == TraitQueryMode::Canonical);
616                 Err(SelectionError::Overflow)
617             }
618             Err(e) => Err(e),
619             Ok(candidate) => Ok(Some(candidate)),
620         }
621     }
622
623     ///////////////////////////////////////////////////////////////////////////
624     // EVALUATION
625     //
626     // Tests whether an obligation can be selected or whether an impl
627     // can be applied to particular types. It skips the "confirmation"
628     // step and hence completely ignores output type parameters.
629     //
630     // The result is "true" if the obligation *may* hold and "false" if
631     // we can be sure it does not.
632
633     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
634     pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
635         debug!("predicate_may_hold_fatal({:?})", obligation);
636
637         // This fatal query is a stopgap that should only be used in standard mode,
638         // where we do not expect overflow to be propagated.
639         assert!(self.query_mode == TraitQueryMode::Standard);
640
641         self.evaluate_root_obligation(obligation)
642             .expect("Overflow should be caught earlier in standard query mode")
643             .may_apply()
644     }
645
646     /// Evaluates whether the obligation `obligation` can be satisfied
647     /// and returns an `EvaluationResult`. This is meant for the
648     /// *initial* call.
649     pub fn evaluate_root_obligation(
650         &mut self,
651         obligation: &PredicateObligation<'tcx>,
652     ) -> Result<EvaluationResult, OverflowError> {
653         self.evaluation_probe(|this| {
654             this.evaluate_predicate_recursively(
655                 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
656                 obligation.clone(),
657             )
658         })
659     }
660
661     fn evaluation_probe(
662         &mut self,
663         op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
664     ) -> Result<EvaluationResult, OverflowError> {
665         self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
666             let result = op(self)?;
667             match self.infcx.region_constraints_added_in_snapshot(snapshot) {
668                 None => Ok(result),
669                 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
670             }
671         })
672     }
673
674     /// Evaluates the predicates in `predicates` recursively. Note that
675     /// this applies projections in the predicates, and therefore
676     /// is run within an inference probe.
677     fn evaluate_predicates_recursively<'o, I>(
678         &mut self,
679         stack: TraitObligationStackList<'o, 'tcx>,
680         predicates: I,
681     ) -> Result<EvaluationResult, OverflowError>
682     where
683         I: IntoIterator<Item = PredicateObligation<'tcx>>,
684     {
685         let mut result = EvaluatedToOk;
686         for obligation in predicates {
687             let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
688             debug!("evaluate_predicate_recursively({:?}) = {:?}", obligation, eval);
689             if let EvaluatedToErr = eval {
690                 // fast-path - EvaluatedToErr is the top of the lattice,
691                 // so we don't need to look on the other predicates.
692                 return Ok(EvaluatedToErr);
693             } else {
694                 result = cmp::max(result, eval);
695             }
696         }
697         Ok(result)
698     }
699
700     fn evaluate_predicate_recursively<'o>(
701         &mut self,
702         previous_stack: TraitObligationStackList<'o, 'tcx>,
703         obligation: PredicateObligation<'tcx>,
704     ) -> Result<EvaluationResult, OverflowError> {
705         debug!(
706             "evaluate_predicate_recursively(previous_stack={:?}, obligation={:?})",
707             previous_stack.head(),
708             obligation
709         );
710
711         // `previous_stack` stores a `TraitObligatiom`, while `obligation` is
712         // a `PredicateObligation`. These are distinct types, so we can't
713         // use any `Option` combinator method that would force them to be
714         // the same.
715         match previous_stack.head() {
716             Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
717             None => self.check_recursion_limit(&obligation, &obligation)?,
718         }
719
720         match obligation.predicate {
721             ty::Predicate::Trait(ref t) => {
722                 debug_assert!(!t.has_escaping_bound_vars());
723                 let obligation = obligation.with(t.clone());
724                 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
725             }
726
727             ty::Predicate::Subtype(ref p) => {
728                 // Does this code ever run?
729                 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
730                     Some(Ok(InferOk { mut obligations, .. })) => {
731                         self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
732                         self.evaluate_predicates_recursively(
733                             previous_stack,
734                             obligations.into_iter(),
735                         )
736                     }
737                     Some(Err(_)) => Ok(EvaluatedToErr),
738                     None => Ok(EvaluatedToAmbig),
739                 }
740             }
741
742             ty::Predicate::WellFormed(ty) => match wf::obligations(
743                 self.infcx,
744                 obligation.param_env,
745                 obligation.cause.body_id,
746                 ty,
747                 obligation.cause.span,
748             ) {
749                 Some(mut obligations) => {
750                     self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
751                     self.evaluate_predicates_recursively(previous_stack, obligations.into_iter())
752                 }
753                 None => Ok(EvaluatedToAmbig),
754             },
755
756             ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
757                 // We do not consider region relationships when evaluating trait matches.
758                 Ok(EvaluatedToOkModuloRegions)
759             }
760
761             ty::Predicate::ObjectSafe(trait_def_id) => {
762                 if self.tcx().is_object_safe(trait_def_id) {
763                     Ok(EvaluatedToOk)
764                 } else {
765                     Ok(EvaluatedToErr)
766                 }
767             }
768
769             ty::Predicate::Projection(ref data) => {
770                 let project_obligation = obligation.with(data.clone());
771                 match project::poly_project_and_unify_type(self, &project_obligation) {
772                     Ok(Some(mut subobligations)) => {
773                         self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
774                         let result = self.evaluate_predicates_recursively(
775                             previous_stack,
776                             subobligations.into_iter(),
777                         );
778                         if let Some(key) =
779                             ProjectionCacheKey::from_poly_projection_predicate(self, data)
780                         {
781                             self.infcx.projection_cache.borrow_mut().complete(key);
782                         }
783                         result
784                     }
785                     Ok(None) => Ok(EvaluatedToAmbig),
786                     Err(_) => Ok(EvaluatedToErr),
787                 }
788             }
789
790             ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
791                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
792                     Some(closure_kind) => {
793                         if closure_kind.extends(kind) {
794                             Ok(EvaluatedToOk)
795                         } else {
796                             Ok(EvaluatedToErr)
797                         }
798                     }
799                     None => Ok(EvaluatedToAmbig),
800                 }
801             }
802
803             ty::Predicate::ConstEvaluatable(def_id, substs) => {
804                 if !(obligation.param_env, substs).has_local_value() {
805                     match self.tcx().const_eval_resolve(
806                         obligation.param_env,
807                         def_id,
808                         substs,
809                         None,
810                         None,
811                     ) {
812                         Ok(_) => Ok(EvaluatedToOk),
813                         Err(_) => Ok(EvaluatedToErr),
814                     }
815                 } else {
816                     // Inference variables still left in param_env or substs.
817                     Ok(EvaluatedToAmbig)
818                 }
819             }
820         }
821     }
822
823     fn evaluate_trait_predicate_recursively<'o>(
824         &mut self,
825         previous_stack: TraitObligationStackList<'o, 'tcx>,
826         mut obligation: TraitObligation<'tcx>,
827     ) -> Result<EvaluationResult, OverflowError> {
828         debug!("evaluate_trait_predicate_recursively({:?})", obligation);
829
830         if self.intercrate.is_none()
831             && obligation.is_global()
832             && obligation.param_env.caller_bounds.iter().all(|bound| bound.needs_subst())
833         {
834             // If a param env has no global bounds, global obligations do not
835             // depend on its particular value in order to work, so we can clear
836             // out the param env and get better caching.
837             debug!("evaluate_trait_predicate_recursively({:?}) - in global", obligation);
838             obligation.param_env = obligation.param_env.without_caller_bounds();
839         }
840
841         let stack = self.push_stack(previous_stack, &obligation);
842         let fresh_trait_ref = stack.fresh_trait_ref;
843         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
844             debug!("CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
845             return Ok(result);
846         }
847
848         if let Some(result) = stack.cache().get_provisional(fresh_trait_ref) {
849             debug!("PROVISIONAL CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
850             stack.update_reached_depth(stack.cache().current_reached_depth());
851             return Ok(result);
852         }
853
854         // Check if this is a match for something already on the
855         // stack. If so, we don't want to insert the result into the
856         // main cache (it is cycle dependent) nor the provisional
857         // cache (which is meant for things that have completed but
858         // for a "backedge" -- this result *is* the backedge).
859         if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
860             return Ok(cycle_result);
861         }
862
863         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
864         let result = result?;
865
866         if !result.must_apply_modulo_regions() {
867             stack.cache().on_failure(stack.dfn);
868         }
869
870         let reached_depth = stack.reached_depth.get();
871         if reached_depth >= stack.depth {
872             debug!("CACHE MISS: EVAL({:?})={:?}", fresh_trait_ref, result);
873             self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
874
875             stack.cache().on_completion(stack.depth, |fresh_trait_ref, provisional_result| {
876                 self.insert_evaluation_cache(
877                     obligation.param_env,
878                     fresh_trait_ref,
879                     dep_node,
880                     provisional_result.max(result),
881                 );
882             });
883         } else {
884             debug!("PROVISIONAL: {:?}={:?}", fresh_trait_ref, result);
885             debug!(
886                 "evaluate_trait_predicate_recursively: caching provisionally because {:?} \
887                  is a cycle participant (at depth {}, reached depth {})",
888                 fresh_trait_ref, stack.depth, reached_depth,
889             );
890
891             stack.cache().insert_provisional(stack.dfn, reached_depth, fresh_trait_ref, result);
892         }
893
894         Ok(result)
895     }
896
897     /// If there is any previous entry on the stack that precisely
898     /// matches this obligation, then we can assume that the
899     /// obligation is satisfied for now (still all other conditions
900     /// must be met of course). One obvious case this comes up is
901     /// marker traits like `Send`. Think of a linked list:
902     ///
903     ///    struct List<T> { data: T, next: Option<Box<List<T>>> }
904     ///
905     /// `Box<List<T>>` will be `Send` if `T` is `Send` and
906     /// `Option<Box<List<T>>>` is `Send`, and in turn
907     /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
908     /// `Send`.
909     ///
910     /// Note that we do this comparison using the `fresh_trait_ref`
911     /// fields. Because these have all been freshened using
912     /// `self.freshener`, we can be sure that (a) this will not
913     /// affect the inferencer state and (b) that if we see two
914     /// fresh regions with the same index, they refer to the same
915     /// unbound type variable.
916     fn check_evaluation_cycle(
917         &mut self,
918         stack: &TraitObligationStack<'_, 'tcx>,
919     ) -> Option<EvaluationResult> {
920         if let Some(cycle_depth) = stack
921             .iter()
922             .skip(1) // Skip top-most frame.
923             .find(|prev| {
924                 stack.obligation.param_env == prev.obligation.param_env
925                     && stack.fresh_trait_ref == prev.fresh_trait_ref
926             })
927             .map(|stack| stack.depth)
928         {
929             debug!(
930                 "evaluate_stack({:?}) --> recursive at depth {}",
931                 stack.fresh_trait_ref, cycle_depth,
932             );
933
934             // If we have a stack like `A B C D E A`, where the top of
935             // the stack is the final `A`, then this will iterate over
936             // `A, E, D, C, B` -- i.e., all the participants apart
937             // from the cycle head. We mark them as participating in a
938             // cycle. This suppresses caching for those nodes. See
939             // `in_cycle` field for more details.
940             stack.update_reached_depth(cycle_depth);
941
942             // Subtle: when checking for a coinductive cycle, we do
943             // not compare using the "freshened trait refs" (which
944             // have erased regions) but rather the fully explicit
945             // trait refs. This is important because it's only a cycle
946             // if the regions match exactly.
947             let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
948             let cycle = cycle.map(|stack| ty::Predicate::Trait(stack.obligation.predicate));
949             if self.coinductive_match(cycle) {
950                 debug!("evaluate_stack({:?}) --> recursive, coinductive", stack.fresh_trait_ref);
951                 Some(EvaluatedToOk)
952             } else {
953                 debug!("evaluate_stack({:?}) --> recursive, inductive", stack.fresh_trait_ref);
954                 Some(EvaluatedToRecur)
955             }
956         } else {
957             None
958         }
959     }
960
961     fn evaluate_stack<'o>(
962         &mut self,
963         stack: &TraitObligationStack<'o, 'tcx>,
964     ) -> Result<EvaluationResult, OverflowError> {
965         // In intercrate mode, whenever any of the types are unbound,
966         // there can always be an impl. Even if there are no impls in
967         // this crate, perhaps the type would be unified with
968         // something from another crate that does provide an impl.
969         //
970         // In intra mode, we must still be conservative. The reason is
971         // that we want to avoid cycles. Imagine an impl like:
972         //
973         //     impl<T:Eq> Eq for Vec<T>
974         //
975         // and a trait reference like `$0 : Eq` where `$0` is an
976         // unbound variable. When we evaluate this trait-reference, we
977         // will unify `$0` with `Vec<$1>` (for some fresh variable
978         // `$1`), on the condition that `$1 : Eq`. We will then wind
979         // up with many candidates (since that are other `Eq` impls
980         // that apply) and try to winnow things down. This results in
981         // a recursive evaluation that `$1 : Eq` -- as you can
982         // imagine, this is just where we started. To avoid that, we
983         // check for unbound variables and return an ambiguous (hence possible)
984         // match if we've seen this trait before.
985         //
986         // This suffices to allow chains like `FnMut` implemented in
987         // terms of `Fn` etc, but we could probably make this more
988         // precise still.
989         let unbound_input_types =
990             stack.fresh_trait_ref.skip_binder().input_types().any(|ty| ty.is_fresh());
991         // This check was an imperfect workaround for a bug in the old
992         // intercrate mode; it should be removed when that goes away.
993         if unbound_input_types && self.intercrate == Some(IntercrateMode::Issue43355) {
994             debug!(
995                 "evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
996                 stack.fresh_trait_ref
997             );
998             // Heuristics: show the diagnostics when there are no candidates in crate.
999             if self.intercrate_ambiguity_causes.is_some() {
1000                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
1001                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
1002                     if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
1003                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1004                         let self_ty = trait_ref.self_ty();
1005                         let cause = IntercrateAmbiguityCause::DownstreamCrate {
1006                             trait_desc: trait_ref.print_only_trait_path().to_string(),
1007                             self_desc: if self_ty.has_concrete_skeleton() {
1008                                 Some(self_ty.to_string())
1009                             } else {
1010                                 None
1011                             },
1012                         };
1013                         debug!("evaluate_stack: pushing cause = {:?}", cause);
1014                         self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
1015                     }
1016                 }
1017             }
1018             return Ok(EvaluatedToAmbig);
1019         }
1020         if unbound_input_types
1021             && stack.iter().skip(1).any(|prev| {
1022                 stack.obligation.param_env == prev.obligation.param_env
1023                     && self.match_fresh_trait_refs(
1024                         &stack.fresh_trait_ref,
1025                         &prev.fresh_trait_ref,
1026                         prev.obligation.param_env,
1027                     )
1028             })
1029         {
1030             debug!(
1031                 "evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
1032                 stack.fresh_trait_ref
1033             );
1034             return Ok(EvaluatedToUnknown);
1035         }
1036
1037         match self.candidate_from_obligation(stack) {
1038             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
1039             Ok(None) => Ok(EvaluatedToAmbig),
1040             Err(Overflow) => Err(OverflowError),
1041             Err(..) => Ok(EvaluatedToErr),
1042         }
1043     }
1044
1045     /// For defaulted traits, we use a co-inductive strategy to solve, so
1046     /// that recursion is ok. This routine returns `true` if the top of the
1047     /// stack (`cycle[0]`):
1048     ///
1049     /// - is a defaulted trait,
1050     /// - it also appears in the backtrace at some position `X`,
1051     /// - all the predicates at positions `X..` between `X` and the top are
1052     ///   also defaulted traits.
1053     pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
1054     where
1055         I: Iterator<Item = ty::Predicate<'tcx>>,
1056     {
1057         let mut cycle = cycle;
1058         cycle.all(|predicate| self.coinductive_predicate(predicate))
1059     }
1060
1061     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
1062         let result = match predicate {
1063             ty::Predicate::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
1064             _ => false,
1065         };
1066         debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
1067         result
1068     }
1069
1070     /// Further evaluates `candidate` to decide whether all type parameters match and whether nested
1071     /// obligations are met. Returns whether `candidate` remains viable after this further
1072     /// scrutiny.
1073     fn evaluate_candidate<'o>(
1074         &mut self,
1075         stack: &TraitObligationStack<'o, 'tcx>,
1076         candidate: &SelectionCandidate<'tcx>,
1077     ) -> Result<EvaluationResult, OverflowError> {
1078         debug!(
1079             "evaluate_candidate: depth={} candidate={:?}",
1080             stack.obligation.recursion_depth, candidate
1081         );
1082         let result = self.evaluation_probe(|this| {
1083             let candidate = (*candidate).clone();
1084             match this.confirm_candidate(stack.obligation, candidate) {
1085                 Ok(selection) => this.evaluate_predicates_recursively(
1086                     stack.list(),
1087                     selection.nested_obligations().into_iter(),
1088                 ),
1089                 Err(..) => Ok(EvaluatedToErr),
1090             }
1091         })?;
1092         debug!(
1093             "evaluate_candidate: depth={} result={:?}",
1094             stack.obligation.recursion_depth, result
1095         );
1096         Ok(result)
1097     }
1098
1099     fn check_evaluation_cache(
1100         &self,
1101         param_env: ty::ParamEnv<'tcx>,
1102         trait_ref: ty::PolyTraitRef<'tcx>,
1103     ) -> Option<EvaluationResult> {
1104         let tcx = self.tcx();
1105         if self.can_use_global_caches(param_env) {
1106             let cache = tcx.evaluation_cache.hashmap.borrow();
1107             if let Some(cached) = cache.get(&param_env.and(trait_ref)) {
1108                 return Some(cached.get(tcx));
1109             }
1110         }
1111         self.infcx
1112             .evaluation_cache
1113             .hashmap
1114             .borrow()
1115             .get(&param_env.and(trait_ref))
1116             .map(|v| v.get(tcx))
1117     }
1118
1119     fn insert_evaluation_cache(
1120         &mut self,
1121         param_env: ty::ParamEnv<'tcx>,
1122         trait_ref: ty::PolyTraitRef<'tcx>,
1123         dep_node: DepNodeIndex,
1124         result: EvaluationResult,
1125     ) {
1126         // Avoid caching results that depend on more than just the trait-ref
1127         // - the stack can create recursion.
1128         if result.is_stack_dependent() {
1129             return;
1130         }
1131
1132         if self.can_use_global_caches(param_env) {
1133             if !trait_ref.has_local_value() {
1134                 debug!(
1135                     "insert_evaluation_cache(trait_ref={:?}, candidate={:?}) global",
1136                     trait_ref, result,
1137                 );
1138                 // This may overwrite the cache with the same value
1139                 // FIXME: Due to #50507 this overwrites the different values
1140                 // This should be changed to use HashMapExt::insert_same
1141                 // when that is fixed
1142                 self.tcx()
1143                     .evaluation_cache
1144                     .hashmap
1145                     .borrow_mut()
1146                     .insert(param_env.and(trait_ref), WithDepNode::new(dep_node, result));
1147                 return;
1148             }
1149         }
1150
1151         debug!("insert_evaluation_cache(trait_ref={:?}, candidate={:?})", trait_ref, result,);
1152         self.infcx
1153             .evaluation_cache
1154             .hashmap
1155             .borrow_mut()
1156             .insert(param_env.and(trait_ref), WithDepNode::new(dep_node, result));
1157     }
1158
1159     /// For various reasons, it's possible for a subobligation
1160     /// to have a *lower* recursion_depth than the obligation used to create it.
1161     /// Projection sub-obligations may be returned from the projection cache,
1162     /// which results in obligations with an 'old' `recursion_depth`.
1163     /// Additionally, methods like `wf::obligations` and
1164     /// `InferCtxt.subtype_predicate` produce subobligations without
1165     /// taking in a 'parent' depth, causing the generated subobligations
1166     /// to have a `recursion_depth` of `0`.
1167     ///
1168     /// To ensure that obligation_depth never decreasees, we force all subobligations
1169     /// to have at least the depth of the original obligation.
1170     fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(
1171         &self,
1172         it: I,
1173         min_depth: usize,
1174     ) {
1175         it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
1176     }
1177
1178     /// Checks that the recursion limit has not been exceeded.
1179     ///
1180     /// The weird return type of this function allows it to be used with the `try` (`?`)
1181     /// operator within certain functions.
1182     fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
1183         &self,
1184         obligation: &Obligation<'tcx, T>,
1185         error_obligation: &Obligation<'tcx, V>,
1186     ) -> Result<(), OverflowError> {
1187         let recursion_limit = *self.infcx.tcx.sess.recursion_limit.get();
1188         if obligation.recursion_depth >= recursion_limit {
1189             match self.query_mode {
1190                 TraitQueryMode::Standard => {
1191                     self.infcx().report_overflow_error(error_obligation, true);
1192                 }
1193                 TraitQueryMode::Canonical => {
1194                     return Err(OverflowError);
1195                 }
1196             }
1197         }
1198         Ok(())
1199     }
1200
1201     ///////////////////////////////////////////////////////////////////////////
1202     // CANDIDATE ASSEMBLY
1203     //
1204     // The selection process begins by examining all in-scope impls,
1205     // caller obligations, and so forth and assembling a list of
1206     // candidates. See the [rustc guide] for more details.
1207     //
1208     // [rustc guide]:
1209     // https://rust-lang.github.io/rustc-guide/traits/resolution.html#candidate-assembly
1210
1211     fn candidate_from_obligation<'o>(
1212         &mut self,
1213         stack: &TraitObligationStack<'o, 'tcx>,
1214     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1215         // Watch out for overflow. This intentionally bypasses (and does
1216         // not update) the cache.
1217         self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
1218
1219         // Check the cache. Note that we freshen the trait-ref
1220         // separately rather than using `stack.fresh_trait_ref` --
1221         // this is because we want the unbound variables to be
1222         // replaced with fresh types starting from index 0.
1223         let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate.clone());
1224         debug!(
1225             "candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
1226             cache_fresh_trait_pred, stack
1227         );
1228         debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
1229
1230         if let Some(c) =
1231             self.check_candidate_cache(stack.obligation.param_env, &cache_fresh_trait_pred)
1232         {
1233             debug!("CACHE HIT: SELECT({:?})={:?}", cache_fresh_trait_pred, c);
1234             return c;
1235         }
1236
1237         // If no match, compute result and insert into cache.
1238         //
1239         // FIXME(nikomatsakis) -- this cache is not taking into
1240         // account cycles that may have occurred in forming the
1241         // candidate. I don't know of any specific problems that
1242         // result but it seems awfully suspicious.
1243         let (candidate, dep_node) =
1244             self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
1245
1246         debug!("CACHE MISS: SELECT({:?})={:?}", cache_fresh_trait_pred, candidate);
1247         self.insert_candidate_cache(
1248             stack.obligation.param_env,
1249             cache_fresh_trait_pred,
1250             dep_node,
1251             candidate.clone(),
1252         );
1253         candidate
1254     }
1255
1256     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1257     where
1258         OP: FnOnce(&mut Self) -> R,
1259     {
1260         let (result, dep_node) =
1261             self.tcx().dep_graph.with_anon_task(DepKind::TraitSelect, || op(self));
1262         self.tcx().dep_graph.read_index(dep_node);
1263         (result, dep_node)
1264     }
1265
1266     // Treat negative impls as unimplemented, and reservation impls as ambiguity.
1267     fn filter_negative_and_reservation_impls(
1268         &mut self,
1269         candidate: SelectionCandidate<'tcx>,
1270     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1271         if let ImplCandidate(def_id) = candidate {
1272             let tcx = self.tcx();
1273             match tcx.impl_polarity(def_id) {
1274                 ty::ImplPolarity::Negative if !self.allow_negative_impls => {
1275                     return Err(Unimplemented);
1276                 }
1277                 ty::ImplPolarity::Reservation => {
1278                     if let Some(intercrate_ambiguity_clauses) =
1279                         &mut self.intercrate_ambiguity_causes
1280                     {
1281                         let attrs = tcx.get_attrs(def_id);
1282                         let attr = attr::find_by_name(&attrs, sym::rustc_reservation_impl);
1283                         let value = attr.and_then(|a| a.value_str());
1284                         if let Some(value) = value {
1285                             debug!(
1286                                 "filter_negative_and_reservation_impls: \
1287                                     reservation impl ambiguity on {:?}",
1288                                 def_id
1289                             );
1290                             intercrate_ambiguity_clauses.push(
1291                                 IntercrateAmbiguityCause::ReservationImpl {
1292                                     message: value.to_string(),
1293                                 },
1294                             );
1295                         }
1296                     }
1297                     return Ok(None);
1298                 }
1299                 _ => {}
1300             };
1301         }
1302         Ok(Some(candidate))
1303     }
1304
1305     fn candidate_from_obligation_no_cache<'o>(
1306         &mut self,
1307         stack: &TraitObligationStack<'o, 'tcx>,
1308     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1309         if stack.obligation.predicate.references_error() {
1310             // If we encounter a `Error`, we generally prefer the
1311             // most "optimistic" result in response -- that is, the
1312             // one least likely to report downstream errors. But
1313             // because this routine is shared by coherence and by
1314             // trait selection, there isn't an obvious "right" choice
1315             // here in that respect, so we opt to just return
1316             // ambiguity and let the upstream clients sort it out.
1317             return Ok(None);
1318         }
1319
1320         if let Some(conflict) = self.is_knowable(stack) {
1321             debug!("coherence stage: not knowable");
1322             if self.intercrate_ambiguity_causes.is_some() {
1323                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
1324                 // Heuristics: show the diagnostics when there are no candidates in crate.
1325                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
1326                     let mut no_candidates_apply = true;
1327                     {
1328                         let evaluated_candidates =
1329                             candidate_set.vec.iter().map(|c| self.evaluate_candidate(stack, &c));
1330
1331                         for ec in evaluated_candidates {
1332                             match ec {
1333                                 Ok(c) => {
1334                                     if c.may_apply() {
1335                                         no_candidates_apply = false;
1336                                         break;
1337                                     }
1338                                 }
1339                                 Err(e) => return Err(e.into()),
1340                             }
1341                         }
1342                     }
1343
1344                     if !candidate_set.ambiguous && no_candidates_apply {
1345                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1346                         let self_ty = trait_ref.self_ty();
1347                         let trait_desc = trait_ref.print_only_trait_path().to_string();
1348                         let self_desc = if self_ty.has_concrete_skeleton() {
1349                             Some(self_ty.to_string())
1350                         } else {
1351                             None
1352                         };
1353                         let cause = if let Conflict::Upstream = conflict {
1354                             IntercrateAmbiguityCause::UpstreamCrateUpdate { trait_desc, self_desc }
1355                         } else {
1356                             IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
1357                         };
1358                         debug!("evaluate_stack: pushing cause = {:?}", cause);
1359                         self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
1360                     }
1361                 }
1362             }
1363             return Ok(None);
1364         }
1365
1366         let candidate_set = self.assemble_candidates(stack)?;
1367
1368         if candidate_set.ambiguous {
1369             debug!("candidate set contains ambig");
1370             return Ok(None);
1371         }
1372
1373         let mut candidates = candidate_set.vec;
1374
1375         debug!("assembled {} candidates for {:?}: {:?}", candidates.len(), stack, candidates);
1376
1377         // At this point, we know that each of the entries in the
1378         // candidate set is *individually* applicable. Now we have to
1379         // figure out if they contain mutual incompatibilities. This
1380         // frequently arises if we have an unconstrained input type --
1381         // for example, we are looking for `$0: Eq` where `$0` is some
1382         // unconstrained type variable. In that case, we'll get a
1383         // candidate which assumes $0 == int, one that assumes `$0 ==
1384         // usize`, etc. This spells an ambiguity.
1385
1386         // If there is more than one candidate, first winnow them down
1387         // by considering extra conditions (nested obligations and so
1388         // forth). We don't winnow if there is exactly one
1389         // candidate. This is a relatively minor distinction but it
1390         // can lead to better inference and error-reporting. An
1391         // example would be if there was an impl:
1392         //
1393         //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
1394         //
1395         // and we were to see some code `foo.push_clone()` where `boo`
1396         // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
1397         // we were to winnow, we'd wind up with zero candidates.
1398         // Instead, we select the right impl now but report "`Bar` does
1399         // not implement `Clone`".
1400         if candidates.len() == 1 {
1401             return self.filter_negative_and_reservation_impls(candidates.pop().unwrap());
1402         }
1403
1404         // Winnow, but record the exact outcome of evaluation, which
1405         // is needed for specialization. Propagate overflow if it occurs.
1406         let mut candidates = candidates
1407             .into_iter()
1408             .map(|c| match self.evaluate_candidate(stack, &c) {
1409                 Ok(eval) if eval.may_apply() => {
1410                     Ok(Some(EvaluatedCandidate { candidate: c, evaluation: eval }))
1411                 }
1412                 Ok(_) => Ok(None),
1413                 Err(OverflowError) => Err(Overflow),
1414             })
1415             .flat_map(Result::transpose)
1416             .collect::<Result<Vec<_>, _>>()?;
1417
1418         debug!("winnowed to {} candidates for {:?}: {:?}", candidates.len(), stack, candidates);
1419
1420         let needs_infer = stack.obligation.predicate.needs_infer();
1421
1422         // If there are STILL multiple candidates, we can further
1423         // reduce the list by dropping duplicates -- including
1424         // resolving specializations.
1425         if candidates.len() > 1 {
1426             let mut i = 0;
1427             while i < candidates.len() {
1428                 let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
1429                     self.candidate_should_be_dropped_in_favor_of(
1430                         &candidates[i],
1431                         &candidates[j],
1432                         needs_infer,
1433                     )
1434                 });
1435                 if is_dup {
1436                     debug!("Dropping candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]);
1437                     candidates.swap_remove(i);
1438                 } else {
1439                     debug!("Retaining candidate #{}/{}: {:?}", i, candidates.len(), candidates[i]);
1440                     i += 1;
1441
1442                     // If there are *STILL* multiple candidates, give up
1443                     // and report ambiguity.
1444                     if i > 1 {
1445                         debug!("multiple matches, ambig");
1446                         return Ok(None);
1447                     }
1448                 }
1449             }
1450         }
1451
1452         // If there are *NO* candidates, then there are no impls --
1453         // that we know of, anyway. Note that in the case where there
1454         // are unbound type variables within the obligation, it might
1455         // be the case that you could still satisfy the obligation
1456         // from another crate by instantiating the type variables with
1457         // a type from another crate that does have an impl. This case
1458         // is checked for in `evaluate_stack` (and hence users
1459         // who might care about this case, like coherence, should use
1460         // that function).
1461         if candidates.is_empty() {
1462             return Err(Unimplemented);
1463         }
1464
1465         // Just one candidate left.
1466         self.filter_negative_and_reservation_impls(candidates.pop().unwrap().candidate)
1467     }
1468
1469     fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1470         debug!("is_knowable(intercrate={:?})", self.intercrate);
1471
1472         if !self.intercrate.is_some() {
1473             return None;
1474         }
1475
1476         let obligation = &stack.obligation;
1477         let predicate = self.infcx().resolve_vars_if_possible(&obligation.predicate);
1478
1479         // Okay to skip binder because of the nature of the
1480         // trait-ref-is-knowable check, which does not care about
1481         // bound regions.
1482         let trait_ref = predicate.skip_binder().trait_ref;
1483
1484         let result = coherence::trait_ref_is_knowable(self.tcx(), trait_ref);
1485         if let (
1486             Some(Conflict::Downstream { used_to_be_broken: true }),
1487             Some(IntercrateMode::Issue43355),
1488         ) = (result, self.intercrate)
1489         {
1490             debug!("is_knowable: IGNORING conflict to be bug-compatible with #43355");
1491             None
1492         } else {
1493             result
1494         }
1495     }
1496
1497     /// Returns `true` if the global caches can be used.
1498     /// Do note that if the type itself is not in the
1499     /// global tcx, the local caches will be used.
1500     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1501         // If there are any e.g. inference variables in the `ParamEnv`, then we
1502         // always use a cache local to this particular scope. Otherwise, we
1503         // switch to a global cache.
1504         if param_env.has_local_value() {
1505             return false;
1506         }
1507
1508         // Avoid using the master cache during coherence and just rely
1509         // on the local cache. This effectively disables caching
1510         // during coherence. It is really just a simplification to
1511         // avoid us having to fear that coherence results "pollute"
1512         // the master cache. Since coherence executes pretty quickly,
1513         // it's not worth going to more trouble to increase the
1514         // hit-rate, I don't think.
1515         if self.intercrate.is_some() {
1516             return false;
1517         }
1518
1519         // Otherwise, we can use the global cache.
1520         true
1521     }
1522
1523     fn check_candidate_cache(
1524         &mut self,
1525         param_env: ty::ParamEnv<'tcx>,
1526         cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
1527     ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1528         let tcx = self.tcx();
1529         let trait_ref = &cache_fresh_trait_pred.skip_binder().trait_ref;
1530         if self.can_use_global_caches(param_env) {
1531             let cache = tcx.selection_cache.hashmap.borrow();
1532             if let Some(cached) = cache.get(&param_env.and(*trait_ref)) {
1533                 return Some(cached.get(tcx));
1534             }
1535         }
1536         self.infcx
1537             .selection_cache
1538             .hashmap
1539             .borrow()
1540             .get(&param_env.and(*trait_ref))
1541             .map(|v| v.get(tcx))
1542     }
1543
1544     /// Determines whether can we safely cache the result
1545     /// of selecting an obligation. This is almost always `true`,
1546     /// except when dealing with certain `ParamCandidate`s.
1547     ///
1548     /// Ordinarily, a `ParamCandidate` will contain no inference variables,
1549     /// since it was usually produced directly from a `DefId`. However,
1550     /// certain cases (currently only librustdoc's blanket impl finder),
1551     /// a `ParamEnv` may be explicitly constructed with inference types.
1552     /// When this is the case, we do *not* want to cache the resulting selection
1553     /// candidate. This is due to the fact that it might not always be possible
1554     /// to equate the obligation's trait ref and the candidate's trait ref,
1555     /// if more constraints end up getting added to an inference variable.
1556     ///
1557     /// Because of this, we always want to re-run the full selection
1558     /// process for our obligation the next time we see it, since
1559     /// we might end up picking a different `SelectionCandidate` (or none at all).
1560     fn can_cache_candidate(
1561         &self,
1562         result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1563     ) -> bool {
1564         match result {
1565             Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => {
1566                 !trait_ref.skip_binder().input_types().any(|t| t.walk().any(|t_| t_.is_ty_infer()))
1567             }
1568             _ => true,
1569         }
1570     }
1571
1572     fn insert_candidate_cache(
1573         &mut self,
1574         param_env: ty::ParamEnv<'tcx>,
1575         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1576         dep_node: DepNodeIndex,
1577         candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1578     ) {
1579         let tcx = self.tcx();
1580         let trait_ref = cache_fresh_trait_pred.skip_binder().trait_ref;
1581
1582         if !self.can_cache_candidate(&candidate) {
1583             debug!(
1584                 "insert_candidate_cache(trait_ref={:?}, candidate={:?} -\
1585                     candidate is not cacheable",
1586                 trait_ref, candidate
1587             );
1588             return;
1589         }
1590
1591         if self.can_use_global_caches(param_env) {
1592             if let Err(Overflow) = candidate {
1593                 // Don't cache overflow globally; we only produce this in certain modes.
1594             } else if !trait_ref.has_local_value() {
1595                 if !candidate.has_local_value() {
1596                     debug!(
1597                         "insert_candidate_cache(trait_ref={:?}, candidate={:?}) global",
1598                         trait_ref, candidate,
1599                     );
1600                     // This may overwrite the cache with the same value.
1601                     tcx.selection_cache
1602                         .hashmap
1603                         .borrow_mut()
1604                         .insert(param_env.and(trait_ref), WithDepNode::new(dep_node, candidate));
1605                     return;
1606                 }
1607             }
1608         }
1609
1610         debug!(
1611             "insert_candidate_cache(trait_ref={:?}, candidate={:?}) local",
1612             trait_ref, candidate,
1613         );
1614         self.infcx
1615             .selection_cache
1616             .hashmap
1617             .borrow_mut()
1618             .insert(param_env.and(trait_ref), WithDepNode::new(dep_node, candidate));
1619     }
1620
1621     fn assemble_candidates<'o>(
1622         &mut self,
1623         stack: &TraitObligationStack<'o, 'tcx>,
1624     ) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
1625         let TraitObligationStack { obligation, .. } = *stack;
1626         let ref obligation = Obligation {
1627             param_env: obligation.param_env,
1628             cause: obligation.cause.clone(),
1629             recursion_depth: obligation.recursion_depth,
1630             predicate: self.infcx().resolve_vars_if_possible(&obligation.predicate),
1631         };
1632
1633         if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1634             // Self is a type variable (e.g., `_: AsRef<str>`).
1635             //
1636             // This is somewhat problematic, as the current scheme can't really
1637             // handle it turning to be a projection. This does end up as truly
1638             // ambiguous in most cases anyway.
1639             //
1640             // Take the fast path out - this also improves
1641             // performance by preventing assemble_candidates_from_impls from
1642             // matching every impl for this trait.
1643             return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
1644         }
1645
1646         let mut candidates = SelectionCandidateSet { vec: Vec::new(), ambiguous: false };
1647
1648         self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
1649
1650         // Other bounds. Consider both in-scope bounds from fn decl
1651         // and applicable impls. There is a certain set of precedence rules here.
1652         let def_id = obligation.predicate.def_id();
1653         let lang_items = self.tcx().lang_items();
1654
1655         if lang_items.copy_trait() == Some(def_id) {
1656             debug!("obligation self ty is {:?}", obligation.predicate.skip_binder().self_ty());
1657
1658             // User-defined copy impls are permitted, but only for
1659             // structs and enums.
1660             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1661
1662             // For other types, we'll use the builtin rules.
1663             let copy_conditions = self.copy_clone_conditions(obligation);
1664             self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1665         } else if lang_items.sized_trait() == Some(def_id) {
1666             // Sized is never implementable by end-users, it is
1667             // always automatically computed.
1668             let sized_conditions = self.sized_conditions(obligation);
1669             self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
1670         } else if lang_items.unsize_trait() == Some(def_id) {
1671             self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1672         } else {
1673             if lang_items.clone_trait() == Some(def_id) {
1674                 // Same builtin conditions as `Copy`, i.e., every type which has builtin support
1675                 // for `Copy` also has builtin support for `Clone`, and tuples/arrays of `Clone`
1676                 // types have builtin support for `Clone`.
1677                 let clone_conditions = self.copy_clone_conditions(obligation);
1678                 self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
1679             }
1680
1681             self.assemble_generator_candidates(obligation, &mut candidates)?;
1682             self.assemble_closure_candidates(obligation, &mut candidates)?;
1683             self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1684             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1685             self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1686         }
1687
1688         self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1689         self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1690         // Auto implementations have lower priority, so we only
1691         // consider triggering a default if there is no other impl that can apply.
1692         if candidates.vec.is_empty() {
1693             self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
1694         }
1695         debug!("candidate list size: {}", candidates.vec.len());
1696         Ok(candidates)
1697     }
1698
1699     fn assemble_candidates_from_projected_tys(
1700         &mut self,
1701         obligation: &TraitObligation<'tcx>,
1702         candidates: &mut SelectionCandidateSet<'tcx>,
1703     ) {
1704         debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1705
1706         // Before we go into the whole placeholder thing, just
1707         // quickly check if the self-type is a projection at all.
1708         match obligation.predicate.skip_binder().trait_ref.self_ty().kind {
1709             ty::Projection(_) | ty::Opaque(..) => {}
1710             ty::Infer(ty::TyVar(_)) => {
1711                 span_bug!(
1712                     obligation.cause.span,
1713                     "Self=_ should have been handled by assemble_candidates"
1714                 );
1715             }
1716             _ => return,
1717         }
1718
1719         let result = self.infcx.probe(|snapshot| {
1720             self.match_projection_obligation_against_definition_bounds(obligation, snapshot)
1721         });
1722
1723         if result {
1724             candidates.vec.push(ProjectionCandidate);
1725         }
1726     }
1727
1728     fn match_projection_obligation_against_definition_bounds(
1729         &mut self,
1730         obligation: &TraitObligation<'tcx>,
1731         snapshot: &CombinedSnapshot<'_, 'tcx>,
1732     ) -> bool {
1733         let poly_trait_predicate = self.infcx().resolve_vars_if_possible(&obligation.predicate);
1734         let (placeholder_trait_predicate, placeholder_map) =
1735             self.infcx().replace_bound_vars_with_placeholders(&poly_trait_predicate);
1736         debug!(
1737             "match_projection_obligation_against_definition_bounds: \
1738              placeholder_trait_predicate={:?}",
1739             placeholder_trait_predicate,
1740         );
1741
1742         let (def_id, substs) = match placeholder_trait_predicate.trait_ref.self_ty().kind {
1743             ty::Projection(ref data) => (data.trait_ref(self.tcx()).def_id, data.substs),
1744             ty::Opaque(def_id, substs) => (def_id, substs),
1745             _ => {
1746                 span_bug!(
1747                     obligation.cause.span,
1748                     "match_projection_obligation_against_definition_bounds() called \
1749                      but self-ty is not a projection: {:?}",
1750                     placeholder_trait_predicate.trait_ref.self_ty()
1751                 );
1752             }
1753         };
1754         debug!(
1755             "match_projection_obligation_against_definition_bounds: \
1756              def_id={:?}, substs={:?}",
1757             def_id, substs
1758         );
1759
1760         let predicates_of = self.tcx().predicates_of(def_id);
1761         let bounds = predicates_of.instantiate(self.tcx(), substs);
1762         debug!(
1763             "match_projection_obligation_against_definition_bounds: \
1764              bounds={:?}",
1765             bounds
1766         );
1767
1768         let elaborated_predicates = util::elaborate_predicates(self.tcx(), bounds.predicates);
1769         let matching_bound = elaborated_predicates.filter_to_traits().find(|bound| {
1770             self.infcx.probe(|_| {
1771                 self.match_projection(
1772                     obligation,
1773                     bound.clone(),
1774                     placeholder_trait_predicate.trait_ref.clone(),
1775                     &placeholder_map,
1776                     snapshot,
1777                 )
1778             })
1779         });
1780
1781         debug!(
1782             "match_projection_obligation_against_definition_bounds: \
1783              matching_bound={:?}",
1784             matching_bound
1785         );
1786         match matching_bound {
1787             None => false,
1788             Some(bound) => {
1789                 // Repeat the successful match, if any, this time outside of a probe.
1790                 let result = self.match_projection(
1791                     obligation,
1792                     bound,
1793                     placeholder_trait_predicate.trait_ref.clone(),
1794                     &placeholder_map,
1795                     snapshot,
1796                 );
1797
1798                 assert!(result);
1799                 true
1800             }
1801         }
1802     }
1803
1804     fn match_projection(
1805         &mut self,
1806         obligation: &TraitObligation<'tcx>,
1807         trait_bound: ty::PolyTraitRef<'tcx>,
1808         placeholder_trait_ref: ty::TraitRef<'tcx>,
1809         placeholder_map: &PlaceholderMap<'tcx>,
1810         snapshot: &CombinedSnapshot<'_, 'tcx>,
1811     ) -> bool {
1812         debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1813         self.infcx
1814             .at(&obligation.cause, obligation.param_env)
1815             .sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
1816             .is_ok()
1817             && self.infcx.leak_check(false, placeholder_map, snapshot).is_ok()
1818     }
1819
1820     /// Given an obligation like `<SomeTrait for T>`, searches the obligations that the caller
1821     /// supplied to find out whether it is listed among them.
1822     ///
1823     /// Never affects the inference environment.
1824     fn assemble_candidates_from_caller_bounds<'o>(
1825         &mut self,
1826         stack: &TraitObligationStack<'o, 'tcx>,
1827         candidates: &mut SelectionCandidateSet<'tcx>,
1828     ) -> Result<(), SelectionError<'tcx>> {
1829         debug!("assemble_candidates_from_caller_bounds({:?})", stack.obligation);
1830
1831         let all_bounds = stack
1832             .obligation
1833             .param_env
1834             .caller_bounds
1835             .iter()
1836             .filter_map(|o| o.to_opt_poly_trait_ref());
1837
1838         // Micro-optimization: filter out predicates relating to different traits.
1839         let matching_bounds =
1840             all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
1841
1842         // Keep only those bounds which may apply, and propagate overflow if it occurs.
1843         let mut param_candidates = vec![];
1844         for bound in matching_bounds {
1845             let wc = self.evaluate_where_clause(stack, bound.clone())?;
1846             if wc.may_apply() {
1847                 param_candidates.push(ParamCandidate(bound));
1848             }
1849         }
1850
1851         candidates.vec.extend(param_candidates);
1852
1853         Ok(())
1854     }
1855
1856     fn evaluate_where_clause<'o>(
1857         &mut self,
1858         stack: &TraitObligationStack<'o, 'tcx>,
1859         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1860     ) -> Result<EvaluationResult, OverflowError> {
1861         self.evaluation_probe(|this| {
1862             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1863                 Ok(obligations) => {
1864                     this.evaluate_predicates_recursively(stack.list(), obligations.into_iter())
1865                 }
1866                 Err(()) => Ok(EvaluatedToErr),
1867             }
1868         })
1869     }
1870
1871     fn assemble_generator_candidates(
1872         &mut self,
1873         obligation: &TraitObligation<'tcx>,
1874         candidates: &mut SelectionCandidateSet<'tcx>,
1875     ) -> Result<(), SelectionError<'tcx>> {
1876         if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
1877             return Ok(());
1878         }
1879
1880         // Okay to skip binder because the substs on generator types never
1881         // touch bound regions, they just capture the in-scope
1882         // type/region parameters.
1883         let self_ty = *obligation.self_ty().skip_binder();
1884         match self_ty.kind {
1885             ty::Generator(..) => {
1886                 debug!(
1887                     "assemble_generator_candidates: self_ty={:?} obligation={:?}",
1888                     self_ty, obligation
1889                 );
1890
1891                 candidates.vec.push(GeneratorCandidate);
1892             }
1893             ty::Infer(ty::TyVar(_)) => {
1894                 debug!("assemble_generator_candidates: ambiguous self-type");
1895                 candidates.ambiguous = true;
1896             }
1897             _ => {}
1898         }
1899
1900         Ok(())
1901     }
1902
1903     /// Checks for the artificial impl that the compiler will create for an obligation like `X :
1904     /// FnMut<..>` where `X` is a closure type.
1905     ///
1906     /// Note: the type parameters on a closure candidate are modeled as *output* type
1907     /// parameters and hence do not affect whether this trait is a match or not. They will be
1908     /// unified during the confirmation step.
1909     fn assemble_closure_candidates(
1910         &mut self,
1911         obligation: &TraitObligation<'tcx>,
1912         candidates: &mut SelectionCandidateSet<'tcx>,
1913     ) -> Result<(), SelectionError<'tcx>> {
1914         let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()) {
1915             Some(k) => k,
1916             None => {
1917                 return Ok(());
1918             }
1919         };
1920
1921         // Okay to skip binder because the substs on closure types never
1922         // touch bound regions, they just capture the in-scope
1923         // type/region parameters
1924         match obligation.self_ty().skip_binder().kind {
1925             ty::Closure(closure_def_id, closure_substs) => {
1926                 debug!("assemble_unboxed_candidates: kind={:?} obligation={:?}", kind, obligation);
1927                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
1928                     Some(closure_kind) => {
1929                         debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
1930                         if closure_kind.extends(kind) {
1931                             candidates.vec.push(ClosureCandidate);
1932                         }
1933                     }
1934                     None => {
1935                         debug!("assemble_unboxed_candidates: closure_kind not yet known");
1936                         candidates.vec.push(ClosureCandidate);
1937                     }
1938                 }
1939             }
1940             ty::Infer(ty::TyVar(_)) => {
1941                 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
1942                 candidates.ambiguous = true;
1943             }
1944             _ => {}
1945         }
1946
1947         Ok(())
1948     }
1949
1950     /// Implements one of the `Fn()` family for a fn pointer.
1951     fn assemble_fn_pointer_candidates(
1952         &mut self,
1953         obligation: &TraitObligation<'tcx>,
1954         candidates: &mut SelectionCandidateSet<'tcx>,
1955     ) -> Result<(), SelectionError<'tcx>> {
1956         // We provide impl of all fn traits for fn pointers.
1957         if self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()).is_none() {
1958             return Ok(());
1959         }
1960
1961         // Okay to skip binder because what we are inspecting doesn't involve bound regions.
1962         let self_ty = *obligation.self_ty().skip_binder();
1963         match self_ty.kind {
1964             ty::Infer(ty::TyVar(_)) => {
1965                 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
1966                 candidates.ambiguous = true; // Could wind up being a fn() type.
1967             }
1968             // Provide an impl, but only for suitable `fn` pointers.
1969             ty::FnDef(..) | ty::FnPtr(_) => {
1970                 if let ty::FnSig {
1971                     unsafety: hir::Unsafety::Normal,
1972                     abi: Abi::Rust,
1973                     c_variadic: false,
1974                     ..
1975                 } = self_ty.fn_sig(self.tcx()).skip_binder()
1976                 {
1977                     candidates.vec.push(FnPointerCandidate);
1978                 }
1979             }
1980             _ => {}
1981         }
1982
1983         Ok(())
1984     }
1985
1986     /// Searches for impls that might apply to `obligation`.
1987     fn assemble_candidates_from_impls(
1988         &mut self,
1989         obligation: &TraitObligation<'tcx>,
1990         candidates: &mut SelectionCandidateSet<'tcx>,
1991     ) -> Result<(), SelectionError<'tcx>> {
1992         debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
1993
1994         self.tcx().for_each_relevant_impl(
1995             obligation.predicate.def_id(),
1996             obligation.predicate.skip_binder().trait_ref.self_ty(),
1997             |impl_def_id| {
1998                 self.infcx.probe(|snapshot| {
1999                     if let Ok(_substs) = self.match_impl(impl_def_id, obligation, snapshot) {
2000                         candidates.vec.push(ImplCandidate(impl_def_id));
2001                     }
2002                 });
2003             },
2004         );
2005
2006         Ok(())
2007     }
2008
2009     fn assemble_candidates_from_auto_impls(
2010         &mut self,
2011         obligation: &TraitObligation<'tcx>,
2012         candidates: &mut SelectionCandidateSet<'tcx>,
2013     ) -> Result<(), SelectionError<'tcx>> {
2014         // Okay to skip binder here because the tests we do below do not involve bound regions.
2015         let self_ty = *obligation.self_ty().skip_binder();
2016         debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
2017
2018         let def_id = obligation.predicate.def_id();
2019
2020         if self.tcx().trait_is_auto(def_id) {
2021             match self_ty.kind {
2022                 ty::Dynamic(..) => {
2023                     // For object types, we don't know what the closed
2024                     // over types are. This means we conservatively
2025                     // say nothing; a candidate may be added by
2026                     // `assemble_candidates_from_object_ty`.
2027                 }
2028                 ty::Foreign(..) => {
2029                     // Since the contents of foreign types is unknown,
2030                     // we don't add any `..` impl. Default traits could
2031                     // still be provided by a manual implementation for
2032                     // this trait and type.
2033                 }
2034                 ty::Param(..) | ty::Projection(..) => {
2035                     // In these cases, we don't know what the actual
2036                     // type is.  Therefore, we cannot break it down
2037                     // into its constituent types. So we don't
2038                     // consider the `..` impl but instead just add no
2039                     // candidates: this means that typeck will only
2040                     // succeed if there is another reason to believe
2041                     // that this obligation holds. That could be a
2042                     // where-clause or, in the case of an object type,
2043                     // it could be that the object type lists the
2044                     // trait (e.g., `Foo+Send : Send`). See
2045                     // `compile-fail/typeck-default-trait-impl-send-param.rs`
2046                     // for an example of a test case that exercises
2047                     // this path.
2048                 }
2049                 ty::Infer(ty::TyVar(_)) => {
2050                     // The auto impl might apply; we don't know.
2051                     candidates.ambiguous = true;
2052                 }
2053                 ty::Generator(_, _, movability)
2054                     if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
2055                 {
2056                     match movability {
2057                         hir::Movability::Static => {
2058                             // Immovable generators are never `Unpin`, so
2059                             // suppress the normal auto-impl candidate for it.
2060                         }
2061                         hir::Movability::Movable => {
2062                             // Movable generators are always `Unpin`, so add an
2063                             // unconditional builtin candidate.
2064                             candidates.vec.push(BuiltinCandidate { has_nested: false });
2065                         }
2066                     }
2067                 }
2068
2069                 _ => candidates.vec.push(AutoImplCandidate(def_id.clone())),
2070             }
2071         }
2072
2073         Ok(())
2074     }
2075
2076     /// Searches for impls that might apply to `obligation`.
2077     fn assemble_candidates_from_object_ty(
2078         &mut self,
2079         obligation: &TraitObligation<'tcx>,
2080         candidates: &mut SelectionCandidateSet<'tcx>,
2081     ) {
2082         debug!(
2083             "assemble_candidates_from_object_ty(self_ty={:?})",
2084             obligation.self_ty().skip_binder()
2085         );
2086
2087         self.infcx.probe(|_snapshot| {
2088             // The code below doesn't care about regions, and the
2089             // self-ty here doesn't escape this probe, so just erase
2090             // any LBR.
2091             let self_ty = self.tcx().erase_late_bound_regions(&obligation.self_ty());
2092             let poly_trait_ref = match self_ty.kind {
2093                 ty::Dynamic(ref data, ..) => {
2094                     if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
2095                         debug!(
2096                             "assemble_candidates_from_object_ty: matched builtin bound, \
2097                              pushing candidate"
2098                         );
2099                         candidates.vec.push(BuiltinObjectCandidate);
2100                         return;
2101                     }
2102
2103                     if let Some(principal) = data.principal() {
2104                         if !self.infcx.tcx.features().object_safe_for_dispatch {
2105                             principal.with_self_ty(self.tcx(), self_ty)
2106                         } else if self.tcx().is_object_safe(principal.def_id()) {
2107                             principal.with_self_ty(self.tcx(), self_ty)
2108                         } else {
2109                             return;
2110                         }
2111                     } else {
2112                         // Only auto trait bounds exist.
2113                         return;
2114                     }
2115                 }
2116                 ty::Infer(ty::TyVar(_)) => {
2117                     debug!("assemble_candidates_from_object_ty: ambiguous");
2118                     candidates.ambiguous = true; // could wind up being an object type
2119                     return;
2120                 }
2121                 _ => return,
2122             };
2123
2124             debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}", poly_trait_ref);
2125
2126             // Count only those upcast versions that match the trait-ref
2127             // we are looking for. Specifically, do not only check for the
2128             // correct trait, but also the correct type parameters.
2129             // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
2130             // but `Foo` is declared as `trait Foo: Bar<u32>`.
2131             let upcast_trait_refs = util::supertraits(self.tcx(), poly_trait_ref)
2132                 .filter(|upcast_trait_ref| {
2133                     self.infcx.probe(|_| {
2134                         let upcast_trait_ref = upcast_trait_ref.clone();
2135                         self.match_poly_trait_ref(obligation, upcast_trait_ref).is_ok()
2136                     })
2137                 })
2138                 .count();
2139
2140             if upcast_trait_refs > 1 {
2141                 // Can be upcast in many ways; need more type information.
2142                 candidates.ambiguous = true;
2143             } else if upcast_trait_refs == 1 {
2144                 candidates.vec.push(ObjectCandidate);
2145             }
2146         })
2147     }
2148
2149     /// Searches for unsizing that might apply to `obligation`.
2150     fn assemble_candidates_for_unsizing(
2151         &mut self,
2152         obligation: &TraitObligation<'tcx>,
2153         candidates: &mut SelectionCandidateSet<'tcx>,
2154     ) {
2155         // We currently never consider higher-ranked obligations e.g.
2156         // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
2157         // because they are a priori invalid, and we could potentially add support
2158         // for them later, it's just that there isn't really a strong need for it.
2159         // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
2160         // impl, and those are generally applied to concrete types.
2161         //
2162         // That said, one might try to write a fn with a where clause like
2163         //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
2164         // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
2165         // Still, you'd be more likely to write that where clause as
2166         //     T: Trait
2167         // so it seems ok if we (conservatively) fail to accept that `Unsize`
2168         // obligation above. Should be possible to extend this in the future.
2169         let source = match obligation.self_ty().no_bound_vars() {
2170             Some(t) => t,
2171             None => {
2172                 // Don't add any candidates if there are bound regions.
2173                 return;
2174             }
2175         };
2176         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
2177
2178         debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})", source, target);
2179
2180         let may_apply = match (&source.kind, &target.kind) {
2181             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2182             (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
2183                 // Upcasts permit two things:
2184                 //
2185                 // 1. Dropping auto traits, e.g., `Foo + Send` to `Foo`
2186                 // 2. Tightening the region bound, e.g., `Foo + 'a` to `Foo + 'b` if `'a: 'b`
2187                 //
2188                 // Note that neither of these changes requires any
2189                 // change at runtime. Eventually this will be
2190                 // generalized.
2191                 //
2192                 // We always upcast when we can because of reason
2193                 // #2 (region bounds).
2194                 data_a.principal_def_id() == data_b.principal_def_id()
2195                     && data_b
2196                         .auto_traits()
2197                         // All of a's auto traits need to be in b's auto traits.
2198                         .all(|b| data_a.auto_traits().any(|a| a == b))
2199             }
2200
2201             // `T` -> `Trait`
2202             (_, &ty::Dynamic(..)) => true,
2203
2204             // Ambiguous handling is below `T` -> `Trait`, because inference
2205             // variables can still implement `Unsize<Trait>` and nested
2206             // obligations will have the final say (likely deferred).
2207             (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
2208                 debug!("assemble_candidates_for_unsizing: ambiguous");
2209                 candidates.ambiguous = true;
2210                 false
2211             }
2212
2213             // `[T; n]` -> `[T]`
2214             (&ty::Array(..), &ty::Slice(_)) => true,
2215
2216             // `Struct<T>` -> `Struct<U>`
2217             (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
2218                 def_id_a == def_id_b
2219             }
2220
2221             // `(.., T)` -> `(.., U)`
2222             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
2223
2224             _ => false,
2225         };
2226
2227         if may_apply {
2228             candidates.vec.push(BuiltinUnsizeCandidate);
2229         }
2230     }
2231
2232     fn assemble_candidates_for_trait_alias(
2233         &mut self,
2234         obligation: &TraitObligation<'tcx>,
2235         candidates: &mut SelectionCandidateSet<'tcx>,
2236     ) -> Result<(), SelectionError<'tcx>> {
2237         // Okay to skip binder here because the tests we do below do not involve bound regions.
2238         let self_ty = *obligation.self_ty().skip_binder();
2239         debug!("assemble_candidates_for_trait_alias(self_ty={:?})", self_ty);
2240
2241         let def_id = obligation.predicate.def_id();
2242
2243         if self.tcx().is_trait_alias(def_id) {
2244             candidates.vec.push(TraitAliasCandidate(def_id.clone()));
2245         }
2246
2247         Ok(())
2248     }
2249
2250     ///////////////////////////////////////////////////////////////////////////
2251     // WINNOW
2252     //
2253     // Winnowing is the process of attempting to resolve ambiguity by
2254     // probing further. During the winnowing process, we unify all
2255     // type variables and then we also attempt to evaluate recursive
2256     // bounds to see if they are satisfied.
2257
2258     /// Returns `true` if `victim` should be dropped in favor of
2259     /// `other`. Generally speaking we will drop duplicate
2260     /// candidates and prefer where-clause candidates.
2261     ///
2262     /// See the comment for "SelectionCandidate" for more details.
2263     fn candidate_should_be_dropped_in_favor_of(
2264         &mut self,
2265         victim: &EvaluatedCandidate<'tcx>,
2266         other: &EvaluatedCandidate<'tcx>,
2267         needs_infer: bool,
2268     ) -> bool {
2269         if victim.candidate == other.candidate {
2270             return true;
2271         }
2272
2273         // Check if a bound would previously have been removed when normalizing
2274         // the param_env so that it can be given the lowest priority. See
2275         // #50825 for the motivation for this.
2276         let is_global =
2277             |cand: &ty::PolyTraitRef<'_>| cand.is_global() && !cand.has_late_bound_regions();
2278
2279         match other.candidate {
2280             // Prefer `BuiltinCandidate { has_nested: false }` to anything else.
2281             // This is a fix for #53123 and prevents winnowing from accidentally extending the
2282             // lifetime of a variable.
2283             BuiltinCandidate { has_nested: false } => true,
2284             ParamCandidate(ref cand) => match victim.candidate {
2285                 AutoImplCandidate(..) => {
2286                     bug!(
2287                         "default implementations shouldn't be recorded \
2288                          when there are other valid candidates"
2289                     );
2290                 }
2291                 // Prefer `BuiltinCandidate { has_nested: false }` to anything else.
2292                 // This is a fix for #53123 and prevents winnowing from accidentally extending the
2293                 // lifetime of a variable.
2294                 BuiltinCandidate { has_nested: false } => false,
2295                 ImplCandidate(..)
2296                 | ClosureCandidate
2297                 | GeneratorCandidate
2298                 | FnPointerCandidate
2299                 | BuiltinObjectCandidate
2300                 | BuiltinUnsizeCandidate
2301                 | BuiltinCandidate { .. }
2302                 | TraitAliasCandidate(..) => {
2303                     // Global bounds from the where clause should be ignored
2304                     // here (see issue #50825). Otherwise, we have a where
2305                     // clause so don't go around looking for impls.
2306                     !is_global(cand)
2307                 }
2308                 ObjectCandidate | ProjectionCandidate => {
2309                     // Arbitrarily give param candidates priority
2310                     // over projection and object candidates.
2311                     !is_global(cand)
2312                 }
2313                 ParamCandidate(..) => false,
2314             },
2315             ObjectCandidate | ProjectionCandidate => match victim.candidate {
2316                 AutoImplCandidate(..) => {
2317                     bug!(
2318                         "default implementations shouldn't be recorded \
2319                          when there are other valid candidates"
2320                     );
2321                 }
2322                 // Prefer `BuiltinCandidate { has_nested: false }` to anything else.
2323                 // This is a fix for #53123 and prevents winnowing from accidentally extending the
2324                 // lifetime of a variable.
2325                 BuiltinCandidate { has_nested: false } => false,
2326                 ImplCandidate(..)
2327                 | ClosureCandidate
2328                 | GeneratorCandidate
2329                 | FnPointerCandidate
2330                 | BuiltinObjectCandidate
2331                 | BuiltinUnsizeCandidate
2332                 | BuiltinCandidate { .. }
2333                 | TraitAliasCandidate(..) => true,
2334                 ObjectCandidate | ProjectionCandidate => {
2335                     // Arbitrarily give param candidates priority
2336                     // over projection and object candidates.
2337                     true
2338                 }
2339                 ParamCandidate(ref cand) => is_global(cand),
2340             },
2341             ImplCandidate(other_def) => {
2342                 // See if we can toss out `victim` based on specialization.
2343                 // This requires us to know *for sure* that the `other` impl applies
2344                 // i.e., `EvaluatedToOk`.
2345                 if other.evaluation.must_apply_modulo_regions() {
2346                     match victim.candidate {
2347                         ImplCandidate(victim_def) => {
2348                             let tcx = self.tcx();
2349                             if tcx.specializes((other_def, victim_def)) {
2350                                 return true;
2351                             }
2352                             return match tcx.impls_are_allowed_to_overlap(other_def, victim_def) {
2353                                 Some(ty::ImplOverlapKind::Permitted { marker: true }) => {
2354                                     // Subtle: If the predicate we are evaluating has inference
2355                                     // variables, do *not* allow discarding candidates due to
2356                                     // marker trait impls.
2357                                     //
2358                                     // Without this restriction, we could end up accidentally
2359                                     // constrainting inference variables based on an arbitrarily
2360                                     // chosen trait impl.
2361                                     //
2362                                     // Imagine we have the following code:
2363                                     //
2364                                     // ```rust
2365                                     // #[marker] trait MyTrait {}
2366                                     // impl MyTrait for u8 {}
2367                                     // impl MyTrait for bool {}
2368                                     // ```
2369                                     //
2370                                     // And we are evaluating the predicate `<_#0t as MyTrait>`.
2371                                     //
2372                                     // During selection, we will end up with one candidate for each
2373                                     // impl of `MyTrait`. If we were to discard one impl in favor
2374                                     // of the other, we would be left with one candidate, causing
2375                                     // us to "successfully" select the predicate, unifying
2376                                     // _#0t with (for example) `u8`.
2377                                     //
2378                                     // However, we have no reason to believe that this unification
2379                                     // is correct - we've essentially just picked an arbitrary
2380                                     // *possibility* for _#0t, and required that this be the *only*
2381                                     // possibility.
2382                                     //
2383                                     // Eventually, we will either:
2384                                     // 1) Unify all inference variables in the predicate through
2385                                     // some other means (e.g. type-checking of a function). We will
2386                                     // then be in a position to drop marker trait candidates
2387                                     // without constraining inference variables (since there are
2388                                     // none left to constrin)
2389                                     // 2) Be left with some unconstrained inference variables. We
2390                                     // will then correctly report an inference error, since the
2391                                     // existence of multiple marker trait impls tells us nothing
2392                                     // about which one should actually apply.
2393                                     !needs_infer
2394                                 }
2395                                 Some(_) => true,
2396                                 None => false,
2397                             };
2398                         }
2399                         ParamCandidate(ref cand) => {
2400                             // Prefer the impl to a global where clause candidate.
2401                             return is_global(cand);
2402                         }
2403                         _ => (),
2404                     }
2405                 }
2406
2407                 false
2408             }
2409             ClosureCandidate
2410             | GeneratorCandidate
2411             | FnPointerCandidate
2412             | BuiltinObjectCandidate
2413             | BuiltinUnsizeCandidate
2414             | BuiltinCandidate { has_nested: true } => {
2415                 match victim.candidate {
2416                     ParamCandidate(ref cand) => {
2417                         // Prefer these to a global where-clause bound
2418                         // (see issue #50825).
2419                         is_global(cand) && other.evaluation.must_apply_modulo_regions()
2420                     }
2421                     _ => false,
2422                 }
2423             }
2424             _ => false,
2425         }
2426     }
2427
2428     ///////////////////////////////////////////////////////////////////////////
2429     // BUILTIN BOUNDS
2430     //
2431     // These cover the traits that are built-in to the language
2432     // itself: `Copy`, `Clone` and `Sized`.
2433
2434     fn assemble_builtin_bound_candidates(
2435         &mut self,
2436         conditions: BuiltinImplConditions<'tcx>,
2437         candidates: &mut SelectionCandidateSet<'tcx>,
2438     ) -> Result<(), SelectionError<'tcx>> {
2439         match conditions {
2440             BuiltinImplConditions::Where(nested) => {
2441                 debug!("builtin_bound: nested={:?}", nested);
2442                 candidates
2443                     .vec
2444                     .push(BuiltinCandidate { has_nested: nested.skip_binder().len() > 0 });
2445             }
2446             BuiltinImplConditions::None => {}
2447             BuiltinImplConditions::Ambiguous => {
2448                 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
2449                 candidates.ambiguous = true;
2450             }
2451         }
2452
2453         Ok(())
2454     }
2455
2456     fn sized_conditions(
2457         &mut self,
2458         obligation: &TraitObligation<'tcx>,
2459     ) -> BuiltinImplConditions<'tcx> {
2460         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2461
2462         // NOTE: binder moved to (*)
2463         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2464
2465         match self_ty.kind {
2466             ty::Infer(ty::IntVar(_))
2467             | ty::Infer(ty::FloatVar(_))
2468             | ty::Uint(_)
2469             | ty::Int(_)
2470             | ty::Bool
2471             | ty::Float(_)
2472             | ty::FnDef(..)
2473             | ty::FnPtr(_)
2474             | ty::RawPtr(..)
2475             | ty::Char
2476             | ty::Ref(..)
2477             | ty::Generator(..)
2478             | ty::GeneratorWitness(..)
2479             | ty::Array(..)
2480             | ty::Closure(..)
2481             | ty::Never
2482             | ty::Error => {
2483                 // safe for everything
2484                 Where(ty::Binder::dummy(Vec::new()))
2485             }
2486
2487             ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
2488
2489             ty::Tuple(tys) => {
2490                 Where(ty::Binder::bind(tys.last().into_iter().map(|k| k.expect_ty()).collect()))
2491             }
2492
2493             ty::Adt(def, substs) => {
2494                 let sized_crit = def.sized_constraint(self.tcx());
2495                 // (*) binder moved here
2496                 Where(ty::Binder::bind(
2497                     sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect(),
2498                 ))
2499             }
2500
2501             ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
2502             ty::Infer(ty::TyVar(_)) => Ambiguous,
2503
2504             ty::UnnormalizedProjection(..)
2505             | ty::Placeholder(..)
2506             | ty::Bound(..)
2507             | ty::Infer(ty::FreshTy(_))
2508             | ty::Infer(ty::FreshIntTy(_))
2509             | ty::Infer(ty::FreshFloatTy(_)) => {
2510                 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2511             }
2512         }
2513     }
2514
2515     fn copy_clone_conditions(
2516         &mut self,
2517         obligation: &TraitObligation<'tcx>,
2518     ) -> BuiltinImplConditions<'tcx> {
2519         // NOTE: binder moved to (*)
2520         let self_ty = self.infcx.shallow_resolve(obligation.predicate.skip_binder().self_ty());
2521
2522         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2523
2524         match self_ty.kind {
2525             ty::Infer(ty::IntVar(_))
2526             | ty::Infer(ty::FloatVar(_))
2527             | ty::FnDef(..)
2528             | ty::FnPtr(_)
2529             | ty::Error => Where(ty::Binder::dummy(Vec::new())),
2530
2531             ty::Uint(_)
2532             | ty::Int(_)
2533             | ty::Bool
2534             | ty::Float(_)
2535             | ty::Char
2536             | ty::RawPtr(..)
2537             | ty::Never
2538             | ty::Ref(_, _, hir::Mutability::Not) => {
2539                 // Implementations provided in libcore
2540                 None
2541             }
2542
2543             ty::Dynamic(..)
2544             | ty::Str
2545             | ty::Slice(..)
2546             | ty::Generator(..)
2547             | ty::GeneratorWitness(..)
2548             | ty::Foreign(..)
2549             | ty::Ref(_, _, hir::Mutability::Mut) => None,
2550
2551             ty::Array(element_ty, _) => {
2552                 // (*) binder moved here
2553                 Where(ty::Binder::bind(vec![element_ty]))
2554             }
2555
2556             ty::Tuple(tys) => {
2557                 // (*) binder moved here
2558                 Where(ty::Binder::bind(tys.iter().map(|k| k.expect_ty()).collect()))
2559             }
2560
2561             ty::Closure(def_id, substs) => {
2562                 // (*) binder moved here
2563                 Where(ty::Binder::bind(substs.as_closure().upvar_tys(def_id, self.tcx()).collect()))
2564             }
2565
2566             ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
2567                 // Fallback to whatever user-defined impls exist in this case.
2568                 None
2569             }
2570
2571             ty::Infer(ty::TyVar(_)) => {
2572                 // Unbound type variable. Might or might not have
2573                 // applicable impls and so forth, depending on what
2574                 // those type variables wind up being bound to.
2575                 Ambiguous
2576             }
2577
2578             ty::UnnormalizedProjection(..)
2579             | ty::Placeholder(..)
2580             | ty::Bound(..)
2581             | ty::Infer(ty::FreshTy(_))
2582             | ty::Infer(ty::FreshIntTy(_))
2583             | ty::Infer(ty::FreshFloatTy(_)) => {
2584                 bug!("asked to assemble builtin bounds of unexpected type: {:?}", self_ty);
2585             }
2586         }
2587     }
2588
2589     /// For default impls, we need to break apart a type into its
2590     /// "constituent types" -- meaning, the types that it contains.
2591     ///
2592     /// Here are some (simple) examples:
2593     ///
2594     /// ```
2595     /// (i32, u32) -> [i32, u32]
2596     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2597     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2598     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2599     /// ```
2600     fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
2601         match t.kind {
2602             ty::Uint(_)
2603             | ty::Int(_)
2604             | ty::Bool
2605             | ty::Float(_)
2606             | ty::FnDef(..)
2607             | ty::FnPtr(_)
2608             | ty::Str
2609             | ty::Error
2610             | ty::Infer(ty::IntVar(_))
2611             | ty::Infer(ty::FloatVar(_))
2612             | ty::Never
2613             | ty::Char => Vec::new(),
2614
2615             ty::UnnormalizedProjection(..)
2616             | ty::Placeholder(..)
2617             | ty::Dynamic(..)
2618             | ty::Param(..)
2619             | ty::Foreign(..)
2620             | ty::Projection(..)
2621             | ty::Bound(..)
2622             | ty::Infer(ty::TyVar(_))
2623             | ty::Infer(ty::FreshTy(_))
2624             | ty::Infer(ty::FreshIntTy(_))
2625             | ty::Infer(ty::FreshFloatTy(_)) => {
2626                 bug!("asked to assemble constituent types of unexpected type: {:?}", t);
2627             }
2628
2629             ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
2630                 vec![element_ty]
2631             }
2632
2633             ty::Array(element_ty, _) | ty::Slice(element_ty) => vec![element_ty],
2634
2635             ty::Tuple(ref tys) => {
2636                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2637                 tys.iter().map(|k| k.expect_ty()).collect()
2638             }
2639
2640             ty::Closure(def_id, ref substs) => {
2641                 substs.as_closure().upvar_tys(def_id, self.tcx()).collect()
2642             }
2643
2644             ty::Generator(def_id, ref substs, _) => {
2645                 let witness = substs.as_generator().witness(def_id, self.tcx());
2646                 substs
2647                     .as_generator()
2648                     .upvar_tys(def_id, self.tcx())
2649                     .chain(iter::once(witness))
2650                     .collect()
2651             }
2652
2653             ty::GeneratorWitness(types) => {
2654                 // This is sound because no regions in the witness can refer to
2655                 // the binder outside the witness. So we'll effectivly reuse
2656                 // the implicit binder around the witness.
2657                 types.skip_binder().to_vec()
2658             }
2659
2660             // For `PhantomData<T>`, we pass `T`.
2661             ty::Adt(def, substs) if def.is_phantom_data() => substs.types().collect(),
2662
2663             ty::Adt(def, substs) => def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect(),
2664
2665             ty::Opaque(def_id, substs) => {
2666                 // We can resolve the `impl Trait` to its concrete type,
2667                 // which enforces a DAG between the functions requiring
2668                 // the auto trait bounds in question.
2669                 vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
2670             }
2671         }
2672     }
2673
2674     fn collect_predicates_for_types(
2675         &mut self,
2676         param_env: ty::ParamEnv<'tcx>,
2677         cause: ObligationCause<'tcx>,
2678         recursion_depth: usize,
2679         trait_def_id: DefId,
2680         types: ty::Binder<Vec<Ty<'tcx>>>,
2681     ) -> Vec<PredicateObligation<'tcx>> {
2682         // Because the types were potentially derived from
2683         // higher-ranked obligations they may reference late-bound
2684         // regions. For example, `for<'a> Foo<&'a int> : Copy` would
2685         // yield a type like `for<'a> &'a int`. In general, we
2686         // maintain the invariant that we never manipulate bound
2687         // regions, so we have to process these bound regions somehow.
2688         //
2689         // The strategy is to:
2690         //
2691         // 1. Instantiate those regions to placeholder regions (e.g.,
2692         //    `for<'a> &'a int` becomes `&0 int`.
2693         // 2. Produce something like `&'0 int : Copy`
2694         // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
2695
2696         types
2697             .skip_binder()
2698             .into_iter()
2699             .flat_map(|ty| {
2700                 // binder moved -\
2701                 let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
2702
2703                 self.infcx.commit_unconditionally(|_| {
2704                     let (skol_ty, _) = self.infcx.replace_bound_vars_with_placeholders(&ty);
2705                     let Normalized { value: normalized_ty, mut obligations } =
2706                         project::normalize_with_depth(
2707                             self,
2708                             param_env,
2709                             cause.clone(),
2710                             recursion_depth,
2711                             &skol_ty,
2712                         );
2713                     let skol_obligation = predicate_for_trait_def(
2714                         self.tcx(),
2715                         param_env,
2716                         cause.clone(),
2717                         trait_def_id,
2718                         recursion_depth,
2719                         normalized_ty,
2720                         &[],
2721                     );
2722                     obligations.push(skol_obligation);
2723                     obligations
2724                 })
2725             })
2726             .collect()
2727     }
2728
2729     ///////////////////////////////////////////////////////////////////////////
2730     // CONFIRMATION
2731     //
2732     // Confirmation unifies the output type parameters of the trait
2733     // with the values found in the obligation, possibly yielding a
2734     // type error.  See the [rustc guide] for more details.
2735     //
2736     // [rustc guide]:
2737     // https://rust-lang.github.io/rustc-guide/traits/resolution.html#confirmation
2738
2739     fn confirm_candidate(
2740         &mut self,
2741         obligation: &TraitObligation<'tcx>,
2742         candidate: SelectionCandidate<'tcx>,
2743     ) -> Result<Selection<'tcx>, SelectionError<'tcx>> {
2744         debug!("confirm_candidate({:?}, {:?})", obligation, candidate);
2745
2746         match candidate {
2747             BuiltinCandidate { has_nested } => {
2748                 let data = self.confirm_builtin_candidate(obligation, has_nested);
2749                 Ok(VtableBuiltin(data))
2750             }
2751
2752             ParamCandidate(param) => {
2753                 let obligations = self.confirm_param_candidate(obligation, param);
2754                 Ok(VtableParam(obligations))
2755             }
2756
2757             ImplCandidate(impl_def_id) => {
2758                 Ok(VtableImpl(self.confirm_impl_candidate(obligation, impl_def_id)))
2759             }
2760
2761             AutoImplCandidate(trait_def_id) => {
2762                 let data = self.confirm_auto_impl_candidate(obligation, trait_def_id);
2763                 Ok(VtableAutoImpl(data))
2764             }
2765
2766             ProjectionCandidate => {
2767                 self.confirm_projection_candidate(obligation);
2768                 Ok(VtableParam(Vec::new()))
2769             }
2770
2771             ClosureCandidate => {
2772                 let vtable_closure = self.confirm_closure_candidate(obligation)?;
2773                 Ok(VtableClosure(vtable_closure))
2774             }
2775
2776             GeneratorCandidate => {
2777                 let vtable_generator = self.confirm_generator_candidate(obligation)?;
2778                 Ok(VtableGenerator(vtable_generator))
2779             }
2780
2781             FnPointerCandidate => {
2782                 let data = self.confirm_fn_pointer_candidate(obligation)?;
2783                 Ok(VtableFnPointer(data))
2784             }
2785
2786             TraitAliasCandidate(alias_def_id) => {
2787                 let data = self.confirm_trait_alias_candidate(obligation, alias_def_id);
2788                 Ok(VtableTraitAlias(data))
2789             }
2790
2791             ObjectCandidate => {
2792                 let data = self.confirm_object_candidate(obligation);
2793                 Ok(VtableObject(data))
2794             }
2795
2796             BuiltinObjectCandidate => {
2797                 // This indicates something like `Trait + Send: Send`. In this case, we know that
2798                 // this holds because that's what the object type is telling us, and there's really
2799                 // no additional obligations to prove and no types in particular to unify, etc.
2800                 Ok(VtableParam(Vec::new()))
2801             }
2802
2803             BuiltinUnsizeCandidate => {
2804                 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2805                 Ok(VtableBuiltin(data))
2806             }
2807         }
2808     }
2809
2810     fn confirm_projection_candidate(&mut self, obligation: &TraitObligation<'tcx>) {
2811         self.infcx.commit_unconditionally(|snapshot| {
2812             let result =
2813                 self.match_projection_obligation_against_definition_bounds(obligation, snapshot);
2814             assert!(result);
2815         })
2816     }
2817
2818     fn confirm_param_candidate(
2819         &mut self,
2820         obligation: &TraitObligation<'tcx>,
2821         param: ty::PolyTraitRef<'tcx>,
2822     ) -> Vec<PredicateObligation<'tcx>> {
2823         debug!("confirm_param_candidate({:?},{:?})", obligation, param);
2824
2825         // During evaluation, we already checked that this
2826         // where-clause trait-ref could be unified with the obligation
2827         // trait-ref. Repeat that unification now without any
2828         // transactional boundary; it should not fail.
2829         match self.match_where_clause_trait_ref(obligation, param.clone()) {
2830             Ok(obligations) => obligations,
2831             Err(()) => {
2832                 bug!(
2833                     "Where clause `{:?}` was applicable to `{:?}` but now is not",
2834                     param,
2835                     obligation
2836                 );
2837             }
2838         }
2839     }
2840
2841     fn confirm_builtin_candidate(
2842         &mut self,
2843         obligation: &TraitObligation<'tcx>,
2844         has_nested: bool,
2845     ) -> VtableBuiltinData<PredicateObligation<'tcx>> {
2846         debug!("confirm_builtin_candidate({:?}, {:?})", obligation, has_nested);
2847
2848         let lang_items = self.tcx().lang_items();
2849         let obligations = if has_nested {
2850             let trait_def = obligation.predicate.def_id();
2851             let conditions = if Some(trait_def) == lang_items.sized_trait() {
2852                 self.sized_conditions(obligation)
2853             } else if Some(trait_def) == lang_items.copy_trait() {
2854                 self.copy_clone_conditions(obligation)
2855             } else if Some(trait_def) == lang_items.clone_trait() {
2856                 self.copy_clone_conditions(obligation)
2857             } else {
2858                 bug!("unexpected builtin trait {:?}", trait_def)
2859             };
2860             let nested = match conditions {
2861                 BuiltinImplConditions::Where(nested) => nested,
2862                 _ => bug!("obligation {:?} had matched a builtin impl but now doesn't", obligation),
2863             };
2864
2865             let cause = obligation.derived_cause(BuiltinDerivedObligation);
2866             self.collect_predicates_for_types(
2867                 obligation.param_env,
2868                 cause,
2869                 obligation.recursion_depth + 1,
2870                 trait_def,
2871                 nested,
2872             )
2873         } else {
2874             vec![]
2875         };
2876
2877         debug!("confirm_builtin_candidate: obligations={:?}", obligations);
2878
2879         VtableBuiltinData { nested: obligations }
2880     }
2881
2882     /// This handles the case where a `auto trait Foo` impl is being used.
2883     /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2884     ///
2885     /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2886     /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2887     fn confirm_auto_impl_candidate(
2888         &mut self,
2889         obligation: &TraitObligation<'tcx>,
2890         trait_def_id: DefId,
2891     ) -> VtableAutoImplData<PredicateObligation<'tcx>> {
2892         debug!("confirm_auto_impl_candidate({:?}, {:?})", obligation, trait_def_id);
2893
2894         let types = obligation.predicate.map_bound(|inner| {
2895             let self_ty = self.infcx.shallow_resolve(inner.self_ty());
2896             self.constituent_types_for_ty(self_ty)
2897         });
2898         self.vtable_auto_impl(obligation, trait_def_id, types)
2899     }
2900
2901     /// See `confirm_auto_impl_candidate`.
2902     fn vtable_auto_impl(
2903         &mut self,
2904         obligation: &TraitObligation<'tcx>,
2905         trait_def_id: DefId,
2906         nested: ty::Binder<Vec<Ty<'tcx>>>,
2907     ) -> VtableAutoImplData<PredicateObligation<'tcx>> {
2908         debug!("vtable_auto_impl: nested={:?}", nested);
2909
2910         let cause = obligation.derived_cause(BuiltinDerivedObligation);
2911         let mut obligations = self.collect_predicates_for_types(
2912             obligation.param_env,
2913             cause,
2914             obligation.recursion_depth + 1,
2915             trait_def_id,
2916             nested,
2917         );
2918
2919         let trait_obligations: Vec<PredicateObligation<'_>> =
2920             self.infcx.commit_unconditionally(|_| {
2921                 let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
2922                 let (trait_ref, _) =
2923                     self.infcx.replace_bound_vars_with_placeholders(&poly_trait_ref);
2924                 let cause = obligation.derived_cause(ImplDerivedObligation);
2925                 self.impl_or_trait_obligations(
2926                     cause,
2927                     obligation.recursion_depth + 1,
2928                     obligation.param_env,
2929                     trait_def_id,
2930                     &trait_ref.substs,
2931                 )
2932             });
2933
2934         // Adds the predicates from the trait.  Note that this contains a `Self: Trait`
2935         // predicate as usual.  It won't have any effect since auto traits are coinductive.
2936         obligations.extend(trait_obligations);
2937
2938         debug!("vtable_auto_impl: obligations={:?}", obligations);
2939
2940         VtableAutoImplData { trait_def_id, nested: obligations }
2941     }
2942
2943     fn confirm_impl_candidate(
2944         &mut self,
2945         obligation: &TraitObligation<'tcx>,
2946         impl_def_id: DefId,
2947     ) -> VtableImplData<'tcx, PredicateObligation<'tcx>> {
2948         debug!("confirm_impl_candidate({:?},{:?})", obligation, impl_def_id);
2949
2950         // First, create the substitutions by matching the impl again,
2951         // this time not in a probe.
2952         self.infcx.commit_unconditionally(|snapshot| {
2953             let substs = self.rematch_impl(impl_def_id, obligation, snapshot);
2954             debug!("confirm_impl_candidate: substs={:?}", substs);
2955             let cause = obligation.derived_cause(ImplDerivedObligation);
2956             self.vtable_impl(
2957                 impl_def_id,
2958                 substs,
2959                 cause,
2960                 obligation.recursion_depth + 1,
2961                 obligation.param_env,
2962             )
2963         })
2964     }
2965
2966     fn vtable_impl(
2967         &mut self,
2968         impl_def_id: DefId,
2969         mut substs: Normalized<'tcx, SubstsRef<'tcx>>,
2970         cause: ObligationCause<'tcx>,
2971         recursion_depth: usize,
2972         param_env: ty::ParamEnv<'tcx>,
2973     ) -> VtableImplData<'tcx, PredicateObligation<'tcx>> {
2974         debug!(
2975             "vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={})",
2976             impl_def_id, substs, recursion_depth,
2977         );
2978
2979         let mut impl_obligations = self.impl_or_trait_obligations(
2980             cause,
2981             recursion_depth,
2982             param_env,
2983             impl_def_id,
2984             &substs.value,
2985         );
2986
2987         debug!(
2988             "vtable_impl: impl_def_id={:?} impl_obligations={:?}",
2989             impl_def_id, impl_obligations
2990         );
2991
2992         // Because of RFC447, the impl-trait-ref and obligations
2993         // are sufficient to determine the impl substs, without
2994         // relying on projections in the impl-trait-ref.
2995         //
2996         // e.g., `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
2997         impl_obligations.append(&mut substs.obligations);
2998
2999         VtableImplData { impl_def_id, substs: substs.value, nested: impl_obligations }
3000     }
3001
3002     fn confirm_object_candidate(
3003         &mut self,
3004         obligation: &TraitObligation<'tcx>,
3005     ) -> VtableObjectData<'tcx, PredicateObligation<'tcx>> {
3006         debug!("confirm_object_candidate({:?})", obligation);
3007
3008         // FIXME(nmatsakis) skipping binder here seems wrong -- we should
3009         // probably flatten the binder from the obligation and the binder
3010         // from the object. Have to try to make a broken test case that
3011         // results.
3012         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
3013         let poly_trait_ref = match self_ty.kind {
3014             ty::Dynamic(ref data, ..) => data
3015                 .principal()
3016                 .unwrap_or_else(|| {
3017                     span_bug!(obligation.cause.span, "object candidate with no principal")
3018                 })
3019                 .with_self_ty(self.tcx(), self_ty),
3020             _ => span_bug!(obligation.cause.span, "object candidate with non-object"),
3021         };
3022
3023         let mut upcast_trait_ref = None;
3024         let mut nested = vec![];
3025         let vtable_base;
3026
3027         {
3028             let tcx = self.tcx();
3029
3030             // We want to find the first supertrait in the list of
3031             // supertraits that we can unify with, and do that
3032             // unification. We know that there is exactly one in the list
3033             // where we can unify, because otherwise select would have
3034             // reported an ambiguity. (When we do find a match, also
3035             // record it for later.)
3036             let nonmatching = util::supertraits(tcx, poly_trait_ref).take_while(|&t| {
3037                 match self.infcx.commit_if_ok(|_| self.match_poly_trait_ref(obligation, t)) {
3038                     Ok(obligations) => {
3039                         upcast_trait_ref = Some(t);
3040                         nested.extend(obligations);
3041                         false
3042                     }
3043                     Err(_) => true,
3044                 }
3045             });
3046
3047             // Additionally, for each of the non-matching predicates that
3048             // we pass over, we sum up the set of number of vtable
3049             // entries, so that we can compute the offset for the selected
3050             // trait.
3051             vtable_base = nonmatching.map(|t| super::util::count_own_vtable_entries(tcx, t)).sum();
3052         }
3053
3054         VtableObjectData { upcast_trait_ref: upcast_trait_ref.unwrap(), vtable_base, nested }
3055     }
3056
3057     fn confirm_fn_pointer_candidate(
3058         &mut self,
3059         obligation: &TraitObligation<'tcx>,
3060     ) -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3061         debug!("confirm_fn_pointer_candidate({:?})", obligation);
3062
3063         // Okay to skip binder; it is reintroduced below.
3064         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
3065         let sig = self_ty.fn_sig(self.tcx());
3066         let trait_ref = closure_trait_ref_and_return_type(
3067             self.tcx(),
3068             obligation.predicate.def_id(),
3069             self_ty,
3070             sig,
3071             util::TupleArgumentsFlag::Yes,
3072         )
3073         .map_bound(|(trait_ref, _)| trait_ref);
3074
3075         let Normalized { value: trait_ref, obligations } = project::normalize_with_depth(
3076             self,
3077             obligation.param_env,
3078             obligation.cause.clone(),
3079             obligation.recursion_depth + 1,
3080             &trait_ref,
3081         );
3082
3083         self.confirm_poly_trait_refs(
3084             obligation.cause.clone(),
3085             obligation.param_env,
3086             obligation.predicate.to_poly_trait_ref(),
3087             trait_ref,
3088         )?;
3089         Ok(VtableFnPointerData { fn_ty: self_ty, nested: obligations })
3090     }
3091
3092     fn confirm_trait_alias_candidate(
3093         &mut self,
3094         obligation: &TraitObligation<'tcx>,
3095         alias_def_id: DefId,
3096     ) -> VtableTraitAliasData<'tcx, PredicateObligation<'tcx>> {
3097         debug!("confirm_trait_alias_candidate({:?}, {:?})", obligation, alias_def_id);
3098
3099         self.infcx.commit_unconditionally(|_| {
3100             let (predicate, _) =
3101                 self.infcx().replace_bound_vars_with_placeholders(&obligation.predicate);
3102             let trait_ref = predicate.trait_ref;
3103             let trait_def_id = trait_ref.def_id;
3104             let substs = trait_ref.substs;
3105
3106             let trait_obligations = self.impl_or_trait_obligations(
3107                 obligation.cause.clone(),
3108                 obligation.recursion_depth,
3109                 obligation.param_env,
3110                 trait_def_id,
3111                 &substs,
3112             );
3113
3114             debug!(
3115                 "confirm_trait_alias_candidate: trait_def_id={:?} trait_obligations={:?}",
3116                 trait_def_id, trait_obligations
3117             );
3118
3119             VtableTraitAliasData { alias_def_id, substs: substs, nested: trait_obligations }
3120         })
3121     }
3122
3123     fn confirm_generator_candidate(
3124         &mut self,
3125         obligation: &TraitObligation<'tcx>,
3126     ) -> Result<VtableGeneratorData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3127         // Okay to skip binder because the substs on generator types never
3128         // touch bound regions, they just capture the in-scope
3129         // type/region parameters.
3130         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
3131         let (generator_def_id, substs) = match self_ty.kind {
3132             ty::Generator(id, substs, _) => (id, substs),
3133             _ => bug!("closure candidate for non-closure {:?}", obligation),
3134         };
3135
3136         debug!("confirm_generator_candidate({:?},{:?},{:?})", obligation, generator_def_id, substs);
3137
3138         let trait_ref = self.generator_trait_ref_unnormalized(obligation, generator_def_id, substs);
3139         let Normalized { value: trait_ref, mut obligations } = normalize_with_depth(
3140             self,
3141             obligation.param_env,
3142             obligation.cause.clone(),
3143             obligation.recursion_depth + 1,
3144             &trait_ref,
3145         );
3146
3147         debug!(
3148             "confirm_generator_candidate(generator_def_id={:?}, \
3149              trait_ref={:?}, obligations={:?})",
3150             generator_def_id, trait_ref, obligations
3151         );
3152
3153         obligations.extend(self.confirm_poly_trait_refs(
3154             obligation.cause.clone(),
3155             obligation.param_env,
3156             obligation.predicate.to_poly_trait_ref(),
3157             trait_ref,
3158         )?);
3159
3160         Ok(VtableGeneratorData { generator_def_id, substs, nested: obligations })
3161     }
3162
3163     fn confirm_closure_candidate(
3164         &mut self,
3165         obligation: &TraitObligation<'tcx>,
3166     ) -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3167         debug!("confirm_closure_candidate({:?})", obligation);
3168
3169         let kind = self
3170             .tcx()
3171             .lang_items()
3172             .fn_trait_kind(obligation.predicate.def_id())
3173             .unwrap_or_else(|| bug!("closure candidate for non-fn trait {:?}", obligation));
3174
3175         // Okay to skip binder because the substs on closure types never
3176         // touch bound regions, they just capture the in-scope
3177         // type/region parameters.
3178         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
3179         let (closure_def_id, substs) = match self_ty.kind {
3180             ty::Closure(id, substs) => (id, substs),
3181             _ => bug!("closure candidate for non-closure {:?}", obligation),
3182         };
3183
3184         let trait_ref = self.closure_trait_ref_unnormalized(obligation, closure_def_id, substs);
3185         let Normalized { value: trait_ref, mut obligations } = normalize_with_depth(
3186             self,
3187             obligation.param_env,
3188             obligation.cause.clone(),
3189             obligation.recursion_depth + 1,
3190             &trait_ref,
3191         );
3192
3193         debug!(
3194             "confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
3195             closure_def_id, trait_ref, obligations
3196         );
3197
3198         obligations.extend(self.confirm_poly_trait_refs(
3199             obligation.cause.clone(),
3200             obligation.param_env,
3201             obligation.predicate.to_poly_trait_ref(),
3202             trait_ref,
3203         )?);
3204
3205         // FIXME: Chalk
3206
3207         if !self.tcx().sess.opts.debugging_opts.chalk {
3208             obligations.push(Obligation::new(
3209                 obligation.cause.clone(),
3210                 obligation.param_env,
3211                 ty::Predicate::ClosureKind(closure_def_id, substs, kind),
3212             ));
3213         }
3214
3215         Ok(VtableClosureData { closure_def_id, substs: substs, nested: obligations })
3216     }
3217
3218     /// In the case of closure types and fn pointers,
3219     /// we currently treat the input type parameters on the trait as
3220     /// outputs. This means that when we have a match we have only
3221     /// considered the self type, so we have to go back and make sure
3222     /// to relate the argument types too. This is kind of wrong, but
3223     /// since we control the full set of impls, also not that wrong,
3224     /// and it DOES yield better error messages (since we don't report
3225     /// errors as if there is no applicable impl, but rather report
3226     /// errors are about mismatched argument types.
3227     ///
3228     /// Here is an example. Imagine we have a closure expression
3229     /// and we desugared it so that the type of the expression is
3230     /// `Closure`, and `Closure` expects an int as argument. Then it
3231     /// is "as if" the compiler generated this impl:
3232     ///
3233     ///     impl Fn(int) for Closure { ... }
3234     ///
3235     /// Now imagine our obligation is `Fn(usize) for Closure`. So far
3236     /// we have matched the self type `Closure`. At this point we'll
3237     /// compare the `int` to `usize` and generate an error.
3238     ///
3239     /// Note that this checking occurs *after* the impl has selected,
3240     /// because these output type parameters should not affect the
3241     /// selection of the impl. Therefore, if there is a mismatch, we
3242     /// report an error to the user.
3243     fn confirm_poly_trait_refs(
3244         &mut self,
3245         obligation_cause: ObligationCause<'tcx>,
3246         obligation_param_env: ty::ParamEnv<'tcx>,
3247         obligation_trait_ref: ty::PolyTraitRef<'tcx>,
3248         expected_trait_ref: ty::PolyTraitRef<'tcx>,
3249     ) -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3250         let obligation_trait_ref = obligation_trait_ref.clone();
3251         self.infcx
3252             .at(&obligation_cause, obligation_param_env)
3253             .sup(obligation_trait_ref, expected_trait_ref)
3254             .map(|InferOk { obligations, .. }| obligations)
3255             .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
3256     }
3257
3258     fn confirm_builtin_unsize_candidate(
3259         &mut self,
3260         obligation: &TraitObligation<'tcx>,
3261     ) -> Result<VtableBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3262         let tcx = self.tcx();
3263
3264         // `assemble_candidates_for_unsizing` should ensure there are no late-bound
3265         // regions here. See the comment there for more details.
3266         let source = self.infcx.shallow_resolve(obligation.self_ty().no_bound_vars().unwrap());
3267         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
3268         let target = self.infcx.shallow_resolve(target);
3269
3270         debug!("confirm_builtin_unsize_candidate(source={:?}, target={:?})", source, target);
3271
3272         let mut nested = vec![];
3273         match (&source.kind, &target.kind) {
3274             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
3275             (&ty::Dynamic(ref data_a, r_a), &ty::Dynamic(ref data_b, r_b)) => {
3276                 // See `assemble_candidates_for_unsizing` for more info.
3277                 let existential_predicates = data_a.map_bound(|data_a| {
3278                     let iter = data_a
3279                         .principal()
3280                         .map(|x| ty::ExistentialPredicate::Trait(x))
3281                         .into_iter()
3282                         .chain(
3283                             data_a
3284                                 .projection_bounds()
3285                                 .map(|x| ty::ExistentialPredicate::Projection(x)),
3286                         )
3287                         .chain(data_b.auto_traits().map(ty::ExistentialPredicate::AutoTrait));
3288                     tcx.mk_existential_predicates(iter)
3289                 });
3290                 let source_trait = tcx.mk_dynamic(existential_predicates, r_b);
3291
3292                 // Require that the traits involved in this upcast are **equal**;
3293                 // only the **lifetime bound** is changed.
3294                 //
3295                 // FIXME: This condition is arguably too strong -- it would
3296                 // suffice for the source trait to be a *subtype* of the target
3297                 // trait. In particular, changing from something like
3298                 // `for<'a, 'b> Foo<'a, 'b>` to `for<'a> Foo<'a, 'a>` should be
3299                 // permitted. And, indeed, in the in commit
3300                 // 904a0bde93f0348f69914ee90b1f8b6e4e0d7cbc, this
3301                 // condition was loosened. However, when the leak check was
3302                 // added back, using subtype here actually guides the coercion
3303                 // code in such a way that it accepts `old-lub-glb-object.rs`.
3304                 // This is probably a good thing, but I've modified this to `.eq`
3305                 // because I want to continue rejecting that test (as we have
3306                 // done for quite some time) before we are firmly comfortable
3307                 // with what our behavior should be there. -nikomatsakis
3308                 let InferOk { obligations, .. } = self
3309                     .infcx
3310                     .at(&obligation.cause, obligation.param_env)
3311                     .eq(target, source_trait) // FIXME -- see below
3312                     .map_err(|_| Unimplemented)?;
3313                 nested.extend(obligations);
3314
3315                 // Register one obligation for 'a: 'b.
3316                 let cause = ObligationCause::new(
3317                     obligation.cause.span,
3318                     obligation.cause.body_id,
3319                     ObjectCastObligation(target),
3320                 );
3321                 let outlives = ty::OutlivesPredicate(r_a, r_b);
3322                 nested.push(Obligation::with_depth(
3323                     cause,
3324                     obligation.recursion_depth + 1,
3325                     obligation.param_env,
3326                     ty::Binder::bind(outlives).to_predicate(),
3327                 ));
3328             }
3329
3330             // `T` -> `Trait`
3331             (_, &ty::Dynamic(ref data, r)) => {
3332                 let mut object_dids = data.auto_traits().chain(data.principal_def_id());
3333                 if let Some(did) = object_dids.find(|did| !tcx.is_object_safe(*did)) {
3334                     return Err(TraitNotObjectSafe(did));
3335                 }
3336
3337                 let cause = ObligationCause::new(
3338                     obligation.cause.span,
3339                     obligation.cause.body_id,
3340                     ObjectCastObligation(target),
3341                 );
3342
3343                 let predicate_to_obligation = |predicate| {
3344                     Obligation::with_depth(
3345                         cause.clone(),
3346                         obligation.recursion_depth + 1,
3347                         obligation.param_env,
3348                         predicate,
3349                     )
3350                 };
3351
3352                 // Create obligations:
3353                 //  - Casting `T` to `Trait`
3354                 //  - For all the various builtin bounds attached to the object cast. (In other
3355                 //  words, if the object type is `Foo + Send`, this would create an obligation for
3356                 //  the `Send` check.)
3357                 //  - Projection predicates
3358                 nested.extend(
3359                     data.iter().map(|predicate| {
3360                         predicate_to_obligation(predicate.with_self_ty(tcx, source))
3361                     }),
3362                 );
3363
3364                 // We can only make objects from sized types.
3365                 let tr = ty::TraitRef::new(
3366                     tcx.require_lang_item(lang_items::SizedTraitLangItem, None),
3367                     tcx.mk_substs_trait(source, &[]),
3368                 );
3369                 nested.push(predicate_to_obligation(tr.to_predicate()));
3370
3371                 // If the type is `Foo + 'a`, ensure that the type
3372                 // being cast to `Foo + 'a` outlives `'a`:
3373                 let outlives = ty::OutlivesPredicate(source, r);
3374                 nested.push(predicate_to_obligation(ty::Binder::dummy(outlives).to_predicate()));
3375             }
3376
3377             // `[T; n]` -> `[T]`
3378             (&ty::Array(a, _), &ty::Slice(b)) => {
3379                 let InferOk { obligations, .. } = self
3380                     .infcx
3381                     .at(&obligation.cause, obligation.param_env)
3382                     .eq(b, a)
3383                     .map_err(|_| Unimplemented)?;
3384                 nested.extend(obligations);
3385             }
3386
3387             // `Struct<T>` -> `Struct<U>`
3388             (&ty::Adt(def, substs_a), &ty::Adt(_, substs_b)) => {
3389                 let fields =
3390                     def.all_fields().map(|field| tcx.type_of(field.did)).collect::<Vec<_>>();
3391
3392                 // The last field of the structure has to exist and contain type parameters.
3393                 let field = if let Some(&field) = fields.last() {
3394                     field
3395                 } else {
3396                     return Err(Unimplemented);
3397                 };
3398                 let mut ty_params = GrowableBitSet::new_empty();
3399                 let mut found = false;
3400                 for ty in field.walk() {
3401                     if let ty::Param(p) = ty.kind {
3402                         ty_params.insert(p.index as usize);
3403                         found = true;
3404                     }
3405                 }
3406                 if !found {
3407                     return Err(Unimplemented);
3408                 }
3409
3410                 // Replace type parameters used in unsizing with
3411                 // Error and ensure they do not affect any other fields.
3412                 // This could be checked after type collection for any struct
3413                 // with a potentially unsized trailing field.
3414                 let params = substs_a
3415                     .iter()
3416                     .enumerate()
3417                     .map(|(i, &k)| if ty_params.contains(i) { tcx.types.err.into() } else { k });
3418                 let substs = tcx.mk_substs(params);
3419                 for &ty in fields.split_last().unwrap().1 {
3420                     if ty.subst(tcx, substs).references_error() {
3421                         return Err(Unimplemented);
3422                     }
3423                 }
3424
3425                 // Extract `Field<T>` and `Field<U>` from `Struct<T>` and `Struct<U>`.
3426                 let inner_source = field.subst(tcx, substs_a);
3427                 let inner_target = field.subst(tcx, substs_b);
3428
3429                 // Check that the source struct with the target's
3430                 // unsized parameters is equal to the target.
3431                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3432                     if ty_params.contains(i) { substs_b.type_at(i).into() } else { k }
3433                 });
3434                 let new_struct = tcx.mk_adt(def, tcx.mk_substs(params));
3435                 let InferOk { obligations, .. } = self
3436                     .infcx
3437                     .at(&obligation.cause, obligation.param_env)
3438                     .eq(target, new_struct)
3439                     .map_err(|_| Unimplemented)?;
3440                 nested.extend(obligations);
3441
3442                 // Construct the nested `Field<T>: Unsize<Field<U>>` predicate.
3443                 nested.push(predicate_for_trait_def(
3444                     tcx,
3445                     obligation.param_env,
3446                     obligation.cause.clone(),
3447                     obligation.predicate.def_id(),
3448                     obligation.recursion_depth + 1,
3449                     inner_source,
3450                     &[inner_target.into()],
3451                 ));
3452             }
3453
3454             // `(.., T)` -> `(.., U)`
3455             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => {
3456                 assert_eq!(tys_a.len(), tys_b.len());
3457
3458                 // The last field of the tuple has to exist.
3459                 let (&a_last, a_mid) = if let Some(x) = tys_a.split_last() {
3460                     x
3461                 } else {
3462                     return Err(Unimplemented);
3463                 };
3464                 let &b_last = tys_b.last().unwrap();
3465
3466                 // Check that the source tuple with the target's
3467                 // last element is equal to the target.
3468                 let new_tuple = tcx.mk_tup(
3469                     a_mid.iter().map(|k| k.expect_ty()).chain(iter::once(b_last.expect_ty())),
3470                 );
3471                 let InferOk { obligations, .. } = self
3472                     .infcx
3473                     .at(&obligation.cause, obligation.param_env)
3474                     .eq(target, new_tuple)
3475                     .map_err(|_| Unimplemented)?;
3476                 nested.extend(obligations);
3477
3478                 // Construct the nested `T: Unsize<U>` predicate.
3479                 nested.push(predicate_for_trait_def(
3480                     tcx,
3481                     obligation.param_env,
3482                     obligation.cause.clone(),
3483                     obligation.predicate.def_id(),
3484                     obligation.recursion_depth + 1,
3485                     a_last.expect_ty(),
3486                     &[b_last.into()],
3487                 ));
3488             }
3489
3490             _ => bug!(),
3491         };
3492
3493         Ok(VtableBuiltinData { nested })
3494     }
3495
3496     ///////////////////////////////////////////////////////////////////////////
3497     // Matching
3498     //
3499     // Matching is a common path used for both evaluation and
3500     // confirmation.  It basically unifies types that appear in impls
3501     // and traits. This does affect the surrounding environment;
3502     // therefore, when used during evaluation, match routines must be
3503     // run inside of a `probe()` so that their side-effects are
3504     // contained.
3505
3506     fn rematch_impl(
3507         &mut self,
3508         impl_def_id: DefId,
3509         obligation: &TraitObligation<'tcx>,
3510         snapshot: &CombinedSnapshot<'_, 'tcx>,
3511     ) -> Normalized<'tcx, SubstsRef<'tcx>> {
3512         match self.match_impl(impl_def_id, obligation, snapshot) {
3513             Ok(substs) => substs,
3514             Err(()) => {
3515                 bug!(
3516                     "Impl {:?} was matchable against {:?} but now is not",
3517                     impl_def_id,
3518                     obligation
3519                 );
3520             }
3521         }
3522     }
3523
3524     fn match_impl(
3525         &mut self,
3526         impl_def_id: DefId,
3527         obligation: &TraitObligation<'tcx>,
3528         snapshot: &CombinedSnapshot<'_, 'tcx>,
3529     ) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
3530         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
3531
3532         // Before we create the substitutions and everything, first
3533         // consider a "quick reject". This avoids creating more types
3534         // and so forth that we need to.
3535         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
3536             return Err(());
3537         }
3538
3539         let (skol_obligation, placeholder_map) =
3540             self.infcx().replace_bound_vars_with_placeholders(&obligation.predicate);
3541         let skol_obligation_trait_ref = skol_obligation.trait_ref;
3542
3543         let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span, impl_def_id);
3544
3545         let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
3546
3547         let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
3548             project::normalize_with_depth(
3549                 self,
3550                 obligation.param_env,
3551                 obligation.cause.clone(),
3552                 obligation.recursion_depth + 1,
3553                 &impl_trait_ref,
3554             );
3555
3556         debug!(
3557             "match_impl(impl_def_id={:?}, obligation={:?}, \
3558              impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
3559             impl_def_id, obligation, impl_trait_ref, skol_obligation_trait_ref
3560         );
3561
3562         let InferOk { obligations, .. } = self
3563             .infcx
3564             .at(&obligation.cause, obligation.param_env)
3565             .eq(skol_obligation_trait_ref, impl_trait_ref)
3566             .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
3567         nested_obligations.extend(obligations);
3568
3569         if let Err(e) = self.infcx.leak_check(false, &placeholder_map, snapshot) {
3570             debug!("match_impl: failed leak check due to `{}`", e);
3571             return Err(());
3572         }
3573
3574         if self.intercrate.is_none()
3575             && self.tcx().impl_polarity(impl_def_id) == ty::ImplPolarity::Reservation
3576         {
3577             debug!("match_impl: reservation impls only apply in intercrate mode");
3578             return Err(());
3579         }
3580
3581         debug!("match_impl: success impl_substs={:?}", impl_substs);
3582         Ok(Normalized { value: impl_substs, obligations: nested_obligations })
3583     }
3584
3585     fn fast_reject_trait_refs(
3586         &mut self,
3587         obligation: &TraitObligation<'_>,
3588         impl_trait_ref: &ty::TraitRef<'_>,
3589     ) -> bool {
3590         // We can avoid creating type variables and doing the full
3591         // substitution if we find that any of the input types, when
3592         // simplified, do not match.
3593
3594         obligation.predicate.skip_binder().input_types().zip(impl_trait_ref.input_types()).any(
3595             |(obligation_ty, impl_ty)| {
3596                 let simplified_obligation_ty =
3597                     fast_reject::simplify_type(self.tcx(), obligation_ty, true);
3598                 let simplified_impl_ty = fast_reject::simplify_type(self.tcx(), impl_ty, false);
3599
3600                 simplified_obligation_ty.is_some()
3601                     && simplified_impl_ty.is_some()
3602                     && simplified_obligation_ty != simplified_impl_ty
3603             },
3604         )
3605     }
3606
3607     /// Normalize `where_clause_trait_ref` and try to match it against
3608     /// `obligation`. If successful, return any predicates that
3609     /// result from the normalization. Normalization is necessary
3610     /// because where-clauses are stored in the parameter environment
3611     /// unnormalized.
3612     fn match_where_clause_trait_ref(
3613         &mut self,
3614         obligation: &TraitObligation<'tcx>,
3615         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
3616     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
3617         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
3618     }
3619
3620     /// Returns `Ok` if `poly_trait_ref` being true implies that the
3621     /// obligation is satisfied.
3622     fn match_poly_trait_ref(
3623         &mut self,
3624         obligation: &TraitObligation<'tcx>,
3625         poly_trait_ref: ty::PolyTraitRef<'tcx>,
3626     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
3627         debug!(
3628             "match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
3629             obligation, poly_trait_ref
3630         );
3631
3632         self.infcx
3633             .at(&obligation.cause, obligation.param_env)
3634             .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
3635             .map(|InferOk { obligations, .. }| obligations)
3636             .map_err(|_| ())
3637     }
3638
3639     ///////////////////////////////////////////////////////////////////////////
3640     // Miscellany
3641
3642     fn match_fresh_trait_refs(
3643         &self,
3644         previous: &ty::PolyTraitRef<'tcx>,
3645         current: &ty::PolyTraitRef<'tcx>,
3646         param_env: ty::ParamEnv<'tcx>,
3647     ) -> bool {
3648         let mut matcher = ty::_match::Match::new(self.tcx(), param_env);
3649         matcher.relate(previous, current).is_ok()
3650     }
3651
3652     fn push_stack<'o>(
3653         &mut self,
3654         previous_stack: TraitObligationStackList<'o, 'tcx>,
3655         obligation: &'o TraitObligation<'tcx>,
3656     ) -> TraitObligationStack<'o, 'tcx> {
3657         let fresh_trait_ref =
3658             obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
3659
3660         let dfn = previous_stack.cache.next_dfn();
3661         let depth = previous_stack.depth() + 1;
3662         TraitObligationStack {
3663             obligation,
3664             fresh_trait_ref,
3665             reached_depth: Cell::new(depth),
3666             previous: previous_stack,
3667             dfn,
3668             depth,
3669         }
3670     }
3671
3672     fn closure_trait_ref_unnormalized(
3673         &mut self,
3674         obligation: &TraitObligation<'tcx>,
3675         closure_def_id: DefId,
3676         substs: SubstsRef<'tcx>,
3677     ) -> ty::PolyTraitRef<'tcx> {
3678         debug!(
3679             "closure_trait_ref_unnormalized(obligation={:?}, closure_def_id={:?}, substs={:?})",
3680             obligation, closure_def_id, substs,
3681         );
3682         let closure_type = self.infcx.closure_sig(closure_def_id, substs);
3683
3684         debug!("closure_trait_ref_unnormalized: closure_type = {:?}", closure_type);
3685
3686         // (1) Feels icky to skip the binder here, but OTOH we know
3687         // that the self-type is an unboxed closure type and hence is
3688         // in fact unparameterized (or at least does not reference any
3689         // regions bound in the obligation). Still probably some
3690         // refactoring could make this nicer.
3691         closure_trait_ref_and_return_type(
3692             self.tcx(),
3693             obligation.predicate.def_id(),
3694             obligation.predicate.skip_binder().self_ty(), // (1)
3695             closure_type,
3696             util::TupleArgumentsFlag::No,
3697         )
3698         .map_bound(|(trait_ref, _)| trait_ref)
3699     }
3700
3701     fn generator_trait_ref_unnormalized(
3702         &mut self,
3703         obligation: &TraitObligation<'tcx>,
3704         closure_def_id: DefId,
3705         substs: SubstsRef<'tcx>,
3706     ) -> ty::PolyTraitRef<'tcx> {
3707         let gen_sig = substs.as_generator().poly_sig(closure_def_id, self.tcx());
3708
3709         // (1) Feels icky to skip the binder here, but OTOH we know
3710         // that the self-type is an generator type and hence is
3711         // in fact unparameterized (or at least does not reference any
3712         // regions bound in the obligation). Still probably some
3713         // refactoring could make this nicer.
3714
3715         super::util::generator_trait_ref_and_outputs(
3716             self.tcx(),
3717             obligation.predicate.def_id(),
3718             obligation.predicate.skip_binder().self_ty(), // (1)
3719             gen_sig,
3720         )
3721         .map_bound(|(trait_ref, ..)| trait_ref)
3722     }
3723
3724     /// Returns the obligations that are implied by instantiating an
3725     /// impl or trait. The obligations are substituted and fully
3726     /// normalized. This is used when confirming an impl or default
3727     /// impl.
3728     fn impl_or_trait_obligations(
3729         &mut self,
3730         cause: ObligationCause<'tcx>,
3731         recursion_depth: usize,
3732         param_env: ty::ParamEnv<'tcx>,
3733         def_id: DefId,           // of impl or trait
3734         substs: SubstsRef<'tcx>, // for impl or trait
3735     ) -> Vec<PredicateObligation<'tcx>> {
3736         debug!("impl_or_trait_obligations(def_id={:?})", def_id);
3737         let tcx = self.tcx();
3738
3739         // To allow for one-pass evaluation of the nested obligation,
3740         // each predicate must be preceded by the obligations required
3741         // to normalize it.
3742         // for example, if we have:
3743         //    impl<U: Iterator<Item: Copy>, V: Iterator<Item = U>> Foo for V
3744         // the impl will have the following predicates:
3745         //    <V as Iterator>::Item = U,
3746         //    U: Iterator, U: Sized,
3747         //    V: Iterator, V: Sized,
3748         //    <U as Iterator>::Item: Copy
3749         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
3750         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
3751         // `$1: Copy`, so we must ensure the obligations are emitted in
3752         // that order.
3753         let predicates = tcx.predicates_of(def_id);
3754         assert_eq!(predicates.parent, None);
3755         let mut predicates: Vec<_> = predicates
3756             .predicates
3757             .iter()
3758             .flat_map(|(predicate, _)| {
3759                 let predicate = normalize_with_depth(
3760                     self,
3761                     param_env,
3762                     cause.clone(),
3763                     recursion_depth,
3764                     &predicate.subst(tcx, substs),
3765                 );
3766                 predicate.obligations.into_iter().chain(Some(Obligation {
3767                     cause: cause.clone(),
3768                     recursion_depth,
3769                     param_env,
3770                     predicate: predicate.value,
3771                 }))
3772             })
3773             .collect();
3774
3775         // We are performing deduplication here to avoid exponential blowups
3776         // (#38528) from happening, but the real cause of the duplication is
3777         // unknown. What we know is that the deduplication avoids exponential
3778         // amount of predicates being propagated when processing deeply nested
3779         // types.
3780         //
3781         // This code is hot enough that it's worth avoiding the allocation
3782         // required for the FxHashSet when possible. Special-casing lengths 0,
3783         // 1 and 2 covers roughly 75-80% of the cases.
3784         if predicates.len() <= 1 {
3785             // No possibility of duplicates.
3786         } else if predicates.len() == 2 {
3787             // Only two elements. Drop the second if they are equal.
3788             if predicates[0] == predicates[1] {
3789                 predicates.truncate(1);
3790             }
3791         } else {
3792             // Three or more elements. Use a general deduplication process.
3793             let mut seen = FxHashSet::default();
3794             predicates.retain(|i| seen.insert(i.clone()));
3795         }
3796
3797         predicates
3798     }
3799 }
3800
3801 impl<'tcx> TraitObligation<'tcx> {
3802     #[allow(unused_comparisons)]
3803     pub fn derived_cause(
3804         &self,
3805         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
3806     ) -> ObligationCause<'tcx> {
3807         /*!
3808          * Creates a cause for obligations that are derived from
3809          * `obligation` by a recursive search (e.g., for a builtin
3810          * bound, or eventually a `auto trait Foo`). If `obligation`
3811          * is itself a derived obligation, this is just a clone, but
3812          * otherwise we create a "derived obligation" cause so as to
3813          * keep track of the original root obligation for error
3814          * reporting.
3815          */
3816
3817         let obligation = self;
3818
3819         // NOTE(flaper87): As of now, it keeps track of the whole error
3820         // chain. Ideally, we should have a way to configure this either
3821         // by using -Z verbose or just a CLI argument.
3822         let derived_cause = DerivedObligationCause {
3823             parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
3824             parent_code: Rc::new(obligation.cause.code.clone()),
3825         };
3826         let derived_code = variant(derived_cause);
3827         ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
3828     }
3829 }
3830
3831 impl<'tcx> SelectionCache<'tcx> {
3832     /// Actually frees the underlying memory in contrast to what stdlib containers do on `clear`
3833     pub fn clear(&self) {
3834         *self.hashmap.borrow_mut() = Default::default();
3835     }
3836 }
3837
3838 impl<'tcx> EvaluationCache<'tcx> {
3839     /// Actually frees the underlying memory in contrast to what stdlib containers do on `clear`
3840     pub fn clear(&self) {
3841         *self.hashmap.borrow_mut() = Default::default();
3842     }
3843 }
3844
3845 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
3846     fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
3847         TraitObligationStackList::with(self)
3848     }
3849
3850     fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
3851         self.previous.cache
3852     }
3853
3854     fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
3855         self.list()
3856     }
3857
3858     /// Indicates that attempting to evaluate this stack entry
3859     /// required accessing something from the stack at depth `reached_depth`.
3860     fn update_reached_depth(&self, reached_depth: usize) {
3861         assert!(
3862             self.depth > reached_depth,
3863             "invoked `update_reached_depth` with something under this stack: \
3864              self.depth={} reached_depth={}",
3865             self.depth,
3866             reached_depth,
3867         );
3868         debug!("update_reached_depth(reached_depth={})", reached_depth);
3869         let mut p = self;
3870         while reached_depth < p.depth {
3871             debug!("update_reached_depth: marking {:?} as cycle participant", p.fresh_trait_ref);
3872             p.reached_depth.set(p.reached_depth.get().min(reached_depth));
3873             p = p.previous.head.unwrap();
3874         }
3875     }
3876 }
3877
3878 /// The "provisional evaluation cache" is used to store intermediate cache results
3879 /// when solving auto traits. Auto traits are unusual in that they can support
3880 /// cycles. So, for example, a "proof tree" like this would be ok:
3881 ///
3882 /// - `Foo<T>: Send` :-
3883 ///   - `Bar<T>: Send` :-
3884 ///     - `Foo<T>: Send` -- cycle, but ok
3885 ///   - `Baz<T>: Send`
3886 ///
3887 /// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
3888 /// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
3889 /// For non-auto traits, this cycle would be an error, but for auto traits (because
3890 /// they are coinductive) it is considered ok.
3891 ///
3892 /// However, there is a complication: at the point where we have
3893 /// "proven" `Bar<T>: Send`, we have in fact only proven it
3894 /// *provisionally*. In particular, we proved that `Bar<T>: Send`
3895 /// *under the assumption* that `Foo<T>: Send`. But what if we later
3896 /// find out this assumption is wrong?  Specifically, we could
3897 /// encounter some kind of error proving `Baz<T>: Send`. In that case,
3898 /// `Bar<T>: Send` didn't turn out to be true.
3899 ///
3900 /// In Issue #60010, we found a bug in rustc where it would cache
3901 /// these intermediate results. This was fixed in #60444 by disabling
3902 /// *all* caching for things involved in a cycle -- in our example,
3903 /// that would mean we don't cache that `Bar<T>: Send`.  But this led
3904 /// to large slowdowns.
3905 ///
3906 /// Specifically, imagine this scenario, where proving `Baz<T>: Send`
3907 /// first requires proving `Bar<T>: Send` (which is true:
3908 ///
3909 /// - `Foo<T>: Send` :-
3910 ///   - `Bar<T>: Send` :-
3911 ///     - `Foo<T>: Send` -- cycle, but ok
3912 ///   - `Baz<T>: Send`
3913 ///     - `Bar<T>: Send` -- would be nice for this to be a cache hit!
3914 ///     - `*const T: Send` -- but what if we later encounter an error?
3915 ///
3916 /// The *provisional evaluation cache* resolves this issue. It stores
3917 /// cache results that we've proven but which were involved in a cycle
3918 /// in some way. We track the minimal stack depth (i.e., the
3919 /// farthest from the top of the stack) that we are dependent on.
3920 /// The idea is that the cache results within are all valid -- so long as
3921 /// none of the nodes in between the current node and the node at that minimum
3922 /// depth result in an error (in which case the cached results are just thrown away).
3923 ///
3924 /// During evaluation, we consult this provisional cache and rely on
3925 /// it. Accessing a cached value is considered equivalent to accessing
3926 /// a result at `reached_depth`, so it marks the *current* solution as
3927 /// provisional as well. If an error is encountered, we toss out any
3928 /// provisional results added from the subtree that encountered the
3929 /// error.  When we pop the node at `reached_depth` from the stack, we
3930 /// can commit all the things that remain in the provisional cache.
3931 struct ProvisionalEvaluationCache<'tcx> {
3932     /// next "depth first number" to issue -- just a counter
3933     dfn: Cell<usize>,
3934
3935     /// Stores the "coldest" depth (bottom of stack) reached by any of
3936     /// the evaluation entries. The idea here is that all things in the provisional
3937     /// cache are always dependent on *something* that is colder in the stack:
3938     /// therefore, if we add a new entry that is dependent on something *colder still*,
3939     /// we have to modify the depth for all entries at once.
3940     ///
3941     /// Example:
3942     ///
3943     /// Imagine we have a stack `A B C D E` (with `E` being the top of
3944     /// the stack).  We cache something with depth 2, which means that
3945     /// it was dependent on C.  Then we pop E but go on and process a
3946     /// new node F: A B C D F.  Now F adds something to the cache with
3947     /// depth 1, meaning it is dependent on B.  Our original cache
3948     /// entry is also dependent on B, because there is a path from E
3949     /// to C and then from C to F and from F to B.
3950     reached_depth: Cell<usize>,
3951
3952     /// Map from cache key to the provisionally evaluated thing.
3953     /// The cache entries contain the result but also the DFN in which they
3954     /// were added. The DFN is used to clear out values on failure.
3955     ///
3956     /// Imagine we have a stack like:
3957     ///
3958     /// - `A B C` and we add a cache for the result of C (DFN 2)
3959     /// - Then we have a stack `A B D` where `D` has DFN 3
3960     /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
3961     /// - `E` generates various cache entries which have cyclic dependices on `B`
3962     ///   - `A B D E F` and so forth
3963     ///   - the DFN of `F` for example would be 5
3964     /// - then we determine that `E` is in error -- we will then clear
3965     ///   all cache values whose DFN is >= 4 -- in this case, that
3966     ///   means the cached value for `F`.
3967     map: RefCell<FxHashMap<ty::PolyTraitRef<'tcx>, ProvisionalEvaluation>>,
3968 }
3969
3970 /// A cache value for the provisional cache: contains the depth-first
3971 /// number (DFN) and result.
3972 #[derive(Copy, Clone, Debug)]
3973 struct ProvisionalEvaluation {
3974     from_dfn: usize,
3975     result: EvaluationResult,
3976 }
3977
3978 impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
3979     fn default() -> Self {
3980         Self {
3981             dfn: Cell::new(0),
3982             reached_depth: Cell::new(std::usize::MAX),
3983             map: Default::default(),
3984         }
3985     }
3986 }
3987
3988 impl<'tcx> ProvisionalEvaluationCache<'tcx> {
3989     /// Get the next DFN in sequence (basically a counter).
3990     fn next_dfn(&self) -> usize {
3991         let result = self.dfn.get();
3992         self.dfn.set(result + 1);
3993         result
3994     }
3995
3996     /// Check the provisional cache for any result for
3997     /// `fresh_trait_ref`. If there is a hit, then you must consider
3998     /// it an access to the stack slots at depth
3999     /// `self.current_reached_depth()` and above.
4000     fn get_provisional(&self, fresh_trait_ref: ty::PolyTraitRef<'tcx>) -> Option<EvaluationResult> {
4001         debug!(
4002             "get_provisional(fresh_trait_ref={:?}) = {:#?} with reached-depth {}",
4003             fresh_trait_ref,
4004             self.map.borrow().get(&fresh_trait_ref),
4005             self.reached_depth.get(),
4006         );
4007         Some(self.map.borrow().get(&fresh_trait_ref)?.result)
4008     }
4009
4010     /// Current value of the `reached_depth` counter -- all the
4011     /// provisional cache entries are dependent on the item at this
4012     /// depth.
4013     fn current_reached_depth(&self) -> usize {
4014         self.reached_depth.get()
4015     }
4016
4017     /// Insert a provisional result into the cache. The result came
4018     /// from the node with the given DFN. It accessed a minimum depth
4019     /// of `reached_depth` to compute. It evaluated `fresh_trait_ref`
4020     /// and resulted in `result`.
4021     fn insert_provisional(
4022         &self,
4023         from_dfn: usize,
4024         reached_depth: usize,
4025         fresh_trait_ref: ty::PolyTraitRef<'tcx>,
4026         result: EvaluationResult,
4027     ) {
4028         debug!(
4029             "insert_provisional(from_dfn={}, reached_depth={}, fresh_trait_ref={:?}, result={:?})",
4030             from_dfn, reached_depth, fresh_trait_ref, result,
4031         );
4032         let r_d = self.reached_depth.get();
4033         self.reached_depth.set(r_d.min(reached_depth));
4034
4035         debug!("insert_provisional: reached_depth={:?}", self.reached_depth.get());
4036
4037         self.map.borrow_mut().insert(fresh_trait_ref, ProvisionalEvaluation { from_dfn, result });
4038     }
4039
4040     /// Invoked when the node with dfn `dfn` does not get a successful
4041     /// result.  This will clear out any provisional cache entries
4042     /// that were added since `dfn` was created. This is because the
4043     /// provisional entries are things which must assume that the
4044     /// things on the stack at the time of their creation succeeded --
4045     /// since the failing node is presently at the top of the stack,
4046     /// these provisional entries must either depend on it or some
4047     /// ancestor of it.
4048     fn on_failure(&self, dfn: usize) {
4049         debug!("on_failure(dfn={:?})", dfn,);
4050         self.map.borrow_mut().retain(|key, eval| {
4051             if !eval.from_dfn >= dfn {
4052                 debug!("on_failure: removing {:?}", key);
4053                 false
4054             } else {
4055                 true
4056             }
4057         });
4058     }
4059
4060     /// Invoked when the node at depth `depth` completed without
4061     /// depending on anything higher in the stack (if that completion
4062     /// was a failure, then `on_failure` should have been invoked
4063     /// already). The callback `op` will be invoked for each
4064     /// provisional entry that we can now confirm.
4065     fn on_completion(
4066         &self,
4067         depth: usize,
4068         mut op: impl FnMut(ty::PolyTraitRef<'tcx>, EvaluationResult),
4069     ) {
4070         debug!("on_completion(depth={}, reached_depth={})", depth, self.reached_depth.get(),);
4071
4072         if self.reached_depth.get() < depth {
4073             debug!("on_completion: did not yet reach depth to complete");
4074             return;
4075         }
4076
4077         for (fresh_trait_ref, eval) in self.map.borrow_mut().drain() {
4078             debug!("on_completion: fresh_trait_ref={:?} eval={:?}", fresh_trait_ref, eval,);
4079
4080             op(fresh_trait_ref, eval.result);
4081         }
4082
4083         self.reached_depth.set(std::usize::MAX);
4084     }
4085 }
4086
4087 #[derive(Copy, Clone)]
4088 struct TraitObligationStackList<'o, 'tcx> {
4089     cache: &'o ProvisionalEvaluationCache<'tcx>,
4090     head: Option<&'o TraitObligationStack<'o, 'tcx>>,
4091 }
4092
4093 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
4094     fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
4095         TraitObligationStackList { cache, head: None }
4096     }
4097
4098     fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
4099         TraitObligationStackList { cache: r.cache(), head: Some(r) }
4100     }
4101
4102     fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
4103         self.head
4104     }
4105
4106     fn depth(&self) -> usize {
4107         if let Some(head) = self.head { head.depth } else { 0 }
4108     }
4109 }
4110
4111 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
4112     type Item = &'o TraitObligationStack<'o, 'tcx>;
4113
4114     fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
4115         match self.head {
4116             Some(o) => {
4117                 *self = o.previous;
4118                 Some(o)
4119             }
4120             None => None,
4121         }
4122     }
4123 }
4124
4125 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
4126     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4127         write!(f, "TraitObligationStack({:?})", self.obligation)
4128     }
4129 }
4130
4131 #[derive(Clone, Eq, PartialEq)]
4132 pub struct WithDepNode<T> {
4133     dep_node: DepNodeIndex,
4134     cached_value: T,
4135 }
4136
4137 impl<T: Clone> WithDepNode<T> {
4138     pub fn new(dep_node: DepNodeIndex, cached_value: T) -> Self {
4139         WithDepNode { dep_node, cached_value }
4140     }
4141
4142     pub fn get(&self, tcx: TyCtxt<'_>) -> T {
4143         tcx.dep_graph.read_index(self.dep_node);
4144         self.cached_value.clone()
4145     }
4146 }