]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/select.rs
Account for --remap-path-prefix in save-analysis
[rust.git] / src / librustc / traits / select.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! See [rustc guide] for more info on how this works.
12 //!
13 //! [rustc guide]: https://rust-lang-nursery.github.io/rustc-guide/traits/resolution.html#selection
14
15 use self::SelectionCandidate::*;
16 use self::EvaluationResult::*;
17
18 use super::coherence::{self, Conflict};
19 use super::DerivedObligationCause;
20 use super::{IntercrateMode, TraitQueryMode};
21 use super::project;
22 use super::project::{normalize_with_depth, Normalized, ProjectionCacheKey};
23 use super::{PredicateObligation, TraitObligation, ObligationCause};
24 use super::{ObligationCauseCode, BuiltinDerivedObligation, ImplDerivedObligation};
25 use super::{SelectionError, Unimplemented, OutputTypeParameterMismatch, Overflow};
26 use super::{ObjectCastObligation, Obligation};
27 use super::TraitNotObjectSafe;
28 use super::Selection;
29 use super::SelectionResult;
30 use super::{VtableBuiltin, VtableImpl, VtableParam, VtableClosure, VtableGenerator,
31             VtableFnPointer, VtableObject, VtableAutoImpl};
32 use super::{VtableImplData, VtableObjectData, VtableBuiltinData, VtableGeneratorData,
33             VtableClosureData, VtableAutoImplData, VtableFnPointerData};
34 use super::util;
35
36 use dep_graph::{DepNodeIndex, DepKind};
37 use hir::def_id::DefId;
38 use infer;
39 use infer::{InferCtxt, InferOk, TypeFreshener};
40 use ty::subst::{Subst, Substs};
41 use ty::{self, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
42 use ty::fast_reject;
43 use ty::relate::TypeRelation;
44 use middle::lang_items;
45 use mir::interpret::{GlobalId};
46
47 use rustc_data_structures::sync::Lock;
48 use rustc_data_structures::bitvec::BitArray;
49 use std::iter;
50 use std::cmp;
51 use std::fmt;
52 use std::mem;
53 use std::rc::Rc;
54 use rustc_target::spec::abi::Abi;
55 use hir;
56 use util::nodemap::{FxHashMap, FxHashSet};
57
58
59 pub struct SelectionContext<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
60     infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
61
62     /// Freshener used specifically for skolemizing entries on the
63     /// obligation stack. This ensures that all entries on the stack
64     /// at one time will have the same set of skolemized entries,
65     /// which is important for checking for trait bounds that
66     /// recursively require themselves.
67     freshener: TypeFreshener<'cx, 'gcx, 'tcx>,
68
69     /// If true, indicates that the evaluation should be conservative
70     /// and consider the possibility of types outside this crate.
71     /// This comes up primarily when resolving ambiguity. Imagine
72     /// there is some trait reference `$0 : Bar` where `$0` is an
73     /// inference variable. If `intercrate` is true, then we can never
74     /// say for sure that this reference is not implemented, even if
75     /// there are *no impls at all for `Bar`*, because `$0` could be
76     /// bound to some type that in a downstream crate that implements
77     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
78     /// though, we set this to false, because we are only interested
79     /// in types that the user could actually have written --- in
80     /// other words, we consider `$0 : Bar` to be unimplemented if
81     /// there is no type that the user could *actually name* that
82     /// would satisfy it. This avoids crippling inference, basically.
83     intercrate: Option<IntercrateMode>,
84
85     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
86
87     /// Controls whether or not to filter out negative impls when selecting.
88     /// This is used in librustdoc to distinguish between the lack of an impl
89     /// and a negative impl
90     allow_negative_impls: bool,
91
92     /// The mode that trait queries run in, which informs our error handling
93     /// policy. In essence, canonicalized queries need their errors propagated
94     /// rather than immediately reported because we do not have accurate spans.
95     query_mode: TraitQueryMode,
96 }
97
98 #[derive(Clone, Debug)]
99 pub enum IntercrateAmbiguityCause {
100     DownstreamCrate {
101         trait_desc: String,
102         self_desc: Option<String>,
103     },
104     UpstreamCrateUpdate {
105         trait_desc: String,
106         self_desc: Option<String>,
107     },
108 }
109
110 impl IntercrateAmbiguityCause {
111     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
112     /// See #23980 for details.
113     pub fn add_intercrate_ambiguity_hint<'a, 'tcx>(&self,
114                                                    err: &mut ::errors::DiagnosticBuilder) {
115         err.note(&self.intercrate_ambiguity_hint());
116     }
117
118     pub fn intercrate_ambiguity_hint(&self) -> String {
119         match self {
120             &IntercrateAmbiguityCause::DownstreamCrate { ref trait_desc, ref self_desc } => {
121                 let self_desc = if let &Some(ref ty) = self_desc {
122                     format!(" for type `{}`", ty)
123                 } else { "".to_string() };
124                 format!("downstream crates may implement trait `{}`{}", trait_desc, self_desc)
125             }
126             &IntercrateAmbiguityCause::UpstreamCrateUpdate { ref trait_desc, ref self_desc } => {
127                 let self_desc = if let &Some(ref ty) = self_desc {
128                     format!(" for type `{}`", ty)
129                 } else { "".to_string() };
130                 format!("upstream crates may add new impl of trait `{}`{} \
131                          in future versions",
132                         trait_desc, self_desc)
133             }
134         }
135     }
136 }
137
138 // A stack that walks back up the stack frame.
139 struct TraitObligationStack<'prev, 'tcx: 'prev> {
140     obligation: &'prev TraitObligation<'tcx>,
141
142     /// Trait ref from `obligation` but skolemized with the
143     /// selection-context's freshener. Used to check for recursion.
144     fresh_trait_ref: ty::PolyTraitRef<'tcx>,
145
146     previous: TraitObligationStackList<'prev, 'tcx>,
147 }
148
149 #[derive(Clone)]
150 pub struct SelectionCache<'tcx> {
151     hashmap: Lock<FxHashMap<ty::TraitRef<'tcx>,
152                                WithDepNode<SelectionResult<'tcx, SelectionCandidate<'tcx>>>>>,
153 }
154
155 /// The selection process begins by considering all impls, where
156 /// clauses, and so forth that might resolve an obligation.  Sometimes
157 /// we'll be able to say definitively that (e.g.) an impl does not
158 /// apply to the obligation: perhaps it is defined for `usize` but the
159 /// obligation is for `int`. In that case, we drop the impl out of the
160 /// list.  But the other cases are considered *candidates*.
161 ///
162 /// For selection to succeed, there must be exactly one matching
163 /// candidate. If the obligation is fully known, this is guaranteed
164 /// by coherence. However, if the obligation contains type parameters
165 /// or variables, there may be multiple such impls.
166 ///
167 /// It is not a real problem if multiple matching impls exist because
168 /// of type variables - it just means the obligation isn't sufficiently
169 /// elaborated. In that case we report an ambiguity, and the caller can
170 /// try again after more type information has been gathered or report a
171 /// "type annotations required" error.
172 ///
173 /// However, with type parameters, this can be a real problem - type
174 /// parameters don't unify with regular types, but they *can* unify
175 /// with variables from blanket impls, and (unless we know its bounds
176 /// will always be satisfied) picking the blanket impl will be wrong
177 /// for at least *some* substitutions. To make this concrete, if we have
178 ///
179 ///    trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
180 ///    impl<T: fmt::Debug> AsDebug for T {
181 ///        type Out = T;
182 ///        fn debug(self) -> fmt::Debug { self }
183 ///    }
184 ///    fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
185 ///
186 /// we can't just use the impl to resolve the <T as AsDebug> obligation
187 /// - a type from another crate (that doesn't implement fmt::Debug) could
188 /// implement AsDebug.
189 ///
190 /// Because where-clauses match the type exactly, multiple clauses can
191 /// only match if there are unresolved variables, and we can mostly just
192 /// report this ambiguity in that case. This is still a problem - we can't
193 /// *do anything* with ambiguities that involve only regions. This is issue
194 /// #21974.
195 ///
196 /// If a single where-clause matches and there are no inference
197 /// variables left, then it definitely matches and we can just select
198 /// it.
199 ///
200 /// In fact, we even select the where-clause when the obligation contains
201 /// inference variables. The can lead to inference making "leaps of logic",
202 /// for example in this situation:
203 ///
204 ///    pub trait Foo<T> { fn foo(&self) -> T; }
205 ///    impl<T> Foo<()> for T { fn foo(&self) { } }
206 ///    impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
207 ///
208 ///    pub fn foo<T>(t: T) where T: Foo<bool> {
209 ///       println!("{:?}", <T as Foo<_>>::foo(&t));
210 ///    }
211 ///    fn main() { foo(false); }
212 ///
213 /// Here the obligation <T as Foo<$0>> can be matched by both the blanket
214 /// impl and the where-clause. We select the where-clause and unify $0=bool,
215 /// so the program prints "false". However, if the where-clause is omitted,
216 /// the blanket impl is selected, we unify $0=(), and the program prints
217 /// "()".
218 ///
219 /// Exactly the same issues apply to projection and object candidates, except
220 /// that we can have both a projection candidate and a where-clause candidate
221 /// for the same obligation. In that case either would do (except that
222 /// different "leaps of logic" would occur if inference variables are
223 /// present), and we just pick the where-clause. This is, for example,
224 /// required for associated types to work in default impls, as the bounds
225 /// are visible both as projection bounds and as where-clauses from the
226 /// parameter environment.
227 #[derive(PartialEq,Eq,Debug,Clone)]
228 enum SelectionCandidate<'tcx> {
229     BuiltinCandidate { has_nested: bool },
230     ParamCandidate(ty::PolyTraitRef<'tcx>),
231     ImplCandidate(DefId),
232     AutoImplCandidate(DefId),
233
234     /// This is a trait matching with a projected type as `Self`, and
235     /// we found an applicable bound in the trait definition.
236     ProjectionCandidate,
237
238     /// Implementation of a `Fn`-family trait by one of the anonymous types
239     /// generated for a `||` expression.
240     ClosureCandidate,
241
242     /// Implementation of a `Generator` trait by one of the anonymous types
243     /// generated for a generator.
244     GeneratorCandidate,
245
246     /// Implementation of a `Fn`-family trait by one of the anonymous
247     /// types generated for a fn pointer type (e.g., `fn(int)->int`)
248     FnPointerCandidate,
249
250     ObjectCandidate,
251
252     BuiltinObjectCandidate,
253
254     BuiltinUnsizeCandidate,
255 }
256
257 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
258     type Lifted = SelectionCandidate<'tcx>;
259     fn lift_to_tcx<'b, 'gcx>(&self, tcx: TyCtxt<'b, 'gcx, 'tcx>) -> Option<Self::Lifted> {
260         Some(match *self {
261             BuiltinCandidate { has_nested } => {
262                 BuiltinCandidate {
263                     has_nested,
264                 }
265             }
266             ImplCandidate(def_id) => ImplCandidate(def_id),
267             AutoImplCandidate(def_id) => AutoImplCandidate(def_id),
268             ProjectionCandidate => ProjectionCandidate,
269             FnPointerCandidate => FnPointerCandidate,
270             ObjectCandidate => ObjectCandidate,
271             BuiltinObjectCandidate => BuiltinObjectCandidate,
272             BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
273             ClosureCandidate => ClosureCandidate,
274             GeneratorCandidate => GeneratorCandidate,
275
276             ParamCandidate(ref trait_ref) => {
277                 return tcx.lift(trait_ref).map(ParamCandidate);
278             }
279         })
280     }
281 }
282
283 struct SelectionCandidateSet<'tcx> {
284     // a list of candidates that definitely apply to the current
285     // obligation (meaning: types unify).
286     vec: Vec<SelectionCandidate<'tcx>>,
287
288     // if this is true, then there were candidates that might or might
289     // not have applied, but we couldn't tell. This occurs when some
290     // of the input types are type variables, in which case there are
291     // various "builtin" rules that might or might not trigger.
292     ambiguous: bool,
293 }
294
295 #[derive(PartialEq,Eq,Debug,Clone)]
296 struct EvaluatedCandidate<'tcx> {
297     candidate: SelectionCandidate<'tcx>,
298     evaluation: EvaluationResult,
299 }
300
301 /// When does the builtin impl for `T: Trait` apply?
302 enum BuiltinImplConditions<'tcx> {
303     /// The impl is conditional on T1,T2,.. : Trait
304     Where(ty::Binder<Vec<Ty<'tcx>>>),
305     /// There is no built-in impl. There may be some other
306     /// candidate (a where-clause or user-defined impl).
307     None,
308     /// It is unknown whether there is an impl.
309     Ambiguous
310 }
311
312 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
313 /// The result of trait evaluation. The order is important
314 /// here as the evaluation of a list is the maximum of the
315 /// evaluations.
316 ///
317 /// The evaluation results are ordered:
318 ///     - `EvaluatedToOk` implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
319 ///     - `EvaluatedToErr` implies `EvaluatedToRecur`
320 ///     - the "union" of evaluation results is equal to their maximum -
321 ///     all the "potential success" candidates can potentially succeed,
322 ///     so they are no-ops when unioned with a definite error, and within
323 ///     the categories it's easy to see that the unions are correct.
324 pub enum EvaluationResult {
325     /// Evaluation successful
326     EvaluatedToOk,
327     /// Evaluation is known to be ambiguous - it *might* hold for some
328     /// assignment of inference variables, but it might not.
329     ///
330     /// While this has the same meaning as `EvaluatedToUnknown` - we can't
331     /// know whether this obligation holds or not - it is the result we
332     /// would get with an empty stack, and therefore is cacheable.
333     EvaluatedToAmbig,
334     /// Evaluation failed because of recursion involving inference
335     /// variables. We are somewhat imprecise there, so we don't actually
336     /// know the real result.
337     ///
338     /// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
339     EvaluatedToUnknown,
340     /// Evaluation failed because we encountered an obligation we are already
341     /// trying to prove on this branch.
342     ///
343     /// We know this branch can't be a part of a minimal proof-tree for
344     /// the "root" of our cycle, because then we could cut out the recursion
345     /// and maintain a valid proof tree. However, this does not mean
346     /// that all the obligations on this branch do not hold - it's possible
347     /// that we entered this branch "speculatively", and that there
348     /// might be some other way to prove this obligation that does not
349     /// go through this cycle - so we can't cache this as a failure.
350     ///
351     /// For example, suppose we have this:
352     ///
353     /// ```rust,ignore (pseudo-Rust)
354     ///     pub trait Trait { fn xyz(); }
355     ///     // This impl is "useless", but we can still have
356     ///     // an `impl Trait for SomeUnsizedType` somewhere.
357     ///     impl<T: Trait + Sized> Trait for T { fn xyz() {} }
358     ///
359     ///     pub fn foo<T: Trait + ?Sized>() {
360     ///         <T as Trait>::xyz();
361     ///     }
362     /// ```
363     ///
364     /// When checking `foo`, we have to prove `T: Trait`. This basically
365     /// translates into this:
366     ///
367     /// ```plain,ignore
368     ///     (T: Trait + Sized â†’_\impl T: Trait), T: Trait âŠ¢ T: Trait
369     /// ```
370     ///
371     /// When we try to prove it, we first go the first option, which
372     /// recurses. This shows us that the impl is "useless" - it won't
373     /// tell us that `T: Trait` unless it already implemented `Trait`
374     /// by some other means. However, that does not prevent `T: Trait`
375     /// does not hold, because of the bound (which can indeed be satisfied
376     /// by `SomeUnsizedType` from another crate).
377     ///
378     /// FIXME: when an `EvaluatedToRecur` goes past its parent root, we
379     /// ought to convert it to an `EvaluatedToErr`, because we know
380     /// there definitely isn't a proof tree for that obligation. Not
381     /// doing so is still sound - there isn't any proof tree, so the
382     /// branch still can't be a part of a minimal one - but does not
383     /// re-enable caching.
384     EvaluatedToRecur,
385     /// Evaluation failed
386     EvaluatedToErr,
387 }
388
389 impl EvaluationResult {
390     pub fn may_apply(self) -> bool {
391         match self {
392             EvaluatedToOk |
393             EvaluatedToAmbig |
394             EvaluatedToUnknown => true,
395
396             EvaluatedToErr |
397             EvaluatedToRecur => false
398         }
399     }
400
401     fn is_stack_dependent(self) -> bool {
402         match self {
403             EvaluatedToUnknown |
404             EvaluatedToRecur => true,
405
406             EvaluatedToOk |
407             EvaluatedToAmbig |
408             EvaluatedToErr => false,
409         }
410     }
411 }
412
413 impl_stable_hash_for!(enum self::EvaluationResult {
414     EvaluatedToOk,
415     EvaluatedToAmbig,
416     EvaluatedToUnknown,
417     EvaluatedToRecur,
418     EvaluatedToErr
419 });
420
421 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
422 /// Indicates that trait evaluation caused overflow.
423 pub struct OverflowError;
424
425 impl_stable_hash_for!(struct OverflowError { });
426
427 impl<'tcx> From<OverflowError> for SelectionError<'tcx> {
428     fn from(OverflowError: OverflowError) -> SelectionError<'tcx> {
429         SelectionError::Overflow
430     }
431 }
432
433 #[derive(Clone)]
434 pub struct EvaluationCache<'tcx> {
435     hashmap: Lock<FxHashMap<ty::PolyTraitRef<'tcx>, WithDepNode<EvaluationResult>>>
436 }
437
438 impl<'cx, 'gcx, 'tcx> SelectionContext<'cx, 'gcx, 'tcx> {
439     pub fn new(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>) -> SelectionContext<'cx, 'gcx, 'tcx> {
440         SelectionContext {
441             infcx,
442             freshener: infcx.freshener(),
443             intercrate: None,
444             intercrate_ambiguity_causes: None,
445             allow_negative_impls: false,
446             query_mode: TraitQueryMode::Standard,
447         }
448     }
449
450     pub fn intercrate(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
451                       mode: IntercrateMode) -> SelectionContext<'cx, 'gcx, 'tcx> {
452         debug!("intercrate({:?})", mode);
453         SelectionContext {
454             infcx,
455             freshener: infcx.freshener(),
456             intercrate: Some(mode),
457             intercrate_ambiguity_causes: None,
458             allow_negative_impls: false,
459             query_mode: TraitQueryMode::Standard,
460         }
461     }
462
463     pub fn with_negative(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
464                          allow_negative_impls: bool) -> SelectionContext<'cx, 'gcx, 'tcx> {
465         debug!("with_negative({:?})", allow_negative_impls);
466         SelectionContext {
467             infcx,
468             freshener: infcx.freshener(),
469             intercrate: None,
470             intercrate_ambiguity_causes: None,
471             allow_negative_impls,
472             query_mode: TraitQueryMode::Standard,
473         }
474     }
475
476     pub fn with_query_mode(infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
477                            query_mode: TraitQueryMode) -> SelectionContext<'cx, 'gcx, 'tcx> {
478         debug!("with_query_mode({:?})", query_mode);
479         SelectionContext {
480             infcx,
481             freshener: infcx.freshener(),
482             intercrate: None,
483             intercrate_ambiguity_causes: None,
484             allow_negative_impls: false,
485             query_mode,
486         }
487     }
488
489     /// Enables tracking of intercrate ambiguity causes. These are
490     /// used in coherence to give improved diagnostics. We don't do
491     /// this until we detect a coherence error because it can lead to
492     /// false overflow results (#47139) and because it costs
493     /// computation time.
494     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
495         assert!(self.intercrate.is_some());
496         assert!(self.intercrate_ambiguity_causes.is_none());
497         self.intercrate_ambiguity_causes = Some(vec![]);
498         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
499     }
500
501     /// Gets the intercrate ambiguity causes collected since tracking
502     /// was enabled and disables tracking at the same time. If
503     /// tracking is not enabled, just returns an empty vector.
504     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
505         assert!(self.intercrate.is_some());
506         self.intercrate_ambiguity_causes.take().unwrap_or(vec![])
507     }
508
509     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
510         self.infcx
511     }
512
513     pub fn tcx(&self) -> TyCtxt<'cx, 'gcx, 'tcx> {
514         self.infcx.tcx
515     }
516
517     pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'gcx, 'tcx> {
518         self.infcx
519     }
520
521     /// Wraps the inference context's in_snapshot s.t. snapshot handling is only from the selection
522     /// context's self.
523     fn in_snapshot<R, F>(&mut self, f: F) -> R
524         where F: FnOnce(&mut Self, &infer::CombinedSnapshot<'cx, 'tcx>) -> R
525     {
526         self.infcx.in_snapshot(|snapshot| f(self, snapshot))
527     }
528
529     /// Wraps a probe s.t. obligations collected during it are ignored and old obligations are
530     /// retained.
531     fn probe<R, F>(&mut self, f: F) -> R
532         where F: FnOnce(&mut Self, &infer::CombinedSnapshot<'cx, 'tcx>) -> R
533     {
534         self.infcx.probe(|snapshot| f(self, snapshot))
535     }
536
537     /// Wraps a commit_if_ok s.t. obligations collected during it are not returned in selection if
538     /// the transaction fails and s.t. old obligations are retained.
539     fn commit_if_ok<T, E, F>(&mut self, f: F) -> Result<T, E> where
540         F: FnOnce(&mut Self, &infer::CombinedSnapshot) -> Result<T, E>
541     {
542         self.infcx.commit_if_ok(|snapshot| f(self, snapshot))
543     }
544
545
546     ///////////////////////////////////////////////////////////////////////////
547     // Selection
548     //
549     // The selection phase tries to identify *how* an obligation will
550     // be resolved. For example, it will identify which impl or
551     // parameter bound is to be used. The process can be inconclusive
552     // if the self type in the obligation is not fully inferred. Selection
553     // can result in an error in one of two ways:
554     //
555     // 1. If no applicable impl or parameter bound can be found.
556     // 2. If the output type parameters in the obligation do not match
557     //    those specified by the impl/bound. For example, if the obligation
558     //    is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
559     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
560
561     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
562     /// type environment by performing unification.
563     pub fn select(&mut self, obligation: &TraitObligation<'tcx>)
564                   -> SelectionResult<'tcx, Selection<'tcx>> {
565         debug!("select({:?})", obligation);
566         assert!(!obligation.predicate.has_escaping_regions());
567
568         let stack = self.push_stack(TraitObligationStackList::empty(), obligation);
569
570         let candidate = match self.candidate_from_obligation(&stack) {
571             Err(SelectionError::Overflow) => {
572                 // In standard mode, overflow must have been caught and reported
573                 // earlier.
574                 assert!(self.query_mode == TraitQueryMode::Canonical);
575                 return Err(SelectionError::Overflow);
576             },
577             Err(e) => { return Err(e); },
578             Ok(None) => { return Ok(None); },
579             Ok(Some(candidate)) => candidate
580         };
581
582         match self.confirm_candidate(obligation, candidate) {
583             Err(SelectionError::Overflow) => {
584                 assert!(self.query_mode == TraitQueryMode::Canonical);
585                 return Err(SelectionError::Overflow);
586             },
587             Err(e) => Err(e),
588             Ok(candidate) => Ok(Some(candidate))
589         }
590     }
591
592     ///////////////////////////////////////////////////////////////////////////
593     // EVALUATION
594     //
595     // Tests whether an obligation can be selected or whether an impl
596     // can be applied to particular types. It skips the "confirmation"
597     // step and hence completely ignores output type parameters.
598     //
599     // The result is "true" if the obligation *may* hold and "false" if
600     // we can be sure it does not.
601
602     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
603     pub fn predicate_may_hold_fatal(&mut self,
604                                     obligation: &PredicateObligation<'tcx>)
605                                     -> bool
606     {
607         debug!("predicate_may_hold_fatal({:?})",
608                obligation);
609
610         // This fatal query is a stopgap that should only be used in standard mode,
611         // where we do not expect overflow to be propagated.
612         assert!(self.query_mode == TraitQueryMode::Standard);
613
614         self.evaluate_obligation_recursively(obligation)
615             .expect("Overflow should be caught earlier in standard query mode")
616             .may_apply()
617     }
618
619     /// Evaluates whether the obligation `obligation` can be satisfied and returns
620     /// an `EvaluationResult`.
621     pub fn evaluate_obligation_recursively(&mut self,
622                                            obligation: &PredicateObligation<'tcx>)
623                                            -> Result<EvaluationResult, OverflowError>
624     {
625         self.probe(|this, _| {
626             this.evaluate_predicate_recursively(TraitObligationStackList::empty(), obligation)
627         })
628     }
629
630     /// Evaluates the predicates in `predicates` recursively. Note that
631     /// this applies projections in the predicates, and therefore
632     /// is run within an inference probe.
633     fn evaluate_predicates_recursively<'a,'o,I>(&mut self,
634                                                 stack: TraitObligationStackList<'o, 'tcx>,
635                                                 predicates: I)
636                                                 -> Result<EvaluationResult, OverflowError>
637         where I : IntoIterator<Item=&'a PredicateObligation<'tcx>>, 'tcx:'a
638     {
639         let mut result = EvaluatedToOk;
640         for obligation in predicates {
641             let eval = self.evaluate_predicate_recursively(stack, obligation)?;
642             debug!("evaluate_predicate_recursively({:?}) = {:?}",
643                    obligation, eval);
644             if let EvaluatedToErr = eval {
645                 // fast-path - EvaluatedToErr is the top of the lattice,
646                 // so we don't need to look on the other predicates.
647                 return Ok(EvaluatedToErr);
648             } else {
649                 result = cmp::max(result, eval);
650             }
651         }
652         Ok(result)
653     }
654
655     fn evaluate_predicate_recursively<'o>(&mut self,
656                                           previous_stack: TraitObligationStackList<'o, 'tcx>,
657                                           obligation: &PredicateObligation<'tcx>)
658                                            -> Result<EvaluationResult, OverflowError>
659     {
660         debug!("evaluate_predicate_recursively({:?})",
661                obligation);
662
663         match obligation.predicate {
664             ty::Predicate::Trait(ref t) => {
665                 assert!(!t.has_escaping_regions());
666                 let obligation = obligation.with(t.clone());
667                 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
668             }
669
670             ty::Predicate::Subtype(ref p) => {
671                 // does this code ever run?
672                 match self.infcx.subtype_predicate(&obligation.cause, obligation.param_env, p) {
673                     Some(Ok(InferOk { obligations, .. })) => {
674                         self.evaluate_predicates_recursively(previous_stack, &obligations)
675                     },
676                     Some(Err(_)) => Ok(EvaluatedToErr),
677                     None => Ok(EvaluatedToAmbig),
678                 }
679             }
680
681             ty::Predicate::WellFormed(ty) => {
682                 match ty::wf::obligations(self.infcx,
683                                           obligation.param_env,
684                                           obligation.cause.body_id,
685                                           ty, obligation.cause.span) {
686                     Some(obligations) =>
687                         self.evaluate_predicates_recursively(previous_stack, obligations.iter()),
688                     None =>
689                         Ok(EvaluatedToAmbig),
690                 }
691             }
692
693             ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
694                 // we do not consider region relationships when
695                 // evaluating trait matches
696                 Ok(EvaluatedToOk)
697             }
698
699             ty::Predicate::ObjectSafe(trait_def_id) => {
700                 if self.tcx().is_object_safe(trait_def_id) {
701                     Ok(EvaluatedToOk)
702                 } else {
703                     Ok(EvaluatedToErr)
704                 }
705             }
706
707             ty::Predicate::Projection(ref data) => {
708                 let project_obligation = obligation.with(data.clone());
709                 match project::poly_project_and_unify_type(self, &project_obligation) {
710                     Ok(Some(subobligations)) => {
711                         let result = self.evaluate_predicates_recursively(previous_stack,
712                                                                           subobligations.iter());
713                         if let Some(key) =
714                             ProjectionCacheKey::from_poly_projection_predicate(self, data)
715                         {
716                             self.infcx.projection_cache.borrow_mut().complete(key);
717                         }
718                         result
719                     }
720                     Ok(None) => {
721                         Ok(EvaluatedToAmbig)
722                     }
723                     Err(_) => {
724                         Ok(EvaluatedToErr)
725                     }
726                 }
727             }
728
729             ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
730                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
731                     Some(closure_kind) => {
732                         if closure_kind.extends(kind) {
733                             Ok(EvaluatedToOk)
734                         } else {
735                             Ok(EvaluatedToErr)
736                         }
737                     }
738                     None => {
739                         Ok(EvaluatedToAmbig)
740                     }
741                 }
742             }
743
744             ty::Predicate::ConstEvaluatable(def_id, substs) => {
745                 let tcx = self.tcx();
746                 match tcx.lift_to_global(&(obligation.param_env, substs)) {
747                     Some((param_env, substs)) => {
748                         let instance = ty::Instance::resolve(
749                             tcx.global_tcx(),
750                             param_env,
751                             def_id,
752                             substs,
753                         );
754                         if let Some(instance) = instance {
755                             let cid = GlobalId {
756                                 instance,
757                                 promoted: None
758                             };
759                             match self.tcx().const_eval(param_env.and(cid)) {
760                                 Ok(_) => Ok(EvaluatedToOk),
761                                 Err(_) => Ok(EvaluatedToErr)
762                             }
763                         } else {
764                             Ok(EvaluatedToErr)
765                         }
766                     }
767                     None => {
768                         // Inference variables still left in param_env or substs.
769                         Ok(EvaluatedToAmbig)
770                     }
771                 }
772             }
773         }
774     }
775
776     fn evaluate_trait_predicate_recursively<'o>(&mut self,
777                                                 previous_stack: TraitObligationStackList<'o, 'tcx>,
778                                                 mut obligation: TraitObligation<'tcx>)
779                                                 -> Result<EvaluationResult, OverflowError>
780     {
781         debug!("evaluate_trait_predicate_recursively({:?})", obligation);
782
783         if self.intercrate.is_none() && obligation.is_global()
784             && obligation.param_env.caller_bounds.iter().all(|bound| bound.needs_subst()) {
785             // If a param env has no global bounds, global obligations do not
786             // depend on its particular value in order to work, so we can clear
787             // out the param env and get better caching.
788             debug!("evaluate_trait_predicate_recursively({:?}) - in global", obligation);
789             obligation.param_env = obligation.param_env.without_caller_bounds();
790         }
791
792         let stack = self.push_stack(previous_stack, &obligation);
793         let fresh_trait_ref = stack.fresh_trait_ref;
794         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
795             debug!("CACHE HIT: EVAL({:?})={:?}",
796                    fresh_trait_ref,
797                    result);
798             return Ok(result);
799         }
800
801         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
802         let result = result?;
803
804         debug!("CACHE MISS: EVAL({:?})={:?}",
805                fresh_trait_ref,
806                result);
807         self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
808
809         Ok(result)
810     }
811
812     fn evaluate_stack<'o>(&mut self,
813                           stack: &TraitObligationStack<'o, 'tcx>)
814                           -> Result<EvaluationResult, OverflowError>
815     {
816         // In intercrate mode, whenever any of the types are unbound,
817         // there can always be an impl. Even if there are no impls in
818         // this crate, perhaps the type would be unified with
819         // something from another crate that does provide an impl.
820         //
821         // In intra mode, we must still be conservative. The reason is
822         // that we want to avoid cycles. Imagine an impl like:
823         //
824         //     impl<T:Eq> Eq for Vec<T>
825         //
826         // and a trait reference like `$0 : Eq` where `$0` is an
827         // unbound variable. When we evaluate this trait-reference, we
828         // will unify `$0` with `Vec<$1>` (for some fresh variable
829         // `$1`), on the condition that `$1 : Eq`. We will then wind
830         // up with many candidates (since that are other `Eq` impls
831         // that apply) and try to winnow things down. This results in
832         // a recursive evaluation that `$1 : Eq` -- as you can
833         // imagine, this is just where we started. To avoid that, we
834         // check for unbound variables and return an ambiguous (hence possible)
835         // match if we've seen this trait before.
836         //
837         // This suffices to allow chains like `FnMut` implemented in
838         // terms of `Fn` etc, but we could probably make this more
839         // precise still.
840         let unbound_input_types =
841             stack.fresh_trait_ref.skip_binder().input_types().any(|ty| ty.is_fresh());
842         // this check was an imperfect workaround for a bug n the old
843         // intercrate mode, it should be removed when that goes away.
844         if unbound_input_types &&
845             self.intercrate == Some(IntercrateMode::Issue43355)
846         {
847             debug!("evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
848                    stack.fresh_trait_ref);
849             // Heuristics: show the diagnostics when there are no candidates in crate.
850             if self.intercrate_ambiguity_causes.is_some() {
851                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
852                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
853                     if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
854                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
855                         let self_ty = trait_ref.self_ty();
856                         let cause = IntercrateAmbiguityCause::DownstreamCrate {
857                             trait_desc: trait_ref.to_string(),
858                             self_desc: if self_ty.has_concrete_skeleton() {
859                                 Some(self_ty.to_string())
860                             } else {
861                                 None
862                             },
863                         };
864                         debug!("evaluate_stack: pushing cause = {:?}", cause);
865                         self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
866                     }
867                 }
868             }
869             return Ok(EvaluatedToAmbig);
870         }
871         if unbound_input_types &&
872               stack.iter().skip(1).any(
873                   |prev| stack.obligation.param_env == prev.obligation.param_env &&
874                       self.match_fresh_trait_refs(&stack.fresh_trait_ref,
875                                                   &prev.fresh_trait_ref))
876         {
877             debug!("evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
878                    stack.fresh_trait_ref);
879             return Ok(EvaluatedToUnknown);
880         }
881
882         // If there is any previous entry on the stack that precisely
883         // matches this obligation, then we can assume that the
884         // obligation is satisfied for now (still all other conditions
885         // must be met of course). One obvious case this comes up is
886         // marker traits like `Send`. Think of a linked list:
887         //
888         //    struct List<T> { data: T, next: Option<Box<List<T>>> {
889         //
890         // `Box<List<T>>` will be `Send` if `T` is `Send` and
891         // `Option<Box<List<T>>>` is `Send`, and in turn
892         // `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
893         // `Send`.
894         //
895         // Note that we do this comparison using the `fresh_trait_ref`
896         // fields. Because these have all been skolemized using
897         // `self.freshener`, we can be sure that (a) this will not
898         // affect the inferencer state and (b) that if we see two
899         // skolemized types with the same index, they refer to the
900         // same unbound type variable.
901         if let Some(rec_index) =
902             stack.iter()
903             .skip(1) // skip top-most frame
904             .position(|prev| stack.obligation.param_env == prev.obligation.param_env &&
905                       stack.fresh_trait_ref == prev.fresh_trait_ref)
906         {
907             debug!("evaluate_stack({:?}) --> recursive",
908                    stack.fresh_trait_ref);
909             let cycle = stack.iter().skip(1).take(rec_index+1);
910             let cycle = cycle.map(|stack| ty::Predicate::Trait(stack.obligation.predicate));
911             if self.coinductive_match(cycle) {
912                 debug!("evaluate_stack({:?}) --> recursive, coinductive",
913                        stack.fresh_trait_ref);
914                 return Ok(EvaluatedToOk);
915             } else {
916                 debug!("evaluate_stack({:?}) --> recursive, inductive",
917                        stack.fresh_trait_ref);
918                 return Ok(EvaluatedToRecur);
919             }
920         }
921
922         match self.candidate_from_obligation(stack) {
923             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
924             Ok(None) => Ok(EvaluatedToAmbig),
925             Err(Overflow) => Err(OverflowError),
926             Err(..) => Ok(EvaluatedToErr)
927         }
928     }
929
930     /// For defaulted traits, we use a co-inductive strategy to solve, so
931     /// that recursion is ok. This routine returns true if the top of the
932     /// stack (`cycle[0]`):
933     ///
934     /// - is a defaulted trait, and
935     /// - it also appears in the backtrace at some position `X`; and,
936     /// - all the predicates at positions `X..` between `X` an the top are
937     ///   also defaulted traits.
938     pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
939         where I: Iterator<Item=ty::Predicate<'tcx>>
940     {
941         let mut cycle = cycle;
942         cycle.all(|predicate| self.coinductive_predicate(predicate))
943     }
944
945     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
946         let result = match predicate {
947             ty::Predicate::Trait(ref data) => {
948                 self.tcx().trait_is_auto(data.def_id())
949             }
950             _ => {
951                 false
952             }
953         };
954         debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
955         result
956     }
957
958     /// Further evaluate `candidate` to decide whether all type parameters match and whether nested
959     /// obligations are met. Returns true if `candidate` remains viable after this further
960     /// scrutiny.
961     fn evaluate_candidate<'o>(&mut self,
962                               stack: &TraitObligationStack<'o, 'tcx>,
963                               candidate: &SelectionCandidate<'tcx>)
964                               -> Result<EvaluationResult, OverflowError>
965     {
966         debug!("evaluate_candidate: depth={} candidate={:?}",
967                stack.obligation.recursion_depth, candidate);
968         let result = self.probe(|this, _| {
969             let candidate = (*candidate).clone();
970             match this.confirm_candidate(stack.obligation, candidate) {
971                 Ok(selection) => {
972                     this.evaluate_predicates_recursively(
973                         stack.list(),
974                         selection.nested_obligations().iter())
975                 }
976                 Err(..) => Ok(EvaluatedToErr)
977             }
978         })?;
979         debug!("evaluate_candidate: depth={} result={:?}",
980                stack.obligation.recursion_depth, result);
981         Ok(result)
982     }
983
984     fn check_evaluation_cache(&self,
985                               param_env: ty::ParamEnv<'tcx>,
986                               trait_ref: ty::PolyTraitRef<'tcx>)
987                               -> Option<EvaluationResult>
988     {
989         let tcx = self.tcx();
990         if self.can_use_global_caches(param_env) {
991             let cache = tcx.evaluation_cache.hashmap.borrow();
992             if let Some(cached) = cache.get(&trait_ref) {
993                 return Some(cached.get(tcx));
994             }
995         }
996         self.infcx.evaluation_cache.hashmap
997                                    .borrow()
998                                    .get(&trait_ref)
999                                    .map(|v| v.get(tcx))
1000     }
1001
1002     fn insert_evaluation_cache(&mut self,
1003                                param_env: ty::ParamEnv<'tcx>,
1004                                trait_ref: ty::PolyTraitRef<'tcx>,
1005                                dep_node: DepNodeIndex,
1006                                result: EvaluationResult)
1007     {
1008         // Avoid caching results that depend on more than just the trait-ref
1009         // - the stack can create recursion.
1010         if result.is_stack_dependent() {
1011             return;
1012         }
1013
1014         if self.can_use_global_caches(param_env) {
1015             if let Some(trait_ref) = self.tcx().lift_to_global(&trait_ref) {
1016                 debug!(
1017                     "insert_evaluation_cache(trait_ref={:?}, candidate={:?}) global",
1018                     trait_ref,
1019                     result,
1020                 );
1021                 // This may overwrite the cache with the same value
1022                 // FIXME: Due to #50507 this overwrites the different values
1023                 // This should be changed to use HashMapExt::insert_same
1024                 // when that is fixed
1025                 self.tcx().evaluation_cache
1026                           .hashmap.borrow_mut()
1027                           .insert(trait_ref, WithDepNode::new(dep_node, result));
1028                 return;
1029             }
1030         }
1031
1032         debug!(
1033             "insert_evaluation_cache(trait_ref={:?}, candidate={:?})",
1034             trait_ref,
1035             result,
1036         );
1037         self.infcx.evaluation_cache.hashmap
1038                                    .borrow_mut()
1039                                    .insert(trait_ref, WithDepNode::new(dep_node, result));
1040     }
1041
1042     ///////////////////////////////////////////////////////////////////////////
1043     // CANDIDATE ASSEMBLY
1044     //
1045     // The selection process begins by examining all in-scope impls,
1046     // caller obligations, and so forth and assembling a list of
1047     // candidates. See [rustc guide] for more details.
1048     //
1049     // [rustc guide]:
1050     // https://rust-lang-nursery.github.io/rustc-guide/traits/resolution.html#candidate-assembly
1051
1052     fn candidate_from_obligation<'o>(&mut self,
1053                                      stack: &TraitObligationStack<'o, 'tcx>)
1054                                      -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
1055     {
1056         // Watch out for overflow. This intentionally bypasses (and does
1057         // not update) the cache.
1058         let recursion_limit = *self.infcx.tcx.sess.recursion_limit.get();
1059         if stack.obligation.recursion_depth >= recursion_limit {
1060             match self.query_mode {
1061                 TraitQueryMode::Standard => {
1062                     self.infcx().report_overflow_error(&stack.obligation, true);
1063                 },
1064                 TraitQueryMode::Canonical => {
1065                     return Err(Overflow);
1066                 },
1067             }
1068         }
1069
1070         // Check the cache. Note that we skolemize the trait-ref
1071         // separately rather than using `stack.fresh_trait_ref` -- this
1072         // is because we want the unbound variables to be replaced
1073         // with fresh skolemized types starting from index 0.
1074         let cache_fresh_trait_pred =
1075             self.infcx.freshen(stack.obligation.predicate.clone());
1076         debug!("candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
1077                cache_fresh_trait_pred,
1078                stack);
1079         assert!(!stack.obligation.predicate.has_escaping_regions());
1080
1081         if let Some(c) = self.check_candidate_cache(stack.obligation.param_env,
1082                                                     &cache_fresh_trait_pred) {
1083             debug!("CACHE HIT: SELECT({:?})={:?}",
1084                    cache_fresh_trait_pred,
1085                    c);
1086             return c;
1087         }
1088
1089         // If no match, compute result and insert into cache.
1090         let (candidate, dep_node) = self.in_task(|this| {
1091             this.candidate_from_obligation_no_cache(stack)
1092         });
1093
1094         debug!("CACHE MISS: SELECT({:?})={:?}",
1095                cache_fresh_trait_pred, candidate);
1096         self.insert_candidate_cache(stack.obligation.param_env,
1097                                     cache_fresh_trait_pred,
1098                                     dep_node,
1099                                     candidate.clone());
1100         candidate
1101     }
1102
1103     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1104         where OP: FnOnce(&mut Self) -> R
1105     {
1106         let (result, dep_node) = self.tcx().dep_graph.with_anon_task(DepKind::TraitSelect, || {
1107             op(self)
1108         });
1109         self.tcx().dep_graph.read_index(dep_node);
1110         (result, dep_node)
1111     }
1112
1113     // Treat negative impls as unimplemented
1114     fn filter_negative_impls(&self, candidate: SelectionCandidate<'tcx>)
1115                              -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1116         if let ImplCandidate(def_id) = candidate {
1117             if !self.allow_negative_impls &&
1118                 self.tcx().impl_polarity(def_id) == hir::ImplPolarity::Negative {
1119                 return Err(Unimplemented)
1120             }
1121         }
1122         Ok(Some(candidate))
1123     }
1124
1125     fn candidate_from_obligation_no_cache<'o>(&mut self,
1126                                               stack: &TraitObligationStack<'o, 'tcx>)
1127                                               -> SelectionResult<'tcx, SelectionCandidate<'tcx>>
1128     {
1129         if stack.obligation.predicate.references_error() {
1130             // If we encounter a `TyError`, we generally prefer the
1131             // most "optimistic" result in response -- that is, the
1132             // one least likely to report downstream errors. But
1133             // because this routine is shared by coherence and by
1134             // trait selection, there isn't an obvious "right" choice
1135             // here in that respect, so we opt to just return
1136             // ambiguity and let the upstream clients sort it out.
1137             return Ok(None);
1138         }
1139
1140         match self.is_knowable(stack) {
1141             None => {}
1142             Some(conflict) => {
1143                 debug!("coherence stage: not knowable");
1144                 if self.intercrate_ambiguity_causes.is_some() {
1145                     debug!("evaluate_stack: intercrate_ambiguity_causes is some");
1146                     // Heuristics: show the diagnostics when there are no candidates in crate.
1147                     if let Ok(candidate_set) = self.assemble_candidates(stack) {
1148                         let no_candidates_apply =
1149                             candidate_set
1150                             .vec
1151                             .iter()
1152                             .map(|c| self.evaluate_candidate(stack, &c))
1153                             .collect::<Result<Vec<_>, OverflowError>>()?
1154                             .iter()
1155                             .all(|r| !r.may_apply());
1156                         if !candidate_set.ambiguous && no_candidates_apply {
1157                             let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1158                             let self_ty = trait_ref.self_ty();
1159                             let trait_desc = trait_ref.to_string();
1160                             let self_desc = if self_ty.has_concrete_skeleton() {
1161                                 Some(self_ty.to_string())
1162                             } else {
1163                                 None
1164                             };
1165                             let cause = if let Conflict::Upstream = conflict {
1166                                 IntercrateAmbiguityCause::UpstreamCrateUpdate {
1167                                     trait_desc,
1168                                     self_desc,
1169                                 }
1170                             } else {
1171                                 IntercrateAmbiguityCause::DownstreamCrate { trait_desc, self_desc }
1172                             };
1173                             debug!("evaluate_stack: pushing cause = {:?}", cause);
1174                             self.intercrate_ambiguity_causes.as_mut().unwrap().push(cause);
1175                         }
1176                     }
1177                 }
1178                 return Ok(None);
1179             }
1180         }
1181
1182         let candidate_set = self.assemble_candidates(stack)?;
1183
1184         if candidate_set.ambiguous {
1185             debug!("candidate set contains ambig");
1186             return Ok(None);
1187         }
1188
1189         let mut candidates = candidate_set.vec;
1190
1191         debug!("assembled {} candidates for {:?}: {:?}",
1192                candidates.len(),
1193                stack,
1194                candidates);
1195
1196         // At this point, we know that each of the entries in the
1197         // candidate set is *individually* applicable. Now we have to
1198         // figure out if they contain mutual incompatibilities. This
1199         // frequently arises if we have an unconstrained input type --
1200         // for example, we are looking for $0:Eq where $0 is some
1201         // unconstrained type variable. In that case, we'll get a
1202         // candidate which assumes $0 == int, one that assumes $0 ==
1203         // usize, etc. This spells an ambiguity.
1204
1205         // If there is more than one candidate, first winnow them down
1206         // by considering extra conditions (nested obligations and so
1207         // forth). We don't winnow if there is exactly one
1208         // candidate. This is a relatively minor distinction but it
1209         // can lead to better inference and error-reporting. An
1210         // example would be if there was an impl:
1211         //
1212         //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
1213         //
1214         // and we were to see some code `foo.push_clone()` where `boo`
1215         // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
1216         // we were to winnow, we'd wind up with zero candidates.
1217         // Instead, we select the right impl now but report `Bar does
1218         // not implement Clone`.
1219         if candidates.len() == 1 {
1220             return self.filter_negative_impls(candidates.pop().unwrap());
1221         }
1222
1223         // Winnow, but record the exact outcome of evaluation, which
1224         // is needed for specialization. Propagate overflow if it occurs.
1225         let candidates: Result<Vec<Option<EvaluatedCandidate>>, _> = candidates
1226             .into_iter()
1227             .map(|c| match self.evaluate_candidate(stack, &c) {
1228                 Ok(eval) if eval.may_apply() => Ok(Some(EvaluatedCandidate {
1229                     candidate: c,
1230                     evaluation: eval,
1231                 })),
1232                 Ok(_) => Ok(None),
1233                 Err(OverflowError) => Err(Overflow),
1234             })
1235             .collect();
1236
1237         let mut candidates: Vec<EvaluatedCandidate> =
1238             candidates?.into_iter().filter_map(|c| c).collect();
1239
1240         debug!("winnowed to {} candidates for {:?}: {:?}",
1241                candidates.len(),
1242                stack,
1243                candidates);
1244
1245         // If there are STILL multiple candidate, we can further
1246         // reduce the list by dropping duplicates -- including
1247         // resolving specializations.
1248         if candidates.len() > 1 {
1249             let mut i = 0;
1250             while i < candidates.len() {
1251                 let is_dup =
1252                     (0..candidates.len())
1253                     .filter(|&j| i != j)
1254                     .any(|j| self.candidate_should_be_dropped_in_favor_of(&candidates[i],
1255                                                                           &candidates[j]));
1256                 if is_dup {
1257                     debug!("Dropping candidate #{}/{}: {:?}",
1258                            i, candidates.len(), candidates[i]);
1259                     candidates.swap_remove(i);
1260                 } else {
1261                     debug!("Retaining candidate #{}/{}: {:?}",
1262                            i, candidates.len(), candidates[i]);
1263                     i += 1;
1264
1265                     // If there are *STILL* multiple candidates, give up
1266                     // and report ambiguity.
1267                     if i > 1 {
1268                         debug!("multiple matches, ambig");
1269                         return Ok(None);
1270                     }
1271                 }
1272             }
1273         }
1274
1275         // If there are *NO* candidates, then there are no impls --
1276         // that we know of, anyway. Note that in the case where there
1277         // are unbound type variables within the obligation, it might
1278         // be the case that you could still satisfy the obligation
1279         // from another crate by instantiating the type variables with
1280         // a type from another crate that does have an impl. This case
1281         // is checked for in `evaluate_stack` (and hence users
1282         // who might care about this case, like coherence, should use
1283         // that function).
1284         if candidates.is_empty() {
1285             return Err(Unimplemented);
1286         }
1287
1288         // Just one candidate left.
1289         self.filter_negative_impls(candidates.pop().unwrap().candidate)
1290     }
1291
1292     fn is_knowable<'o>(&mut self,
1293                        stack: &TraitObligationStack<'o, 'tcx>)
1294                        -> Option<Conflict>
1295     {
1296         debug!("is_knowable(intercrate={:?})", self.intercrate);
1297
1298         if !self.intercrate.is_some() {
1299             return None;
1300         }
1301
1302         let obligation = &stack.obligation;
1303         let predicate = self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
1304
1305         // ok to skip binder because of the nature of the
1306         // trait-ref-is-knowable check, which does not care about
1307         // bound regions
1308         let trait_ref = predicate.skip_binder().trait_ref;
1309
1310         let result = coherence::trait_ref_is_knowable(self.tcx(), trait_ref);
1311         if let (Some(Conflict::Downstream { used_to_be_broken: true }),
1312                 Some(IntercrateMode::Issue43355)) = (result, self.intercrate) {
1313             debug!("is_knowable: IGNORING conflict to be bug-compatible with #43355");
1314             None
1315         } else {
1316             result
1317         }
1318     }
1319
1320     /// Returns true if the global caches can be used.
1321     /// Do note that if the type itself is not in the
1322     /// global tcx, the local caches will be used.
1323     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1324         // If there are any where-clauses in scope, then we always use
1325         // a cache local to this particular scope. Otherwise, we
1326         // switch to a global cache. We used to try and draw
1327         // finer-grained distinctions, but that led to a serious of
1328         // annoying and weird bugs like #22019 and #18290. This simple
1329         // rule seems to be pretty clearly safe and also still retains
1330         // a very high hit rate (~95% when compiling rustc).
1331         if !param_env.caller_bounds.is_empty() {
1332             return false;
1333         }
1334
1335         // Avoid using the master cache during coherence and just rely
1336         // on the local cache. This effectively disables caching
1337         // during coherence. It is really just a simplification to
1338         // avoid us having to fear that coherence results "pollute"
1339         // the master cache. Since coherence executes pretty quickly,
1340         // it's not worth going to more trouble to increase the
1341         // hit-rate I don't think.
1342         if self.intercrate.is_some() {
1343             return false;
1344         }
1345
1346         // Otherwise, we can use the global cache.
1347         true
1348     }
1349
1350     fn check_candidate_cache(&mut self,
1351                              param_env: ty::ParamEnv<'tcx>,
1352                              cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>)
1353                              -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>>
1354     {
1355         let tcx = self.tcx();
1356         let trait_ref = &cache_fresh_trait_pred.skip_binder().trait_ref;
1357         if self.can_use_global_caches(param_env) {
1358             let cache = tcx.selection_cache.hashmap.borrow();
1359             if let Some(cached) = cache.get(&trait_ref) {
1360                 return Some(cached.get(tcx));
1361             }
1362         }
1363         self.infcx.selection_cache.hashmap
1364                                   .borrow()
1365                                   .get(trait_ref)
1366                                   .map(|v| v.get(tcx))
1367     }
1368
1369     fn insert_candidate_cache(&mut self,
1370                               param_env: ty::ParamEnv<'tcx>,
1371                               cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1372                               dep_node: DepNodeIndex,
1373                               candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>)
1374     {
1375         let tcx = self.tcx();
1376         let trait_ref = cache_fresh_trait_pred.skip_binder().trait_ref;
1377         if self.can_use_global_caches(param_env) {
1378             if let Some(trait_ref) = tcx.lift_to_global(&trait_ref) {
1379                 if let Some(candidate) = tcx.lift_to_global(&candidate) {
1380                     debug!(
1381                         "insert_candidate_cache(trait_ref={:?}, candidate={:?}) global",
1382                         trait_ref,
1383                         candidate,
1384                     );
1385                     // This may overwrite the cache with the same value
1386                     tcx.selection_cache
1387                        .hashmap.borrow_mut()
1388                        .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1389                     return;
1390                 }
1391             }
1392         }
1393
1394         debug!(
1395             "insert_candidate_cache(trait_ref={:?}, candidate={:?}) local",
1396             trait_ref,
1397             candidate,
1398         );
1399         self.infcx.selection_cache.hashmap
1400                                   .borrow_mut()
1401                                   .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1402     }
1403
1404     fn assemble_candidates<'o>(&mut self,
1405                                stack: &TraitObligationStack<'o, 'tcx>)
1406                                -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>>
1407     {
1408         let TraitObligationStack { obligation, .. } = *stack;
1409         let ref obligation = Obligation {
1410             param_env: obligation.param_env,
1411             cause: obligation.cause.clone(),
1412             recursion_depth: obligation.recursion_depth,
1413             predicate: self.infcx().resolve_type_vars_if_possible(&obligation.predicate)
1414         };
1415
1416         if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1417             // Self is a type variable (e.g. `_: AsRef<str>`).
1418             //
1419             // This is somewhat problematic, as the current scheme can't really
1420             // handle it turning to be a projection. This does end up as truly
1421             // ambiguous in most cases anyway.
1422             //
1423             // Take the fast path out - this also improves
1424             // performance by preventing assemble_candidates_from_impls from
1425             // matching every impl for this trait.
1426             return Ok(SelectionCandidateSet { vec: vec![], ambiguous: true });
1427         }
1428
1429         let mut candidates = SelectionCandidateSet {
1430             vec: Vec::new(),
1431             ambiguous: false
1432         };
1433
1434         // Other bounds. Consider both in-scope bounds from fn decl
1435         // and applicable impls. There is a certain set of precedence rules here.
1436
1437         let def_id = obligation.predicate.def_id();
1438         let lang_items = self.tcx().lang_items();
1439         if lang_items.copy_trait() == Some(def_id) {
1440             debug!("obligation self ty is {:?}",
1441                    obligation.predicate.skip_binder().self_ty());
1442
1443             // User-defined copy impls are permitted, but only for
1444             // structs and enums.
1445             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1446
1447             // For other types, we'll use the builtin rules.
1448             let copy_conditions = self.copy_clone_conditions(obligation);
1449             self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1450         } else if lang_items.sized_trait() == Some(def_id) {
1451             // Sized is never implementable by end-users, it is
1452             // always automatically computed.
1453             let sized_conditions = self.sized_conditions(obligation);
1454             self.assemble_builtin_bound_candidates(sized_conditions,
1455                                                    &mut candidates)?;
1456         } else if lang_items.unsize_trait() == Some(def_id) {
1457             self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1458         } else {
1459             if lang_items.clone_trait() == Some(def_id) {
1460                 // Same builtin conditions as `Copy`, i.e. every type which has builtin support
1461                 // for `Copy` also has builtin support for `Clone`, + tuples and arrays of `Clone`
1462                 // types have builtin support for `Clone`.
1463                 let clone_conditions = self.copy_clone_conditions(obligation);
1464                 self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
1465             }
1466
1467             self.assemble_generator_candidates(obligation, &mut candidates)?;
1468             self.assemble_closure_candidates(obligation, &mut candidates)?;
1469             self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1470             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1471             self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1472         }
1473
1474         self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1475         self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1476         // Auto implementations have lower priority, so we only
1477         // consider triggering a default if there is no other impl that can apply.
1478         if candidates.vec.is_empty() {
1479             self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
1480         }
1481         debug!("candidate list size: {}", candidates.vec.len());
1482         Ok(candidates)
1483     }
1484
1485     fn assemble_candidates_from_projected_tys(&mut self,
1486                                               obligation: &TraitObligation<'tcx>,
1487                                               candidates: &mut SelectionCandidateSet<'tcx>)
1488     {
1489         debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1490
1491         // before we go into the whole skolemization thing, just
1492         // quickly check if the self-type is a projection at all.
1493         match obligation.predicate.skip_binder().trait_ref.self_ty().sty {
1494             ty::TyProjection(_) | ty::TyAnon(..) => {}
1495             ty::TyInfer(ty::TyVar(_)) => {
1496                 span_bug!(obligation.cause.span,
1497                     "Self=_ should have been handled by assemble_candidates");
1498             }
1499             _ => return
1500         }
1501
1502         let result = self.probe(|this, snapshot| {
1503             this.match_projection_obligation_against_definition_bounds(obligation,
1504                                                                        snapshot)
1505         });
1506
1507         if result {
1508             candidates.vec.push(ProjectionCandidate);
1509         }
1510     }
1511
1512     fn match_projection_obligation_against_definition_bounds(
1513         &mut self,
1514         obligation: &TraitObligation<'tcx>,
1515         snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
1516         -> bool
1517     {
1518         let poly_trait_predicate =
1519             self.infcx().resolve_type_vars_if_possible(&obligation.predicate);
1520         let (skol_trait_predicate, skol_map) =
1521             self.infcx().skolemize_late_bound_regions(&poly_trait_predicate);
1522         debug!("match_projection_obligation_against_definition_bounds: \
1523                 skol_trait_predicate={:?} skol_map={:?}",
1524                skol_trait_predicate,
1525                skol_map);
1526
1527         let (def_id, substs) = match skol_trait_predicate.trait_ref.self_ty().sty {
1528             ty::TyProjection(ref data) =>
1529                 (data.trait_ref(self.tcx()).def_id, data.substs),
1530             ty::TyAnon(def_id, substs) => (def_id, substs),
1531             _ => {
1532                 span_bug!(
1533                     obligation.cause.span,
1534                     "match_projection_obligation_against_definition_bounds() called \
1535                      but self-ty not a projection: {:?}",
1536                     skol_trait_predicate.trait_ref.self_ty());
1537             }
1538         };
1539         debug!("match_projection_obligation_against_definition_bounds: \
1540                 def_id={:?}, substs={:?}",
1541                def_id, substs);
1542
1543         let predicates_of = self.tcx().predicates_of(def_id);
1544         let bounds = predicates_of.instantiate(self.tcx(), substs);
1545         debug!("match_projection_obligation_against_definition_bounds: \
1546                 bounds={:?}",
1547                bounds);
1548
1549         let matching_bound =
1550             util::elaborate_predicates(self.tcx(), bounds.predicates)
1551             .filter_to_traits()
1552             .find(
1553                 |bound| self.probe(
1554                     |this, _| this.match_projection(obligation,
1555                                                     bound.clone(),
1556                                                     skol_trait_predicate.trait_ref.clone(),
1557                                                     &skol_map,
1558                                                     snapshot)));
1559
1560         debug!("match_projection_obligation_against_definition_bounds: \
1561                 matching_bound={:?}",
1562                matching_bound);
1563         match matching_bound {
1564             None => false,
1565             Some(bound) => {
1566                 // Repeat the successful match, if any, this time outside of a probe.
1567                 let result = self.match_projection(obligation,
1568                                                    bound,
1569                                                    skol_trait_predicate.trait_ref.clone(),
1570                                                    &skol_map,
1571                                                    snapshot);
1572
1573                 self.infcx.pop_skolemized(skol_map, snapshot);
1574
1575                 assert!(result);
1576                 true
1577             }
1578         }
1579     }
1580
1581     fn match_projection(&mut self,
1582                         obligation: &TraitObligation<'tcx>,
1583                         trait_bound: ty::PolyTraitRef<'tcx>,
1584                         skol_trait_ref: ty::TraitRef<'tcx>,
1585                         skol_map: &infer::SkolemizationMap<'tcx>,
1586                         snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
1587                         -> bool
1588     {
1589         assert!(!skol_trait_ref.has_escaping_regions());
1590         if let Err(_) = self.infcx.at(&obligation.cause, obligation.param_env)
1591                                   .sup(ty::Binder::dummy(skol_trait_ref), trait_bound) {
1592             return false;
1593         }
1594
1595         self.infcx.leak_check(false, obligation.cause.span, skol_map, snapshot).is_ok()
1596     }
1597
1598     /// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
1599     /// supplied to find out whether it is listed among them.
1600     ///
1601     /// Never affects inference environment.
1602     fn assemble_candidates_from_caller_bounds<'o>(&mut self,
1603                                                   stack: &TraitObligationStack<'o, 'tcx>,
1604                                                   candidates: &mut SelectionCandidateSet<'tcx>)
1605                                                   -> Result<(),SelectionError<'tcx>>
1606     {
1607         debug!("assemble_candidates_from_caller_bounds({:?})",
1608                stack.obligation);
1609
1610         let all_bounds =
1611             stack.obligation.param_env.caller_bounds
1612                                       .iter()
1613                                       .filter_map(|o| o.to_opt_poly_trait_ref());
1614
1615         // micro-optimization: filter out predicates relating to different
1616         // traits.
1617         let matching_bounds =
1618             all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
1619
1620         // keep only those bounds which may apply, and propagate overflow if it occurs
1621         let mut param_candidates = vec![];
1622         for bound in matching_bounds {
1623             let wc = self.evaluate_where_clause(stack, bound.clone())?;
1624             if wc.may_apply() {
1625                 param_candidates.push(ParamCandidate(bound));
1626             }
1627         }
1628
1629         candidates.vec.extend(param_candidates);
1630
1631         Ok(())
1632     }
1633
1634     fn evaluate_where_clause<'o>(&mut self,
1635                                  stack: &TraitObligationStack<'o, 'tcx>,
1636                                  where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
1637                                  -> Result<EvaluationResult, OverflowError>
1638     {
1639         self.probe(move |this, _| {
1640             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1641                 Ok(obligations) => {
1642                     this.evaluate_predicates_recursively(stack.list(), obligations.iter())
1643                 }
1644                 Err(()) => Ok(EvaluatedToErr)
1645             }
1646         })
1647     }
1648
1649     fn assemble_generator_candidates(&mut self,
1650                                    obligation: &TraitObligation<'tcx>,
1651                                    candidates: &mut SelectionCandidateSet<'tcx>)
1652                                    -> Result<(),SelectionError<'tcx>>
1653     {
1654         if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
1655             return Ok(());
1656         }
1657
1658         // ok to skip binder because the substs on generator types never
1659         // touch bound regions, they just capture the in-scope
1660         // type/region parameters
1661         let self_ty = *obligation.self_ty().skip_binder();
1662         match self_ty.sty {
1663             ty::TyGenerator(..) => {
1664                 debug!("assemble_generator_candidates: self_ty={:?} obligation={:?}",
1665                        self_ty,
1666                        obligation);
1667
1668                 candidates.vec.push(GeneratorCandidate);
1669                 Ok(())
1670             }
1671             ty::TyInfer(ty::TyVar(_)) => {
1672                 debug!("assemble_generator_candidates: ambiguous self-type");
1673                 candidates.ambiguous = true;
1674                 return Ok(());
1675             }
1676             _ => { return Ok(()); }
1677         }
1678     }
1679
1680     /// Check for the artificial impl that the compiler will create for an obligation like `X :
1681     /// FnMut<..>` where `X` is a closure type.
1682     ///
1683     /// Note: the type parameters on a closure candidate are modeled as *output* type
1684     /// parameters and hence do not affect whether this trait is a match or not. They will be
1685     /// unified during the confirmation step.
1686     fn assemble_closure_candidates(&mut self,
1687                                    obligation: &TraitObligation<'tcx>,
1688                                    candidates: &mut SelectionCandidateSet<'tcx>)
1689                                    -> Result<(),SelectionError<'tcx>>
1690     {
1691         let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()) {
1692             Some(k) => k,
1693             None => { return Ok(()); }
1694         };
1695
1696         // ok to skip binder because the substs on closure types never
1697         // touch bound regions, they just capture the in-scope
1698         // type/region parameters
1699         match obligation.self_ty().skip_binder().sty {
1700             ty::TyClosure(closure_def_id, closure_substs) => {
1701                 debug!("assemble_unboxed_candidates: kind={:?} obligation={:?}",
1702                        kind, obligation);
1703                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
1704                     Some(closure_kind) => {
1705                         debug!("assemble_unboxed_candidates: closure_kind = {:?}", closure_kind);
1706                         if closure_kind.extends(kind) {
1707                             candidates.vec.push(ClosureCandidate);
1708                         }
1709                     }
1710                     None => {
1711                         debug!("assemble_unboxed_candidates: closure_kind not yet known");
1712                         candidates.vec.push(ClosureCandidate);
1713                     }
1714                 };
1715                 Ok(())
1716             }
1717             ty::TyInfer(ty::TyVar(_)) => {
1718                 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
1719                 candidates.ambiguous = true;
1720                 return Ok(());
1721             }
1722             _ => { return Ok(()); }
1723         }
1724     }
1725
1726     /// Implement one of the `Fn()` family for a fn pointer.
1727     fn assemble_fn_pointer_candidates(&mut self,
1728                                       obligation: &TraitObligation<'tcx>,
1729                                       candidates: &mut SelectionCandidateSet<'tcx>)
1730                                       -> Result<(),SelectionError<'tcx>>
1731     {
1732         // We provide impl of all fn traits for fn pointers.
1733         if self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()).is_none() {
1734             return Ok(());
1735         }
1736
1737         // ok to skip binder because what we are inspecting doesn't involve bound regions
1738         let self_ty = *obligation.self_ty().skip_binder();
1739         match self_ty.sty {
1740             ty::TyInfer(ty::TyVar(_)) => {
1741                 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
1742                 candidates.ambiguous = true; // could wind up being a fn() type
1743             }
1744
1745             // provide an impl, but only for suitable `fn` pointers
1746             ty::TyFnDef(..) | ty::TyFnPtr(_) => {
1747                 if let ty::FnSig {
1748                     unsafety: hir::Unsafety::Normal,
1749                     abi: Abi::Rust,
1750                     variadic: false,
1751                     ..
1752                 } = self_ty.fn_sig(self.tcx()).skip_binder() {
1753                     candidates.vec.push(FnPointerCandidate);
1754                 }
1755             }
1756
1757             _ => { }
1758         }
1759
1760         Ok(())
1761     }
1762
1763     /// Search for impls that might apply to `obligation`.
1764     fn assemble_candidates_from_impls(&mut self,
1765                                       obligation: &TraitObligation<'tcx>,
1766                                       candidates: &mut SelectionCandidateSet<'tcx>)
1767                                       -> Result<(), SelectionError<'tcx>>
1768     {
1769         debug!("assemble_candidates_from_impls(obligation={:?})", obligation);
1770
1771         self.tcx().for_each_relevant_impl(
1772             obligation.predicate.def_id(),
1773             obligation.predicate.skip_binder().trait_ref.self_ty(),
1774             |impl_def_id| {
1775                 self.probe(|this, snapshot| { /* [1] */
1776                     match this.match_impl(impl_def_id, obligation, snapshot) {
1777                         Ok(skol_map) => {
1778                             candidates.vec.push(ImplCandidate(impl_def_id));
1779
1780                             // NB: we can safely drop the skol map
1781                             // since we are in a probe [1]
1782                             mem::drop(skol_map);
1783                         }
1784                         Err(_) => { }
1785                     }
1786                 });
1787             }
1788         );
1789
1790         Ok(())
1791     }
1792
1793     fn assemble_candidates_from_auto_impls(&mut self,
1794                                               obligation: &TraitObligation<'tcx>,
1795                                               candidates: &mut SelectionCandidateSet<'tcx>)
1796                                               -> Result<(), SelectionError<'tcx>>
1797     {
1798         // OK to skip binder here because the tests we do below do not involve bound regions
1799         let self_ty = *obligation.self_ty().skip_binder();
1800         debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
1801
1802         let def_id = obligation.predicate.def_id();
1803
1804         if self.tcx().trait_is_auto(def_id) {
1805             match self_ty.sty {
1806                 ty::TyDynamic(..) => {
1807                     // For object types, we don't know what the closed
1808                     // over types are. This means we conservatively
1809                     // say nothing; a candidate may be added by
1810                     // `assemble_candidates_from_object_ty`.
1811                 }
1812                 ty::TyForeign(..) => {
1813                     // Since the contents of foreign types is unknown,
1814                     // we don't add any `..` impl. Default traits could
1815                     // still be provided by a manual implementation for
1816                     // this trait and type.
1817                 }
1818                 ty::TyParam(..) |
1819                 ty::TyProjection(..) => {
1820                     // In these cases, we don't know what the actual
1821                     // type is.  Therefore, we cannot break it down
1822                     // into its constituent types. So we don't
1823                     // consider the `..` impl but instead just add no
1824                     // candidates: this means that typeck will only
1825                     // succeed if there is another reason to believe
1826                     // that this obligation holds. That could be a
1827                     // where-clause or, in the case of an object type,
1828                     // it could be that the object type lists the
1829                     // trait (e.g. `Foo+Send : Send`). See
1830                     // `compile-fail/typeck-default-trait-impl-send-param.rs`
1831                     // for an example of a test case that exercises
1832                     // this path.
1833                 }
1834                 ty::TyInfer(ty::TyVar(_)) => {
1835                     // the auto impl might apply, we don't know
1836                     candidates.ambiguous = true;
1837                 }
1838                 _ => {
1839                     candidates.vec.push(AutoImplCandidate(def_id.clone()))
1840                 }
1841             }
1842         }
1843
1844         Ok(())
1845     }
1846
1847     /// Search for impls that might apply to `obligation`.
1848     fn assemble_candidates_from_object_ty(&mut self,
1849                                           obligation: &TraitObligation<'tcx>,
1850                                           candidates: &mut SelectionCandidateSet<'tcx>)
1851     {
1852         debug!("assemble_candidates_from_object_ty(self_ty={:?})",
1853                obligation.self_ty().skip_binder());
1854
1855         // Object-safety candidates are only applicable to object-safe
1856         // traits. Including this check is useful because it helps
1857         // inference in cases of traits like `BorrowFrom`, which are
1858         // not object-safe, and which rely on being able to infer the
1859         // self-type from one of the other inputs. Without this check,
1860         // these cases wind up being considered ambiguous due to a
1861         // (spurious) ambiguity introduced here.
1862         let predicate_trait_ref = obligation.predicate.to_poly_trait_ref();
1863         if !self.tcx().is_object_safe(predicate_trait_ref.def_id()) {
1864             return;
1865         }
1866
1867         self.probe(|this, _snapshot| {
1868             // the code below doesn't care about regions, and the
1869             // self-ty here doesn't escape this probe, so just erase
1870             // any LBR.
1871             let self_ty = this.tcx().erase_late_bound_regions(&obligation.self_ty());
1872             let poly_trait_ref = match self_ty.sty {
1873                 ty::TyDynamic(ref data, ..) => {
1874                     if data.auto_traits().any(|did| did == obligation.predicate.def_id()) {
1875                         debug!("assemble_candidates_from_object_ty: matched builtin bound, \
1876                                     pushing candidate");
1877                         candidates.vec.push(BuiltinObjectCandidate);
1878                         return;
1879                     }
1880
1881                     match data.principal() {
1882                         Some(p) => p.with_self_ty(this.tcx(), self_ty),
1883                         None => return,
1884                     }
1885                 }
1886                 ty::TyInfer(ty::TyVar(_)) => {
1887                     debug!("assemble_candidates_from_object_ty: ambiguous");
1888                     candidates.ambiguous = true; // could wind up being an object type
1889                     return;
1890                 }
1891                 _ => {
1892                     return;
1893                 }
1894             };
1895
1896             debug!("assemble_candidates_from_object_ty: poly_trait_ref={:?}",
1897                    poly_trait_ref);
1898
1899             // Count only those upcast versions that match the trait-ref
1900             // we are looking for. Specifically, do not only check for the
1901             // correct trait, but also the correct type parameters.
1902             // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
1903             // but `Foo` is declared as `trait Foo : Bar<u32>`.
1904             let upcast_trait_refs =
1905                 util::supertraits(this.tcx(), poly_trait_ref)
1906                 .filter(|upcast_trait_ref| {
1907                     this.probe(|this, _| {
1908                         let upcast_trait_ref = upcast_trait_ref.clone();
1909                         this.match_poly_trait_ref(obligation, upcast_trait_ref).is_ok()
1910                     })
1911                 })
1912                 .count();
1913
1914             if upcast_trait_refs > 1 {
1915                 // can be upcast in many ways; need more type information
1916                 candidates.ambiguous = true;
1917             } else if upcast_trait_refs == 1 {
1918                 candidates.vec.push(ObjectCandidate);
1919             }
1920         })
1921     }
1922
1923     /// Search for unsizing that might apply to `obligation`.
1924     fn assemble_candidates_for_unsizing(&mut self,
1925                                         obligation: &TraitObligation<'tcx>,
1926                                         candidates: &mut SelectionCandidateSet<'tcx>) {
1927         // We currently never consider higher-ranked obligations e.g.
1928         // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
1929         // because they are a priori invalid, and we could potentially add support
1930         // for them later, it's just that there isn't really a strong need for it.
1931         // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
1932         // impl, and those are generally applied to concrete types.
1933         //
1934         // That said, one might try to write a fn with a where clause like
1935         //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
1936         // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
1937         // Still, you'd be more likely to write that where clause as
1938         //     T: Trait
1939         // so it seems ok if we (conservatively) fail to accept that `Unsize`
1940         // obligation above. Should be possible to extend this in the future.
1941         let source = match obligation.self_ty().no_late_bound_regions() {
1942             Some(t) => t,
1943             None => {
1944                 // Don't add any candidates if there are bound regions.
1945                 return;
1946             }
1947         };
1948         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
1949
1950         debug!("assemble_candidates_for_unsizing(source={:?}, target={:?})",
1951                source, target);
1952
1953         let may_apply = match (&source.sty, &target.sty) {
1954             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
1955             (&ty::TyDynamic(ref data_a, ..), &ty::TyDynamic(ref data_b, ..)) => {
1956                 // Upcasts permit two things:
1957                 //
1958                 // 1. Dropping builtin bounds, e.g. `Foo+Send` to `Foo`
1959                 // 2. Tightening the region bound, e.g. `Foo+'a` to `Foo+'b` if `'a : 'b`
1960                 //
1961                 // Note that neither of these changes requires any
1962                 // change at runtime.  Eventually this will be
1963                 // generalized.
1964                 //
1965                 // We always upcast when we can because of reason
1966                 // #2 (region bounds).
1967                 match (data_a.principal(), data_b.principal()) {
1968                     (Some(a), Some(b)) => a.def_id() == b.def_id() &&
1969                         data_b.auto_traits()
1970                             // All of a's auto traits need to be in b's auto traits.
1971                             .all(|b| data_a.auto_traits().any(|a| a == b)),
1972                     _ => false
1973                 }
1974             }
1975
1976             // T -> Trait.
1977             (_, &ty::TyDynamic(..)) => true,
1978
1979             // Ambiguous handling is below T -> Trait, because inference
1980             // variables can still implement Unsize<Trait> and nested
1981             // obligations will have the final say (likely deferred).
1982             (&ty::TyInfer(ty::TyVar(_)), _) |
1983             (_, &ty::TyInfer(ty::TyVar(_))) => {
1984                 debug!("assemble_candidates_for_unsizing: ambiguous");
1985                 candidates.ambiguous = true;
1986                 false
1987             }
1988
1989             // [T; n] -> [T].
1990             (&ty::TyArray(..), &ty::TySlice(_)) => true,
1991
1992             // Struct<T> -> Struct<U>.
1993             (&ty::TyAdt(def_id_a, _), &ty::TyAdt(def_id_b, _)) if def_id_a.is_struct() => {
1994                 def_id_a == def_id_b
1995             }
1996
1997             // (.., T) -> (.., U).
1998             (&ty::TyTuple(tys_a), &ty::TyTuple(tys_b)) => {
1999                 tys_a.len() == tys_b.len()
2000             }
2001
2002             _ => false
2003         };
2004
2005         if may_apply {
2006             candidates.vec.push(BuiltinUnsizeCandidate);
2007         }
2008     }
2009
2010     ///////////////////////////////////////////////////////////////////////////
2011     // WINNOW
2012     //
2013     // Winnowing is the process of attempting to resolve ambiguity by
2014     // probing further. During the winnowing process, we unify all
2015     // type variables (ignoring skolemization) and then we also
2016     // attempt to evaluate recursive bounds to see if they are
2017     // satisfied.
2018
2019     /// Returns true if `victim` should be dropped in favor of
2020     /// `other`.  Generally speaking we will drop duplicate
2021     /// candidates and prefer where-clause candidates.
2022     ///
2023     /// See the comment for "SelectionCandidate" for more details.
2024     fn candidate_should_be_dropped_in_favor_of<'o>(
2025         &mut self,
2026         victim: &EvaluatedCandidate<'tcx>,
2027         other: &EvaluatedCandidate<'tcx>)
2028         -> bool
2029     {
2030         // Check if a bound would previously have been removed when normalizing
2031         // the param_env so that it can be given the lowest priority. See
2032         // #50825 for the motivation for this.
2033         let is_global = |cand: &ty::PolyTraitRef<'_>| {
2034             cand.is_global() && !cand.has_late_bound_regions()
2035         };
2036
2037         if victim.candidate == other.candidate {
2038             return true;
2039         }
2040
2041         match other.candidate {
2042             ParamCandidate(ref cand) => match victim.candidate {
2043                 AutoImplCandidate(..) => {
2044                     bug!(
2045                         "default implementations shouldn't be recorded \
2046                          when there are other valid candidates");
2047                 }
2048                 ImplCandidate(..) |
2049                 ClosureCandidate |
2050                 GeneratorCandidate |
2051                 FnPointerCandidate |
2052                 BuiltinObjectCandidate |
2053                 BuiltinUnsizeCandidate |
2054                 BuiltinCandidate { .. } => {
2055                     // Global bounds from the where clause should be ignored
2056                     // here (see issue #50825). Otherwise, we have a where
2057                     // clause so don't go around looking for impls.
2058                     !is_global(cand)
2059                 }
2060                 ObjectCandidate |
2061                 ProjectionCandidate => {
2062                     // Arbitrarily give param candidates priority
2063                     // over projection and object candidates.
2064                     !is_global(cand)
2065                 },
2066                 ParamCandidate(..) => false,
2067             },
2068             ObjectCandidate |
2069             ProjectionCandidate => match victim.candidate {
2070                 AutoImplCandidate(..) => {
2071                     bug!(
2072                         "default implementations shouldn't be recorded \
2073                          when there are other valid candidates");
2074                 }
2075                 ImplCandidate(..) |
2076                 ClosureCandidate |
2077                 GeneratorCandidate |
2078                 FnPointerCandidate |
2079                 BuiltinObjectCandidate |
2080                 BuiltinUnsizeCandidate |
2081                 BuiltinCandidate { .. } => {
2082                     true
2083                 }
2084                 ObjectCandidate |
2085                 ProjectionCandidate => {
2086                     // Arbitrarily give param candidates priority
2087                     // over projection and object candidates.
2088                     true
2089                 },
2090                 ParamCandidate(ref cand) => is_global(cand),
2091             },
2092             ImplCandidate(other_def) => {
2093                 // See if we can toss out `victim` based on specialization.
2094                 // This requires us to know *for sure* that the `other` impl applies
2095                 // i.e. EvaluatedToOk:
2096                 if other.evaluation == EvaluatedToOk {
2097                     match victim.candidate {
2098                         ImplCandidate(victim_def) => {
2099                             let tcx = self.tcx().global_tcx();
2100                             return tcx.specializes((other_def, victim_def)) ||
2101                                 tcx.impls_are_allowed_to_overlap(other_def, victim_def);
2102                         }
2103                         ParamCandidate(ref cand) => {
2104                             // Prefer the impl to a global where clause candidate.
2105                             return is_global(cand);
2106                         }
2107                         _ => ()
2108                     }
2109                 }
2110
2111                 false
2112             },
2113             ClosureCandidate |
2114             GeneratorCandidate |
2115             FnPointerCandidate |
2116             BuiltinObjectCandidate |
2117             BuiltinUnsizeCandidate |
2118             BuiltinCandidate { .. } => {
2119                 match victim.candidate {
2120                     ParamCandidate(ref cand) => {
2121                         // Prefer these to a global where-clause bound
2122                         // (see issue #50825)
2123                         is_global(cand) && other.evaluation == EvaluatedToOk
2124                     }
2125                     _ => false,
2126                 }
2127             }
2128             _ => false
2129         }
2130     }
2131
2132     ///////////////////////////////////////////////////////////////////////////
2133     // BUILTIN BOUNDS
2134     //
2135     // These cover the traits that are built-in to the language
2136     // itself: `Copy`, `Clone` and `Sized`.
2137
2138     fn assemble_builtin_bound_candidates<'o>(&mut self,
2139                                              conditions: BuiltinImplConditions<'tcx>,
2140                                              candidates: &mut SelectionCandidateSet<'tcx>)
2141                                              -> Result<(),SelectionError<'tcx>>
2142     {
2143         match conditions {
2144             BuiltinImplConditions::Where(nested) => {
2145                 debug!("builtin_bound: nested={:?}", nested);
2146                 candidates.vec.push(BuiltinCandidate {
2147                     has_nested: nested.skip_binder().len() > 0
2148                 });
2149                 Ok(())
2150             }
2151             BuiltinImplConditions::None => { Ok(()) }
2152             BuiltinImplConditions::Ambiguous => {
2153                 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
2154                 Ok(candidates.ambiguous = true)
2155             }
2156         }
2157     }
2158
2159     fn sized_conditions(&mut self, obligation: &TraitObligation<'tcx>)
2160                      -> BuiltinImplConditions<'tcx>
2161     {
2162         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2163
2164         // NOTE: binder moved to (*)
2165         let self_ty = self.infcx.shallow_resolve(
2166             obligation.predicate.skip_binder().self_ty());
2167
2168         match self_ty.sty {
2169             ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
2170             ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
2171             ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyRawPtr(..) |
2172             ty::TyChar | ty::TyRef(..) | ty::TyGenerator(..) |
2173             ty::TyGeneratorWitness(..) | ty::TyArray(..) | ty::TyClosure(..) |
2174             ty::TyNever | ty::TyError => {
2175                 // safe for everything
2176                 Where(ty::Binder::dummy(Vec::new()))
2177             }
2178
2179             ty::TyStr | ty::TySlice(_) | ty::TyDynamic(..) | ty::TyForeign(..) => None,
2180
2181             ty::TyTuple(tys) => {
2182                 Where(ty::Binder::bind(tys.last().into_iter().cloned().collect()))
2183             }
2184
2185             ty::TyAdt(def, substs) => {
2186                 let sized_crit = def.sized_constraint(self.tcx());
2187                 // (*) binder moved here
2188                 Where(ty::Binder::bind(
2189                     sized_crit.iter().map(|ty| ty.subst(self.tcx(), substs)).collect()
2190                 ))
2191             }
2192
2193             ty::TyProjection(_) | ty::TyParam(_) | ty::TyAnon(..) => None,
2194             ty::TyInfer(ty::TyVar(_)) => Ambiguous,
2195
2196             ty::TyInfer(ty::CanonicalTy(_)) |
2197             ty::TyInfer(ty::FreshTy(_)) |
2198             ty::TyInfer(ty::FreshIntTy(_)) |
2199             ty::TyInfer(ty::FreshFloatTy(_)) => {
2200                 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
2201                      self_ty);
2202             }
2203         }
2204     }
2205
2206     fn copy_clone_conditions(&mut self, obligation: &TraitObligation<'tcx>)
2207                      -> BuiltinImplConditions<'tcx>
2208     {
2209         // NOTE: binder moved to (*)
2210         let self_ty = self.infcx.shallow_resolve(
2211             obligation.predicate.skip_binder().self_ty());
2212
2213         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2214
2215         match self_ty.sty {
2216             ty::TyInfer(ty::IntVar(_)) | ty::TyInfer(ty::FloatVar(_)) |
2217             ty::TyFnDef(..) | ty::TyFnPtr(_) | ty::TyError => {
2218                 Where(ty::Binder::dummy(Vec::new()))
2219             }
2220
2221             ty::TyUint(_) | ty::TyInt(_) | ty::TyBool | ty::TyFloat(_) |
2222             ty::TyChar | ty::TyRawPtr(..) | ty::TyNever |
2223             ty::TyRef(_, _, hir::MutImmutable) => {
2224                 // Implementations provided in libcore
2225                 None
2226             }
2227
2228             ty::TyDynamic(..) | ty::TyStr | ty::TySlice(..) |
2229             ty::TyGenerator(..) | ty::TyGeneratorWitness(..) | ty::TyForeign(..) |
2230             ty::TyRef(_, _, hir::MutMutable) => {
2231                 None
2232             }
2233
2234             ty::TyArray(element_ty, _) => {
2235                 // (*) binder moved here
2236                 Where(ty::Binder::bind(vec![element_ty]))
2237             }
2238
2239             ty::TyTuple(tys) => {
2240                 // (*) binder moved here
2241                 Where(ty::Binder::bind(tys.to_vec()))
2242             }
2243
2244             ty::TyClosure(def_id, substs) => {
2245                 let trait_id = obligation.predicate.def_id();
2246                 let is_copy_trait = Some(trait_id) == self.tcx().lang_items().copy_trait();
2247                 let is_clone_trait = Some(trait_id) == self.tcx().lang_items().clone_trait();
2248                 if is_copy_trait || is_clone_trait {
2249                     Where(ty::Binder::bind(substs.upvar_tys(def_id, self.tcx()).collect()))
2250                 } else {
2251                     None
2252                 }
2253             }
2254
2255             ty::TyAdt(..) | ty::TyProjection(..) | ty::TyParam(..) | ty::TyAnon(..) => {
2256                 // Fallback to whatever user-defined impls exist in this case.
2257                 None
2258             }
2259
2260             ty::TyInfer(ty::TyVar(_)) => {
2261                 // Unbound type variable. Might or might not have
2262                 // applicable impls and so forth, depending on what
2263                 // those type variables wind up being bound to.
2264                 Ambiguous
2265             }
2266
2267             ty::TyInfer(ty::CanonicalTy(_)) |
2268             ty::TyInfer(ty::FreshTy(_)) |
2269             ty::TyInfer(ty::FreshIntTy(_)) |
2270             ty::TyInfer(ty::FreshFloatTy(_)) => {
2271                 bug!("asked to assemble builtin bounds of unexpected type: {:?}",
2272                      self_ty);
2273             }
2274         }
2275     }
2276
2277     /// For default impls, we need to break apart a type into its
2278     /// "constituent types" -- meaning, the types that it contains.
2279     ///
2280     /// Here are some (simple) examples:
2281     ///
2282     /// ```
2283     /// (i32, u32) -> [i32, u32]
2284     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2285     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2286     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2287     /// ```
2288     fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
2289         match t.sty {
2290             ty::TyUint(_) |
2291             ty::TyInt(_) |
2292             ty::TyBool |
2293             ty::TyFloat(_) |
2294             ty::TyFnDef(..) |
2295             ty::TyFnPtr(_) |
2296             ty::TyStr |
2297             ty::TyError |
2298             ty::TyInfer(ty::IntVar(_)) |
2299             ty::TyInfer(ty::FloatVar(_)) |
2300             ty::TyNever |
2301             ty::TyChar => {
2302                 Vec::new()
2303             }
2304
2305             ty::TyDynamic(..) |
2306             ty::TyParam(..) |
2307             ty::TyForeign(..) |
2308             ty::TyProjection(..) |
2309             ty::TyInfer(ty::CanonicalTy(_)) |
2310             ty::TyInfer(ty::TyVar(_)) |
2311             ty::TyInfer(ty::FreshTy(_)) |
2312             ty::TyInfer(ty::FreshIntTy(_)) |
2313             ty::TyInfer(ty::FreshFloatTy(_)) => {
2314                 bug!("asked to assemble constituent types of unexpected type: {:?}",
2315                      t);
2316             }
2317
2318             ty::TyRawPtr(ty::TypeAndMut { ty: element_ty, ..}) |
2319             ty::TyRef(_, element_ty, _) => {
2320                 vec![element_ty]
2321             },
2322
2323             ty::TyArray(element_ty, _) | ty::TySlice(element_ty) => {
2324                 vec![element_ty]
2325             }
2326
2327             ty::TyTuple(ref tys) => {
2328                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2329                 tys.to_vec()
2330             }
2331
2332             ty::TyClosure(def_id, ref substs) => {
2333                 substs.upvar_tys(def_id, self.tcx()).collect()
2334             }
2335
2336             ty::TyGenerator(def_id, ref substs, _) => {
2337                 let witness = substs.witness(def_id, self.tcx());
2338                 substs.upvar_tys(def_id, self.tcx()).chain(iter::once(witness)).collect()
2339             }
2340
2341             ty::TyGeneratorWitness(types) => {
2342                 // This is sound because no regions in the witness can refer to
2343                 // the binder outside the witness. So we'll effectivly reuse
2344                 // the implicit binder around the witness.
2345                 types.skip_binder().to_vec()
2346             }
2347
2348             // for `PhantomData<T>`, we pass `T`
2349             ty::TyAdt(def, substs) if def.is_phantom_data() => {
2350                 substs.types().collect()
2351             }
2352
2353             ty::TyAdt(def, substs) => {
2354                 def.all_fields()
2355                     .map(|f| f.ty(self.tcx(), substs))
2356                     .collect()
2357             }
2358
2359             ty::TyAnon(def_id, substs) => {
2360                 // We can resolve the `impl Trait` to its concrete type,
2361                 // which enforces a DAG between the functions requiring
2362                 // the auto trait bounds in question.
2363                 vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
2364             }
2365         }
2366     }
2367
2368     fn collect_predicates_for_types(&mut self,
2369                                     param_env: ty::ParamEnv<'tcx>,
2370                                     cause: ObligationCause<'tcx>,
2371                                     recursion_depth: usize,
2372                                     trait_def_id: DefId,
2373                                     types: ty::Binder<Vec<Ty<'tcx>>>)
2374                                     -> Vec<PredicateObligation<'tcx>>
2375     {
2376         // Because the types were potentially derived from
2377         // higher-ranked obligations they may reference late-bound
2378         // regions. For example, `for<'a> Foo<&'a int> : Copy` would
2379         // yield a type like `for<'a> &'a int`. In general, we
2380         // maintain the invariant that we never manipulate bound
2381         // regions, so we have to process these bound regions somehow.
2382         //
2383         // The strategy is to:
2384         //
2385         // 1. Instantiate those regions to skolemized regions (e.g.,
2386         //    `for<'a> &'a int` becomes `&0 int`.
2387         // 2. Produce something like `&'0 int : Copy`
2388         // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
2389
2390         types.skip_binder().into_iter().flat_map(|ty| { // binder moved -\
2391             let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
2392
2393             self.in_snapshot(|this, snapshot| {
2394                 let (skol_ty, skol_map) =
2395                     this.infcx().skolemize_late_bound_regions(&ty);
2396                 let Normalized { value: normalized_ty, mut obligations } =
2397                     project::normalize_with_depth(this,
2398                                                   param_env,
2399                                                   cause.clone(),
2400                                                   recursion_depth,
2401                                                   &skol_ty);
2402                 let skol_obligation =
2403                     this.tcx().predicate_for_trait_def(param_env,
2404                                                        cause.clone(),
2405                                                        trait_def_id,
2406                                                        recursion_depth,
2407                                                        normalized_ty,
2408                                                        &[]);
2409                 obligations.push(skol_obligation);
2410                 this.infcx().plug_leaks(skol_map, snapshot, obligations)
2411             })
2412         }).collect()
2413     }
2414
2415     ///////////////////////////////////////////////////////////////////////////
2416     // CONFIRMATION
2417     //
2418     // Confirmation unifies the output type parameters of the trait
2419     // with the values found in the obligation, possibly yielding a
2420     // type error.  See [rustc guide] for more details.
2421     //
2422     // [rustc guide]:
2423     // https://rust-lang-nursery.github.io/rustc-guide/traits/resolution.html#confirmation
2424
2425     fn confirm_candidate(&mut self,
2426                          obligation: &TraitObligation<'tcx>,
2427                          candidate: SelectionCandidate<'tcx>)
2428                          -> Result<Selection<'tcx>,SelectionError<'tcx>>
2429     {
2430         debug!("confirm_candidate({:?}, {:?})",
2431                obligation,
2432                candidate);
2433
2434         match candidate {
2435             BuiltinCandidate { has_nested } => {
2436                 let data = self.confirm_builtin_candidate(obligation, has_nested);
2437                 Ok(VtableBuiltin(data))
2438             }
2439
2440             ParamCandidate(param) => {
2441                 let obligations = self.confirm_param_candidate(obligation, param);
2442                 Ok(VtableParam(obligations))
2443             }
2444
2445             AutoImplCandidate(trait_def_id) => {
2446                 let data = self.confirm_auto_impl_candidate(obligation, trait_def_id);
2447                 Ok(VtableAutoImpl(data))
2448             }
2449
2450             ImplCandidate(impl_def_id) => {
2451                 Ok(VtableImpl(self.confirm_impl_candidate(obligation, impl_def_id)))
2452             }
2453
2454             ClosureCandidate => {
2455                 let vtable_closure = self.confirm_closure_candidate(obligation)?;
2456                 Ok(VtableClosure(vtable_closure))
2457             }
2458
2459             GeneratorCandidate => {
2460                 let vtable_generator = self.confirm_generator_candidate(obligation)?;
2461                 Ok(VtableGenerator(vtable_generator))
2462             }
2463
2464             BuiltinObjectCandidate => {
2465                 // This indicates something like `(Trait+Send) :
2466                 // Send`. In this case, we know that this holds
2467                 // because that's what the object type is telling us,
2468                 // and there's really no additional obligations to
2469                 // prove and no types in particular to unify etc.
2470                 Ok(VtableParam(Vec::new()))
2471             }
2472
2473             ObjectCandidate => {
2474                 let data = self.confirm_object_candidate(obligation);
2475                 Ok(VtableObject(data))
2476             }
2477
2478             FnPointerCandidate => {
2479                 let data =
2480                     self.confirm_fn_pointer_candidate(obligation)?;
2481                 Ok(VtableFnPointer(data))
2482             }
2483
2484             ProjectionCandidate => {
2485                 self.confirm_projection_candidate(obligation);
2486                 Ok(VtableParam(Vec::new()))
2487             }
2488
2489             BuiltinUnsizeCandidate => {
2490                 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2491                 Ok(VtableBuiltin(data))
2492             }
2493         }
2494     }
2495
2496     fn confirm_projection_candidate(&mut self,
2497                                     obligation: &TraitObligation<'tcx>)
2498     {
2499         self.in_snapshot(|this, snapshot| {
2500             let result =
2501                 this.match_projection_obligation_against_definition_bounds(obligation,
2502                                                                            snapshot);
2503             assert!(result);
2504         })
2505     }
2506
2507     fn confirm_param_candidate(&mut self,
2508                                obligation: &TraitObligation<'tcx>,
2509                                param: ty::PolyTraitRef<'tcx>)
2510                                -> Vec<PredicateObligation<'tcx>>
2511     {
2512         debug!("confirm_param_candidate({:?},{:?})",
2513                obligation,
2514                param);
2515
2516         // During evaluation, we already checked that this
2517         // where-clause trait-ref could be unified with the obligation
2518         // trait-ref. Repeat that unification now without any
2519         // transactional boundary; it should not fail.
2520         match self.match_where_clause_trait_ref(obligation, param.clone()) {
2521             Ok(obligations) => obligations,
2522             Err(()) => {
2523                 bug!("Where clause `{:?}` was applicable to `{:?}` but now is not",
2524                      param,
2525                      obligation);
2526             }
2527         }
2528     }
2529
2530     fn confirm_builtin_candidate(&mut self,
2531                                  obligation: &TraitObligation<'tcx>,
2532                                  has_nested: bool)
2533                                  -> VtableBuiltinData<PredicateObligation<'tcx>>
2534     {
2535         debug!("confirm_builtin_candidate({:?}, {:?})",
2536                obligation, has_nested);
2537
2538         let lang_items = self.tcx().lang_items();
2539         let obligations = if has_nested {
2540             let trait_def = obligation.predicate.def_id();
2541             let conditions = match trait_def {
2542                 _ if Some(trait_def) == lang_items.sized_trait() => {
2543                     self.sized_conditions(obligation)
2544                 }
2545                 _ if Some(trait_def) == lang_items.copy_trait() => {
2546                     self.copy_clone_conditions(obligation)
2547                 }
2548                 _ if Some(trait_def) == lang_items.clone_trait() => {
2549                     self.copy_clone_conditions(obligation)
2550                 }
2551                 _ => bug!("unexpected builtin trait {:?}", trait_def)
2552             };
2553             let nested = match conditions {
2554                 BuiltinImplConditions::Where(nested) => nested,
2555                 _ => bug!("obligation {:?} had matched a builtin impl but now doesn't",
2556                           obligation)
2557             };
2558
2559             let cause = obligation.derived_cause(BuiltinDerivedObligation);
2560             self.collect_predicates_for_types(obligation.param_env,
2561                                               cause,
2562                                               obligation.recursion_depth+1,
2563                                               trait_def,
2564                                               nested)
2565         } else {
2566             vec![]
2567         };
2568
2569         debug!("confirm_builtin_candidate: obligations={:?}",
2570                obligations);
2571
2572         VtableBuiltinData { nested: obligations }
2573     }
2574
2575     /// This handles the case where a `auto trait Foo` impl is being used.
2576     /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2577     ///
2578     /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2579     /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2580     fn confirm_auto_impl_candidate(&mut self,
2581                                    obligation: &TraitObligation<'tcx>,
2582                                    trait_def_id: DefId)
2583                                    -> VtableAutoImplData<PredicateObligation<'tcx>>
2584     {
2585         debug!("confirm_auto_impl_candidate({:?}, {:?})",
2586                obligation,
2587                trait_def_id);
2588
2589         let types = obligation.predicate.map_bound(|inner| {
2590             let self_ty = self.infcx.shallow_resolve(inner.self_ty());
2591             self.constituent_types_for_ty(self_ty)
2592         });
2593         self.vtable_auto_impl(obligation, trait_def_id, types)
2594     }
2595
2596     /// See `confirm_auto_impl_candidate`
2597     fn vtable_auto_impl(&mut self,
2598                            obligation: &TraitObligation<'tcx>,
2599                            trait_def_id: DefId,
2600                            nested: ty::Binder<Vec<Ty<'tcx>>>)
2601                            -> VtableAutoImplData<PredicateObligation<'tcx>>
2602     {
2603         debug!("vtable_auto_impl: nested={:?}", nested);
2604
2605         let cause = obligation.derived_cause(BuiltinDerivedObligation);
2606         let mut obligations = self.collect_predicates_for_types(
2607             obligation.param_env,
2608             cause,
2609             obligation.recursion_depth+1,
2610             trait_def_id,
2611             nested);
2612
2613         let trait_obligations = self.in_snapshot(|this, snapshot| {
2614             let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
2615             let (trait_ref, skol_map) =
2616                 this.infcx().skolemize_late_bound_regions(&poly_trait_ref);
2617             let cause = obligation.derived_cause(ImplDerivedObligation);
2618             this.impl_or_trait_obligations(cause,
2619                                            obligation.recursion_depth + 1,
2620                                            obligation.param_env,
2621                                            trait_def_id,
2622                                            &trait_ref.substs,
2623                                            skol_map,
2624                                            snapshot)
2625         });
2626
2627         obligations.extend(trait_obligations);
2628
2629         debug!("vtable_auto_impl: obligations={:?}", obligations);
2630
2631         VtableAutoImplData {
2632             trait_def_id,
2633             nested: obligations
2634         }
2635     }
2636
2637     fn confirm_impl_candidate(&mut self,
2638                               obligation: &TraitObligation<'tcx>,
2639                               impl_def_id: DefId)
2640                               -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2641     {
2642         debug!("confirm_impl_candidate({:?},{:?})",
2643                obligation,
2644                impl_def_id);
2645
2646         // First, create the substitutions by matching the impl again,
2647         // this time not in a probe.
2648         self.in_snapshot(|this, snapshot| {
2649             let (substs, skol_map) =
2650                 this.rematch_impl(impl_def_id, obligation,
2651                                   snapshot);
2652             debug!("confirm_impl_candidate substs={:?}", substs);
2653             let cause = obligation.derived_cause(ImplDerivedObligation);
2654             this.vtable_impl(impl_def_id,
2655                              substs,
2656                              cause,
2657                              obligation.recursion_depth + 1,
2658                              obligation.param_env,
2659                              skol_map,
2660                              snapshot)
2661         })
2662     }
2663
2664     fn vtable_impl(&mut self,
2665                    impl_def_id: DefId,
2666                    mut substs: Normalized<'tcx, &'tcx Substs<'tcx>>,
2667                    cause: ObligationCause<'tcx>,
2668                    recursion_depth: usize,
2669                    param_env: ty::ParamEnv<'tcx>,
2670                    skol_map: infer::SkolemizationMap<'tcx>,
2671                    snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
2672                    -> VtableImplData<'tcx, PredicateObligation<'tcx>>
2673     {
2674         debug!("vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={}, skol_map={:?})",
2675                impl_def_id,
2676                substs,
2677                recursion_depth,
2678                skol_map);
2679
2680         let mut impl_obligations =
2681             self.impl_or_trait_obligations(cause,
2682                                            recursion_depth,
2683                                            param_env,
2684                                            impl_def_id,
2685                                            &substs.value,
2686                                            skol_map,
2687                                            snapshot);
2688
2689         debug!("vtable_impl: impl_def_id={:?} impl_obligations={:?}",
2690                impl_def_id,
2691                impl_obligations);
2692
2693         // Because of RFC447, the impl-trait-ref and obligations
2694         // are sufficient to determine the impl substs, without
2695         // relying on projections in the impl-trait-ref.
2696         //
2697         // e.g. `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
2698         impl_obligations.append(&mut substs.obligations);
2699
2700         VtableImplData { impl_def_id,
2701                          substs: substs.value,
2702                          nested: impl_obligations }
2703     }
2704
2705     fn confirm_object_candidate(&mut self,
2706                                 obligation: &TraitObligation<'tcx>)
2707                                 -> VtableObjectData<'tcx, PredicateObligation<'tcx>>
2708     {
2709         debug!("confirm_object_candidate({:?})",
2710                obligation);
2711
2712         // FIXME skipping binder here seems wrong -- we should
2713         // probably flatten the binder from the obligation and the
2714         // binder from the object. Have to try to make a broken test
2715         // case that results. -nmatsakis
2716         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2717         let poly_trait_ref = match self_ty.sty {
2718             ty::TyDynamic(ref data, ..) => {
2719                 data.principal().unwrap().with_self_ty(self.tcx(), self_ty)
2720             }
2721             _ => {
2722                 span_bug!(obligation.cause.span,
2723                           "object candidate with non-object");
2724             }
2725         };
2726
2727         let mut upcast_trait_ref = None;
2728         let mut nested = vec![];
2729         let vtable_base;
2730
2731         {
2732             let tcx = self.tcx();
2733
2734             // We want to find the first supertrait in the list of
2735             // supertraits that we can unify with, and do that
2736             // unification. We know that there is exactly one in the list
2737             // where we can unify because otherwise select would have
2738             // reported an ambiguity. (When we do find a match, also
2739             // record it for later.)
2740             let nonmatching =
2741                 util::supertraits(tcx, poly_trait_ref)
2742                 .take_while(|&t| {
2743                     match
2744                         self.commit_if_ok(
2745                             |this, _| this.match_poly_trait_ref(obligation, t))
2746                     {
2747                         Ok(obligations) => {
2748                             upcast_trait_ref = Some(t);
2749                             nested.extend(obligations);
2750                             false
2751                         }
2752                         Err(_) => { true }
2753                     }
2754                 });
2755
2756             // Additionally, for each of the nonmatching predicates that
2757             // we pass over, we sum up the set of number of vtable
2758             // entries, so that we can compute the offset for the selected
2759             // trait.
2760             vtable_base =
2761                 nonmatching.map(|t| tcx.count_own_vtable_entries(t))
2762                            .sum();
2763
2764         }
2765
2766         VtableObjectData {
2767             upcast_trait_ref: upcast_trait_ref.unwrap(),
2768             vtable_base,
2769             nested,
2770         }
2771     }
2772
2773     fn confirm_fn_pointer_candidate(&mut self, obligation: &TraitObligation<'tcx>)
2774         -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>>
2775     {
2776         debug!("confirm_fn_pointer_candidate({:?})",
2777                obligation);
2778
2779         // ok to skip binder; it is reintroduced below
2780         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
2781         let sig = self_ty.fn_sig(self.tcx());
2782         let trait_ref =
2783             self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
2784                                                          self_ty,
2785                                                          sig,
2786                                                          util::TupleArgumentsFlag::Yes)
2787             .map_bound(|(trait_ref, _)| trait_ref);
2788
2789         let Normalized { value: trait_ref, obligations } =
2790             project::normalize_with_depth(self,
2791                                           obligation.param_env,
2792                                           obligation.cause.clone(),
2793                                           obligation.recursion_depth + 1,
2794                                           &trait_ref);
2795
2796         self.confirm_poly_trait_refs(obligation.cause.clone(),
2797                                      obligation.param_env,
2798                                      obligation.predicate.to_poly_trait_ref(),
2799                                      trait_ref)?;
2800         Ok(VtableFnPointerData { fn_ty: self_ty, nested: obligations })
2801     }
2802
2803     fn confirm_generator_candidate(&mut self,
2804                                    obligation: &TraitObligation<'tcx>)
2805                                    -> Result<VtableGeneratorData<'tcx, PredicateObligation<'tcx>>,
2806                                            SelectionError<'tcx>>
2807     {
2808         // ok to skip binder because the substs on generator types never
2809         // touch bound regions, they just capture the in-scope
2810         // type/region parameters
2811         let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2812         let (generator_def_id, substs) = match self_ty.sty {
2813             ty::TyGenerator(id, substs, _) => (id, substs),
2814             _ => bug!("closure candidate for non-closure {:?}", obligation)
2815         };
2816
2817         debug!("confirm_generator_candidate({:?},{:?},{:?})",
2818                obligation,
2819                generator_def_id,
2820                substs);
2821
2822         let trait_ref =
2823             self.generator_trait_ref_unnormalized(obligation, generator_def_id, substs);
2824         let Normalized {
2825             value: trait_ref,
2826             mut obligations
2827         } = normalize_with_depth(self,
2828                                  obligation.param_env,
2829                                  obligation.cause.clone(),
2830                                  obligation.recursion_depth+1,
2831                                  &trait_ref);
2832
2833         debug!("confirm_generator_candidate(generator_def_id={:?}, \
2834                 trait_ref={:?}, obligations={:?})",
2835                generator_def_id,
2836                trait_ref,
2837                obligations);
2838
2839         obligations.extend(
2840             self.confirm_poly_trait_refs(obligation.cause.clone(),
2841                                         obligation.param_env,
2842                                         obligation.predicate.to_poly_trait_ref(),
2843                                         trait_ref)?);
2844
2845         Ok(VtableGeneratorData {
2846             generator_def_id: generator_def_id,
2847             substs: substs.clone(),
2848             nested: obligations
2849         })
2850     }
2851
2852     fn confirm_closure_candidate(&mut self,
2853                                  obligation: &TraitObligation<'tcx>)
2854                                  -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>,
2855                                            SelectionError<'tcx>>
2856     {
2857         debug!("confirm_closure_candidate({:?})", obligation);
2858
2859         let kind = match self.tcx().lang_items().fn_trait_kind(obligation.predicate.def_id()) {
2860             Some(k) => k,
2861             None => bug!("closure candidate for non-fn trait {:?}", obligation)
2862         };
2863
2864         // ok to skip binder because the substs on closure types never
2865         // touch bound regions, they just capture the in-scope
2866         // type/region parameters
2867         let self_ty = self.infcx.shallow_resolve(obligation.self_ty().skip_binder());
2868         let (closure_def_id, substs) = match self_ty.sty {
2869             ty::TyClosure(id, substs) => (id, substs),
2870             _ => bug!("closure candidate for non-closure {:?}", obligation)
2871         };
2872
2873         let trait_ref =
2874             self.closure_trait_ref_unnormalized(obligation, closure_def_id, substs);
2875         let Normalized {
2876             value: trait_ref,
2877             mut obligations
2878         } = normalize_with_depth(self,
2879                                  obligation.param_env,
2880                                  obligation.cause.clone(),
2881                                  obligation.recursion_depth+1,
2882                                  &trait_ref);
2883
2884         debug!("confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
2885                closure_def_id,
2886                trait_ref,
2887                obligations);
2888
2889         obligations.extend(
2890             self.confirm_poly_trait_refs(obligation.cause.clone(),
2891                                         obligation.param_env,
2892                                         obligation.predicate.to_poly_trait_ref(),
2893                                         trait_ref)?);
2894
2895         obligations.push(Obligation::new(
2896             obligation.cause.clone(),
2897             obligation.param_env,
2898             ty::Predicate::ClosureKind(closure_def_id, substs, kind)));
2899
2900         Ok(VtableClosureData {
2901             closure_def_id,
2902             substs: substs.clone(),
2903             nested: obligations
2904         })
2905     }
2906
2907     /// In the case of closure types and fn pointers,
2908     /// we currently treat the input type parameters on the trait as
2909     /// outputs. This means that when we have a match we have only
2910     /// considered the self type, so we have to go back and make sure
2911     /// to relate the argument types too.  This is kind of wrong, but
2912     /// since we control the full set of impls, also not that wrong,
2913     /// and it DOES yield better error messages (since we don't report
2914     /// errors as if there is no applicable impl, but rather report
2915     /// errors are about mismatched argument types.
2916     ///
2917     /// Here is an example. Imagine we have a closure expression
2918     /// and we desugared it so that the type of the expression is
2919     /// `Closure`, and `Closure` expects an int as argument. Then it
2920     /// is "as if" the compiler generated this impl:
2921     ///
2922     ///     impl Fn(int) for Closure { ... }
2923     ///
2924     /// Now imagine our obligation is `Fn(usize) for Closure`. So far
2925     /// we have matched the self-type `Closure`. At this point we'll
2926     /// compare the `int` to `usize` and generate an error.
2927     ///
2928     /// Note that this checking occurs *after* the impl has selected,
2929     /// because these output type parameters should not affect the
2930     /// selection of the impl. Therefore, if there is a mismatch, we
2931     /// report an error to the user.
2932     fn confirm_poly_trait_refs(&mut self,
2933                                obligation_cause: ObligationCause<'tcx>,
2934                                obligation_param_env: ty::ParamEnv<'tcx>,
2935                                obligation_trait_ref: ty::PolyTraitRef<'tcx>,
2936                                expected_trait_ref: ty::PolyTraitRef<'tcx>)
2937                                -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>>
2938     {
2939         let obligation_trait_ref = obligation_trait_ref.clone();
2940         self.infcx
2941             .at(&obligation_cause, obligation_param_env)
2942             .sup(obligation_trait_ref, expected_trait_ref)
2943             .map(|InferOk { obligations, .. }| obligations)
2944             .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
2945     }
2946
2947     fn confirm_builtin_unsize_candidate(&mut self,
2948                                         obligation: &TraitObligation<'tcx>,)
2949         -> Result<VtableBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>>
2950     {
2951         let tcx = self.tcx();
2952
2953         // assemble_candidates_for_unsizing should ensure there are no late bound
2954         // regions here. See the comment there for more details.
2955         let source = self.infcx.shallow_resolve(
2956             obligation.self_ty().no_late_bound_regions().unwrap());
2957         let target = obligation.predicate.skip_binder().trait_ref.substs.type_at(1);
2958         let target = self.infcx.shallow_resolve(target);
2959
2960         debug!("confirm_builtin_unsize_candidate(source={:?}, target={:?})",
2961                source, target);
2962
2963         let mut nested = vec![];
2964         match (&source.sty, &target.sty) {
2965             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2966             (&ty::TyDynamic(ref data_a, r_a), &ty::TyDynamic(ref data_b, r_b)) => {
2967                 // See assemble_candidates_for_unsizing for more info.
2968                 let existential_predicates = data_a.map_bound(|data_a| {
2969                     let principal = data_a.principal();
2970                     let iter = principal.into_iter().map(ty::ExistentialPredicate::Trait)
2971                         .chain(data_a.projection_bounds()
2972                             .map(|x| ty::ExistentialPredicate::Projection(x)))
2973                         .chain(data_b.auto_traits().map(ty::ExistentialPredicate::AutoTrait));
2974                     tcx.mk_existential_predicates(iter)
2975                 });
2976                 let new_trait = tcx.mk_dynamic(existential_predicates, r_b);
2977                 let InferOk { obligations, .. } =
2978                     self.infcx.at(&obligation.cause, obligation.param_env)
2979                               .eq(target, new_trait)
2980                               .map_err(|_| Unimplemented)?;
2981                 nested.extend(obligations);
2982
2983                 // Register one obligation for 'a: 'b.
2984                 let cause = ObligationCause::new(obligation.cause.span,
2985                                                  obligation.cause.body_id,
2986                                                  ObjectCastObligation(target));
2987                 let outlives = ty::OutlivesPredicate(r_a, r_b);
2988                 nested.push(Obligation::with_depth(cause,
2989                                                    obligation.recursion_depth + 1,
2990                                                    obligation.param_env,
2991                                                    ty::Binder::bind(outlives).to_predicate()));
2992             }
2993
2994             // T -> Trait.
2995             (_, &ty::TyDynamic(ref data, r)) => {
2996                 let mut object_dids =
2997                     data.auto_traits().chain(data.principal().map(|p| p.def_id()));
2998                 if let Some(did) = object_dids.find(|did| {
2999                     !tcx.is_object_safe(*did)
3000                 }) {
3001                     return Err(TraitNotObjectSafe(did))
3002                 }
3003
3004                 let cause = ObligationCause::new(obligation.cause.span,
3005                                                  obligation.cause.body_id,
3006                                                  ObjectCastObligation(target));
3007                 let mut push = |predicate| {
3008                     nested.push(Obligation::with_depth(cause.clone(),
3009                                                        obligation.recursion_depth + 1,
3010                                                        obligation.param_env,
3011                                                        predicate));
3012                 };
3013
3014                 // Create obligations:
3015                 //  - Casting T to Trait
3016                 //  - For all the various builtin bounds attached to the object cast. (In other
3017                 //  words, if the object type is Foo+Send, this would create an obligation for the
3018                 //  Send check.)
3019                 //  - Projection predicates
3020                 for predicate in data.iter() {
3021                     push(predicate.with_self_ty(tcx, source));
3022                 }
3023
3024                 // We can only make objects from sized types.
3025                 let tr = ty::TraitRef {
3026                     def_id: tcx.require_lang_item(lang_items::SizedTraitLangItem),
3027                     substs: tcx.mk_substs_trait(source, &[]),
3028                 };
3029                 push(tr.to_predicate());
3030
3031                 // If the type is `Foo+'a`, ensures that the type
3032                 // being cast to `Foo+'a` outlives `'a`:
3033                 let outlives = ty::OutlivesPredicate(source, r);
3034                 push(ty::Binder::dummy(outlives).to_predicate());
3035             }
3036
3037             // [T; n] -> [T].
3038             (&ty::TyArray(a, _), &ty::TySlice(b)) => {
3039                 let InferOk { obligations, .. } =
3040                     self.infcx.at(&obligation.cause, obligation.param_env)
3041                               .eq(b, a)
3042                               .map_err(|_| Unimplemented)?;
3043                 nested.extend(obligations);
3044             }
3045
3046             // Struct<T> -> Struct<U>.
3047             (&ty::TyAdt(def, substs_a), &ty::TyAdt(_, substs_b)) => {
3048                 let fields = def
3049                     .all_fields()
3050                     .map(|f| tcx.type_of(f.did))
3051                     .collect::<Vec<_>>();
3052
3053                 // The last field of the structure has to exist and contain type parameters.
3054                 let field = if let Some(&field) = fields.last() {
3055                     field
3056                 } else {
3057                     return Err(Unimplemented);
3058                 };
3059                 let mut ty_params = BitArray::new(substs_a.types().count());
3060                 let mut found = false;
3061                 for ty in field.walk() {
3062                     if let ty::TyParam(p) = ty.sty {
3063                         ty_params.insert(p.idx as usize);
3064                         found = true;
3065                     }
3066                 }
3067                 if !found {
3068                     return Err(Unimplemented);
3069                 }
3070
3071                 // Replace type parameters used in unsizing with
3072                 // TyError and ensure they do not affect any other fields.
3073                 // This could be checked after type collection for any struct
3074                 // with a potentially unsized trailing field.
3075                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3076                     if ty_params.contains(i) {
3077                         tcx.types.err.into()
3078                     } else {
3079                         k
3080                     }
3081                 });
3082                 let substs = tcx.mk_substs(params);
3083                 for &ty in fields.split_last().unwrap().1 {
3084                     if ty.subst(tcx, substs).references_error() {
3085                         return Err(Unimplemented);
3086                     }
3087                 }
3088
3089                 // Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
3090                 let inner_source = field.subst(tcx, substs_a);
3091                 let inner_target = field.subst(tcx, substs_b);
3092
3093                 // Check that the source struct with the target's
3094                 // unsized parameters is equal to the target.
3095                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3096                     if ty_params.contains(i) {
3097                         substs_b.type_at(i).into()
3098                     } else {
3099                         k
3100                     }
3101                 });
3102                 let new_struct = tcx.mk_adt(def, tcx.mk_substs(params));
3103                 let InferOk { obligations, .. } =
3104                     self.infcx.at(&obligation.cause, obligation.param_env)
3105                               .eq(target, new_struct)
3106                               .map_err(|_| Unimplemented)?;
3107                 nested.extend(obligations);
3108
3109                 // Construct the nested Field<T>: Unsize<Field<U>> predicate.
3110                 nested.push(tcx.predicate_for_trait_def(
3111                     obligation.param_env,
3112                     obligation.cause.clone(),
3113                     obligation.predicate.def_id(),
3114                     obligation.recursion_depth + 1,
3115                     inner_source,
3116                     &[inner_target.into()]));
3117             }
3118
3119             // (.., T) -> (.., U).
3120             (&ty::TyTuple(tys_a), &ty::TyTuple(tys_b)) => {
3121                 assert_eq!(tys_a.len(), tys_b.len());
3122
3123                 // The last field of the tuple has to exist.
3124                 let (&a_last, a_mid) = if let Some(x) = tys_a.split_last() {
3125                     x
3126                 } else {
3127                     return Err(Unimplemented);
3128                 };
3129                 let &b_last = tys_b.last().unwrap();
3130
3131                 // Check that the source tuple with the target's
3132                 // last element is equal to the target.
3133                 let new_tuple = tcx.mk_tup(a_mid.iter().cloned().chain(iter::once(b_last)));
3134                 let InferOk { obligations, .. } =
3135                     self.infcx.at(&obligation.cause, obligation.param_env)
3136                               .eq(target, new_tuple)
3137                               .map_err(|_| Unimplemented)?;
3138                 nested.extend(obligations);
3139
3140                 // Construct the nested T: Unsize<U> predicate.
3141                 nested.push(tcx.predicate_for_trait_def(
3142                     obligation.param_env,
3143                     obligation.cause.clone(),
3144                     obligation.predicate.def_id(),
3145                     obligation.recursion_depth + 1,
3146                     a_last,
3147                     &[b_last.into()]));
3148             }
3149
3150             _ => bug!()
3151         };
3152
3153         Ok(VtableBuiltinData { nested: nested })
3154     }
3155
3156     ///////////////////////////////////////////////////////////////////////////
3157     // Matching
3158     //
3159     // Matching is a common path used for both evaluation and
3160     // confirmation.  It basically unifies types that appear in impls
3161     // and traits. This does affect the surrounding environment;
3162     // therefore, when used during evaluation, match routines must be
3163     // run inside of a `probe()` so that their side-effects are
3164     // contained.
3165
3166     fn rematch_impl(&mut self,
3167                     impl_def_id: DefId,
3168                     obligation: &TraitObligation<'tcx>,
3169                     snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
3170                     -> (Normalized<'tcx, &'tcx Substs<'tcx>>,
3171                         infer::SkolemizationMap<'tcx>)
3172     {
3173         match self.match_impl(impl_def_id, obligation, snapshot) {
3174             Ok((substs, skol_map)) => (substs, skol_map),
3175             Err(()) => {
3176                 bug!("Impl {:?} was matchable against {:?} but now is not",
3177                      impl_def_id,
3178                      obligation);
3179             }
3180         }
3181     }
3182
3183     fn match_impl(&mut self,
3184                   impl_def_id: DefId,
3185                   obligation: &TraitObligation<'tcx>,
3186                   snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
3187                   -> Result<(Normalized<'tcx, &'tcx Substs<'tcx>>,
3188                              infer::SkolemizationMap<'tcx>), ()>
3189     {
3190         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
3191
3192         // Before we create the substitutions and everything, first
3193         // consider a "quick reject". This avoids creating more types
3194         // and so forth that we need to.
3195         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
3196             return Err(());
3197         }
3198
3199         let (skol_obligation, skol_map) = self.infcx().skolemize_late_bound_regions(
3200             &obligation.predicate);
3201         let skol_obligation_trait_ref = skol_obligation.trait_ref;
3202
3203         let impl_substs = self.infcx.fresh_substs_for_item(obligation.cause.span,
3204                                                            impl_def_id);
3205
3206         let impl_trait_ref = impl_trait_ref.subst(self.tcx(),
3207                                                   impl_substs);
3208
3209         let Normalized { value: impl_trait_ref, obligations: mut nested_obligations } =
3210             project::normalize_with_depth(self,
3211                                           obligation.param_env,
3212                                           obligation.cause.clone(),
3213                                           obligation.recursion_depth + 1,
3214                                           &impl_trait_ref);
3215
3216         debug!("match_impl(impl_def_id={:?}, obligation={:?}, \
3217                impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
3218                impl_def_id,
3219                obligation,
3220                impl_trait_ref,
3221                skol_obligation_trait_ref);
3222
3223         let InferOk { obligations, .. } =
3224             self.infcx.at(&obligation.cause, obligation.param_env)
3225                       .eq(skol_obligation_trait_ref, impl_trait_ref)
3226                       .map_err(|e| {
3227                           debug!("match_impl: failed eq_trait_refs due to `{}`", e);
3228                           ()
3229                       })?;
3230         nested_obligations.extend(obligations);
3231
3232         if let Err(e) = self.infcx.leak_check(false,
3233                                               obligation.cause.span,
3234                                               &skol_map,
3235                                               snapshot) {
3236             debug!("match_impl: failed leak check due to `{}`", e);
3237             return Err(());
3238         }
3239
3240         debug!("match_impl: success impl_substs={:?}", impl_substs);
3241         Ok((Normalized {
3242             value: impl_substs,
3243             obligations: nested_obligations
3244         }, skol_map))
3245     }
3246
3247     fn fast_reject_trait_refs(&mut self,
3248                               obligation: &TraitObligation,
3249                               impl_trait_ref: &ty::TraitRef)
3250                               -> bool
3251     {
3252         // We can avoid creating type variables and doing the full
3253         // substitution if we find that any of the input types, when
3254         // simplified, do not match.
3255
3256         obligation.predicate.skip_binder().input_types()
3257             .zip(impl_trait_ref.input_types())
3258             .any(|(obligation_ty, impl_ty)| {
3259                 let simplified_obligation_ty =
3260                     fast_reject::simplify_type(self.tcx(), obligation_ty, true);
3261                 let simplified_impl_ty =
3262                     fast_reject::simplify_type(self.tcx(), impl_ty, false);
3263
3264                 simplified_obligation_ty.is_some() &&
3265                     simplified_impl_ty.is_some() &&
3266                     simplified_obligation_ty != simplified_impl_ty
3267             })
3268     }
3269
3270     /// Normalize `where_clause_trait_ref` and try to match it against
3271     /// `obligation`.  If successful, return any predicates that
3272     /// result from the normalization. Normalization is necessary
3273     /// because where-clauses are stored in the parameter environment
3274     /// unnormalized.
3275     fn match_where_clause_trait_ref(&mut self,
3276                                     obligation: &TraitObligation<'tcx>,
3277                                     where_clause_trait_ref: ty::PolyTraitRef<'tcx>)
3278                                     -> Result<Vec<PredicateObligation<'tcx>>,()>
3279     {
3280         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
3281     }
3282
3283     /// Returns `Ok` if `poly_trait_ref` being true implies that the
3284     /// obligation is satisfied.
3285     fn match_poly_trait_ref(&mut self,
3286                             obligation: &TraitObligation<'tcx>,
3287                             poly_trait_ref: ty::PolyTraitRef<'tcx>)
3288                             -> Result<Vec<PredicateObligation<'tcx>>,()>
3289     {
3290         debug!("match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
3291                obligation,
3292                poly_trait_ref);
3293
3294         self.infcx.at(&obligation.cause, obligation.param_env)
3295                   .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
3296                   .map(|InferOk { obligations, .. }| obligations)
3297                   .map_err(|_| ())
3298     }
3299
3300     ///////////////////////////////////////////////////////////////////////////
3301     // Miscellany
3302
3303     fn match_fresh_trait_refs(&self,
3304                               previous: &ty::PolyTraitRef<'tcx>,
3305                               current: &ty::PolyTraitRef<'tcx>)
3306                               -> bool
3307     {
3308         let mut matcher = ty::_match::Match::new(self.tcx());
3309         matcher.relate(previous, current).is_ok()
3310     }
3311
3312     fn push_stack<'o,'s:'o>(&mut self,
3313                             previous_stack: TraitObligationStackList<'s, 'tcx>,
3314                             obligation: &'o TraitObligation<'tcx>)
3315                             -> TraitObligationStack<'o, 'tcx>
3316     {
3317         let fresh_trait_ref =
3318             obligation.predicate.to_poly_trait_ref().fold_with(&mut self.freshener);
3319
3320         TraitObligationStack {
3321             obligation,
3322             fresh_trait_ref,
3323             previous: previous_stack,
3324         }
3325     }
3326
3327     fn closure_trait_ref_unnormalized(&mut self,
3328                                       obligation: &TraitObligation<'tcx>,
3329                                       closure_def_id: DefId,
3330                                       substs: ty::ClosureSubsts<'tcx>)
3331                                       -> ty::PolyTraitRef<'tcx>
3332     {
3333         let closure_type = self.infcx.closure_sig(closure_def_id, substs);
3334
3335         // (1) Feels icky to skip the binder here, but OTOH we know
3336         // that the self-type is an unboxed closure type and hence is
3337         // in fact unparameterized (or at least does not reference any
3338         // regions bound in the obligation). Still probably some
3339         // refactoring could make this nicer.
3340
3341         self.tcx().closure_trait_ref_and_return_type(obligation.predicate.def_id(),
3342                                                      obligation.predicate
3343                                                          .skip_binder().self_ty(), // (1)
3344                                                      closure_type,
3345                                                      util::TupleArgumentsFlag::No)
3346             .map_bound(|(trait_ref, _)| trait_ref)
3347     }
3348
3349     fn generator_trait_ref_unnormalized(&mut self,
3350                                       obligation: &TraitObligation<'tcx>,
3351                                       closure_def_id: DefId,
3352                                       substs: ty::GeneratorSubsts<'tcx>)
3353                                       -> ty::PolyTraitRef<'tcx>
3354     {
3355         let gen_sig = substs.poly_sig(closure_def_id, self.tcx());
3356
3357         // (1) Feels icky to skip the binder here, but OTOH we know
3358         // that the self-type is an generator type and hence is
3359         // in fact unparameterized (or at least does not reference any
3360         // regions bound in the obligation). Still probably some
3361         // refactoring could make this nicer.
3362
3363         self.tcx().generator_trait_ref_and_outputs(obligation.predicate.def_id(),
3364                                                    obligation.predicate
3365                                                        .skip_binder().self_ty(), // (1)
3366                                                    gen_sig)
3367             .map_bound(|(trait_ref, ..)| trait_ref)
3368     }
3369
3370     /// Returns the obligations that are implied by instantiating an
3371     /// impl or trait. The obligations are substituted and fully
3372     /// normalized. This is used when confirming an impl or default
3373     /// impl.
3374     fn impl_or_trait_obligations(&mut self,
3375                                  cause: ObligationCause<'tcx>,
3376                                  recursion_depth: usize,
3377                                  param_env: ty::ParamEnv<'tcx>,
3378                                  def_id: DefId, // of impl or trait
3379                                  substs: &Substs<'tcx>, // for impl or trait
3380                                  skol_map: infer::SkolemizationMap<'tcx>,
3381                                  snapshot: &infer::CombinedSnapshot<'cx, 'tcx>)
3382                                  -> Vec<PredicateObligation<'tcx>>
3383     {
3384         debug!("impl_or_trait_obligations(def_id={:?})", def_id);
3385         let tcx = self.tcx();
3386
3387         // To allow for one-pass evaluation of the nested obligation,
3388         // each predicate must be preceded by the obligations required
3389         // to normalize it.
3390         // for example, if we have:
3391         //    impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
3392         // the impl will have the following predicates:
3393         //    <V as Iterator>::Item = U,
3394         //    U: Iterator, U: Sized,
3395         //    V: Iterator, V: Sized,
3396         //    <U as Iterator>::Item: Copy
3397         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
3398         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
3399         // `$1: Copy`, so we must ensure the obligations are emitted in
3400         // that order.
3401         let predicates = tcx.predicates_of(def_id);
3402         assert_eq!(predicates.parent, None);
3403         let mut predicates: Vec<_> = predicates.predicates.iter().flat_map(|predicate| {
3404             let predicate = normalize_with_depth(self, param_env, cause.clone(), recursion_depth,
3405                                                  &predicate.subst(tcx, substs));
3406             predicate.obligations.into_iter().chain(
3407                 Some(Obligation {
3408                     cause: cause.clone(),
3409                     recursion_depth,
3410                     param_env,
3411                     predicate: predicate.value
3412                 }))
3413         }).collect();
3414
3415         // We are performing deduplication here to avoid exponential blowups
3416         // (#38528) from happening, but the real cause of the duplication is
3417         // unknown. What we know is that the deduplication avoids exponential
3418         // amount of predicates being propagated when processing deeply nested
3419         // types.
3420         //
3421         // This code is hot enough that it's worth avoiding the allocation
3422         // required for the FxHashSet when possible. Special-casing lengths 0,
3423         // 1 and 2 covers roughly 75--80% of the cases.
3424         if predicates.len() <= 1 {
3425             // No possibility of duplicates.
3426         } else if predicates.len() == 2 {
3427             // Only two elements. Drop the second if they are equal.
3428             if predicates[0] == predicates[1] {
3429                 predicates.truncate(1);
3430             }
3431         } else {
3432             // Three or more elements. Use a general deduplication process.
3433             let mut seen = FxHashSet();
3434             predicates.retain(|i| seen.insert(i.clone()));
3435         }
3436         self.infcx().plug_leaks(skol_map, snapshot, predicates)
3437     }
3438 }
3439
3440 impl<'tcx> TraitObligation<'tcx> {
3441     #[allow(unused_comparisons)]
3442     pub fn derived_cause(&self,
3443                         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>)
3444                         -> ObligationCause<'tcx>
3445     {
3446         /*!
3447          * Creates a cause for obligations that are derived from
3448          * `obligation` by a recursive search (e.g., for a builtin
3449          * bound, or eventually a `auto trait Foo`). If `obligation`
3450          * is itself a derived obligation, this is just a clone, but
3451          * otherwise we create a "derived obligation" cause so as to
3452          * keep track of the original root obligation for error
3453          * reporting.
3454          */
3455
3456         let obligation = self;
3457
3458         // NOTE(flaper87): As of now, it keeps track of the whole error
3459         // chain. Ideally, we should have a way to configure this either
3460         // by using -Z verbose or just a CLI argument.
3461         if obligation.recursion_depth >= 0 {
3462             let derived_cause = DerivedObligationCause {
3463                 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
3464                 parent_code: Rc::new(obligation.cause.code.clone())
3465             };
3466             let derived_code = variant(derived_cause);
3467             ObligationCause::new(obligation.cause.span, obligation.cause.body_id, derived_code)
3468         } else {
3469             obligation.cause.clone()
3470         }
3471     }
3472 }
3473
3474 impl<'tcx> SelectionCache<'tcx> {
3475     pub fn new() -> SelectionCache<'tcx> {
3476         SelectionCache {
3477             hashmap: Lock::new(FxHashMap())
3478         }
3479     }
3480
3481     pub fn clear(&self) {
3482         *self.hashmap.borrow_mut() = FxHashMap()
3483     }
3484 }
3485
3486 impl<'tcx> EvaluationCache<'tcx> {
3487     pub fn new() -> EvaluationCache<'tcx> {
3488         EvaluationCache {
3489             hashmap: Lock::new(FxHashMap())
3490         }
3491     }
3492
3493     pub fn clear(&self) {
3494         *self.hashmap.borrow_mut() = FxHashMap()
3495     }
3496 }
3497
3498 impl<'o,'tcx> TraitObligationStack<'o,'tcx> {
3499     fn list(&'o self) -> TraitObligationStackList<'o,'tcx> {
3500         TraitObligationStackList::with(self)
3501     }
3502
3503     fn iter(&'o self) -> TraitObligationStackList<'o,'tcx> {
3504         self.list()
3505     }
3506 }
3507
3508 #[derive(Copy, Clone)]
3509 struct TraitObligationStackList<'o,'tcx:'o> {
3510     head: Option<&'o TraitObligationStack<'o,'tcx>>
3511 }
3512
3513 impl<'o,'tcx> TraitObligationStackList<'o,'tcx> {
3514     fn empty() -> TraitObligationStackList<'o,'tcx> {
3515         TraitObligationStackList { head: None }
3516     }
3517
3518     fn with(r: &'o TraitObligationStack<'o,'tcx>) -> TraitObligationStackList<'o,'tcx> {
3519         TraitObligationStackList { head: Some(r) }
3520     }
3521 }
3522
3523 impl<'o,'tcx> Iterator for TraitObligationStackList<'o,'tcx>{
3524     type Item = &'o TraitObligationStack<'o,'tcx>;
3525
3526     fn next(&mut self) -> Option<&'o TraitObligationStack<'o,'tcx>> {
3527         match self.head {
3528             Some(o) => {
3529                 *self = o.previous;
3530                 Some(o)
3531             }
3532             None => None
3533         }
3534     }
3535 }
3536
3537 impl<'o,'tcx> fmt::Debug for TraitObligationStack<'o,'tcx> {
3538     fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
3539         write!(f, "TraitObligationStack({:?})", self.obligation)
3540     }
3541 }
3542
3543 #[derive(Clone, Eq, PartialEq)]
3544 pub struct WithDepNode<T> {
3545     dep_node: DepNodeIndex,
3546     cached_value: T
3547 }
3548
3549 impl<T: Clone> WithDepNode<T> {
3550     pub fn new(dep_node: DepNodeIndex, cached_value: T) -> Self {
3551         WithDepNode { dep_node, cached_value }
3552     }
3553
3554     pub fn get(&self, tcx: TyCtxt) -> T {
3555         tcx.dep_graph.read_index(self.dep_node);
3556         self.cached_value.clone()
3557     }
3558 }