]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/select.rs
Rollup merge of #63203 - spastorino:is-mutable-use-place-ref, r=oli-obk
[rust.git] / src / librustc / traits / select.rs
1 // ignore-tidy-filelength
2
3 //! Candidate selection. See the [rustc guide] for more information on how this works.
4 //!
5 //! [rustc guide]: https://rust-lang.github.io/rustc-guide/traits/resolution.html#selection
6
7 use self::EvaluationResult::*;
8 use self::SelectionCandidate::*;
9
10 use super::coherence::{self, Conflict};
11 use super::project;
12 use super::project::{normalize_with_depth, Normalized, ProjectionCacheKey};
13 use super::util;
14 use super::DerivedObligationCause;
15 use super::Selection;
16 use super::SelectionResult;
17 use super::TraitNotObjectSafe;
18 use super::{BuiltinDerivedObligation, ImplDerivedObligation, ObligationCauseCode};
19 use super::{IntercrateMode, TraitQueryMode};
20 use super::{ObjectCastObligation, Obligation};
21 use super::{ObligationCause, PredicateObligation, TraitObligation};
22 use super::{OutputTypeParameterMismatch, Overflow, SelectionError, Unimplemented};
23 use super::{
24     VtableAutoImpl, VtableBuiltin, VtableClosure, VtableFnPointer, VtableGenerator, VtableImpl,
25     VtableObject, VtableParam, VtableTraitAlias,
26 };
27 use super::{
28     VtableAutoImplData, VtableBuiltinData, VtableClosureData, VtableFnPointerData,
29     VtableGeneratorData, VtableImplData, VtableObjectData, VtableTraitAliasData,
30 };
31
32 use crate::dep_graph::{DepKind, DepNodeIndex};
33 use crate::hir::def_id::DefId;
34 use crate::infer::{CombinedSnapshot, InferCtxt, InferOk, PlaceholderMap, TypeFreshener};
35 use crate::middle::lang_items;
36 use crate::mir::interpret::GlobalId;
37 use crate::ty::fast_reject;
38 use crate::ty::relate::TypeRelation;
39 use crate::ty::subst::{Subst, SubstsRef};
40 use crate::ty::{self, ToPolyTraitRef, ToPredicate, Ty, TyCtxt, TypeFoldable};
41
42 use crate::hir;
43 use rustc_data_structures::bit_set::GrowableBitSet;
44 use rustc_data_structures::sync::Lock;
45 use rustc_target::spec::abi::Abi;
46 use std::cell::{Cell, RefCell};
47 use std::cmp;
48 use std::fmt::{self, Display};
49 use std::iter;
50 use std::rc::Rc;
51 use crate::util::nodemap::{FxHashMap, FxHashSet};
52
53 pub struct SelectionContext<'cx, 'tcx> {
54     infcx: &'cx InferCtxt<'cx, 'tcx>,
55
56     /// Freshener used specifically for entries on the obligation
57     /// stack. This ensures that all entries on the stack at one time
58     /// will have the same set of placeholder entries, which is
59     /// important for checking for trait bounds that recursively
60     /// require themselves.
61     freshener: TypeFreshener<'cx, 'tcx>,
62
63     /// If `true`, indicates that the evaluation should be conservative
64     /// and consider the possibility of types outside this crate.
65     /// This comes up primarily when resolving ambiguity. Imagine
66     /// there is some trait reference `$0: Bar` where `$0` is an
67     /// inference variable. If `intercrate` is true, then we can never
68     /// say for sure that this reference is not implemented, even if
69     /// there are *no impls at all for `Bar`*, because `$0` could be
70     /// bound to some type that in a downstream crate that implements
71     /// `Bar`. This is the suitable mode for coherence. Elsewhere,
72     /// though, we set this to false, because we are only interested
73     /// in types that the user could actually have written --- in
74     /// other words, we consider `$0: Bar` to be unimplemented if
75     /// there is no type that the user could *actually name* that
76     /// would satisfy it. This avoids crippling inference, basically.
77     intercrate: Option<IntercrateMode>,
78
79     intercrate_ambiguity_causes: Option<Vec<IntercrateAmbiguityCause>>,
80
81     /// Controls whether or not to filter out negative impls when selecting.
82     /// This is used in librustdoc to distinguish between the lack of an impl
83     /// and a negative impl
84     allow_negative_impls: bool,
85
86     /// The mode that trait queries run in, which informs our error handling
87     /// policy. In essence, canonicalized queries need their errors propagated
88     /// rather than immediately reported because we do not have accurate spans.
89     query_mode: TraitQueryMode,
90 }
91
92 #[derive(Clone, Debug)]
93 pub enum IntercrateAmbiguityCause {
94     DownstreamCrate {
95         trait_desc: String,
96         self_desc: Option<String>,
97     },
98     UpstreamCrateUpdate {
99         trait_desc: String,
100         self_desc: Option<String>,
101     },
102 }
103
104 impl IntercrateAmbiguityCause {
105     /// Emits notes when the overlap is caused by complex intercrate ambiguities.
106     /// See #23980 for details.
107     pub fn add_intercrate_ambiguity_hint(&self, err: &mut errors::DiagnosticBuilder<'_>) {
108         err.note(&self.intercrate_ambiguity_hint());
109     }
110
111     pub fn intercrate_ambiguity_hint(&self) -> String {
112         match self {
113             &IntercrateAmbiguityCause::DownstreamCrate {
114                 ref trait_desc,
115                 ref self_desc,
116             } => {
117                 let self_desc = if let &Some(ref ty) = self_desc {
118                     format!(" for type `{}`", ty)
119                 } else {
120                     String::new()
121                 };
122                 format!(
123                     "downstream crates may implement trait `{}`{}",
124                     trait_desc, self_desc
125                 )
126             }
127             &IntercrateAmbiguityCause::UpstreamCrateUpdate {
128                 ref trait_desc,
129                 ref self_desc,
130             } => {
131                 let self_desc = if let &Some(ref ty) = self_desc {
132                     format!(" for type `{}`", ty)
133                 } else {
134                     String::new()
135                 };
136                 format!(
137                     "upstream crates may add new impl of trait `{}`{} \
138                      in future versions",
139                     trait_desc, self_desc
140                 )
141             }
142         }
143     }
144 }
145
146 // A stack that walks back up the stack frame.
147 struct TraitObligationStack<'prev, 'tcx> {
148     obligation: &'prev TraitObligation<'tcx>,
149
150     /// Trait ref from `obligation` but "freshened" with the
151     /// selection-context's freshener. Used to check for recursion.
152     fresh_trait_ref: ty::PolyTraitRef<'tcx>,
153
154     /// Starts out equal to `depth` -- if, during evaluation, we
155     /// encounter a cycle, then we will set this flag to the minimum
156     /// depth of that cycle for all participants in the cycle. These
157     /// participants will then forego caching their results. This is
158     /// not the most efficient solution, but it addresses #60010. The
159     /// problem we are trying to prevent:
160     ///
161     /// - If you have `A: AutoTrait` requires `B: AutoTrait` and `C: NonAutoTrait`
162     /// - `B: AutoTrait` requires `A: AutoTrait` (coinductive cycle, ok)
163     /// - `C: NonAutoTrait` requires `A: AutoTrait` (non-coinductive cycle, not ok)
164     ///
165     /// you don't want to cache that `B: AutoTrait` or `A: AutoTrait`
166     /// is `EvaluatedToOk`; this is because they were only considered
167     /// ok on the premise that if `A: AutoTrait` held, but we indeed
168     /// encountered a problem (later on) with `A: AutoTrait. So we
169     /// currently set a flag on the stack node for `B: AutoTrait` (as
170     /// well as the second instance of `A: AutoTrait`) to suppress
171     /// caching.
172     ///
173     /// This is a simple, targeted fix. A more-performant fix requires
174     /// deeper changes, but would permit more caching: we could
175     /// basically defer caching until we have fully evaluated the
176     /// tree, and then cache the entire tree at once. In any case, the
177     /// performance impact here shouldn't be so horrible: every time
178     /// this is hit, we do cache at least one trait, so we only
179     /// evaluate each member of a cycle up to N times, where N is the
180     /// length of the cycle. This means the performance impact is
181     /// bounded and we shouldn't have any terrible worst-cases.
182     reached_depth: Cell<usize>,
183
184     previous: TraitObligationStackList<'prev, 'tcx>,
185
186     /// Number of parent frames plus one -- so the topmost frame has depth 1.
187     depth: usize,
188
189     /// Depth-first number of this node in the search graph -- a
190     /// pre-order index.  Basically a freshly incremented counter.
191     dfn: usize,
192 }
193
194 #[derive(Clone, Default)]
195 pub struct SelectionCache<'tcx> {
196     hashmap: Lock<
197         FxHashMap<ty::TraitRef<'tcx>, WithDepNode<SelectionResult<'tcx, SelectionCandidate<'tcx>>>>,
198     >,
199 }
200
201 /// The selection process begins by considering all impls, where
202 /// clauses, and so forth that might resolve an obligation. Sometimes
203 /// we'll be able to say definitively that (e.g.) an impl does not
204 /// apply to the obligation: perhaps it is defined for `usize` but the
205 /// obligation is for `int`. In that case, we drop the impl out of the
206 /// list. But the other cases are considered *candidates*.
207 ///
208 /// For selection to succeed, there must be exactly one matching
209 /// candidate. If the obligation is fully known, this is guaranteed
210 /// by coherence. However, if the obligation contains type parameters
211 /// or variables, there may be multiple such impls.
212 ///
213 /// It is not a real problem if multiple matching impls exist because
214 /// of type variables - it just means the obligation isn't sufficiently
215 /// elaborated. In that case we report an ambiguity, and the caller can
216 /// try again after more type information has been gathered or report a
217 /// "type annotations required" error.
218 ///
219 /// However, with type parameters, this can be a real problem - type
220 /// parameters don't unify with regular types, but they *can* unify
221 /// with variables from blanket impls, and (unless we know its bounds
222 /// will always be satisfied) picking the blanket impl will be wrong
223 /// for at least *some* substitutions. To make this concrete, if we have
224 ///
225 ///    trait AsDebug { type Out : fmt::Debug; fn debug(self) -> Self::Out; }
226 ///    impl<T: fmt::Debug> AsDebug for T {
227 ///        type Out = T;
228 ///        fn debug(self) -> fmt::Debug { self }
229 ///    }
230 ///    fn foo<T: AsDebug>(t: T) { println!("{:?}", <T as AsDebug>::debug(t)); }
231 ///
232 /// we can't just use the impl to resolve the <T as AsDebug> obligation
233 /// - a type from another crate (that doesn't implement fmt::Debug) could
234 /// implement AsDebug.
235 ///
236 /// Because where-clauses match the type exactly, multiple clauses can
237 /// only match if there are unresolved variables, and we can mostly just
238 /// report this ambiguity in that case. This is still a problem - we can't
239 /// *do anything* with ambiguities that involve only regions. This is issue
240 /// #21974.
241 ///
242 /// If a single where-clause matches and there are no inference
243 /// variables left, then it definitely matches and we can just select
244 /// it.
245 ///
246 /// In fact, we even select the where-clause when the obligation contains
247 /// inference variables. The can lead to inference making "leaps of logic",
248 /// for example in this situation:
249 ///
250 ///    pub trait Foo<T> { fn foo(&self) -> T; }
251 ///    impl<T> Foo<()> for T { fn foo(&self) { } }
252 ///    impl Foo<bool> for bool { fn foo(&self) -> bool { *self } }
253 ///
254 ///    pub fn foo<T>(t: T) where T: Foo<bool> {
255 ///       println!("{:?}", <T as Foo<_>>::foo(&t));
256 ///    }
257 ///    fn main() { foo(false); }
258 ///
259 /// Here the obligation <T as Foo<$0>> can be matched by both the blanket
260 /// impl and the where-clause. We select the where-clause and unify $0=bool,
261 /// so the program prints "false". However, if the where-clause is omitted,
262 /// the blanket impl is selected, we unify $0=(), and the program prints
263 /// "()".
264 ///
265 /// Exactly the same issues apply to projection and object candidates, except
266 /// that we can have both a projection candidate and a where-clause candidate
267 /// for the same obligation. In that case either would do (except that
268 /// different "leaps of logic" would occur if inference variables are
269 /// present), and we just pick the where-clause. This is, for example,
270 /// required for associated types to work in default impls, as the bounds
271 /// are visible both as projection bounds and as where-clauses from the
272 /// parameter environment.
273 #[derive(PartialEq, Eq, Debug, Clone)]
274 enum SelectionCandidate<'tcx> {
275     /// If has_nested is false, there are no *further* obligations
276     BuiltinCandidate {
277         has_nested: bool,
278     },
279     ParamCandidate(ty::PolyTraitRef<'tcx>),
280     ImplCandidate(DefId),
281     AutoImplCandidate(DefId),
282
283     /// This is a trait matching with a projected type as `Self`, and
284     /// we found an applicable bound in the trait definition.
285     ProjectionCandidate,
286
287     /// Implementation of a `Fn`-family trait by one of the anonymous types
288     /// generated for a `||` expression.
289     ClosureCandidate,
290
291     /// Implementation of a `Generator` trait by one of the anonymous types
292     /// generated for a generator.
293     GeneratorCandidate,
294
295     /// Implementation of a `Fn`-family trait by one of the anonymous
296     /// types generated for a fn pointer type (e.g., `fn(int)->int`)
297     FnPointerCandidate,
298
299     TraitAliasCandidate(DefId),
300
301     ObjectCandidate,
302
303     BuiltinObjectCandidate,
304
305     BuiltinUnsizeCandidate,
306 }
307
308 impl<'a, 'tcx> ty::Lift<'tcx> for SelectionCandidate<'a> {
309     type Lifted = SelectionCandidate<'tcx>;
310     fn lift_to_tcx(&self, tcx: TyCtxt<'tcx>) -> Option<Self::Lifted> {
311         Some(match *self {
312             BuiltinCandidate { has_nested } => BuiltinCandidate { has_nested },
313             ImplCandidate(def_id) => ImplCandidate(def_id),
314             AutoImplCandidate(def_id) => AutoImplCandidate(def_id),
315             ProjectionCandidate => ProjectionCandidate,
316             ClosureCandidate => ClosureCandidate,
317             GeneratorCandidate => GeneratorCandidate,
318             FnPointerCandidate => FnPointerCandidate,
319             TraitAliasCandidate(def_id) => TraitAliasCandidate(def_id),
320             ObjectCandidate => ObjectCandidate,
321             BuiltinObjectCandidate => BuiltinObjectCandidate,
322             BuiltinUnsizeCandidate => BuiltinUnsizeCandidate,
323
324             ParamCandidate(ref trait_ref) => {
325                 return tcx.lift(trait_ref).map(ParamCandidate);
326             }
327         })
328     }
329 }
330
331 EnumTypeFoldableImpl! {
332     impl<'tcx> TypeFoldable<'tcx> for SelectionCandidate<'tcx> {
333         (SelectionCandidate::BuiltinCandidate) { has_nested },
334         (SelectionCandidate::ParamCandidate)(poly_trait_ref),
335         (SelectionCandidate::ImplCandidate)(def_id),
336         (SelectionCandidate::AutoImplCandidate)(def_id),
337         (SelectionCandidate::ProjectionCandidate),
338         (SelectionCandidate::ClosureCandidate),
339         (SelectionCandidate::GeneratorCandidate),
340         (SelectionCandidate::FnPointerCandidate),
341         (SelectionCandidate::TraitAliasCandidate)(def_id),
342         (SelectionCandidate::ObjectCandidate),
343         (SelectionCandidate::BuiltinObjectCandidate),
344         (SelectionCandidate::BuiltinUnsizeCandidate),
345     }
346 }
347
348 struct SelectionCandidateSet<'tcx> {
349     // a list of candidates that definitely apply to the current
350     // obligation (meaning: types unify).
351     vec: Vec<SelectionCandidate<'tcx>>,
352
353     // if this is true, then there were candidates that might or might
354     // not have applied, but we couldn't tell. This occurs when some
355     // of the input types are type variables, in which case there are
356     // various "builtin" rules that might or might not trigger.
357     ambiguous: bool,
358 }
359
360 #[derive(PartialEq, Eq, Debug, Clone)]
361 struct EvaluatedCandidate<'tcx> {
362     candidate: SelectionCandidate<'tcx>,
363     evaluation: EvaluationResult,
364 }
365
366 /// When does the builtin impl for `T: Trait` apply?
367 enum BuiltinImplConditions<'tcx> {
368     /// The impl is conditional on T1,T2,.. : Trait
369     Where(ty::Binder<Vec<Ty<'tcx>>>),
370     /// There is no built-in impl. There may be some other
371     /// candidate (a where-clause or user-defined impl).
372     None,
373     /// It is unknown whether there is an impl.
374     Ambiguous,
375 }
376
377 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
378 /// The result of trait evaluation. The order is important
379 /// here as the evaluation of a list is the maximum of the
380 /// evaluations.
381 ///
382 /// The evaluation results are ordered:
383 ///     - `EvaluatedToOk` implies `EvaluatedToOkModuloRegions`
384 ///       implies `EvaluatedToAmbig` implies `EvaluatedToUnknown`
385 ///     - `EvaluatedToErr` implies `EvaluatedToRecur`
386 ///     - the "union" of evaluation results is equal to their maximum -
387 ///     all the "potential success" candidates can potentially succeed,
388 ///     so they are noops when unioned with a definite error, and within
389 ///     the categories it's easy to see that the unions are correct.
390 pub enum EvaluationResult {
391     /// Evaluation successful
392     EvaluatedToOk,
393     /// Evaluation successful, but there were unevaluated region obligations
394     EvaluatedToOkModuloRegions,
395     /// Evaluation is known to be ambiguous - it *might* hold for some
396     /// assignment of inference variables, but it might not.
397     ///
398     /// While this has the same meaning as `EvaluatedToUnknown` - we can't
399     /// know whether this obligation holds or not - it is the result we
400     /// would get with an empty stack, and therefore is cacheable.
401     EvaluatedToAmbig,
402     /// Evaluation failed because of recursion involving inference
403     /// variables. We are somewhat imprecise there, so we don't actually
404     /// know the real result.
405     ///
406     /// This can't be trivially cached for the same reason as `EvaluatedToRecur`.
407     EvaluatedToUnknown,
408     /// Evaluation failed because we encountered an obligation we are already
409     /// trying to prove on this branch.
410     ///
411     /// We know this branch can't be a part of a minimal proof-tree for
412     /// the "root" of our cycle, because then we could cut out the recursion
413     /// and maintain a valid proof tree. However, this does not mean
414     /// that all the obligations on this branch do not hold - it's possible
415     /// that we entered this branch "speculatively", and that there
416     /// might be some other way to prove this obligation that does not
417     /// go through this cycle - so we can't cache this as a failure.
418     ///
419     /// For example, suppose we have this:
420     ///
421     /// ```rust,ignore (pseudo-Rust)
422     ///     pub trait Trait { fn xyz(); }
423     ///     // This impl is "useless", but we can still have
424     ///     // an `impl Trait for SomeUnsizedType` somewhere.
425     ///     impl<T: Trait + Sized> Trait for T { fn xyz() {} }
426     ///
427     ///     pub fn foo<T: Trait + ?Sized>() {
428     ///         <T as Trait>::xyz();
429     ///     }
430     /// ```
431     ///
432     /// When checking `foo`, we have to prove `T: Trait`. This basically
433     /// translates into this:
434     ///
435     /// ```plain,ignore
436     ///     (T: Trait + Sized â†’_\impl T: Trait), T: Trait âŠ¢ T: Trait
437     /// ```
438     ///
439     /// When we try to prove it, we first go the first option, which
440     /// recurses. This shows us that the impl is "useless" -- it won't
441     /// tell us that `T: Trait` unless it already implemented `Trait`
442     /// by some other means. However, that does not prevent `T: Trait`
443     /// does not hold, because of the bound (which can indeed be satisfied
444     /// by `SomeUnsizedType` from another crate).
445     //
446     // FIXME: when an `EvaluatedToRecur` goes past its parent root, we
447     // ought to convert it to an `EvaluatedToErr`, because we know
448     // there definitely isn't a proof tree for that obligation. Not
449     // doing so is still sound -- there isn't any proof tree, so the
450     // branch still can't be a part of a minimal one -- but does not re-enable caching.
451     EvaluatedToRecur,
452     /// Evaluation failed.
453     EvaluatedToErr,
454 }
455
456 impl EvaluationResult {
457     /// Returns `true` if this evaluation result is known to apply, even
458     /// considering outlives constraints.
459     pub fn must_apply_considering_regions(self) -> bool {
460         self == EvaluatedToOk
461     }
462
463     /// Returns `true` if this evaluation result is known to apply, ignoring
464     /// outlives constraints.
465     pub fn must_apply_modulo_regions(self) -> bool {
466         self <= EvaluatedToOkModuloRegions
467     }
468
469     pub fn may_apply(self) -> bool {
470         match self {
471             EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToUnknown => {
472                 true
473             }
474
475             EvaluatedToErr | EvaluatedToRecur => false,
476         }
477     }
478
479     fn is_stack_dependent(self) -> bool {
480         match self {
481             EvaluatedToUnknown | EvaluatedToRecur => true,
482
483             EvaluatedToOk | EvaluatedToOkModuloRegions | EvaluatedToAmbig | EvaluatedToErr => false,
484         }
485     }
486 }
487
488 impl_stable_hash_for!(enum self::EvaluationResult {
489     EvaluatedToOk,
490     EvaluatedToOkModuloRegions,
491     EvaluatedToAmbig,
492     EvaluatedToUnknown,
493     EvaluatedToRecur,
494     EvaluatedToErr
495 });
496
497 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
498 /// Indicates that trait evaluation caused overflow.
499 pub struct OverflowError;
500
501 impl_stable_hash_for!(struct OverflowError {});
502
503 impl<'tcx> From<OverflowError> for SelectionError<'tcx> {
504     fn from(OverflowError: OverflowError) -> SelectionError<'tcx> {
505         SelectionError::Overflow
506     }
507 }
508
509 #[derive(Clone, Default)]
510 pub struct EvaluationCache<'tcx> {
511     hashmap: Lock<FxHashMap<ty::PolyTraitRef<'tcx>, WithDepNode<EvaluationResult>>>,
512 }
513
514 impl<'cx, 'tcx> SelectionContext<'cx, 'tcx> {
515     pub fn new(infcx: &'cx InferCtxt<'cx, 'tcx>) -> SelectionContext<'cx, 'tcx> {
516         SelectionContext {
517             infcx,
518             freshener: infcx.freshener(),
519             intercrate: None,
520             intercrate_ambiguity_causes: None,
521             allow_negative_impls: false,
522             query_mode: TraitQueryMode::Standard,
523         }
524     }
525
526     pub fn intercrate(
527         infcx: &'cx InferCtxt<'cx, 'tcx>,
528         mode: IntercrateMode,
529     ) -> SelectionContext<'cx, 'tcx> {
530         debug!("intercrate({:?})", mode);
531         SelectionContext {
532             infcx,
533             freshener: infcx.freshener(),
534             intercrate: Some(mode),
535             intercrate_ambiguity_causes: None,
536             allow_negative_impls: false,
537             query_mode: TraitQueryMode::Standard,
538         }
539     }
540
541     pub fn with_negative(
542         infcx: &'cx InferCtxt<'cx, 'tcx>,
543         allow_negative_impls: bool,
544     ) -> SelectionContext<'cx, 'tcx> {
545         debug!("with_negative({:?})", allow_negative_impls);
546         SelectionContext {
547             infcx,
548             freshener: infcx.freshener(),
549             intercrate: None,
550             intercrate_ambiguity_causes: None,
551             allow_negative_impls,
552             query_mode: TraitQueryMode::Standard,
553         }
554     }
555
556     pub fn with_query_mode(
557         infcx: &'cx InferCtxt<'cx, 'tcx>,
558         query_mode: TraitQueryMode,
559     ) -> SelectionContext<'cx, 'tcx> {
560         debug!("with_query_mode({:?})", query_mode);
561         SelectionContext {
562             infcx,
563             freshener: infcx.freshener(),
564             intercrate: None,
565             intercrate_ambiguity_causes: None,
566             allow_negative_impls: false,
567             query_mode,
568         }
569     }
570
571     /// Enables tracking of intercrate ambiguity causes. These are
572     /// used in coherence to give improved diagnostics. We don't do
573     /// this until we detect a coherence error because it can lead to
574     /// false overflow results (#47139) and because it costs
575     /// computation time.
576     pub fn enable_tracking_intercrate_ambiguity_causes(&mut self) {
577         assert!(self.intercrate.is_some());
578         assert!(self.intercrate_ambiguity_causes.is_none());
579         self.intercrate_ambiguity_causes = Some(vec![]);
580         debug!("selcx: enable_tracking_intercrate_ambiguity_causes");
581     }
582
583     /// Gets the intercrate ambiguity causes collected since tracking
584     /// was enabled and disables tracking at the same time. If
585     /// tracking is not enabled, just returns an empty vector.
586     pub fn take_intercrate_ambiguity_causes(&mut self) -> Vec<IntercrateAmbiguityCause> {
587         assert!(self.intercrate.is_some());
588         self.intercrate_ambiguity_causes.take().unwrap_or(vec![])
589     }
590
591     pub fn infcx(&self) -> &'cx InferCtxt<'cx, 'tcx> {
592         self.infcx
593     }
594
595     pub fn tcx(&self) -> TyCtxt<'tcx> {
596         self.infcx.tcx
597     }
598
599     pub fn closure_typer(&self) -> &'cx InferCtxt<'cx, 'tcx> {
600         self.infcx
601     }
602
603     ///////////////////////////////////////////////////////////////////////////
604     // Selection
605     //
606     // The selection phase tries to identify *how* an obligation will
607     // be resolved. For example, it will identify which impl or
608     // parameter bound is to be used. The process can be inconclusive
609     // if the self type in the obligation is not fully inferred. Selection
610     // can result in an error in one of two ways:
611     //
612     // 1. If no applicable impl or parameter bound can be found.
613     // 2. If the output type parameters in the obligation do not match
614     //    those specified by the impl/bound. For example, if the obligation
615     //    is `Vec<Foo>:Iterable<Bar>`, but the impl specifies
616     //    `impl<T> Iterable<T> for Vec<T>`, than an error would result.
617
618     /// Attempts to satisfy the obligation. If successful, this will affect the surrounding
619     /// type environment by performing unification.
620     pub fn select(
621         &mut self,
622         obligation: &TraitObligation<'tcx>,
623     ) -> SelectionResult<'tcx, Selection<'tcx>> {
624         debug!("select({:?})", obligation);
625         debug_assert!(!obligation.predicate.has_escaping_bound_vars());
626
627         let pec = &ProvisionalEvaluationCache::default();
628         let stack = self.push_stack(TraitObligationStackList::empty(pec), obligation);
629
630         let candidate = match self.candidate_from_obligation(&stack) {
631             Err(SelectionError::Overflow) => {
632                 // In standard mode, overflow must have been caught and reported
633                 // earlier.
634                 assert!(self.query_mode == TraitQueryMode::Canonical);
635                 return Err(SelectionError::Overflow);
636             }
637             Err(e) => {
638                 return Err(e);
639             }
640             Ok(None) => {
641                 return Ok(None);
642             }
643             Ok(Some(candidate)) => candidate,
644         };
645
646         match self.confirm_candidate(obligation, candidate) {
647             Err(SelectionError::Overflow) => {
648                 assert!(self.query_mode == TraitQueryMode::Canonical);
649                 Err(SelectionError::Overflow)
650             }
651             Err(e) => Err(e),
652             Ok(candidate) => Ok(Some(candidate)),
653         }
654     }
655
656     ///////////////////////////////////////////////////////////////////////////
657     // EVALUATION
658     //
659     // Tests whether an obligation can be selected or whether an impl
660     // can be applied to particular types. It skips the "confirmation"
661     // step and hence completely ignores output type parameters.
662     //
663     // The result is "true" if the obligation *may* hold and "false" if
664     // we can be sure it does not.
665
666     /// Evaluates whether the obligation `obligation` can be satisfied (by any means).
667     pub fn predicate_may_hold_fatal(&mut self, obligation: &PredicateObligation<'tcx>) -> bool {
668         debug!("predicate_may_hold_fatal({:?})", obligation);
669
670         // This fatal query is a stopgap that should only be used in standard mode,
671         // where we do not expect overflow to be propagated.
672         assert!(self.query_mode == TraitQueryMode::Standard);
673
674         self.evaluate_root_obligation(obligation)
675             .expect("Overflow should be caught earlier in standard query mode")
676             .may_apply()
677     }
678
679     /// Evaluates whether the obligation `obligation` can be satisfied
680     /// and returns an `EvaluationResult`. This is meant for the
681     /// *initial* call.
682     pub fn evaluate_root_obligation(
683         &mut self,
684         obligation: &PredicateObligation<'tcx>,
685     ) -> Result<EvaluationResult, OverflowError> {
686         self.evaluation_probe(|this| {
687             this.evaluate_predicate_recursively(
688                 TraitObligationStackList::empty(&ProvisionalEvaluationCache::default()),
689                 obligation.clone(),
690             )
691         })
692     }
693
694     fn evaluation_probe(
695         &mut self,
696         op: impl FnOnce(&mut Self) -> Result<EvaluationResult, OverflowError>,
697     ) -> Result<EvaluationResult, OverflowError> {
698         self.infcx.probe(|snapshot| -> Result<EvaluationResult, OverflowError> {
699             let result = op(self)?;
700             match self.infcx.region_constraints_added_in_snapshot(snapshot) {
701                 None => Ok(result),
702                 Some(_) => Ok(result.max(EvaluatedToOkModuloRegions)),
703             }
704         })
705     }
706
707     /// Evaluates the predicates in `predicates` recursively. Note that
708     /// this applies projections in the predicates, and therefore
709     /// is run within an inference probe.
710     fn evaluate_predicates_recursively<'o, I>(
711         &mut self,
712         stack: TraitObligationStackList<'o, 'tcx>,
713         predicates: I,
714     ) -> Result<EvaluationResult, OverflowError>
715     where
716         I: IntoIterator<Item = PredicateObligation<'tcx>>,
717     {
718         let mut result = EvaluatedToOk;
719         for obligation in predicates {
720             let eval = self.evaluate_predicate_recursively(stack, obligation.clone())?;
721             debug!(
722                 "evaluate_predicate_recursively({:?}) = {:?}",
723                 obligation, eval
724             );
725             if let EvaluatedToErr = eval {
726                 // fast-path - EvaluatedToErr is the top of the lattice,
727                 // so we don't need to look on the other predicates.
728                 return Ok(EvaluatedToErr);
729             } else {
730                 result = cmp::max(result, eval);
731             }
732         }
733         Ok(result)
734     }
735
736     fn evaluate_predicate_recursively<'o>(
737         &mut self,
738         previous_stack: TraitObligationStackList<'o, 'tcx>,
739         obligation: PredicateObligation<'tcx>,
740     ) -> Result<EvaluationResult, OverflowError> {
741         debug!("evaluate_predicate_recursively(previous_stack={:?}, obligation={:?})",
742             previous_stack.head(), obligation);
743
744         // Previous_stack stores a TraitObligatiom, while 'obligation' is
745         // a PredicateObligation. These are distinct types, so we can't
746         // use any Option combinator method that would force them to be
747         // the same
748         match previous_stack.head() {
749             Some(h) => self.check_recursion_limit(&obligation, h.obligation)?,
750             None => self.check_recursion_limit(&obligation, &obligation)?
751         }
752
753         match obligation.predicate {
754             ty::Predicate::Trait(ref t) => {
755                 debug_assert!(!t.has_escaping_bound_vars());
756                 let obligation = obligation.with(t.clone());
757                 self.evaluate_trait_predicate_recursively(previous_stack, obligation)
758             }
759
760             ty::Predicate::Subtype(ref p) => {
761                 // does this code ever run?
762                 match self.infcx
763                     .subtype_predicate(&obligation.cause, obligation.param_env, p)
764                 {
765                     Some(Ok(InferOk { mut obligations, .. })) => {
766                         self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
767                         self.evaluate_predicates_recursively(previous_stack,obligations.into_iter())
768                     }
769                     Some(Err(_)) => Ok(EvaluatedToErr),
770                     None => Ok(EvaluatedToAmbig),
771                 }
772             }
773
774             ty::Predicate::WellFormed(ty) => match ty::wf::obligations(
775                 self.infcx,
776                 obligation.param_env,
777                 obligation.cause.body_id,
778                 ty,
779                 obligation.cause.span,
780             ) {
781                 Some(mut obligations) => {
782                     self.add_depth(obligations.iter_mut(), obligation.recursion_depth);
783                     self.evaluate_predicates_recursively(previous_stack, obligations.into_iter())
784                 }
785                 None => Ok(EvaluatedToAmbig),
786             },
787
788             ty::Predicate::TypeOutlives(..) | ty::Predicate::RegionOutlives(..) => {
789                 // we do not consider region relationships when
790                 // evaluating trait matches
791                 Ok(EvaluatedToOkModuloRegions)
792             }
793
794             ty::Predicate::ObjectSafe(trait_def_id) => {
795                 if self.tcx().is_object_safe(trait_def_id) {
796                     Ok(EvaluatedToOk)
797                 } else {
798                     Ok(EvaluatedToErr)
799                 }
800             }
801
802             ty::Predicate::Projection(ref data) => {
803                 let project_obligation = obligation.with(data.clone());
804                 match project::poly_project_and_unify_type(self, &project_obligation) {
805                     Ok(Some(mut subobligations)) => {
806                         self.add_depth(subobligations.iter_mut(), obligation.recursion_depth);
807                         let result = self.evaluate_predicates_recursively(
808                             previous_stack,
809                             subobligations.into_iter(),
810                         );
811                         if let Some(key) =
812                             ProjectionCacheKey::from_poly_projection_predicate(self, data)
813                         {
814                             self.infcx.projection_cache.borrow_mut().complete(key);
815                         }
816                         result
817                     }
818                     Ok(None) => Ok(EvaluatedToAmbig),
819                     Err(_) => Ok(EvaluatedToErr),
820                 }
821             }
822
823             ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
824                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
825                     Some(closure_kind) => {
826                         if closure_kind.extends(kind) {
827                             Ok(EvaluatedToOk)
828                         } else {
829                             Ok(EvaluatedToErr)
830                         }
831                     }
832                     None => Ok(EvaluatedToAmbig),
833                 }
834             }
835
836             ty::Predicate::ConstEvaluatable(def_id, substs) => {
837                 let tcx = self.tcx();
838                 if !(obligation.param_env, substs).has_local_value() {
839                     let param_env = obligation.param_env;
840                     let instance =
841                         ty::Instance::resolve(tcx, param_env, def_id, substs);
842                     if let Some(instance) = instance {
843                         let cid = GlobalId {
844                             instance,
845                             promoted: None,
846                         };
847                         match self.tcx().const_eval(param_env.and(cid)) {
848                             Ok(_) => Ok(EvaluatedToOk),
849                             Err(_) => Ok(EvaluatedToErr),
850                         }
851                     } else {
852                         Ok(EvaluatedToErr)
853                     }
854                 } else {
855                     // Inference variables still left in param_env or substs.
856                     Ok(EvaluatedToAmbig)
857                 }
858             }
859         }
860     }
861
862     fn evaluate_trait_predicate_recursively<'o>(
863         &mut self,
864         previous_stack: TraitObligationStackList<'o, 'tcx>,
865         mut obligation: TraitObligation<'tcx>,
866     ) -> Result<EvaluationResult, OverflowError> {
867         debug!("evaluate_trait_predicate_recursively({:?})", obligation);
868
869         if self.intercrate.is_none() && obligation.is_global()
870             && obligation
871                 .param_env
872                 .caller_bounds
873                 .iter()
874                 .all(|bound| bound.needs_subst())
875         {
876             // If a param env has no global bounds, global obligations do not
877             // depend on its particular value in order to work, so we can clear
878             // out the param env and get better caching.
879             debug!(
880                 "evaluate_trait_predicate_recursively({:?}) - in global",
881                 obligation
882             );
883             obligation.param_env = obligation.param_env.without_caller_bounds();
884         }
885
886         let stack = self.push_stack(previous_stack, &obligation);
887         let fresh_trait_ref = stack.fresh_trait_ref;
888         if let Some(result) = self.check_evaluation_cache(obligation.param_env, fresh_trait_ref) {
889             debug!("CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
890             return Ok(result);
891         }
892
893         if let Some(result) = stack.cache().get_provisional(fresh_trait_ref) {
894             debug!("PROVISIONAL CACHE HIT: EVAL({:?})={:?}", fresh_trait_ref, result);
895             stack.update_reached_depth(stack.cache().current_reached_depth());
896             return Ok(result);
897         }
898
899         // Check if this is a match for something already on the
900         // stack. If so, we don't want to insert the result into the
901         // main cache (it is cycle dependent) nor the provisional
902         // cache (which is meant for things that have completed but
903         // for a "backedge" -- this result *is* the backedge).
904         if let Some(cycle_result) = self.check_evaluation_cycle(&stack) {
905             return Ok(cycle_result);
906         }
907
908         let (result, dep_node) = self.in_task(|this| this.evaluate_stack(&stack));
909         let result = result?;
910
911         if !result.must_apply_modulo_regions() {
912             stack.cache().on_failure(stack.dfn);
913         }
914
915         let reached_depth = stack.reached_depth.get();
916         if reached_depth >= stack.depth {
917             debug!("CACHE MISS: EVAL({:?})={:?}", fresh_trait_ref, result);
918             self.insert_evaluation_cache(obligation.param_env, fresh_trait_ref, dep_node, result);
919
920             stack.cache().on_completion(stack.depth, |fresh_trait_ref, provisional_result| {
921                 self.insert_evaluation_cache(
922                     obligation.param_env,
923                     fresh_trait_ref,
924                     dep_node,
925                     provisional_result.max(result),
926                 );
927             });
928         } else {
929             debug!("PROVISIONAL: {:?}={:?}", fresh_trait_ref, result);
930             debug!(
931                 "evaluate_trait_predicate_recursively: caching provisionally because {:?} \
932                  is a cycle participant (at depth {}, reached depth {})",
933                 fresh_trait_ref,
934                 stack.depth,
935                 reached_depth,
936             );
937
938             stack.cache().insert_provisional(
939                 stack.dfn,
940                 reached_depth,
941                 fresh_trait_ref,
942                 result,
943             );
944         }
945
946
947         Ok(result)
948     }
949
950     /// If there is any previous entry on the stack that precisely
951     /// matches this obligation, then we can assume that the
952     /// obligation is satisfied for now (still all other conditions
953     /// must be met of course). One obvious case this comes up is
954     /// marker traits like `Send`. Think of a linked list:
955     ///
956     ///    struct List<T> { data: T, next: Option<Box<List<T>>> }
957     ///
958     /// `Box<List<T>>` will be `Send` if `T` is `Send` and
959     /// `Option<Box<List<T>>>` is `Send`, and in turn
960     /// `Option<Box<List<T>>>` is `Send` if `Box<List<T>>` is
961     /// `Send`.
962     ///
963     /// Note that we do this comparison using the `fresh_trait_ref`
964     /// fields. Because these have all been freshened using
965     /// `self.freshener`, we can be sure that (a) this will not
966     /// affect the inferencer state and (b) that if we see two
967     /// fresh regions with the same index, they refer to the same
968     /// unbound type variable.
969     fn check_evaluation_cycle(
970         &mut self,
971         stack: &TraitObligationStack<'_, 'tcx>,
972     ) -> Option<EvaluationResult> {
973         if let Some(cycle_depth) = stack.iter()
974             .skip(1) // skip top-most frame
975             .find(|prev| stack.obligation.param_env == prev.obligation.param_env &&
976                   stack.fresh_trait_ref == prev.fresh_trait_ref)
977             .map(|stack| stack.depth)
978         {
979             debug!(
980                 "evaluate_stack({:?}) --> recursive at depth {}",
981                 stack.fresh_trait_ref,
982                 cycle_depth,
983             );
984
985             // If we have a stack like `A B C D E A`, where the top of
986             // the stack is the final `A`, then this will iterate over
987             // `A, E, D, C, B` -- i.e., all the participants apart
988             // from the cycle head. We mark them as participating in a
989             // cycle. This suppresses caching for those nodes. See
990             // `in_cycle` field for more details.
991             stack.update_reached_depth(cycle_depth);
992
993             // Subtle: when checking for a coinductive cycle, we do
994             // not compare using the "freshened trait refs" (which
995             // have erased regions) but rather the fully explicit
996             // trait refs. This is important because it's only a cycle
997             // if the regions match exactly.
998             let cycle = stack.iter().skip(1).take_while(|s| s.depth >= cycle_depth);
999             let cycle = cycle.map(|stack| ty::Predicate::Trait(stack.obligation.predicate));
1000             if self.coinductive_match(cycle) {
1001                 debug!(
1002                     "evaluate_stack({:?}) --> recursive, coinductive",
1003                     stack.fresh_trait_ref
1004                 );
1005                 Some(EvaluatedToOk)
1006             } else {
1007                 debug!(
1008                     "evaluate_stack({:?}) --> recursive, inductive",
1009                     stack.fresh_trait_ref
1010                 );
1011                 Some(EvaluatedToRecur)
1012             }
1013         } else {
1014             None
1015         }
1016     }
1017
1018     fn evaluate_stack<'o>(
1019         &mut self,
1020         stack: &TraitObligationStack<'o, 'tcx>,
1021     ) -> Result<EvaluationResult, OverflowError> {
1022         // In intercrate mode, whenever any of the types are unbound,
1023         // there can always be an impl. Even if there are no impls in
1024         // this crate, perhaps the type would be unified with
1025         // something from another crate that does provide an impl.
1026         //
1027         // In intra mode, we must still be conservative. The reason is
1028         // that we want to avoid cycles. Imagine an impl like:
1029         //
1030         //     impl<T:Eq> Eq for Vec<T>
1031         //
1032         // and a trait reference like `$0 : Eq` where `$0` is an
1033         // unbound variable. When we evaluate this trait-reference, we
1034         // will unify `$0` with `Vec<$1>` (for some fresh variable
1035         // `$1`), on the condition that `$1 : Eq`. We will then wind
1036         // up with many candidates (since that are other `Eq` impls
1037         // that apply) and try to winnow things down. This results in
1038         // a recursive evaluation that `$1 : Eq` -- as you can
1039         // imagine, this is just where we started. To avoid that, we
1040         // check for unbound variables and return an ambiguous (hence possible)
1041         // match if we've seen this trait before.
1042         //
1043         // This suffices to allow chains like `FnMut` implemented in
1044         // terms of `Fn` etc, but we could probably make this more
1045         // precise still.
1046         let unbound_input_types = stack
1047             .fresh_trait_ref
1048             .skip_binder()
1049             .input_types()
1050             .any(|ty| ty.is_fresh());
1051         // this check was an imperfect workaround for a bug n the old
1052         // intercrate mode, it should be removed when that goes away.
1053         if unbound_input_types && self.intercrate == Some(IntercrateMode::Issue43355) {
1054             debug!(
1055                 "evaluate_stack({:?}) --> unbound argument, intercrate -->  ambiguous",
1056                 stack.fresh_trait_ref
1057             );
1058             // Heuristics: show the diagnostics when there are no candidates in crate.
1059             if self.intercrate_ambiguity_causes.is_some() {
1060                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
1061                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
1062                     if !candidate_set.ambiguous && candidate_set.vec.is_empty() {
1063                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1064                         let self_ty = trait_ref.self_ty();
1065                         let cause = IntercrateAmbiguityCause::DownstreamCrate {
1066                             trait_desc: trait_ref.to_string(),
1067                             self_desc: if self_ty.has_concrete_skeleton() {
1068                                 Some(self_ty.to_string())
1069                             } else {
1070                                 None
1071                             },
1072                         };
1073                         debug!("evaluate_stack: pushing cause = {:?}", cause);
1074                         self.intercrate_ambiguity_causes
1075                             .as_mut()
1076                             .unwrap()
1077                             .push(cause);
1078                     }
1079                 }
1080             }
1081             return Ok(EvaluatedToAmbig);
1082         }
1083         if unbound_input_types && stack.iter().skip(1).any(|prev| {
1084             stack.obligation.param_env == prev.obligation.param_env
1085                 && self.match_fresh_trait_refs(&stack.fresh_trait_ref, &prev.fresh_trait_ref)
1086         }) {
1087             debug!(
1088                 "evaluate_stack({:?}) --> unbound argument, recursive --> giving up",
1089                 stack.fresh_trait_ref
1090             );
1091             return Ok(EvaluatedToUnknown);
1092         }
1093
1094         match self.candidate_from_obligation(stack) {
1095             Ok(Some(c)) => self.evaluate_candidate(stack, &c),
1096             Ok(None) => Ok(EvaluatedToAmbig),
1097             Err(Overflow) => Err(OverflowError),
1098             Err(..) => Ok(EvaluatedToErr),
1099         }
1100     }
1101
1102     /// For defaulted traits, we use a co-inductive strategy to solve, so
1103     /// that recursion is ok. This routine returns true if the top of the
1104     /// stack (`cycle[0]`):
1105     ///
1106     /// - is a defaulted trait,
1107     /// - it also appears in the backtrace at some position `X`,
1108     /// - all the predicates at positions `X..` between `X` and the top are
1109     ///   also defaulted traits.
1110     pub fn coinductive_match<I>(&mut self, cycle: I) -> bool
1111     where
1112         I: Iterator<Item = ty::Predicate<'tcx>>,
1113     {
1114         let mut cycle = cycle;
1115         cycle.all(|predicate| self.coinductive_predicate(predicate))
1116     }
1117
1118     fn coinductive_predicate(&self, predicate: ty::Predicate<'tcx>) -> bool {
1119         let result = match predicate {
1120             ty::Predicate::Trait(ref data) => self.tcx().trait_is_auto(data.def_id()),
1121             _ => false,
1122         };
1123         debug!("coinductive_predicate({:?}) = {:?}", predicate, result);
1124         result
1125     }
1126
1127     /// Further evaluate `candidate` to decide whether all type parameters match and whether nested
1128     /// obligations are met. Returns whether `candidate` remains viable after this further
1129     /// scrutiny.
1130     fn evaluate_candidate<'o>(
1131         &mut self,
1132         stack: &TraitObligationStack<'o, 'tcx>,
1133         candidate: &SelectionCandidate<'tcx>,
1134     ) -> Result<EvaluationResult, OverflowError> {
1135         debug!(
1136             "evaluate_candidate: depth={} candidate={:?}",
1137             stack.obligation.recursion_depth, candidate
1138         );
1139         let result = self.evaluation_probe(|this| {
1140             let candidate = (*candidate).clone();
1141             match this.confirm_candidate(stack.obligation, candidate) {
1142                 Ok(selection) => this.evaluate_predicates_recursively(
1143                     stack.list(),
1144                     selection.nested_obligations().into_iter()
1145                 ),
1146                 Err(..) => Ok(EvaluatedToErr),
1147             }
1148         })?;
1149         debug!(
1150             "evaluate_candidate: depth={} result={:?}",
1151             stack.obligation.recursion_depth, result
1152         );
1153         Ok(result)
1154     }
1155
1156     fn check_evaluation_cache(
1157         &self,
1158         param_env: ty::ParamEnv<'tcx>,
1159         trait_ref: ty::PolyTraitRef<'tcx>,
1160     ) -> Option<EvaluationResult> {
1161         let tcx = self.tcx();
1162         if self.can_use_global_caches(param_env) {
1163             let cache = tcx.evaluation_cache.hashmap.borrow();
1164             if let Some(cached) = cache.get(&trait_ref) {
1165                 return Some(cached.get(tcx));
1166             }
1167         }
1168         self.infcx
1169             .evaluation_cache
1170             .hashmap
1171             .borrow()
1172             .get(&trait_ref)
1173             .map(|v| v.get(tcx))
1174     }
1175
1176     fn insert_evaluation_cache(
1177         &mut self,
1178         param_env: ty::ParamEnv<'tcx>,
1179         trait_ref: ty::PolyTraitRef<'tcx>,
1180         dep_node: DepNodeIndex,
1181         result: EvaluationResult,
1182     ) {
1183         // Avoid caching results that depend on more than just the trait-ref
1184         // - the stack can create recursion.
1185         if result.is_stack_dependent() {
1186             return;
1187         }
1188
1189         if self.can_use_global_caches(param_env) {
1190             if !trait_ref.has_local_value() {
1191                 debug!(
1192                     "insert_evaluation_cache(trait_ref={:?}, candidate={:?}) global",
1193                     trait_ref, result,
1194                 );
1195                 // This may overwrite the cache with the same value
1196                 // FIXME: Due to #50507 this overwrites the different values
1197                 // This should be changed to use HashMapExt::insert_same
1198                 // when that is fixed
1199                 self.tcx()
1200                     .evaluation_cache
1201                     .hashmap
1202                     .borrow_mut()
1203                     .insert(trait_ref, WithDepNode::new(dep_node, result));
1204                 return;
1205             }
1206         }
1207
1208         debug!(
1209             "insert_evaluation_cache(trait_ref={:?}, candidate={:?})",
1210             trait_ref, result,
1211         );
1212         self.infcx
1213             .evaluation_cache
1214             .hashmap
1215             .borrow_mut()
1216             .insert(trait_ref, WithDepNode::new(dep_node, result));
1217     }
1218
1219     // For various reasons, it's possible for a subobligation
1220     // to have a *lower* recursion_depth than the obligation used to create it.
1221     // Projection sub-obligations may be returned from the projection cache,
1222     // which results in obligations with an 'old' recursion_depth.
1223     // Additionally, methods like ty::wf::obligations and
1224     // InferCtxt.subtype_predicate produce subobligations without
1225     // taking in a 'parent' depth, causing the generated subobligations
1226     // to have a recursion_depth of 0
1227     //
1228     // To ensure that obligation_depth never decreasees, we force all subobligations
1229     // to have at least the depth of the original obligation.
1230     fn add_depth<T: 'cx, I: Iterator<Item = &'cx mut Obligation<'tcx, T>>>(&self, it: I,
1231                                                                            min_depth: usize) {
1232         it.for_each(|o| o.recursion_depth = cmp::max(min_depth, o.recursion_depth) + 1);
1233     }
1234
1235     // Check that the recursion limit has not been exceeded.
1236     //
1237     // The weird return type of this function allows it to be used with the 'try' (?)
1238     // operator within certain functions
1239     fn check_recursion_limit<T: Display + TypeFoldable<'tcx>, V: Display + TypeFoldable<'tcx>>(
1240         &self,
1241         obligation: &Obligation<'tcx, T>,
1242         error_obligation: &Obligation<'tcx, V>
1243     ) -> Result<(), OverflowError>  {
1244         let recursion_limit = *self.infcx.tcx.sess.recursion_limit.get();
1245         if obligation.recursion_depth >= recursion_limit {
1246             match self.query_mode {
1247                 TraitQueryMode::Standard => {
1248                     self.infcx().report_overflow_error(error_obligation, true);
1249                 }
1250                 TraitQueryMode::Canonical => {
1251                     return Err(OverflowError);
1252                 }
1253             }
1254         }
1255         Ok(())
1256     }
1257
1258     ///////////////////////////////////////////////////////////////////////////
1259     // CANDIDATE ASSEMBLY
1260     //
1261     // The selection process begins by examining all in-scope impls,
1262     // caller obligations, and so forth and assembling a list of
1263     // candidates. See the [rustc guide] for more details.
1264     //
1265     // [rustc guide]:
1266     // https://rust-lang.github.io/rustc-guide/traits/resolution.html#candidate-assembly
1267
1268     fn candidate_from_obligation<'o>(
1269         &mut self,
1270         stack: &TraitObligationStack<'o, 'tcx>,
1271     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1272         // Watch out for overflow. This intentionally bypasses (and does
1273         // not update) the cache.
1274         self.check_recursion_limit(&stack.obligation, &stack.obligation)?;
1275
1276
1277         // Check the cache. Note that we freshen the trait-ref
1278         // separately rather than using `stack.fresh_trait_ref` --
1279         // this is because we want the unbound variables to be
1280         // replaced with fresh types starting from index 0.
1281         let cache_fresh_trait_pred = self.infcx.freshen(stack.obligation.predicate.clone());
1282         debug!(
1283             "candidate_from_obligation(cache_fresh_trait_pred={:?}, obligation={:?})",
1284             cache_fresh_trait_pred, stack
1285         );
1286         debug_assert!(!stack.obligation.predicate.has_escaping_bound_vars());
1287
1288         if let Some(c) =
1289             self.check_candidate_cache(stack.obligation.param_env, &cache_fresh_trait_pred)
1290         {
1291             debug!("CACHE HIT: SELECT({:?})={:?}", cache_fresh_trait_pred, c);
1292             return c;
1293         }
1294
1295         // If no match, compute result and insert into cache.
1296         //
1297         // FIXME(nikomatsakis) -- this cache is not taking into
1298         // account cycles that may have occurred in forming the
1299         // candidate. I don't know of any specific problems that
1300         // result but it seems awfully suspicious.
1301         let (candidate, dep_node) =
1302             self.in_task(|this| this.candidate_from_obligation_no_cache(stack));
1303
1304         debug!(
1305             "CACHE MISS: SELECT({:?})={:?}",
1306             cache_fresh_trait_pred, candidate
1307         );
1308         self.insert_candidate_cache(
1309             stack.obligation.param_env,
1310             cache_fresh_trait_pred,
1311             dep_node,
1312             candidate.clone(),
1313         );
1314         candidate
1315     }
1316
1317     fn in_task<OP, R>(&mut self, op: OP) -> (R, DepNodeIndex)
1318     where
1319         OP: FnOnce(&mut Self) -> R,
1320     {
1321         let (result, dep_node) = self.tcx()
1322             .dep_graph
1323             .with_anon_task(DepKind::TraitSelect, || op(self));
1324         self.tcx().dep_graph.read_index(dep_node);
1325         (result, dep_node)
1326     }
1327
1328     // Treat negative impls as unimplemented
1329     fn filter_negative_impls(
1330         &self,
1331         candidate: SelectionCandidate<'tcx>,
1332     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1333         if let ImplCandidate(def_id) = candidate {
1334             if !self.allow_negative_impls
1335                 && self.tcx().impl_polarity(def_id) == hir::ImplPolarity::Negative
1336             {
1337                 return Err(Unimplemented);
1338             }
1339         }
1340         Ok(Some(candidate))
1341     }
1342
1343     fn candidate_from_obligation_no_cache<'o>(
1344         &mut self,
1345         stack: &TraitObligationStack<'o, 'tcx>,
1346     ) -> SelectionResult<'tcx, SelectionCandidate<'tcx>> {
1347         if stack.obligation.predicate.references_error() {
1348             // If we encounter a `Error`, we generally prefer the
1349             // most "optimistic" result in response -- that is, the
1350             // one least likely to report downstream errors. But
1351             // because this routine is shared by coherence and by
1352             // trait selection, there isn't an obvious "right" choice
1353             // here in that respect, so we opt to just return
1354             // ambiguity and let the upstream clients sort it out.
1355             return Ok(None);
1356         }
1357
1358         if let Some(conflict) = self.is_knowable(stack) {
1359             debug!("coherence stage: not knowable");
1360             if self.intercrate_ambiguity_causes.is_some() {
1361                 debug!("evaluate_stack: intercrate_ambiguity_causes is some");
1362                 // Heuristics: show the diagnostics when there are no candidates in crate.
1363                 if let Ok(candidate_set) = self.assemble_candidates(stack) {
1364                     let mut no_candidates_apply = true;
1365                     {
1366                         let evaluated_candidates = candidate_set
1367                             .vec
1368                             .iter()
1369                             .map(|c| self.evaluate_candidate(stack, &c));
1370
1371                         for ec in evaluated_candidates {
1372                             match ec {
1373                                 Ok(c) => {
1374                                     if c.may_apply() {
1375                                         no_candidates_apply = false;
1376                                         break;
1377                                     }
1378                                 }
1379                                 Err(e) => return Err(e.into()),
1380                             }
1381                         }
1382                     }
1383
1384                     if !candidate_set.ambiguous && no_candidates_apply {
1385                         let trait_ref = stack.obligation.predicate.skip_binder().trait_ref;
1386                         let self_ty = trait_ref.self_ty();
1387                         let trait_desc = trait_ref.to_string();
1388                         let self_desc = if self_ty.has_concrete_skeleton() {
1389                             Some(self_ty.to_string())
1390                         } else {
1391                             None
1392                         };
1393                         let cause = if let Conflict::Upstream = conflict {
1394                             IntercrateAmbiguityCause::UpstreamCrateUpdate {
1395                                 trait_desc,
1396                                 self_desc,
1397                             }
1398                         } else {
1399                             IntercrateAmbiguityCause::DownstreamCrate {
1400                                 trait_desc,
1401                                 self_desc,
1402                             }
1403                         };
1404                         debug!("evaluate_stack: pushing cause = {:?}", cause);
1405                         self.intercrate_ambiguity_causes
1406                             .as_mut()
1407                             .unwrap()
1408                             .push(cause);
1409                     }
1410                 }
1411             }
1412             return Ok(None);
1413         }
1414
1415         let candidate_set = self.assemble_candidates(stack)?;
1416
1417         if candidate_set.ambiguous {
1418             debug!("candidate set contains ambig");
1419             return Ok(None);
1420         }
1421
1422         let mut candidates = candidate_set.vec;
1423
1424         debug!(
1425             "assembled {} candidates for {:?}: {:?}",
1426             candidates.len(),
1427             stack,
1428             candidates
1429         );
1430
1431         // At this point, we know that each of the entries in the
1432         // candidate set is *individually* applicable. Now we have to
1433         // figure out if they contain mutual incompatibilities. This
1434         // frequently arises if we have an unconstrained input type --
1435         // for example, we are looking for $0:Eq where $0 is some
1436         // unconstrained type variable. In that case, we'll get a
1437         // candidate which assumes $0 == int, one that assumes $0 ==
1438         // usize, etc. This spells an ambiguity.
1439
1440         // If there is more than one candidate, first winnow them down
1441         // by considering extra conditions (nested obligations and so
1442         // forth). We don't winnow if there is exactly one
1443         // candidate. This is a relatively minor distinction but it
1444         // can lead to better inference and error-reporting. An
1445         // example would be if there was an impl:
1446         //
1447         //     impl<T:Clone> Vec<T> { fn push_clone(...) { ... } }
1448         //
1449         // and we were to see some code `foo.push_clone()` where `boo`
1450         // is a `Vec<Bar>` and `Bar` does not implement `Clone`.  If
1451         // we were to winnow, we'd wind up with zero candidates.
1452         // Instead, we select the right impl now but report `Bar does
1453         // not implement Clone`.
1454         if candidates.len() == 1 {
1455             return self.filter_negative_impls(candidates.pop().unwrap());
1456         }
1457
1458         // Winnow, but record the exact outcome of evaluation, which
1459         // is needed for specialization. Propagate overflow if it occurs.
1460         let mut candidates = candidates
1461             .into_iter()
1462             .map(|c| match self.evaluate_candidate(stack, &c) {
1463                 Ok(eval) if eval.may_apply() => Ok(Some(EvaluatedCandidate {
1464                     candidate: c,
1465                     evaluation: eval,
1466                 })),
1467                 Ok(_) => Ok(None),
1468                 Err(OverflowError) => Err(Overflow),
1469             })
1470             .flat_map(Result::transpose)
1471             .collect::<Result<Vec<_>, _>>()?;
1472
1473         debug!(
1474             "winnowed to {} candidates for {:?}: {:?}",
1475             candidates.len(),
1476             stack,
1477             candidates
1478         );
1479
1480         // If there are STILL multiple candidates, we can further
1481         // reduce the list by dropping duplicates -- including
1482         // resolving specializations.
1483         if candidates.len() > 1 {
1484             let mut i = 0;
1485             while i < candidates.len() {
1486                 let is_dup = (0..candidates.len()).filter(|&j| i != j).any(|j| {
1487                     self.candidate_should_be_dropped_in_favor_of(&candidates[i], &candidates[j])
1488                 });
1489                 if is_dup {
1490                     debug!(
1491                         "Dropping candidate #{}/{}: {:?}",
1492                         i,
1493                         candidates.len(),
1494                         candidates[i]
1495                     );
1496                     candidates.swap_remove(i);
1497                 } else {
1498                     debug!(
1499                         "Retaining candidate #{}/{}: {:?}",
1500                         i,
1501                         candidates.len(),
1502                         candidates[i]
1503                     );
1504                     i += 1;
1505
1506                     // If there are *STILL* multiple candidates, give up
1507                     // and report ambiguity.
1508                     if i > 1 {
1509                         debug!("multiple matches, ambig");
1510                         return Ok(None);
1511                     }
1512                 }
1513             }
1514         }
1515
1516         // If there are *NO* candidates, then there are no impls --
1517         // that we know of, anyway. Note that in the case where there
1518         // are unbound type variables within the obligation, it might
1519         // be the case that you could still satisfy the obligation
1520         // from another crate by instantiating the type variables with
1521         // a type from another crate that does have an impl. This case
1522         // is checked for in `evaluate_stack` (and hence users
1523         // who might care about this case, like coherence, should use
1524         // that function).
1525         if candidates.is_empty() {
1526             return Err(Unimplemented);
1527         }
1528
1529         // Just one candidate left.
1530         self.filter_negative_impls(candidates.pop().unwrap().candidate)
1531     }
1532
1533     fn is_knowable<'o>(&mut self, stack: &TraitObligationStack<'o, 'tcx>) -> Option<Conflict> {
1534         debug!("is_knowable(intercrate={:?})", self.intercrate);
1535
1536         if !self.intercrate.is_some() {
1537             return None;
1538         }
1539
1540         let obligation = &stack.obligation;
1541         let predicate = self.infcx()
1542             .resolve_vars_if_possible(&obligation.predicate);
1543
1544         // Okay to skip binder because of the nature of the
1545         // trait-ref-is-knowable check, which does not care about
1546         // bound regions.
1547         let trait_ref = predicate.skip_binder().trait_ref;
1548
1549         let result = coherence::trait_ref_is_knowable(self.tcx(), trait_ref);
1550         if let (
1551             Some(Conflict::Downstream {
1552                 used_to_be_broken: true,
1553             }),
1554             Some(IntercrateMode::Issue43355),
1555         ) = (result, self.intercrate)
1556         {
1557             debug!("is_knowable: IGNORING conflict to be bug-compatible with #43355");
1558             None
1559         } else {
1560             result
1561         }
1562     }
1563
1564     /// Returns `true` if the global caches can be used.
1565     /// Do note that if the type itself is not in the
1566     /// global tcx, the local caches will be used.
1567     fn can_use_global_caches(&self, param_env: ty::ParamEnv<'tcx>) -> bool {
1568         // If there are any where-clauses in scope, then we always use
1569         // a cache local to this particular scope. Otherwise, we
1570         // switch to a global cache. We used to try and draw
1571         // finer-grained distinctions, but that led to a serious of
1572         // annoying and weird bugs like #22019 and #18290. This simple
1573         // rule seems to be pretty clearly safe and also still retains
1574         // a very high hit rate (~95% when compiling rustc).
1575         if !param_env.caller_bounds.is_empty() {
1576             return false;
1577         }
1578
1579         // Avoid using the master cache during coherence and just rely
1580         // on the local cache. This effectively disables caching
1581         // during coherence. It is really just a simplification to
1582         // avoid us having to fear that coherence results "pollute"
1583         // the master cache. Since coherence executes pretty quickly,
1584         // it's not worth going to more trouble to increase the
1585         // hit-rate I don't think.
1586         if self.intercrate.is_some() {
1587             return false;
1588         }
1589
1590         // Otherwise, we can use the global cache.
1591         true
1592     }
1593
1594     fn check_candidate_cache(
1595         &mut self,
1596         param_env: ty::ParamEnv<'tcx>,
1597         cache_fresh_trait_pred: &ty::PolyTraitPredicate<'tcx>,
1598     ) -> Option<SelectionResult<'tcx, SelectionCandidate<'tcx>>> {
1599         let tcx = self.tcx();
1600         let trait_ref = &cache_fresh_trait_pred.skip_binder().trait_ref;
1601         if self.can_use_global_caches(param_env) {
1602             let cache = tcx.selection_cache.hashmap.borrow();
1603             if let Some(cached) = cache.get(&trait_ref) {
1604                 return Some(cached.get(tcx));
1605             }
1606         }
1607         self.infcx
1608             .selection_cache
1609             .hashmap
1610             .borrow()
1611             .get(trait_ref)
1612             .map(|v| v.get(tcx))
1613     }
1614
1615     /// Determines whether can we safely cache the result
1616     /// of selecting an obligation. This is almost always 'true',
1617     /// except when dealing with certain ParamCandidates.
1618     ///
1619     /// Ordinarily, a ParamCandidate will contain no inference variables,
1620     /// since it was usually produced directly from a DefId. However,
1621     /// certain cases (currently only librustdoc's blanket impl finder),
1622     /// a ParamEnv may be explicitly constructed with inference types.
1623     /// When this is the case, we do *not* want to cache the resulting selection
1624     /// candidate. This is due to the fact that it might not always be possible
1625     /// to equate the obligation's trait ref and the candidate's trait ref,
1626     /// if more constraints end up getting added to an inference variable.
1627     ///
1628     /// Because of this, we always want to re-run the full selection
1629     /// process for our obligation the next time we see it, since
1630     /// we might end up picking a different SelectionCandidate (or none at all)
1631     fn can_cache_candidate(&self,
1632         result: &SelectionResult<'tcx, SelectionCandidate<'tcx>>
1633      ) -> bool {
1634         match result {
1635             Ok(Some(SelectionCandidate::ParamCandidate(trait_ref))) => {
1636                 !trait_ref.skip_binder().input_types().any(|t| t.walk().any(|t_| t_.is_ty_infer()))
1637             },
1638             _ => true
1639         }
1640     }
1641
1642     fn insert_candidate_cache(
1643         &mut self,
1644         param_env: ty::ParamEnv<'tcx>,
1645         cache_fresh_trait_pred: ty::PolyTraitPredicate<'tcx>,
1646         dep_node: DepNodeIndex,
1647         candidate: SelectionResult<'tcx, SelectionCandidate<'tcx>>,
1648     ) {
1649         let tcx = self.tcx();
1650         let trait_ref = cache_fresh_trait_pred.skip_binder().trait_ref;
1651
1652         if !self.can_cache_candidate(&candidate) {
1653             debug!("insert_candidate_cache(trait_ref={:?}, candidate={:?} -\
1654                     candidate is not cacheable", trait_ref, candidate);
1655             return;
1656
1657         }
1658
1659         if self.can_use_global_caches(param_env) {
1660             if let Err(Overflow) = candidate {
1661                 // Don't cache overflow globally; we only produce this
1662                 // in certain modes.
1663             } else if !trait_ref.has_local_value() {
1664                 if !candidate.has_local_value() {
1665                     debug!(
1666                         "insert_candidate_cache(trait_ref={:?}, candidate={:?}) global",
1667                         trait_ref, candidate,
1668                     );
1669                     // This may overwrite the cache with the same value
1670                     tcx.selection_cache
1671                         .hashmap
1672                         .borrow_mut()
1673                         .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1674                     return;
1675                 }
1676             }
1677         }
1678
1679         debug!(
1680             "insert_candidate_cache(trait_ref={:?}, candidate={:?}) local",
1681             trait_ref, candidate,
1682         );
1683         self.infcx
1684             .selection_cache
1685             .hashmap
1686             .borrow_mut()
1687             .insert(trait_ref, WithDepNode::new(dep_node, candidate));
1688     }
1689
1690     fn assemble_candidates<'o>(
1691         &mut self,
1692         stack: &TraitObligationStack<'o, 'tcx>,
1693     ) -> Result<SelectionCandidateSet<'tcx>, SelectionError<'tcx>> {
1694         let TraitObligationStack { obligation, .. } = *stack;
1695         let ref obligation = Obligation {
1696             param_env: obligation.param_env,
1697             cause: obligation.cause.clone(),
1698             recursion_depth: obligation.recursion_depth,
1699             predicate: self.infcx()
1700                 .resolve_vars_if_possible(&obligation.predicate),
1701         };
1702
1703         if obligation.predicate.skip_binder().self_ty().is_ty_var() {
1704             // Self is a type variable (e.g., `_: AsRef<str>`).
1705             //
1706             // This is somewhat problematic, as the current scheme can't really
1707             // handle it turning to be a projection. This does end up as truly
1708             // ambiguous in most cases anyway.
1709             //
1710             // Take the fast path out - this also improves
1711             // performance by preventing assemble_candidates_from_impls from
1712             // matching every impl for this trait.
1713             return Ok(SelectionCandidateSet {
1714                 vec: vec![],
1715                 ambiguous: true,
1716             });
1717         }
1718
1719         let mut candidates = SelectionCandidateSet {
1720             vec: Vec::new(),
1721             ambiguous: false,
1722         };
1723
1724         self.assemble_candidates_for_trait_alias(obligation, &mut candidates)?;
1725
1726         // Other bounds. Consider both in-scope bounds from fn decl
1727         // and applicable impls. There is a certain set of precedence rules here.
1728         let def_id = obligation.predicate.def_id();
1729         let lang_items = self.tcx().lang_items();
1730
1731         if lang_items.copy_trait() == Some(def_id) {
1732             debug!(
1733                 "obligation self ty is {:?}",
1734                 obligation.predicate.skip_binder().self_ty()
1735             );
1736
1737             // User-defined copy impls are permitted, but only for
1738             // structs and enums.
1739             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1740
1741             // For other types, we'll use the builtin rules.
1742             let copy_conditions = self.copy_clone_conditions(obligation);
1743             self.assemble_builtin_bound_candidates(copy_conditions, &mut candidates)?;
1744         } else if lang_items.sized_trait() == Some(def_id) {
1745             // Sized is never implementable by end-users, it is
1746             // always automatically computed.
1747             let sized_conditions = self.sized_conditions(obligation);
1748             self.assemble_builtin_bound_candidates(sized_conditions, &mut candidates)?;
1749         } else if lang_items.unsize_trait() == Some(def_id) {
1750             self.assemble_candidates_for_unsizing(obligation, &mut candidates);
1751         } else {
1752             if lang_items.clone_trait() == Some(def_id) {
1753                 // Same builtin conditions as `Copy`, i.e., every type which has builtin support
1754                 // for `Copy` also has builtin support for `Clone`, + tuples and arrays of `Clone`
1755                 // types have builtin support for `Clone`.
1756                 let clone_conditions = self.copy_clone_conditions(obligation);
1757                 self.assemble_builtin_bound_candidates(clone_conditions, &mut candidates)?;
1758             }
1759
1760             self.assemble_generator_candidates(obligation, &mut candidates)?;
1761             self.assemble_closure_candidates(obligation, &mut candidates)?;
1762             self.assemble_fn_pointer_candidates(obligation, &mut candidates)?;
1763             self.assemble_candidates_from_impls(obligation, &mut candidates)?;
1764             self.assemble_candidates_from_object_ty(obligation, &mut candidates);
1765         }
1766
1767         self.assemble_candidates_from_projected_tys(obligation, &mut candidates);
1768         self.assemble_candidates_from_caller_bounds(stack, &mut candidates)?;
1769         // Auto implementations have lower priority, so we only
1770         // consider triggering a default if there is no other impl that can apply.
1771         if candidates.vec.is_empty() {
1772             self.assemble_candidates_from_auto_impls(obligation, &mut candidates)?;
1773         }
1774         debug!("candidate list size: {}", candidates.vec.len());
1775         Ok(candidates)
1776     }
1777
1778     fn assemble_candidates_from_projected_tys(
1779         &mut self,
1780         obligation: &TraitObligation<'tcx>,
1781         candidates: &mut SelectionCandidateSet<'tcx>,
1782     ) {
1783         debug!("assemble_candidates_for_projected_tys({:?})", obligation);
1784
1785         // before we go into the whole placeholder thing, just
1786         // quickly check if the self-type is a projection at all.
1787         match obligation.predicate.skip_binder().trait_ref.self_ty().sty {
1788             ty::Projection(_) | ty::Opaque(..) => {}
1789             ty::Infer(ty::TyVar(_)) => {
1790                 span_bug!(
1791                     obligation.cause.span,
1792                     "Self=_ should have been handled by assemble_candidates"
1793                 );
1794             }
1795             _ => return,
1796         }
1797
1798         let result = self.infcx.probe(|snapshot| {
1799             self.match_projection_obligation_against_definition_bounds(
1800                 obligation,
1801                 snapshot,
1802             )
1803         });
1804
1805         if result {
1806             candidates.vec.push(ProjectionCandidate);
1807         }
1808     }
1809
1810     fn match_projection_obligation_against_definition_bounds(
1811         &mut self,
1812         obligation: &TraitObligation<'tcx>,
1813         snapshot: &CombinedSnapshot<'_, 'tcx>,
1814     ) -> bool {
1815         let poly_trait_predicate = self.infcx()
1816             .resolve_vars_if_possible(&obligation.predicate);
1817         let (placeholder_trait_predicate, placeholder_map) = self.infcx()
1818             .replace_bound_vars_with_placeholders(&poly_trait_predicate);
1819         debug!(
1820             "match_projection_obligation_against_definition_bounds: \
1821              placeholder_trait_predicate={:?}",
1822             placeholder_trait_predicate,
1823         );
1824
1825         let (def_id, substs) = match placeholder_trait_predicate.trait_ref.self_ty().sty {
1826             ty::Projection(ref data) => (data.trait_ref(self.tcx()).def_id, data.substs),
1827             ty::Opaque(def_id, substs) => (def_id, substs),
1828             _ => {
1829                 span_bug!(
1830                     obligation.cause.span,
1831                     "match_projection_obligation_against_definition_bounds() called \
1832                      but self-ty is not a projection: {:?}",
1833                     placeholder_trait_predicate.trait_ref.self_ty()
1834                 );
1835             }
1836         };
1837         debug!(
1838             "match_projection_obligation_against_definition_bounds: \
1839              def_id={:?}, substs={:?}",
1840             def_id, substs
1841         );
1842
1843         let predicates_of = self.tcx().predicates_of(def_id);
1844         let bounds = predicates_of.instantiate(self.tcx(), substs);
1845         debug!(
1846             "match_projection_obligation_against_definition_bounds: \
1847              bounds={:?}",
1848             bounds
1849         );
1850
1851         let elaborated_predicates = util::elaborate_predicates(self.tcx(), bounds.predicates);
1852         let matching_bound = elaborated_predicates
1853             .filter_to_traits()
1854             .find(|bound| {
1855                 self.infcx.probe(|_| {
1856                     self.match_projection(
1857                         obligation,
1858                         bound.clone(),
1859                         placeholder_trait_predicate.trait_ref.clone(),
1860                         &placeholder_map,
1861                         snapshot,
1862                     )
1863                 })
1864             });
1865
1866         debug!(
1867             "match_projection_obligation_against_definition_bounds: \
1868              matching_bound={:?}",
1869             matching_bound
1870         );
1871         match matching_bound {
1872             None => false,
1873             Some(bound) => {
1874                 // Repeat the successful match, if any, this time outside of a probe.
1875                 let result = self.match_projection(
1876                     obligation,
1877                     bound,
1878                     placeholder_trait_predicate.trait_ref.clone(),
1879                     &placeholder_map,
1880                     snapshot,
1881                 );
1882
1883                 assert!(result);
1884                 true
1885             }
1886         }
1887     }
1888
1889     fn match_projection(
1890         &mut self,
1891         obligation: &TraitObligation<'tcx>,
1892         trait_bound: ty::PolyTraitRef<'tcx>,
1893         placeholder_trait_ref: ty::TraitRef<'tcx>,
1894         placeholder_map: &PlaceholderMap<'tcx>,
1895         snapshot: &CombinedSnapshot<'_, 'tcx>,
1896     ) -> bool {
1897         debug_assert!(!placeholder_trait_ref.has_escaping_bound_vars());
1898         self.infcx
1899             .at(&obligation.cause, obligation.param_env)
1900             .sup(ty::Binder::dummy(placeholder_trait_ref), trait_bound)
1901             .is_ok()
1902             &&
1903             self.infcx.leak_check(false, placeholder_map, snapshot).is_ok()
1904     }
1905
1906     /// Given an obligation like `<SomeTrait for T>`, search the obligations that the caller
1907     /// supplied to find out whether it is listed among them.
1908     ///
1909     /// Never affects inference environment.
1910     fn assemble_candidates_from_caller_bounds<'o>(
1911         &mut self,
1912         stack: &TraitObligationStack<'o, 'tcx>,
1913         candidates: &mut SelectionCandidateSet<'tcx>,
1914     ) -> Result<(), SelectionError<'tcx>> {
1915         debug!(
1916             "assemble_candidates_from_caller_bounds({:?})",
1917             stack.obligation
1918         );
1919
1920         let all_bounds = stack
1921             .obligation
1922             .param_env
1923             .caller_bounds
1924             .iter()
1925             .filter_map(|o| o.to_opt_poly_trait_ref());
1926
1927         // Micro-optimization: filter out predicates relating to different traits.
1928         let matching_bounds =
1929             all_bounds.filter(|p| p.def_id() == stack.obligation.predicate.def_id());
1930
1931         // Keep only those bounds which may apply, and propagate overflow if it occurs.
1932         let mut param_candidates = vec![];
1933         for bound in matching_bounds {
1934             let wc = self.evaluate_where_clause(stack, bound.clone())?;
1935             if wc.may_apply() {
1936                 param_candidates.push(ParamCandidate(bound));
1937             }
1938         }
1939
1940         candidates.vec.extend(param_candidates);
1941
1942         Ok(())
1943     }
1944
1945     fn evaluate_where_clause<'o>(
1946         &mut self,
1947         stack: &TraitObligationStack<'o, 'tcx>,
1948         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
1949     ) -> Result<EvaluationResult, OverflowError> {
1950         self.evaluation_probe(|this| {
1951             match this.match_where_clause_trait_ref(stack.obligation, where_clause_trait_ref) {
1952                 Ok(obligations) => {
1953                     this.evaluate_predicates_recursively(stack.list(), obligations.into_iter())
1954                 }
1955                 Err(()) => Ok(EvaluatedToErr),
1956             }
1957         })
1958     }
1959
1960     fn assemble_generator_candidates(
1961         &mut self,
1962         obligation: &TraitObligation<'tcx>,
1963         candidates: &mut SelectionCandidateSet<'tcx>,
1964     ) -> Result<(), SelectionError<'tcx>> {
1965         if self.tcx().lang_items().gen_trait() != Some(obligation.predicate.def_id()) {
1966             return Ok(());
1967         }
1968
1969         // Okay to skip binder because the substs on generator types never
1970         // touch bound regions, they just capture the in-scope
1971         // type/region parameters.
1972         let self_ty = *obligation.self_ty().skip_binder();
1973         match self_ty.sty {
1974             ty::Generator(..) => {
1975                 debug!(
1976                     "assemble_generator_candidates: self_ty={:?} obligation={:?}",
1977                     self_ty, obligation
1978                 );
1979
1980                 candidates.vec.push(GeneratorCandidate);
1981             }
1982             ty::Infer(ty::TyVar(_)) => {
1983                 debug!("assemble_generator_candidates: ambiguous self-type");
1984                 candidates.ambiguous = true;
1985             }
1986             _ => {}
1987         }
1988
1989         Ok(())
1990     }
1991
1992     /// Checks for the artificial impl that the compiler will create for an obligation like `X :
1993     /// FnMut<..>` where `X` is a closure type.
1994     ///
1995     /// Note: the type parameters on a closure candidate are modeled as *output* type
1996     /// parameters and hence do not affect whether this trait is a match or not. They will be
1997     /// unified during the confirmation step.
1998     fn assemble_closure_candidates(
1999         &mut self,
2000         obligation: &TraitObligation<'tcx>,
2001         candidates: &mut SelectionCandidateSet<'tcx>,
2002     ) -> Result<(), SelectionError<'tcx>> {
2003         let kind = match self.tcx()
2004             .lang_items()
2005             .fn_trait_kind(obligation.predicate.def_id())
2006         {
2007             Some(k) => k,
2008             None => {
2009                 return Ok(());
2010             }
2011         };
2012
2013         // Okay to skip binder because the substs on closure types never
2014         // touch bound regions, they just capture the in-scope
2015         // type/region parameters
2016         match obligation.self_ty().skip_binder().sty {
2017             ty::Closure(closure_def_id, closure_substs) => {
2018                 debug!(
2019                     "assemble_unboxed_candidates: kind={:?} obligation={:?}",
2020                     kind, obligation
2021                 );
2022                 match self.infcx.closure_kind(closure_def_id, closure_substs) {
2023                     Some(closure_kind) => {
2024                         debug!(
2025                             "assemble_unboxed_candidates: closure_kind = {:?}",
2026                             closure_kind
2027                         );
2028                         if closure_kind.extends(kind) {
2029                             candidates.vec.push(ClosureCandidate);
2030                         }
2031                     }
2032                     None => {
2033                         debug!("assemble_unboxed_candidates: closure_kind not yet known");
2034                         candidates.vec.push(ClosureCandidate);
2035                     }
2036                 }
2037             }
2038             ty::Infer(ty::TyVar(_)) => {
2039                 debug!("assemble_unboxed_closure_candidates: ambiguous self-type");
2040                 candidates.ambiguous = true;
2041             }
2042             _ => {}
2043         }
2044
2045         Ok(())
2046     }
2047
2048     /// Implement one of the `Fn()` family for a fn pointer.
2049     fn assemble_fn_pointer_candidates(
2050         &mut self,
2051         obligation: &TraitObligation<'tcx>,
2052         candidates: &mut SelectionCandidateSet<'tcx>,
2053     ) -> Result<(), SelectionError<'tcx>> {
2054         // We provide impl of all fn traits for fn pointers.
2055         if self.tcx()
2056             .lang_items()
2057             .fn_trait_kind(obligation.predicate.def_id())
2058             .is_none()
2059         {
2060             return Ok(());
2061         }
2062
2063         // Okay to skip binder because what we are inspecting doesn't involve bound regions
2064         let self_ty = *obligation.self_ty().skip_binder();
2065         match self_ty.sty {
2066             ty::Infer(ty::TyVar(_)) => {
2067                 debug!("assemble_fn_pointer_candidates: ambiguous self-type");
2068                 candidates.ambiguous = true; // could wind up being a fn() type
2069             }
2070             // provide an impl, but only for suitable `fn` pointers
2071             ty::FnDef(..) | ty::FnPtr(_) => {
2072                 if let ty::FnSig {
2073                     unsafety: hir::Unsafety::Normal,
2074                     abi: Abi::Rust,
2075                     c_variadic: false,
2076                     ..
2077                 } = self_ty.fn_sig(self.tcx()).skip_binder()
2078                 {
2079                     candidates.vec.push(FnPointerCandidate);
2080                 }
2081             }
2082             _ => {}
2083         }
2084
2085         Ok(())
2086     }
2087
2088     /// Search for impls that might apply to `obligation`.
2089     fn assemble_candidates_from_impls(
2090         &mut self,
2091         obligation: &TraitObligation<'tcx>,
2092         candidates: &mut SelectionCandidateSet<'tcx>,
2093     ) -> Result<(), SelectionError<'tcx>> {
2094         debug!(
2095             "assemble_candidates_from_impls(obligation={:?})",
2096             obligation
2097         );
2098
2099         self.tcx().for_each_relevant_impl(
2100             obligation.predicate.def_id(),
2101             obligation.predicate.skip_binder().trait_ref.self_ty(),
2102             |impl_def_id| {
2103                 self.infcx.probe(|snapshot| {
2104                     if let Ok(_substs) = self.match_impl(impl_def_id, obligation, snapshot)
2105                     {
2106                         candidates.vec.push(ImplCandidate(impl_def_id));
2107                     }
2108                 });
2109             },
2110         );
2111
2112         Ok(())
2113     }
2114
2115     fn assemble_candidates_from_auto_impls(
2116         &mut self,
2117         obligation: &TraitObligation<'tcx>,
2118         candidates: &mut SelectionCandidateSet<'tcx>,
2119     ) -> Result<(), SelectionError<'tcx>> {
2120         // Okay to skip binder here because the tests we do below do not involve bound regions.
2121         let self_ty = *obligation.self_ty().skip_binder();
2122         debug!("assemble_candidates_from_auto_impls(self_ty={:?})", self_ty);
2123
2124         let def_id = obligation.predicate.def_id();
2125
2126         if self.tcx().trait_is_auto(def_id) {
2127             match self_ty.sty {
2128                 ty::Dynamic(..) => {
2129                     // For object types, we don't know what the closed
2130                     // over types are. This means we conservatively
2131                     // say nothing; a candidate may be added by
2132                     // `assemble_candidates_from_object_ty`.
2133                 }
2134                 ty::Foreign(..) => {
2135                     // Since the contents of foreign types is unknown,
2136                     // we don't add any `..` impl. Default traits could
2137                     // still be provided by a manual implementation for
2138                     // this trait and type.
2139                 }
2140                 ty::Param(..) | ty::Projection(..) => {
2141                     // In these cases, we don't know what the actual
2142                     // type is.  Therefore, we cannot break it down
2143                     // into its constituent types. So we don't
2144                     // consider the `..` impl but instead just add no
2145                     // candidates: this means that typeck will only
2146                     // succeed if there is another reason to believe
2147                     // that this obligation holds. That could be a
2148                     // where-clause or, in the case of an object type,
2149                     // it could be that the object type lists the
2150                     // trait (e.g., `Foo+Send : Send`). See
2151                     // `compile-fail/typeck-default-trait-impl-send-param.rs`
2152                     // for an example of a test case that exercises
2153                     // this path.
2154                 }
2155                 ty::Infer(ty::TyVar(_)) => {
2156                     // the auto impl might apply, we don't know
2157                     candidates.ambiguous = true;
2158                 }
2159                 ty::Generator(_, _, movability)
2160                     if self.tcx().lang_items().unpin_trait() == Some(def_id) =>
2161                 {
2162                     match movability {
2163                         hir::GeneratorMovability::Static => {
2164                             // Immovable generators are never `Unpin`, so
2165                             // suppress the normal auto-impl candidate for it.
2166                         }
2167                         hir::GeneratorMovability::Movable => {
2168                             // Movable generators are always `Unpin`, so add an
2169                             // unconditional builtin candidate.
2170                             candidates.vec.push(BuiltinCandidate {
2171                                 has_nested: false,
2172                             });
2173                         }
2174                     }
2175                 }
2176
2177                 _ => candidates.vec.push(AutoImplCandidate(def_id.clone())),
2178             }
2179         }
2180
2181         Ok(())
2182     }
2183
2184     /// Search for impls that might apply to `obligation`.
2185     fn assemble_candidates_from_object_ty(
2186         &mut self,
2187         obligation: &TraitObligation<'tcx>,
2188         candidates: &mut SelectionCandidateSet<'tcx>,
2189     ) {
2190         debug!(
2191             "assemble_candidates_from_object_ty(self_ty={:?})",
2192             obligation.self_ty().skip_binder()
2193         );
2194
2195         self.infcx.probe(|_snapshot| {
2196             // The code below doesn't care about regions, and the
2197             // self-ty here doesn't escape this probe, so just erase
2198             // any LBR.
2199             let self_ty = self.tcx().erase_late_bound_regions(&obligation.self_ty());
2200             let poly_trait_ref = match self_ty.sty {
2201                 ty::Dynamic(ref data, ..) => {
2202                     if data.auto_traits()
2203                         .any(|did| did == obligation.predicate.def_id())
2204                     {
2205                         debug!(
2206                             "assemble_candidates_from_object_ty: matched builtin bound, \
2207                              pushing candidate"
2208                         );
2209                         candidates.vec.push(BuiltinObjectCandidate);
2210                         return;
2211                     }
2212
2213                     if let Some(principal) = data.principal() {
2214                         principal.with_self_ty(self.tcx(), self_ty)
2215                     } else {
2216                         // Only auto-trait bounds exist.
2217                         return;
2218                     }
2219                 }
2220                 ty::Infer(ty::TyVar(_)) => {
2221                     debug!("assemble_candidates_from_object_ty: ambiguous");
2222                     candidates.ambiguous = true; // could wind up being an object type
2223                     return;
2224                 }
2225                 _ => return,
2226             };
2227
2228             debug!(
2229                 "assemble_candidates_from_object_ty: poly_trait_ref={:?}",
2230                 poly_trait_ref
2231             );
2232
2233             // Count only those upcast versions that match the trait-ref
2234             // we are looking for. Specifically, do not only check for the
2235             // correct trait, but also the correct type parameters.
2236             // For example, we may be trying to upcast `Foo` to `Bar<i32>`,
2237             // but `Foo` is declared as `trait Foo : Bar<u32>`.
2238             let upcast_trait_refs = util::supertraits(self.tcx(), poly_trait_ref)
2239                 .filter(|upcast_trait_ref| {
2240                     self.infcx.probe(|_| {
2241                         let upcast_trait_ref = upcast_trait_ref.clone();
2242                         self.match_poly_trait_ref(obligation, upcast_trait_ref)
2243                             .is_ok()
2244                     })
2245                 })
2246                 .count();
2247
2248             if upcast_trait_refs > 1 {
2249                 // Can be upcast in many ways; need more type information.
2250                 candidates.ambiguous = true;
2251             } else if upcast_trait_refs == 1 {
2252                 candidates.vec.push(ObjectCandidate);
2253             }
2254         })
2255     }
2256
2257     /// Search for unsizing that might apply to `obligation`.
2258     fn assemble_candidates_for_unsizing(
2259         &mut self,
2260         obligation: &TraitObligation<'tcx>,
2261         candidates: &mut SelectionCandidateSet<'tcx>,
2262     ) {
2263         // We currently never consider higher-ranked obligations e.g.
2264         // `for<'a> &'a T: Unsize<Trait+'a>` to be implemented. This is not
2265         // because they are a priori invalid, and we could potentially add support
2266         // for them later, it's just that there isn't really a strong need for it.
2267         // A `T: Unsize<U>` obligation is always used as part of a `T: CoerceUnsize<U>`
2268         // impl, and those are generally applied to concrete types.
2269         //
2270         // That said, one might try to write a fn with a where clause like
2271         //     for<'a> Foo<'a, T>: Unsize<Foo<'a, Trait>>
2272         // where the `'a` is kind of orthogonal to the relevant part of the `Unsize`.
2273         // Still, you'd be more likely to write that where clause as
2274         //     T: Trait
2275         // so it seems ok if we (conservatively) fail to accept that `Unsize`
2276         // obligation above. Should be possible to extend this in the future.
2277         let source = match obligation.self_ty().no_bound_vars() {
2278             Some(t) => t,
2279             None => {
2280                 // Don't add any candidates if there are bound regions.
2281                 return;
2282             }
2283         };
2284         let target = obligation
2285             .predicate
2286             .skip_binder()
2287             .trait_ref
2288             .substs
2289             .type_at(1);
2290
2291         debug!(
2292             "assemble_candidates_for_unsizing(source={:?}, target={:?})",
2293             source, target
2294         );
2295
2296         let may_apply = match (&source.sty, &target.sty) {
2297             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
2298             (&ty::Dynamic(ref data_a, ..), &ty::Dynamic(ref data_b, ..)) => {
2299                 // Upcasts permit two things:
2300                 //
2301                 // 1. Dropping builtin bounds, e.g., `Foo+Send` to `Foo`
2302                 // 2. Tightening the region bound, e.g., `Foo+'a` to `Foo+'b` if `'a : 'b`
2303                 //
2304                 // Note that neither of these changes requires any
2305                 // change at runtime.  Eventually this will be
2306                 // generalized.
2307                 //
2308                 // We always upcast when we can because of reason
2309                 // #2 (region bounds).
2310                 data_a.principal_def_id() == data_b.principal_def_id()
2311                     && data_b.auto_traits()
2312                     // All of a's auto traits need to be in b's auto traits.
2313                     .all(|b| data_a.auto_traits().any(|a| a == b))
2314             }
2315
2316             // T -> Trait.
2317             (_, &ty::Dynamic(..)) => true,
2318
2319             // Ambiguous handling is below T -> Trait, because inference
2320             // variables can still implement Unsize<Trait> and nested
2321             // obligations will have the final say (likely deferred).
2322             (&ty::Infer(ty::TyVar(_)), _) | (_, &ty::Infer(ty::TyVar(_))) => {
2323                 debug!("assemble_candidates_for_unsizing: ambiguous");
2324                 candidates.ambiguous = true;
2325                 false
2326             }
2327
2328             // [T; n] -> [T].
2329             (&ty::Array(..), &ty::Slice(_)) => true,
2330
2331             // Struct<T> -> Struct<U>.
2332             (&ty::Adt(def_id_a, _), &ty::Adt(def_id_b, _)) if def_id_a.is_struct() => {
2333                 def_id_a == def_id_b
2334             }
2335
2336             // (.., T) -> (.., U).
2337             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => tys_a.len() == tys_b.len(),
2338
2339             _ => false,
2340         };
2341
2342         if may_apply {
2343             candidates.vec.push(BuiltinUnsizeCandidate);
2344         }
2345     }
2346
2347     fn assemble_candidates_for_trait_alias(
2348         &mut self,
2349         obligation: &TraitObligation<'tcx>,
2350         candidates: &mut SelectionCandidateSet<'tcx>,
2351     ) -> Result<(), SelectionError<'tcx>> {
2352         // Okay to skip binder here because the tests we do below do not involve bound regions.
2353         let self_ty = *obligation.self_ty().skip_binder();
2354         debug!("assemble_candidates_for_trait_alias(self_ty={:?})", self_ty);
2355
2356         let def_id = obligation.predicate.def_id();
2357
2358         if self.tcx().is_trait_alias(def_id) {
2359             candidates.vec.push(TraitAliasCandidate(def_id.clone()));
2360         }
2361
2362         Ok(())
2363     }
2364
2365     ///////////////////////////////////////////////////////////////////////////
2366     // WINNOW
2367     //
2368     // Winnowing is the process of attempting to resolve ambiguity by
2369     // probing further. During the winnowing process, we unify all
2370     // type variables and then we also attempt to evaluate recursive
2371     // bounds to see if they are satisfied.
2372
2373     /// Returns `true` if `victim` should be dropped in favor of
2374     /// `other`. Generally speaking we will drop duplicate
2375     /// candidates and prefer where-clause candidates.
2376     ///
2377     /// See the comment for "SelectionCandidate" for more details.
2378     fn candidate_should_be_dropped_in_favor_of(
2379         &mut self,
2380         victim: &EvaluatedCandidate<'tcx>,
2381         other: &EvaluatedCandidate<'tcx>,
2382     ) -> bool {
2383         if victim.candidate == other.candidate {
2384             return true;
2385         }
2386
2387         // Check if a bound would previously have been removed when normalizing
2388         // the param_env so that it can be given the lowest priority. See
2389         // #50825 for the motivation for this.
2390         let is_global =
2391             |cand: &ty::PolyTraitRef<'_>| cand.is_global() && !cand.has_late_bound_regions();
2392
2393         match other.candidate {
2394             // Prefer BuiltinCandidate { has_nested: false } to anything else.
2395             // This is a fix for #53123 and prevents winnowing from accidentally extending the
2396             // lifetime of a variable.
2397             BuiltinCandidate { has_nested: false } => true,
2398             ParamCandidate(ref cand) => match victim.candidate {
2399                 AutoImplCandidate(..) => {
2400                     bug!(
2401                         "default implementations shouldn't be recorded \
2402                          when there are other valid candidates"
2403                     );
2404                 }
2405                 // Prefer BuiltinCandidate { has_nested: false } to anything else.
2406                 // This is a fix for #53123 and prevents winnowing from accidentally extending the
2407                 // lifetime of a variable.
2408                 BuiltinCandidate { has_nested: false } => false,
2409                 ImplCandidate(..)
2410                 | ClosureCandidate
2411                 | GeneratorCandidate
2412                 | FnPointerCandidate
2413                 | BuiltinObjectCandidate
2414                 | BuiltinUnsizeCandidate
2415                 | BuiltinCandidate { .. }
2416                 | TraitAliasCandidate(..) => {
2417                     // Global bounds from the where clause should be ignored
2418                     // here (see issue #50825). Otherwise, we have a where
2419                     // clause so don't go around looking for impls.
2420                     !is_global(cand)
2421                 }
2422                 ObjectCandidate | ProjectionCandidate => {
2423                     // Arbitrarily give param candidates priority
2424                     // over projection and object candidates.
2425                     !is_global(cand)
2426                 }
2427                 ParamCandidate(..) => false,
2428             },
2429             ObjectCandidate | ProjectionCandidate => match victim.candidate {
2430                 AutoImplCandidate(..) => {
2431                     bug!(
2432                         "default implementations shouldn't be recorded \
2433                          when there are other valid candidates"
2434                     );
2435                 }
2436                 // Prefer BuiltinCandidate { has_nested: false } to anything else.
2437                 // This is a fix for #53123 and prevents winnowing from accidentally extending the
2438                 // lifetime of a variable.
2439                 BuiltinCandidate { has_nested: false } => false,
2440                 ImplCandidate(..)
2441                 | ClosureCandidate
2442                 | GeneratorCandidate
2443                 | FnPointerCandidate
2444                 | BuiltinObjectCandidate
2445                 | BuiltinUnsizeCandidate
2446                 | BuiltinCandidate { .. }
2447                 | TraitAliasCandidate(..) => true,
2448                 ObjectCandidate | ProjectionCandidate => {
2449                     // Arbitrarily give param candidates priority
2450                     // over projection and object candidates.
2451                     true
2452                 }
2453                 ParamCandidate(ref cand) => is_global(cand),
2454             },
2455             ImplCandidate(other_def) => {
2456                 // See if we can toss out `victim` based on specialization.
2457                 // This requires us to know *for sure* that the `other` impl applies
2458                 // i.e., EvaluatedToOk:
2459                 if other.evaluation.must_apply_modulo_regions() {
2460                     match victim.candidate {
2461                         ImplCandidate(victim_def) => {
2462                             let tcx = self.tcx().global_tcx();
2463                             return tcx.specializes((other_def, victim_def))
2464                                 || tcx.impls_are_allowed_to_overlap(
2465                                     other_def, victim_def).is_some();
2466                         }
2467                         ParamCandidate(ref cand) => {
2468                             // Prefer the impl to a global where clause candidate.
2469                             return is_global(cand);
2470                         }
2471                         _ => (),
2472                     }
2473                 }
2474
2475                 false
2476             }
2477             ClosureCandidate
2478             | GeneratorCandidate
2479             | FnPointerCandidate
2480             | BuiltinObjectCandidate
2481             | BuiltinUnsizeCandidate
2482             | BuiltinCandidate { has_nested: true } => {
2483                 match victim.candidate {
2484                     ParamCandidate(ref cand) => {
2485                         // Prefer these to a global where-clause bound
2486                         // (see issue #50825)
2487                         is_global(cand) && other.evaluation.must_apply_modulo_regions()
2488                     }
2489                     _ => false,
2490                 }
2491             }
2492             _ => false,
2493         }
2494     }
2495
2496     ///////////////////////////////////////////////////////////////////////////
2497     // BUILTIN BOUNDS
2498     //
2499     // These cover the traits that are built-in to the language
2500     // itself: `Copy`, `Clone` and `Sized`.
2501
2502     fn assemble_builtin_bound_candidates(
2503         &mut self,
2504         conditions: BuiltinImplConditions<'tcx>,
2505         candidates: &mut SelectionCandidateSet<'tcx>,
2506     ) -> Result<(), SelectionError<'tcx>> {
2507         match conditions {
2508             BuiltinImplConditions::Where(nested) => {
2509                 debug!("builtin_bound: nested={:?}", nested);
2510                 candidates.vec.push(BuiltinCandidate {
2511                     has_nested: nested.skip_binder().len() > 0,
2512                 });
2513             }
2514             BuiltinImplConditions::None => {}
2515             BuiltinImplConditions::Ambiguous => {
2516                 debug!("assemble_builtin_bound_candidates: ambiguous builtin");
2517                 candidates.ambiguous = true;
2518             }
2519         }
2520
2521         Ok(())
2522     }
2523
2524     fn sized_conditions(
2525         &mut self,
2526         obligation: &TraitObligation<'tcx>,
2527     ) -> BuiltinImplConditions<'tcx> {
2528         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2529
2530         // NOTE: binder moved to (*)
2531         let self_ty = self.infcx
2532             .shallow_resolve(obligation.predicate.skip_binder().self_ty());
2533
2534         match self_ty.sty {
2535             ty::Infer(ty::IntVar(_))
2536             | ty::Infer(ty::FloatVar(_))
2537             | ty::Uint(_)
2538             | ty::Int(_)
2539             | ty::Bool
2540             | ty::Float(_)
2541             | ty::FnDef(..)
2542             | ty::FnPtr(_)
2543             | ty::RawPtr(..)
2544             | ty::Char
2545             | ty::Ref(..)
2546             | ty::Generator(..)
2547             | ty::GeneratorWitness(..)
2548             | ty::Array(..)
2549             | ty::Closure(..)
2550             | ty::Never
2551             | ty::Error => {
2552                 // safe for everything
2553                 Where(ty::Binder::dummy(Vec::new()))
2554             }
2555
2556             ty::Str | ty::Slice(_) | ty::Dynamic(..) | ty::Foreign(..) => None,
2557
2558             ty::Tuple(tys) => {
2559                 Where(ty::Binder::bind(tys.last().into_iter().map(|k| k.expect_ty()).collect()))
2560             }
2561
2562             ty::Adt(def, substs) => {
2563                 let sized_crit = def.sized_constraint(self.tcx());
2564                 // (*) binder moved here
2565                 Where(ty::Binder::bind(
2566                     sized_crit
2567                         .iter()
2568                         .map(|ty| ty.subst(self.tcx(), substs))
2569                         .collect(),
2570                 ))
2571             }
2572
2573             ty::Projection(_) | ty::Param(_) | ty::Opaque(..) => None,
2574             ty::Infer(ty::TyVar(_)) => Ambiguous,
2575
2576             ty::UnnormalizedProjection(..)
2577             | ty::Placeholder(..)
2578             | ty::Bound(..)
2579             | ty::Infer(ty::FreshTy(_))
2580             | ty::Infer(ty::FreshIntTy(_))
2581             | ty::Infer(ty::FreshFloatTy(_)) => {
2582                 bug!(
2583                     "asked to assemble builtin bounds of unexpected type: {:?}",
2584                     self_ty
2585                 );
2586             }
2587         }
2588     }
2589
2590     fn copy_clone_conditions(
2591         &mut self,
2592         obligation: &TraitObligation<'tcx>,
2593     ) -> BuiltinImplConditions<'tcx> {
2594         // NOTE: binder moved to (*)
2595         let self_ty = self.infcx
2596             .shallow_resolve(obligation.predicate.skip_binder().self_ty());
2597
2598         use self::BuiltinImplConditions::{Ambiguous, None, Where};
2599
2600         match self_ty.sty {
2601             ty::Infer(ty::IntVar(_))
2602             | ty::Infer(ty::FloatVar(_))
2603             | ty::FnDef(..)
2604             | ty::FnPtr(_)
2605             | ty::Error => Where(ty::Binder::dummy(Vec::new())),
2606
2607             ty::Uint(_)
2608             | ty::Int(_)
2609             | ty::Bool
2610             | ty::Float(_)
2611             | ty::Char
2612             | ty::RawPtr(..)
2613             | ty::Never
2614             | ty::Ref(_, _, hir::MutImmutable) => {
2615                 // Implementations provided in libcore
2616                 None
2617             }
2618
2619             ty::Dynamic(..)
2620             | ty::Str
2621             | ty::Slice(..)
2622             | ty::Generator(..)
2623             | ty::GeneratorWitness(..)
2624             | ty::Foreign(..)
2625             | ty::Ref(_, _, hir::MutMutable) => None,
2626
2627             ty::Array(element_ty, _) => {
2628                 // (*) binder moved here
2629                 Where(ty::Binder::bind(vec![element_ty]))
2630             }
2631
2632             ty::Tuple(tys) => {
2633                 // (*) binder moved here
2634                 Where(ty::Binder::bind(tys.iter().map(|k| k.expect_ty()).collect()))
2635             }
2636
2637             ty::Closure(def_id, substs) => {
2638                 // (*) binder moved here
2639                 Where(ty::Binder::bind(
2640                     substs.upvar_tys(def_id, self.tcx()).collect(),
2641                 ))
2642             }
2643
2644             ty::Adt(..) | ty::Projection(..) | ty::Param(..) | ty::Opaque(..) => {
2645                 // Fallback to whatever user-defined impls exist in this case.
2646                 None
2647             }
2648
2649             ty::Infer(ty::TyVar(_)) => {
2650                 // Unbound type variable. Might or might not have
2651                 // applicable impls and so forth, depending on what
2652                 // those type variables wind up being bound to.
2653                 Ambiguous
2654             }
2655
2656             ty::UnnormalizedProjection(..)
2657             | ty::Placeholder(..)
2658             | ty::Bound(..)
2659             | ty::Infer(ty::FreshTy(_))
2660             | ty::Infer(ty::FreshIntTy(_))
2661             | ty::Infer(ty::FreshFloatTy(_)) => {
2662                 bug!(
2663                     "asked to assemble builtin bounds of unexpected type: {:?}",
2664                     self_ty
2665                 );
2666             }
2667         }
2668     }
2669
2670     /// For default impls, we need to break apart a type into its
2671     /// "constituent types" -- meaning, the types that it contains.
2672     ///
2673     /// Here are some (simple) examples:
2674     ///
2675     /// ```
2676     /// (i32, u32) -> [i32, u32]
2677     /// Foo where struct Foo { x: i32, y: u32 } -> [i32, u32]
2678     /// Bar<i32> where struct Bar<T> { x: T, y: u32 } -> [i32, u32]
2679     /// Zed<i32> where enum Zed { A(T), B(u32) } -> [i32, u32]
2680     /// ```
2681     fn constituent_types_for_ty(&self, t: Ty<'tcx>) -> Vec<Ty<'tcx>> {
2682         match t.sty {
2683             ty::Uint(_)
2684             | ty::Int(_)
2685             | ty::Bool
2686             | ty::Float(_)
2687             | ty::FnDef(..)
2688             | ty::FnPtr(_)
2689             | ty::Str
2690             | ty::Error
2691             | ty::Infer(ty::IntVar(_))
2692             | ty::Infer(ty::FloatVar(_))
2693             | ty::Never
2694             | ty::Char => Vec::new(),
2695
2696             ty::UnnormalizedProjection(..)
2697             | ty::Placeholder(..)
2698             | ty::Dynamic(..)
2699             | ty::Param(..)
2700             | ty::Foreign(..)
2701             | ty::Projection(..)
2702             | ty::Bound(..)
2703             | ty::Infer(ty::TyVar(_))
2704             | ty::Infer(ty::FreshTy(_))
2705             | ty::Infer(ty::FreshIntTy(_))
2706             | ty::Infer(ty::FreshFloatTy(_)) => {
2707                 bug!(
2708                     "asked to assemble constituent types of unexpected type: {:?}",
2709                     t
2710                 );
2711             }
2712
2713             ty::RawPtr(ty::TypeAndMut { ty: element_ty, .. }) | ty::Ref(_, element_ty, _) => {
2714                 vec![element_ty]
2715             }
2716
2717             ty::Array(element_ty, _) | ty::Slice(element_ty) => vec![element_ty],
2718
2719             ty::Tuple(ref tys) => {
2720                 // (T1, ..., Tn) -- meets any bound that all of T1...Tn meet
2721                 tys.iter().map(|k| k.expect_ty()).collect()
2722             }
2723
2724             ty::Closure(def_id, ref substs) => substs.upvar_tys(def_id, self.tcx()).collect(),
2725
2726             ty::Generator(def_id, ref substs, _) => {
2727                 let witness = substs.witness(def_id, self.tcx());
2728                 substs
2729                     .upvar_tys(def_id, self.tcx())
2730                     .chain(iter::once(witness))
2731                     .collect()
2732             }
2733
2734             ty::GeneratorWitness(types) => {
2735                 // This is sound because no regions in the witness can refer to
2736                 // the binder outside the witness. So we'll effectivly reuse
2737                 // the implicit binder around the witness.
2738                 types.skip_binder().to_vec()
2739             }
2740
2741             // for `PhantomData<T>`, we pass `T`
2742             ty::Adt(def, substs) if def.is_phantom_data() => substs.types().collect(),
2743
2744             ty::Adt(def, substs) => def.all_fields().map(|f| f.ty(self.tcx(), substs)).collect(),
2745
2746             ty::Opaque(def_id, substs) => {
2747                 // We can resolve the `impl Trait` to its concrete type,
2748                 // which enforces a DAG between the functions requiring
2749                 // the auto trait bounds in question.
2750                 vec![self.tcx().type_of(def_id).subst(self.tcx(), substs)]
2751             }
2752         }
2753     }
2754
2755     fn collect_predicates_for_types(
2756         &mut self,
2757         param_env: ty::ParamEnv<'tcx>,
2758         cause: ObligationCause<'tcx>,
2759         recursion_depth: usize,
2760         trait_def_id: DefId,
2761         types: ty::Binder<Vec<Ty<'tcx>>>,
2762     ) -> Vec<PredicateObligation<'tcx>> {
2763         // Because the types were potentially derived from
2764         // higher-ranked obligations they may reference late-bound
2765         // regions. For example, `for<'a> Foo<&'a int> : Copy` would
2766         // yield a type like `for<'a> &'a int`. In general, we
2767         // maintain the invariant that we never manipulate bound
2768         // regions, so we have to process these bound regions somehow.
2769         //
2770         // The strategy is to:
2771         //
2772         // 1. Instantiate those regions to placeholder regions (e.g.,
2773         //    `for<'a> &'a int` becomes `&0 int`.
2774         // 2. Produce something like `&'0 int : Copy`
2775         // 3. Re-bind the regions back to `for<'a> &'a int : Copy`
2776
2777         types
2778             .skip_binder()
2779             .into_iter()
2780             .flat_map(|ty| {
2781                 // binder moved -\
2782                 let ty: ty::Binder<Ty<'tcx>> = ty::Binder::bind(ty); // <----/
2783
2784                 self.infcx.in_snapshot(|_| {
2785                     let (skol_ty, _) = self.infcx
2786                         .replace_bound_vars_with_placeholders(&ty);
2787                     let Normalized {
2788                         value: normalized_ty,
2789                         mut obligations,
2790                     } = project::normalize_with_depth(
2791                         self,
2792                         param_env,
2793                         cause.clone(),
2794                         recursion_depth,
2795                         &skol_ty,
2796                     );
2797                     let skol_obligation = self.tcx().predicate_for_trait_def(
2798                         param_env,
2799                         cause.clone(),
2800                         trait_def_id,
2801                         recursion_depth,
2802                         normalized_ty,
2803                         &[],
2804                     );
2805                     obligations.push(skol_obligation);
2806                     obligations
2807                 })
2808             })
2809             .collect()
2810     }
2811
2812     ///////////////////////////////////////////////////////////////////////////
2813     // CONFIRMATION
2814     //
2815     // Confirmation unifies the output type parameters of the trait
2816     // with the values found in the obligation, possibly yielding a
2817     // type error.  See the [rustc guide] for more details.
2818     //
2819     // [rustc guide]:
2820     // https://rust-lang.github.io/rustc-guide/traits/resolution.html#confirmation
2821
2822     fn confirm_candidate(
2823         &mut self,
2824         obligation: &TraitObligation<'tcx>,
2825         candidate: SelectionCandidate<'tcx>,
2826     ) -> Result<Selection<'tcx>, SelectionError<'tcx>> {
2827         debug!("confirm_candidate({:?}, {:?})", obligation, candidate);
2828
2829         match candidate {
2830             BuiltinCandidate { has_nested } => {
2831                 let data = self.confirm_builtin_candidate(obligation, has_nested);
2832                 Ok(VtableBuiltin(data))
2833             }
2834
2835             ParamCandidate(param) => {
2836                 let obligations = self.confirm_param_candidate(obligation, param);
2837                 Ok(VtableParam(obligations))
2838             }
2839
2840             ImplCandidate(impl_def_id) => Ok(VtableImpl(self.confirm_impl_candidate(
2841                 obligation,
2842                 impl_def_id,
2843             ))),
2844
2845             AutoImplCandidate(trait_def_id) => {
2846                 let data = self.confirm_auto_impl_candidate(obligation, trait_def_id);
2847                 Ok(VtableAutoImpl(data))
2848             }
2849
2850             ProjectionCandidate => {
2851                 self.confirm_projection_candidate(obligation);
2852                 Ok(VtableParam(Vec::new()))
2853             }
2854
2855             ClosureCandidate => {
2856                 let vtable_closure = self.confirm_closure_candidate(obligation)?;
2857                 Ok(VtableClosure(vtable_closure))
2858             }
2859
2860             GeneratorCandidate => {
2861                 let vtable_generator = self.confirm_generator_candidate(obligation)?;
2862                 Ok(VtableGenerator(vtable_generator))
2863             }
2864
2865             FnPointerCandidate => {
2866                 let data = self.confirm_fn_pointer_candidate(obligation)?;
2867                 Ok(VtableFnPointer(data))
2868             }
2869
2870             TraitAliasCandidate(alias_def_id) => {
2871                 let data = self.confirm_trait_alias_candidate(obligation, alias_def_id);
2872                 Ok(VtableTraitAlias(data))
2873             }
2874
2875             ObjectCandidate => {
2876                 let data = self.confirm_object_candidate(obligation);
2877                 Ok(VtableObject(data))
2878             }
2879
2880             BuiltinObjectCandidate => {
2881                 // This indicates something like `(Trait+Send) :
2882                 // Send`. In this case, we know that this holds
2883                 // because that's what the object type is telling us,
2884                 // and there's really no additional obligations to
2885                 // prove and no types in particular to unify etc.
2886                 Ok(VtableParam(Vec::new()))
2887             }
2888
2889             BuiltinUnsizeCandidate => {
2890                 let data = self.confirm_builtin_unsize_candidate(obligation)?;
2891                 Ok(VtableBuiltin(data))
2892             }
2893         }
2894     }
2895
2896     fn confirm_projection_candidate(&mut self, obligation: &TraitObligation<'tcx>) {
2897         self.infcx.in_snapshot(|snapshot| {
2898             let result =
2899                 self.match_projection_obligation_against_definition_bounds(
2900                     obligation,
2901                     snapshot,
2902                 );
2903             assert!(result);
2904         })
2905     }
2906
2907     fn confirm_param_candidate(
2908         &mut self,
2909         obligation: &TraitObligation<'tcx>,
2910         param: ty::PolyTraitRef<'tcx>,
2911     ) -> Vec<PredicateObligation<'tcx>> {
2912         debug!("confirm_param_candidate({:?},{:?})", obligation, param);
2913
2914         // During evaluation, we already checked that this
2915         // where-clause trait-ref could be unified with the obligation
2916         // trait-ref. Repeat that unification now without any
2917         // transactional boundary; it should not fail.
2918         match self.match_where_clause_trait_ref(obligation, param.clone()) {
2919             Ok(obligations) => obligations,
2920             Err(()) => {
2921                 bug!(
2922                     "Where clause `{:?}` was applicable to `{:?}` but now is not",
2923                     param,
2924                     obligation
2925                 );
2926             }
2927         }
2928     }
2929
2930     fn confirm_builtin_candidate(
2931         &mut self,
2932         obligation: &TraitObligation<'tcx>,
2933         has_nested: bool,
2934     ) -> VtableBuiltinData<PredicateObligation<'tcx>> {
2935         debug!(
2936             "confirm_builtin_candidate({:?}, {:?})",
2937             obligation, has_nested
2938         );
2939
2940         let lang_items = self.tcx().lang_items();
2941         let obligations = if has_nested {
2942             let trait_def = obligation.predicate.def_id();
2943             let conditions = if Some(trait_def) == lang_items.sized_trait() {
2944                 self.sized_conditions(obligation)
2945             } else if Some(trait_def) == lang_items.copy_trait() {
2946                 self.copy_clone_conditions(obligation)
2947             } else if Some(trait_def) == lang_items.clone_trait() {
2948                 self.copy_clone_conditions(obligation)
2949             } else {
2950                 bug!("unexpected builtin trait {:?}", trait_def)
2951             };
2952             let nested = match conditions {
2953                 BuiltinImplConditions::Where(nested) => nested,
2954                 _ => bug!(
2955                     "obligation {:?} had matched a builtin impl but now doesn't",
2956                     obligation
2957                 ),
2958             };
2959
2960             let cause = obligation.derived_cause(BuiltinDerivedObligation);
2961             self.collect_predicates_for_types(
2962                 obligation.param_env,
2963                 cause,
2964                 obligation.recursion_depth + 1,
2965                 trait_def,
2966                 nested,
2967             )
2968         } else {
2969             vec![]
2970         };
2971
2972         debug!("confirm_builtin_candidate: obligations={:?}", obligations);
2973
2974         VtableBuiltinData {
2975             nested: obligations,
2976         }
2977     }
2978
2979     /// This handles the case where a `auto trait Foo` impl is being used.
2980     /// The idea is that the impl applies to `X : Foo` if the following conditions are met:
2981     ///
2982     /// 1. For each constituent type `Y` in `X`, `Y : Foo` holds
2983     /// 2. For each where-clause `C` declared on `Foo`, `[Self => X] C` holds.
2984     fn confirm_auto_impl_candidate(
2985         &mut self,
2986         obligation: &TraitObligation<'tcx>,
2987         trait_def_id: DefId,
2988     ) -> VtableAutoImplData<PredicateObligation<'tcx>> {
2989         debug!(
2990             "confirm_auto_impl_candidate({:?}, {:?})",
2991             obligation, trait_def_id
2992         );
2993
2994         let types = obligation.predicate.map_bound(|inner| {
2995             let self_ty = self.infcx.shallow_resolve(inner.self_ty());
2996             self.constituent_types_for_ty(self_ty)
2997         });
2998         self.vtable_auto_impl(obligation, trait_def_id, types)
2999     }
3000
3001     /// See `confirm_auto_impl_candidate`.
3002     fn vtable_auto_impl(
3003         &mut self,
3004         obligation: &TraitObligation<'tcx>,
3005         trait_def_id: DefId,
3006         nested: ty::Binder<Vec<Ty<'tcx>>>,
3007     ) -> VtableAutoImplData<PredicateObligation<'tcx>> {
3008         debug!("vtable_auto_impl: nested={:?}", nested);
3009
3010         let cause = obligation.derived_cause(BuiltinDerivedObligation);
3011         let mut obligations = self.collect_predicates_for_types(
3012             obligation.param_env,
3013             cause,
3014             obligation.recursion_depth + 1,
3015             trait_def_id,
3016             nested,
3017         );
3018
3019         let trait_obligations: Vec<PredicateObligation<'_>> = self.infcx.in_snapshot(|_| {
3020             let poly_trait_ref = obligation.predicate.to_poly_trait_ref();
3021             let (trait_ref, _) = self.infcx
3022                 .replace_bound_vars_with_placeholders(&poly_trait_ref);
3023             let cause = obligation.derived_cause(ImplDerivedObligation);
3024             self.impl_or_trait_obligations(
3025                 cause,
3026                 obligation.recursion_depth + 1,
3027                 obligation.param_env,
3028                 trait_def_id,
3029                 &trait_ref.substs,
3030             )
3031         });
3032
3033         // Adds the predicates from the trait.  Note that this contains a `Self: Trait`
3034         // predicate as usual.  It won't have any effect since auto traits are coinductive.
3035         obligations.extend(trait_obligations);
3036
3037         debug!("vtable_auto_impl: obligations={:?}", obligations);
3038
3039         VtableAutoImplData {
3040             trait_def_id,
3041             nested: obligations,
3042         }
3043     }
3044
3045     fn confirm_impl_candidate(
3046         &mut self,
3047         obligation: &TraitObligation<'tcx>,
3048         impl_def_id: DefId,
3049     ) -> VtableImplData<'tcx, PredicateObligation<'tcx>> {
3050         debug!("confirm_impl_candidate({:?},{:?})", obligation, impl_def_id);
3051
3052         // First, create the substitutions by matching the impl again,
3053         // this time not in a probe.
3054         self.infcx.in_snapshot(|snapshot| {
3055             let substs = self.rematch_impl(impl_def_id, obligation, snapshot);
3056             debug!("confirm_impl_candidate: substs={:?}", substs);
3057             let cause = obligation.derived_cause(ImplDerivedObligation);
3058             self.vtable_impl(
3059                 impl_def_id,
3060                 substs,
3061                 cause,
3062                 obligation.recursion_depth + 1,
3063                 obligation.param_env,
3064             )
3065         })
3066     }
3067
3068     fn vtable_impl(
3069         &mut self,
3070         impl_def_id: DefId,
3071         mut substs: Normalized<'tcx, SubstsRef<'tcx>>,
3072         cause: ObligationCause<'tcx>,
3073         recursion_depth: usize,
3074         param_env: ty::ParamEnv<'tcx>,
3075     ) -> VtableImplData<'tcx, PredicateObligation<'tcx>> {
3076         debug!(
3077             "vtable_impl(impl_def_id={:?}, substs={:?}, recursion_depth={})",
3078             impl_def_id, substs, recursion_depth,
3079         );
3080
3081         let mut impl_obligations = self.impl_or_trait_obligations(
3082             cause,
3083             recursion_depth,
3084             param_env,
3085             impl_def_id,
3086             &substs.value,
3087         );
3088
3089         debug!(
3090             "vtable_impl: impl_def_id={:?} impl_obligations={:?}",
3091             impl_def_id, impl_obligations
3092         );
3093
3094         // Because of RFC447, the impl-trait-ref and obligations
3095         // are sufficient to determine the impl substs, without
3096         // relying on projections in the impl-trait-ref.
3097         //
3098         // e.g., `impl<U: Tr, V: Iterator<Item=U>> Foo<<U as Tr>::T> for V`
3099         impl_obligations.append(&mut substs.obligations);
3100
3101         VtableImplData {
3102             impl_def_id,
3103             substs: substs.value,
3104             nested: impl_obligations,
3105         }
3106     }
3107
3108     fn confirm_object_candidate(
3109         &mut self,
3110         obligation: &TraitObligation<'tcx>,
3111     ) -> VtableObjectData<'tcx, PredicateObligation<'tcx>> {
3112         debug!("confirm_object_candidate({:?})", obligation);
3113
3114         // FIXME(nmatsakis) skipping binder here seems wrong -- we should
3115         // probably flatten the binder from the obligation and the binder
3116         // from the object. Have to try to make a broken test case that
3117         // results.
3118         let self_ty = self.infcx
3119             .shallow_resolve(*obligation.self_ty().skip_binder());
3120         let poly_trait_ref = match self_ty.sty {
3121             ty::Dynamic(ref data, ..) =>
3122                 data.principal().unwrap_or_else(|| {
3123                     span_bug!(obligation.cause.span, "object candidate with no principal")
3124                 }).with_self_ty(self.tcx(), self_ty),
3125             _ => span_bug!(obligation.cause.span, "object candidate with non-object"),
3126         };
3127
3128         let mut upcast_trait_ref = None;
3129         let mut nested = vec![];
3130         let vtable_base;
3131
3132         {
3133             let tcx = self.tcx();
3134
3135             // We want to find the first supertrait in the list of
3136             // supertraits that we can unify with, and do that
3137             // unification. We know that there is exactly one in the list
3138             // where we can unify because otherwise select would have
3139             // reported an ambiguity. (When we do find a match, also
3140             // record it for later.)
3141             let nonmatching = util::supertraits(tcx, poly_trait_ref).take_while(
3142                 |&t| match self.infcx.commit_if_ok(|_| self.match_poly_trait_ref(obligation, t)) {
3143                     Ok(obligations) => {
3144                         upcast_trait_ref = Some(t);
3145                         nested.extend(obligations);
3146                         false
3147                     }
3148                     Err(_) => true,
3149                 },
3150             );
3151
3152             // Additionally, for each of the nonmatching predicates that
3153             // we pass over, we sum up the set of number of vtable
3154             // entries, so that we can compute the offset for the selected
3155             // trait.
3156             vtable_base = nonmatching.map(|t| tcx.count_own_vtable_entries(t)).sum();
3157         }
3158
3159         VtableObjectData {
3160             upcast_trait_ref: upcast_trait_ref.unwrap(),
3161             vtable_base,
3162             nested,
3163         }
3164     }
3165
3166     fn confirm_fn_pointer_candidate(
3167         &mut self,
3168         obligation: &TraitObligation<'tcx>,
3169     ) -> Result<VtableFnPointerData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3170         debug!("confirm_fn_pointer_candidate({:?})", obligation);
3171
3172         // Okay to skip binder; it is reintroduced below.
3173         let self_ty = self.infcx
3174             .shallow_resolve(*obligation.self_ty().skip_binder());
3175         let sig = self_ty.fn_sig(self.tcx());
3176         let trait_ref = self.tcx()
3177             .closure_trait_ref_and_return_type(
3178                 obligation.predicate.def_id(),
3179                 self_ty,
3180                 sig,
3181                 util::TupleArgumentsFlag::Yes,
3182             )
3183             .map_bound(|(trait_ref, _)| trait_ref);
3184
3185         let Normalized {
3186             value: trait_ref,
3187             obligations,
3188         } = project::normalize_with_depth(
3189             self,
3190             obligation.param_env,
3191             obligation.cause.clone(),
3192             obligation.recursion_depth + 1,
3193             &trait_ref,
3194         );
3195
3196         self.confirm_poly_trait_refs(
3197             obligation.cause.clone(),
3198             obligation.param_env,
3199             obligation.predicate.to_poly_trait_ref(),
3200             trait_ref,
3201         )?;
3202         Ok(VtableFnPointerData {
3203             fn_ty: self_ty,
3204             nested: obligations,
3205         })
3206     }
3207
3208     fn confirm_trait_alias_candidate(
3209         &mut self,
3210         obligation: &TraitObligation<'tcx>,
3211         alias_def_id: DefId,
3212     ) -> VtableTraitAliasData<'tcx, PredicateObligation<'tcx>> {
3213         debug!(
3214             "confirm_trait_alias_candidate({:?}, {:?})",
3215             obligation, alias_def_id
3216         );
3217
3218         self.infcx.in_snapshot(|_| {
3219             let (predicate, _) = self.infcx()
3220                 .replace_bound_vars_with_placeholders(&obligation.predicate);
3221             let trait_ref = predicate.trait_ref;
3222             let trait_def_id = trait_ref.def_id;
3223             let substs = trait_ref.substs;
3224
3225             let trait_obligations = self.impl_or_trait_obligations(
3226                 obligation.cause.clone(),
3227                 obligation.recursion_depth,
3228                 obligation.param_env,
3229                 trait_def_id,
3230                 &substs,
3231             );
3232
3233             debug!(
3234                 "confirm_trait_alias_candidate: trait_def_id={:?} trait_obligations={:?}",
3235                 trait_def_id, trait_obligations
3236             );
3237
3238             VtableTraitAliasData {
3239                 alias_def_id,
3240                 substs: substs,
3241                 nested: trait_obligations,
3242             }
3243         })
3244     }
3245
3246     fn confirm_generator_candidate(
3247         &mut self,
3248         obligation: &TraitObligation<'tcx>,
3249     ) -> Result<VtableGeneratorData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3250         // Okay to skip binder because the substs on generator types never
3251         // touch bound regions, they just capture the in-scope
3252         // type/region parameters.
3253         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
3254         let (generator_def_id, substs) = match self_ty.sty {
3255             ty::Generator(id, substs, _) => (id, substs),
3256             _ => bug!("closure candidate for non-closure {:?}", obligation),
3257         };
3258
3259         debug!(
3260             "confirm_generator_candidate({:?},{:?},{:?})",
3261             obligation, generator_def_id, substs
3262         );
3263
3264         let trait_ref = self.generator_trait_ref_unnormalized(obligation, generator_def_id, substs);
3265         let Normalized {
3266             value: trait_ref,
3267             mut obligations,
3268         } = normalize_with_depth(
3269             self,
3270             obligation.param_env,
3271             obligation.cause.clone(),
3272             obligation.recursion_depth + 1,
3273             &trait_ref,
3274         );
3275
3276         debug!(
3277             "confirm_generator_candidate(generator_def_id={:?}, \
3278              trait_ref={:?}, obligations={:?})",
3279             generator_def_id, trait_ref, obligations
3280         );
3281
3282         obligations.extend(self.confirm_poly_trait_refs(
3283             obligation.cause.clone(),
3284             obligation.param_env,
3285             obligation.predicate.to_poly_trait_ref(),
3286             trait_ref,
3287         )?);
3288
3289         Ok(VtableGeneratorData {
3290             generator_def_id: generator_def_id,
3291             substs: substs.clone(),
3292             nested: obligations,
3293         })
3294     }
3295
3296     fn confirm_closure_candidate(
3297         &mut self,
3298         obligation: &TraitObligation<'tcx>,
3299     ) -> Result<VtableClosureData<'tcx, PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3300         debug!("confirm_closure_candidate({:?})", obligation);
3301
3302         let kind = self.tcx()
3303             .lang_items()
3304             .fn_trait_kind(obligation.predicate.def_id())
3305             .unwrap_or_else(|| bug!("closure candidate for non-fn trait {:?}", obligation));
3306
3307         // Okay to skip binder because the substs on closure types never
3308         // touch bound regions, they just capture the in-scope
3309         // type/region parameters.
3310         let self_ty = self.infcx.shallow_resolve(*obligation.self_ty().skip_binder());
3311         let (closure_def_id, substs) = match self_ty.sty {
3312             ty::Closure(id, substs) => (id, substs),
3313             _ => bug!("closure candidate for non-closure {:?}", obligation),
3314         };
3315
3316         let trait_ref = self.closure_trait_ref_unnormalized(obligation, closure_def_id, substs);
3317         let Normalized {
3318             value: trait_ref,
3319             mut obligations,
3320         } = normalize_with_depth(
3321             self,
3322             obligation.param_env,
3323             obligation.cause.clone(),
3324             obligation.recursion_depth + 1,
3325             &trait_ref,
3326         );
3327
3328         debug!(
3329             "confirm_closure_candidate(closure_def_id={:?}, trait_ref={:?}, obligations={:?})",
3330             closure_def_id, trait_ref, obligations
3331         );
3332
3333         obligations.extend(self.confirm_poly_trait_refs(
3334             obligation.cause.clone(),
3335             obligation.param_env,
3336             obligation.predicate.to_poly_trait_ref(),
3337             trait_ref,
3338         )?);
3339
3340         // FIXME: chalk
3341         if !self.tcx().sess.opts.debugging_opts.chalk {
3342             obligations.push(Obligation::new(
3343                 obligation.cause.clone(),
3344                 obligation.param_env,
3345                 ty::Predicate::ClosureKind(closure_def_id, substs, kind),
3346             ));
3347         }
3348
3349         Ok(VtableClosureData {
3350             closure_def_id,
3351             substs: substs.clone(),
3352             nested: obligations,
3353         })
3354     }
3355
3356     /// In the case of closure types and fn pointers,
3357     /// we currently treat the input type parameters on the trait as
3358     /// outputs. This means that when we have a match we have only
3359     /// considered the self type, so we have to go back and make sure
3360     /// to relate the argument types too. This is kind of wrong, but
3361     /// since we control the full set of impls, also not that wrong,
3362     /// and it DOES yield better error messages (since we don't report
3363     /// errors as if there is no applicable impl, but rather report
3364     /// errors are about mismatched argument types.
3365     ///
3366     /// Here is an example. Imagine we have a closure expression
3367     /// and we desugared it so that the type of the expression is
3368     /// `Closure`, and `Closure` expects an int as argument. Then it
3369     /// is "as if" the compiler generated this impl:
3370     ///
3371     ///     impl Fn(int) for Closure { ... }
3372     ///
3373     /// Now imagine our obligation is `Fn(usize) for Closure`. So far
3374     /// we have matched the self type `Closure`. At this point we'll
3375     /// compare the `int` to `usize` and generate an error.
3376     ///
3377     /// Note that this checking occurs *after* the impl has selected,
3378     /// because these output type parameters should not affect the
3379     /// selection of the impl. Therefore, if there is a mismatch, we
3380     /// report an error to the user.
3381     fn confirm_poly_trait_refs(
3382         &mut self,
3383         obligation_cause: ObligationCause<'tcx>,
3384         obligation_param_env: ty::ParamEnv<'tcx>,
3385         obligation_trait_ref: ty::PolyTraitRef<'tcx>,
3386         expected_trait_ref: ty::PolyTraitRef<'tcx>,
3387     ) -> Result<Vec<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3388         let obligation_trait_ref = obligation_trait_ref.clone();
3389         self.infcx
3390             .at(&obligation_cause, obligation_param_env)
3391             .sup(obligation_trait_ref, expected_trait_ref)
3392             .map(|InferOk { obligations, .. }| obligations)
3393             .map_err(|e| OutputTypeParameterMismatch(expected_trait_ref, obligation_trait_ref, e))
3394     }
3395
3396     fn confirm_builtin_unsize_candidate(
3397         &mut self,
3398         obligation: &TraitObligation<'tcx>,
3399     ) -> Result<VtableBuiltinData<PredicateObligation<'tcx>>, SelectionError<'tcx>> {
3400         let tcx = self.tcx();
3401
3402         // assemble_candidates_for_unsizing should ensure there are no late bound
3403         // regions here. See the comment there for more details.
3404         let source = self.infcx
3405             .shallow_resolve(obligation.self_ty().no_bound_vars().unwrap());
3406         let target = obligation
3407             .predicate
3408             .skip_binder()
3409             .trait_ref
3410             .substs
3411             .type_at(1);
3412         let target = self.infcx.shallow_resolve(target);
3413
3414         debug!(
3415             "confirm_builtin_unsize_candidate(source={:?}, target={:?})",
3416             source, target
3417         );
3418
3419         let mut nested = vec![];
3420         match (&source.sty, &target.sty) {
3421             // Trait+Kx+'a -> Trait+Ky+'b (upcasts).
3422             (&ty::Dynamic(ref data_a, r_a), &ty::Dynamic(ref data_b, r_b)) => {
3423                 // See assemble_candidates_for_unsizing for more info.
3424                 let existential_predicates = data_a.map_bound(|data_a| {
3425                     let iter =
3426                         data_a.principal().map(|x| ty::ExistentialPredicate::Trait(x))
3427                         .into_iter().chain(
3428                             data_a
3429                                 .projection_bounds()
3430                                 .map(|x| ty::ExistentialPredicate::Projection(x)),
3431                         )
3432                         .chain(
3433                             data_b
3434                                 .auto_traits()
3435                                 .map(ty::ExistentialPredicate::AutoTrait),
3436                         );
3437                     tcx.mk_existential_predicates(iter)
3438                 });
3439                 let source_trait = tcx.mk_dynamic(existential_predicates, r_b);
3440
3441                 // Require that the traits involved in this upcast are **equal**;
3442                 // only the **lifetime bound** is changed.
3443                 //
3444                 // FIXME: This condition is arguably too strong -- it
3445                 // would suffice for the source trait to be a
3446                 // *subtype* of the target trait. In particular
3447                 // changing from something like `for<'a, 'b> Foo<'a,
3448                 // 'b>` to `for<'a> Foo<'a, 'a>` should be
3449                 // permitted. And, indeed, in the in commit
3450                 // 904a0bde93f0348f69914ee90b1f8b6e4e0d7cbc, this
3451                 // condition was loosened. However, when the leak check was added
3452                 // back, using subtype here actually guies the coercion code in
3453                 // such a way that it accepts `old-lub-glb-object.rs`. This is probably
3454                 // a good thing, but I've modified this to `.eq` because I want
3455                 // to continue rejecting that test (as we have done for quite some time)
3456                 // before we are firmly comfortable with what our behavior
3457                 // should be there. -nikomatsakis
3458                 let InferOk { obligations, .. } = self.infcx
3459                     .at(&obligation.cause, obligation.param_env)
3460                     .eq(target, source_trait) // FIXME -- see below
3461                     .map_err(|_| Unimplemented)?;
3462                 nested.extend(obligations);
3463
3464                 // Register one obligation for 'a: 'b.
3465                 let cause = ObligationCause::new(
3466                     obligation.cause.span,
3467                     obligation.cause.body_id,
3468                     ObjectCastObligation(target),
3469                 );
3470                 let outlives = ty::OutlivesPredicate(r_a, r_b);
3471                 nested.push(Obligation::with_depth(
3472                     cause,
3473                     obligation.recursion_depth + 1,
3474                     obligation.param_env,
3475                     ty::Binder::bind(outlives).to_predicate(),
3476                 ));
3477             }
3478
3479             // T -> Trait.
3480             (_, &ty::Dynamic(ref data, r)) => {
3481                 let mut object_dids = data.auto_traits()
3482                     .chain(data.principal_def_id());
3483                 if let Some(did) = object_dids.find(|did| !tcx.is_object_safe(*did)) {
3484                     return Err(TraitNotObjectSafe(did));
3485                 }
3486
3487                 let cause = ObligationCause::new(
3488                     obligation.cause.span,
3489                     obligation.cause.body_id,
3490                     ObjectCastObligation(target),
3491                 );
3492
3493                 let predicate_to_obligation = |predicate| {
3494                     Obligation::with_depth(
3495                         cause.clone(),
3496                         obligation.recursion_depth + 1,
3497                         obligation.param_env,
3498                         predicate,
3499                     )
3500                 };
3501
3502                 // Create obligations:
3503                 //  - Casting T to Trait
3504                 //  - For all the various builtin bounds attached to the object cast. (In other
3505                 //  words, if the object type is Foo+Send, this would create an obligation for the
3506                 //  Send check.)
3507                 //  - Projection predicates
3508                 nested.extend(
3509                     data.iter()
3510                         .map(|d| predicate_to_obligation(d.with_self_ty(tcx, source))),
3511                 );
3512
3513                 // We can only make objects from sized types.
3514                 let tr = ty::TraitRef {
3515                     def_id: tcx.require_lang_item(lang_items::SizedTraitLangItem),
3516                     substs: tcx.mk_substs_trait(source, &[]),
3517                 };
3518                 nested.push(predicate_to_obligation(tr.to_predicate()));
3519
3520                 // If the type is `Foo+'a`, ensures that the type
3521                 // being cast to `Foo+'a` outlives `'a`:
3522                 let outlives = ty::OutlivesPredicate(source, r);
3523                 nested.push(predicate_to_obligation(
3524                     ty::Binder::dummy(outlives).to_predicate(),
3525                 ));
3526             }
3527
3528             // [T; n] -> [T].
3529             (&ty::Array(a, _), &ty::Slice(b)) => {
3530                 let InferOk { obligations, .. } = self.infcx
3531                     .at(&obligation.cause, obligation.param_env)
3532                     .eq(b, a)
3533                     .map_err(|_| Unimplemented)?;
3534                 nested.extend(obligations);
3535             }
3536
3537             // Struct<T> -> Struct<U>.
3538             (&ty::Adt(def, substs_a), &ty::Adt(_, substs_b)) => {
3539                 let fields = def.all_fields()
3540                     .map(|f| tcx.type_of(f.did))
3541                     .collect::<Vec<_>>();
3542
3543                 // The last field of the structure has to exist and contain type parameters.
3544                 let field = if let Some(&field) = fields.last() {
3545                     field
3546                 } else {
3547                     return Err(Unimplemented);
3548                 };
3549                 let mut ty_params = GrowableBitSet::new_empty();
3550                 let mut found = false;
3551                 for ty in field.walk() {
3552                     if let ty::Param(p) = ty.sty {
3553                         ty_params.insert(p.index as usize);
3554                         found = true;
3555                     }
3556                 }
3557                 if !found {
3558                     return Err(Unimplemented);
3559                 }
3560
3561                 // Replace type parameters used in unsizing with
3562                 // Error and ensure they do not affect any other fields.
3563                 // This could be checked after type collection for any struct
3564                 // with a potentially unsized trailing field.
3565                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3566                     if ty_params.contains(i) {
3567                         tcx.types.err.into()
3568                     } else {
3569                         k
3570                     }
3571                 });
3572                 let substs = tcx.mk_substs(params);
3573                 for &ty in fields.split_last().unwrap().1 {
3574                     if ty.subst(tcx, substs).references_error() {
3575                         return Err(Unimplemented);
3576                     }
3577                 }
3578
3579                 // Extract Field<T> and Field<U> from Struct<T> and Struct<U>.
3580                 let inner_source = field.subst(tcx, substs_a);
3581                 let inner_target = field.subst(tcx, substs_b);
3582
3583                 // Check that the source struct with the target's
3584                 // unsized parameters is equal to the target.
3585                 let params = substs_a.iter().enumerate().map(|(i, &k)| {
3586                     if ty_params.contains(i) {
3587                         substs_b.type_at(i).into()
3588                     } else {
3589                         k
3590                     }
3591                 });
3592                 let new_struct = tcx.mk_adt(def, tcx.mk_substs(params));
3593                 let InferOk { obligations, .. } = self.infcx
3594                     .at(&obligation.cause, obligation.param_env)
3595                     .eq(target, new_struct)
3596                     .map_err(|_| Unimplemented)?;
3597                 nested.extend(obligations);
3598
3599                 // Construct the nested Field<T>: Unsize<Field<U>> predicate.
3600                 nested.push(tcx.predicate_for_trait_def(
3601                     obligation.param_env,
3602                     obligation.cause.clone(),
3603                     obligation.predicate.def_id(),
3604                     obligation.recursion_depth + 1,
3605                     inner_source,
3606                     &[inner_target.into()],
3607                 ));
3608             }
3609
3610             // (.., T) -> (.., U).
3611             (&ty::Tuple(tys_a), &ty::Tuple(tys_b)) => {
3612                 assert_eq!(tys_a.len(), tys_b.len());
3613
3614                 // The last field of the tuple has to exist.
3615                 let (&a_last, a_mid) = if let Some(x) = tys_a.split_last() {
3616                     x
3617                 } else {
3618                     return Err(Unimplemented);
3619                 };
3620                 let &b_last = tys_b.last().unwrap();
3621
3622                 // Check that the source tuple with the target's
3623                 // last element is equal to the target.
3624                 let new_tuple = tcx.mk_tup(
3625                     a_mid.iter().map(|k| k.expect_ty()).chain(iter::once(b_last.expect_ty())),
3626                 );
3627                 let InferOk { obligations, .. } = self.infcx
3628                     .at(&obligation.cause, obligation.param_env)
3629                     .eq(target, new_tuple)
3630                     .map_err(|_| Unimplemented)?;
3631                 nested.extend(obligations);
3632
3633                 // Construct the nested T: Unsize<U> predicate.
3634                 nested.push(tcx.predicate_for_trait_def(
3635                     obligation.param_env,
3636                     obligation.cause.clone(),
3637                     obligation.predicate.def_id(),
3638                     obligation.recursion_depth + 1,
3639                     a_last.expect_ty(),
3640                     &[b_last.into()],
3641                 ));
3642             }
3643
3644             _ => bug!(),
3645         };
3646
3647         Ok(VtableBuiltinData { nested })
3648     }
3649
3650     ///////////////////////////////////////////////////////////////////////////
3651     // Matching
3652     //
3653     // Matching is a common path used for both evaluation and
3654     // confirmation.  It basically unifies types that appear in impls
3655     // and traits. This does affect the surrounding environment;
3656     // therefore, when used during evaluation, match routines must be
3657     // run inside of a `probe()` so that their side-effects are
3658     // contained.
3659
3660     fn rematch_impl(
3661         &mut self,
3662         impl_def_id: DefId,
3663         obligation: &TraitObligation<'tcx>,
3664         snapshot: &CombinedSnapshot<'_, 'tcx>,
3665     ) -> Normalized<'tcx, SubstsRef<'tcx>> {
3666         match self.match_impl(impl_def_id, obligation, snapshot) {
3667             Ok(substs) => substs,
3668             Err(()) => {
3669                 bug!(
3670                     "Impl {:?} was matchable against {:?} but now is not",
3671                     impl_def_id,
3672                     obligation
3673                 );
3674             }
3675         }
3676     }
3677
3678     fn match_impl(
3679         &mut self,
3680         impl_def_id: DefId,
3681         obligation: &TraitObligation<'tcx>,
3682         snapshot: &CombinedSnapshot<'_, 'tcx>,
3683     ) -> Result<Normalized<'tcx, SubstsRef<'tcx>>, ()> {
3684         let impl_trait_ref = self.tcx().impl_trait_ref(impl_def_id).unwrap();
3685
3686         // Before we create the substitutions and everything, first
3687         // consider a "quick reject". This avoids creating more types
3688         // and so forth that we need to.
3689         if self.fast_reject_trait_refs(obligation, &impl_trait_ref) {
3690             return Err(());
3691         }
3692
3693         let (skol_obligation, placeholder_map) = self.infcx()
3694             .replace_bound_vars_with_placeholders(&obligation.predicate);
3695         let skol_obligation_trait_ref = skol_obligation.trait_ref;
3696
3697         let impl_substs = self.infcx
3698             .fresh_substs_for_item(obligation.cause.span, impl_def_id);
3699
3700         let impl_trait_ref = impl_trait_ref.subst(self.tcx(), impl_substs);
3701
3702         let Normalized {
3703             value: impl_trait_ref,
3704             obligations: mut nested_obligations,
3705         } = project::normalize_with_depth(
3706             self,
3707             obligation.param_env,
3708             obligation.cause.clone(),
3709             obligation.recursion_depth + 1,
3710             &impl_trait_ref,
3711         );
3712
3713         debug!(
3714             "match_impl(impl_def_id={:?}, obligation={:?}, \
3715              impl_trait_ref={:?}, skol_obligation_trait_ref={:?})",
3716             impl_def_id, obligation, impl_trait_ref, skol_obligation_trait_ref
3717         );
3718
3719         let InferOk { obligations, .. } = self.infcx
3720             .at(&obligation.cause, obligation.param_env)
3721             .eq(skol_obligation_trait_ref, impl_trait_ref)
3722             .map_err(|e| debug!("match_impl: failed eq_trait_refs due to `{}`", e))?;
3723         nested_obligations.extend(obligations);
3724
3725         if let Err(e) = self.infcx.leak_check(false, &placeholder_map, snapshot) {
3726             debug!("match_impl: failed leak check due to `{}`", e);
3727             return Err(());
3728         }
3729
3730         debug!("match_impl: success impl_substs={:?}", impl_substs);
3731         Ok(Normalized {
3732             value: impl_substs,
3733             obligations: nested_obligations,
3734         })
3735     }
3736
3737     fn fast_reject_trait_refs(
3738         &mut self,
3739         obligation: &TraitObligation<'_>,
3740         impl_trait_ref: &ty::TraitRef<'_>,
3741     ) -> bool {
3742         // We can avoid creating type variables and doing the full
3743         // substitution if we find that any of the input types, when
3744         // simplified, do not match.
3745
3746         obligation
3747             .predicate
3748             .skip_binder()
3749             .input_types()
3750             .zip(impl_trait_ref.input_types())
3751             .any(|(obligation_ty, impl_ty)| {
3752                 let simplified_obligation_ty =
3753                     fast_reject::simplify_type(self.tcx(), obligation_ty, true);
3754                 let simplified_impl_ty = fast_reject::simplify_type(self.tcx(), impl_ty, false);
3755
3756                 simplified_obligation_ty.is_some()
3757                     && simplified_impl_ty.is_some()
3758                     && simplified_obligation_ty != simplified_impl_ty
3759             })
3760     }
3761
3762     /// Normalize `where_clause_trait_ref` and try to match it against
3763     /// `obligation`. If successful, return any predicates that
3764     /// result from the normalization. Normalization is necessary
3765     /// because where-clauses are stored in the parameter environment
3766     /// unnormalized.
3767     fn match_where_clause_trait_ref(
3768         &mut self,
3769         obligation: &TraitObligation<'tcx>,
3770         where_clause_trait_ref: ty::PolyTraitRef<'tcx>,
3771     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
3772         self.match_poly_trait_ref(obligation, where_clause_trait_ref)
3773     }
3774
3775     /// Returns `Ok` if `poly_trait_ref` being true implies that the
3776     /// obligation is satisfied.
3777     fn match_poly_trait_ref(
3778         &mut self,
3779         obligation: &TraitObligation<'tcx>,
3780         poly_trait_ref: ty::PolyTraitRef<'tcx>,
3781     ) -> Result<Vec<PredicateObligation<'tcx>>, ()> {
3782         debug!(
3783             "match_poly_trait_ref: obligation={:?} poly_trait_ref={:?}",
3784             obligation, poly_trait_ref
3785         );
3786
3787         self.infcx
3788             .at(&obligation.cause, obligation.param_env)
3789             .sup(obligation.predicate.to_poly_trait_ref(), poly_trait_ref)
3790             .map(|InferOk { obligations, .. }| obligations)
3791             .map_err(|_| ())
3792     }
3793
3794     ///////////////////////////////////////////////////////////////////////////
3795     // Miscellany
3796
3797     fn match_fresh_trait_refs(
3798         &self,
3799         previous: &ty::PolyTraitRef<'tcx>,
3800         current: &ty::PolyTraitRef<'tcx>,
3801     ) -> bool {
3802         let mut matcher = ty::_match::Match::new(self.tcx());
3803         matcher.relate(previous, current).is_ok()
3804     }
3805
3806     fn push_stack<'o>(
3807         &mut self,
3808         previous_stack: TraitObligationStackList<'o, 'tcx>,
3809         obligation: &'o TraitObligation<'tcx>,
3810     ) -> TraitObligationStack<'o, 'tcx> {
3811         let fresh_trait_ref = obligation
3812             .predicate
3813             .to_poly_trait_ref()
3814             .fold_with(&mut self.freshener);
3815
3816         let dfn = previous_stack.cache.next_dfn();
3817         let depth = previous_stack.depth() + 1;
3818         TraitObligationStack {
3819             obligation,
3820             fresh_trait_ref,
3821             reached_depth: Cell::new(depth),
3822             previous: previous_stack,
3823             dfn,
3824             depth,
3825         }
3826     }
3827
3828     fn closure_trait_ref_unnormalized(
3829         &mut self,
3830         obligation: &TraitObligation<'tcx>,
3831         closure_def_id: DefId,
3832         substs: ty::ClosureSubsts<'tcx>,
3833     ) -> ty::PolyTraitRef<'tcx> {
3834         debug!(
3835             "closure_trait_ref_unnormalized(obligation={:?}, closure_def_id={:?}, substs={:?})",
3836             obligation, closure_def_id, substs,
3837         );
3838         let closure_type = self.infcx.closure_sig(closure_def_id, substs);
3839
3840         debug!(
3841             "closure_trait_ref_unnormalized: closure_type = {:?}",
3842             closure_type
3843         );
3844
3845         // (1) Feels icky to skip the binder here, but OTOH we know
3846         // that the self-type is an unboxed closure type and hence is
3847         // in fact unparameterized (or at least does not reference any
3848         // regions bound in the obligation). Still probably some
3849         // refactoring could make this nicer.
3850         self.tcx()
3851             .closure_trait_ref_and_return_type(
3852                 obligation.predicate.def_id(),
3853                 obligation.predicate.skip_binder().self_ty(), // (1)
3854                 closure_type,
3855                 util::TupleArgumentsFlag::No,
3856             )
3857             .map_bound(|(trait_ref, _)| trait_ref)
3858     }
3859
3860     fn generator_trait_ref_unnormalized(
3861         &mut self,
3862         obligation: &TraitObligation<'tcx>,
3863         closure_def_id: DefId,
3864         substs: ty::GeneratorSubsts<'tcx>,
3865     ) -> ty::PolyTraitRef<'tcx> {
3866         let gen_sig = substs.poly_sig(closure_def_id, self.tcx());
3867
3868         // (1) Feels icky to skip the binder here, but OTOH we know
3869         // that the self-type is an generator type and hence is
3870         // in fact unparameterized (or at least does not reference any
3871         // regions bound in the obligation). Still probably some
3872         // refactoring could make this nicer.
3873
3874         self.tcx()
3875             .generator_trait_ref_and_outputs(
3876                 obligation.predicate.def_id(),
3877                 obligation.predicate.skip_binder().self_ty(), // (1)
3878                 gen_sig,
3879             )
3880             .map_bound(|(trait_ref, ..)| trait_ref)
3881     }
3882
3883     /// Returns the obligations that are implied by instantiating an
3884     /// impl or trait. The obligations are substituted and fully
3885     /// normalized. This is used when confirming an impl or default
3886     /// impl.
3887     fn impl_or_trait_obligations(
3888         &mut self,
3889         cause: ObligationCause<'tcx>,
3890         recursion_depth: usize,
3891         param_env: ty::ParamEnv<'tcx>,
3892         def_id: DefId,         // of impl or trait
3893         substs: SubstsRef<'tcx>,  // for impl or trait
3894     ) -> Vec<PredicateObligation<'tcx>> {
3895         debug!("impl_or_trait_obligations(def_id={:?})", def_id);
3896         let tcx = self.tcx();
3897
3898         // To allow for one-pass evaluation of the nested obligation,
3899         // each predicate must be preceded by the obligations required
3900         // to normalize it.
3901         // for example, if we have:
3902         //    impl<U: Iterator, V: Iterator<Item=U>> Foo for V where U::Item: Copy
3903         // the impl will have the following predicates:
3904         //    <V as Iterator>::Item = U,
3905         //    U: Iterator, U: Sized,
3906         //    V: Iterator, V: Sized,
3907         //    <U as Iterator>::Item: Copy
3908         // When we substitute, say, `V => IntoIter<u32>, U => $0`, the last
3909         // obligation will normalize to `<$0 as Iterator>::Item = $1` and
3910         // `$1: Copy`, so we must ensure the obligations are emitted in
3911         // that order.
3912         let predicates = tcx.predicates_of(def_id);
3913         assert_eq!(predicates.parent, None);
3914         let mut predicates: Vec<_> = predicates
3915             .predicates
3916             .iter()
3917             .flat_map(|(predicate, _)| {
3918                 let predicate = normalize_with_depth(
3919                     self,
3920                     param_env,
3921                     cause.clone(),
3922                     recursion_depth,
3923                     &predicate.subst(tcx, substs),
3924                 );
3925                 predicate.obligations.into_iter().chain(Some(Obligation {
3926                     cause: cause.clone(),
3927                     recursion_depth,
3928                     param_env,
3929                     predicate: predicate.value,
3930                 }))
3931             })
3932             .collect();
3933
3934         // We are performing deduplication here to avoid exponential blowups
3935         // (#38528) from happening, but the real cause of the duplication is
3936         // unknown. What we know is that the deduplication avoids exponential
3937         // amount of predicates being propagated when processing deeply nested
3938         // types.
3939         //
3940         // This code is hot enough that it's worth avoiding the allocation
3941         // required for the FxHashSet when possible. Special-casing lengths 0,
3942         // 1 and 2 covers roughly 75--80% of the cases.
3943         if predicates.len() <= 1 {
3944             // No possibility of duplicates.
3945         } else if predicates.len() == 2 {
3946             // Only two elements. Drop the second if they are equal.
3947             if predicates[0] == predicates[1] {
3948                 predicates.truncate(1);
3949             }
3950         } else {
3951             // Three or more elements. Use a general deduplication process.
3952             let mut seen = FxHashSet::default();
3953             predicates.retain(|i| seen.insert(i.clone()));
3954         }
3955
3956         predicates
3957     }
3958 }
3959
3960 impl<'tcx> TraitObligation<'tcx> {
3961     #[allow(unused_comparisons)]
3962     pub fn derived_cause(
3963         &self,
3964         variant: fn(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>,
3965     ) -> ObligationCause<'tcx> {
3966         /*!
3967          * Creates a cause for obligations that are derived from
3968          * `obligation` by a recursive search (e.g., for a builtin
3969          * bound, or eventually a `auto trait Foo`). If `obligation`
3970          * is itself a derived obligation, this is just a clone, but
3971          * otherwise we create a "derived obligation" cause so as to
3972          * keep track of the original root obligation for error
3973          * reporting.
3974          */
3975
3976         let obligation = self;
3977
3978         // NOTE(flaper87): As of now, it keeps track of the whole error
3979         // chain. Ideally, we should have a way to configure this either
3980         // by using -Z verbose or just a CLI argument.
3981         if obligation.recursion_depth >= 0 {
3982             let derived_cause = DerivedObligationCause {
3983                 parent_trait_ref: obligation.predicate.to_poly_trait_ref(),
3984                 parent_code: Rc::new(obligation.cause.code.clone()),
3985             };
3986             let derived_code = variant(derived_cause);
3987             ObligationCause::new(
3988                 obligation.cause.span,
3989                 obligation.cause.body_id,
3990                 derived_code,
3991             )
3992         } else {
3993             obligation.cause.clone()
3994         }
3995     }
3996 }
3997
3998 impl<'tcx> SelectionCache<'tcx> {
3999     /// Actually frees the underlying memory in contrast to what stdlib containers do on `clear`
4000     pub fn clear(&self) {
4001         *self.hashmap.borrow_mut() = Default::default();
4002     }
4003 }
4004
4005 impl<'tcx> EvaluationCache<'tcx> {
4006     /// Actually frees the underlying memory in contrast to what stdlib containers do on `clear`
4007     pub fn clear(&self) {
4008         *self.hashmap.borrow_mut() = Default::default();
4009     }
4010 }
4011
4012 impl<'o, 'tcx> TraitObligationStack<'o, 'tcx> {
4013     fn list(&'o self) -> TraitObligationStackList<'o, 'tcx> {
4014         TraitObligationStackList::with(self)
4015     }
4016
4017     fn cache(&self) -> &'o ProvisionalEvaluationCache<'tcx> {
4018         self.previous.cache
4019     }
4020
4021     fn iter(&'o self) -> TraitObligationStackList<'o, 'tcx> {
4022         self.list()
4023     }
4024
4025     /// Indicates that attempting to evaluate this stack entry
4026     /// required accessing something from the stack at depth `reached_depth`.
4027     fn update_reached_depth(&self, reached_depth: usize) {
4028         assert!(
4029             self.depth > reached_depth,
4030             "invoked `update_reached_depth` with something under this stack: \
4031              self.depth={} reached_depth={}",
4032             self.depth,
4033             reached_depth,
4034         );
4035         debug!("update_reached_depth(reached_depth={})", reached_depth);
4036         let mut p = self;
4037         while reached_depth < p.depth {
4038             debug!("update_reached_depth: marking {:?} as cycle participant", p.fresh_trait_ref);
4039             p.reached_depth.set(p.reached_depth.get().min(reached_depth));
4040             p = p.previous.head.unwrap();
4041         }
4042     }
4043 }
4044
4045 /// The "provisional evaluation cache" is used to store intermediate cache results
4046 /// when solving auto traits. Auto traits are unusual in that they can support
4047 /// cycles. So, for example, a "proof tree" like this would be ok:
4048 ///
4049 /// - `Foo<T>: Send` :-
4050 ///   - `Bar<T>: Send` :-
4051 ///     - `Foo<T>: Send` -- cycle, but ok
4052 ///   - `Baz<T>: Send`
4053 ///
4054 /// Here, to prove `Foo<T>: Send`, we have to prove `Bar<T>: Send` and
4055 /// `Baz<T>: Send`. Proving `Bar<T>: Send` in turn required `Foo<T>: Send`.
4056 /// For non-auto traits, this cycle would be an error, but for auto traits (because
4057 /// they are coinductive) it is considered ok.
4058 ///
4059 /// However, there is a complication: at the point where we have
4060 /// "proven" `Bar<T>: Send`, we have in fact only proven it
4061 /// *provisionally*. In particular, we proved that `Bar<T>: Send`
4062 /// *under the assumption* that `Foo<T>: Send`. But what if we later
4063 /// find out this assumption is wrong?  Specifically, we could
4064 /// encounter some kind of error proving `Baz<T>: Send`. In that case,
4065 /// `Bar<T>: Send` didn't turn out to be true.
4066 ///
4067 /// In Issue #60010, we found a bug in rustc where it would cache
4068 /// these intermediate results. This was fixed in #60444 by disabling
4069 /// *all* caching for things involved in a cycle -- in our example,
4070 /// that would mean we don't cache that `Bar<T>: Send`.  But this led
4071 /// to large slowdowns.
4072 ///
4073 /// Specifically, imagine this scenario, where proving `Baz<T>: Send`
4074 /// first requires proving `Bar<T>: Send` (which is true:
4075 ///
4076 /// - `Foo<T>: Send` :-
4077 ///   - `Bar<T>: Send` :-
4078 ///     - `Foo<T>: Send` -- cycle, but ok
4079 ///   - `Baz<T>: Send`
4080 ///     - `Bar<T>: Send` -- would be nice for this to be a cache hit!
4081 ///     - `*const T: Send` -- but what if we later encounter an error?
4082 ///
4083 /// The *provisional evaluation cache* resolves this issue. It stores
4084 /// cache results that we've proven but which were involved in a cycle
4085 /// in some way. We track the minimal stack depth (i.e., the
4086 /// farthest from the top of the stack) that we are dependent on.
4087 /// The idea is that the cache results within are all valid -- so long as
4088 /// none of the nodes in between the current node and the node at that minimum
4089 /// depth result in an error (in which case the cached results are just thrown away).
4090 ///
4091 /// During evaluation, we consult this provisional cache and rely on
4092 /// it. Accessing a cached value is considered equivalent to accessing
4093 /// a result at `reached_depth`, so it marks the *current* solution as
4094 /// provisional as well. If an error is encountered, we toss out any
4095 /// provisional results added from the subtree that encountered the
4096 /// error.  When we pop the node at `reached_depth` from the stack, we
4097 /// can commit all the things that remain in the provisional cache.
4098 struct ProvisionalEvaluationCache<'tcx> {
4099     /// next "depth first number" to issue -- just a counter
4100     dfn: Cell<usize>,
4101
4102     /// Stores the "coldest" depth (bottom of stack) reached by any of
4103     /// the evaluation entries. The idea here is that all things in the provisional
4104     /// cache are always dependent on *something* that is colder in the stack:
4105     /// therefore, if we add a new entry that is dependent on something *colder still*,
4106     /// we have to modify the depth for all entries at once.
4107     ///
4108     /// Example:
4109     ///
4110     /// Imagine we have a stack `A B C D E` (with `E` being the top of
4111     /// the stack).  We cache something with depth 2, which means that
4112     /// it was dependent on C.  Then we pop E but go on and process a
4113     /// new node F: A B C D F.  Now F adds something to the cache with
4114     /// depth 1, meaning it is dependent on B.  Our original cache
4115     /// entry is also dependent on B, because there is a path from E
4116     /// to C and then from C to F and from F to B.
4117     reached_depth: Cell<usize>,
4118
4119     /// Map from cache key to the provisionally evaluated thing.
4120     /// The cache entries contain the result but also the DFN in which they
4121     /// were added. The DFN is used to clear out values on failure.
4122     ///
4123     /// Imagine we have a stack like:
4124     ///
4125     /// - `A B C` and we add a cache for the result of C (DFN 2)
4126     /// - Then we have a stack `A B D` where `D` has DFN 3
4127     /// - We try to solve D by evaluating E: `A B D E` (DFN 4)
4128     /// - `E` generates various cache entries which have cyclic dependices on `B`
4129     ///   - `A B D E F` and so forth
4130     ///   - the DFN of `F` for example would be 5
4131     /// - then we determine that `E` is in error -- we will then clear
4132     ///   all cache values whose DFN is >= 4 -- in this case, that
4133     ///   means the cached value for `F`.
4134     map: RefCell<FxHashMap<ty::PolyTraitRef<'tcx>, ProvisionalEvaluation>>,
4135 }
4136
4137 /// A cache value for the provisional cache: contains the depth-first
4138 /// number (DFN) and result.
4139 #[derive(Copy, Clone, Debug)]
4140 struct ProvisionalEvaluation {
4141     from_dfn: usize,
4142     result: EvaluationResult,
4143 }
4144
4145 impl<'tcx> Default for ProvisionalEvaluationCache<'tcx> {
4146     fn default() -> Self {
4147         Self {
4148             dfn: Cell::new(0),
4149             reached_depth: Cell::new(std::usize::MAX),
4150             map: Default::default(),
4151         }
4152     }
4153 }
4154
4155 impl<'tcx> ProvisionalEvaluationCache<'tcx> {
4156     /// Get the next DFN in sequence (basically a counter).
4157     fn next_dfn(&self) -> usize {
4158         let result = self.dfn.get();
4159         self.dfn.set(result + 1);
4160         result
4161     }
4162
4163     /// Check the provisional cache for any result for
4164     /// `fresh_trait_ref`. If there is a hit, then you must consider
4165     /// it an access to the stack slots at depth
4166     /// `self.current_reached_depth()` and above.
4167     fn get_provisional(&self, fresh_trait_ref: ty::PolyTraitRef<'tcx>) -> Option<EvaluationResult> {
4168         debug!(
4169             "get_provisional(fresh_trait_ref={:?}) = {:#?} with reached-depth {}",
4170             fresh_trait_ref,
4171             self.map.borrow().get(&fresh_trait_ref),
4172             self.reached_depth.get(),
4173         );
4174         Some(self.map.borrow().get(&fresh_trait_ref)?.result)
4175     }
4176
4177     /// Current value of the `reached_depth` counter -- all the
4178     /// provisional cache entries are dependent on the item at this
4179     /// depth.
4180     fn current_reached_depth(&self) -> usize {
4181         self.reached_depth.get()
4182     }
4183
4184     /// Insert a provisional result into the cache. The result came
4185     /// from the node with the given DFN. It accessed a minimum depth
4186     /// of `reached_depth` to compute. It evaluated `fresh_trait_ref`
4187     /// and resulted in `result`.
4188     fn insert_provisional(
4189         &self,
4190         from_dfn: usize,
4191         reached_depth: usize,
4192         fresh_trait_ref: ty::PolyTraitRef<'tcx>,
4193         result: EvaluationResult,
4194     ) {
4195         debug!(
4196             "insert_provisional(from_dfn={}, reached_depth={}, fresh_trait_ref={:?}, result={:?})",
4197             from_dfn,
4198             reached_depth,
4199             fresh_trait_ref,
4200             result,
4201         );
4202         let r_d = self.reached_depth.get();
4203         self.reached_depth.set(r_d.min(reached_depth));
4204
4205         debug!("insert_provisional: reached_depth={:?}", self.reached_depth.get());
4206
4207         self.map.borrow_mut().insert(fresh_trait_ref, ProvisionalEvaluation { from_dfn, result });
4208     }
4209
4210     /// Invoked when the node with dfn `dfn` does not get a successful
4211     /// result.  This will clear out any provisional cache entries
4212     /// that were added since `dfn` was created. This is because the
4213     /// provisional entries are things which must assume that the
4214     /// things on the stack at the time of their creation succeeded --
4215     /// since the failing node is presently at the top of the stack,
4216     /// these provisional entries must either depend on it or some
4217     /// ancestor of it.
4218     fn on_failure(&self, dfn: usize) {
4219         debug!(
4220             "on_failure(dfn={:?})",
4221             dfn,
4222         );
4223         self.map.borrow_mut().retain(|key, eval| {
4224             if !eval.from_dfn >= dfn {
4225                 debug!("on_failure: removing {:?}", key);
4226                 false
4227             } else {
4228                 true
4229             }
4230         });
4231     }
4232
4233     /// Invoked when the node at depth `depth` completed without
4234     /// depending on anything higher in the stack (if that completion
4235     /// was a failure, then `on_failure` should have been invoked
4236     /// already). The callback `op` will be invoked for each
4237     /// provisional entry that we can now confirm.
4238     fn on_completion(
4239         &self,
4240         depth: usize,
4241         mut op: impl FnMut(ty::PolyTraitRef<'tcx>, EvaluationResult),
4242     ) {
4243         debug!(
4244             "on_completion(depth={}, reached_depth={})",
4245             depth,
4246             self.reached_depth.get(),
4247         );
4248
4249         if self.reached_depth.get() < depth {
4250             debug!("on_completion: did not yet reach depth to complete");
4251             return;
4252         }
4253
4254         for (fresh_trait_ref, eval) in self.map.borrow_mut().drain() {
4255             debug!(
4256                 "on_completion: fresh_trait_ref={:?} eval={:?}",
4257                 fresh_trait_ref,
4258                 eval,
4259             );
4260
4261             op(fresh_trait_ref, eval.result);
4262         }
4263
4264         self.reached_depth.set(std::usize::MAX);
4265     }
4266 }
4267
4268 #[derive(Copy, Clone)]
4269 struct TraitObligationStackList<'o, 'tcx> {
4270     cache: &'o ProvisionalEvaluationCache<'tcx>,
4271     head: Option<&'o TraitObligationStack<'o, 'tcx>>,
4272 }
4273
4274 impl<'o, 'tcx> TraitObligationStackList<'o, 'tcx> {
4275     fn empty(cache: &'o ProvisionalEvaluationCache<'tcx>) -> TraitObligationStackList<'o, 'tcx> {
4276         TraitObligationStackList { cache, head: None }
4277     }
4278
4279     fn with(r: &'o TraitObligationStack<'o, 'tcx>) -> TraitObligationStackList<'o, 'tcx> {
4280         TraitObligationStackList { cache: r.cache(), head: Some(r) }
4281     }
4282
4283     fn head(&self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
4284         self.head
4285     }
4286
4287     fn depth(&self) -> usize {
4288         if let Some(head) = self.head {
4289             head.depth
4290         } else {
4291             0
4292         }
4293     }
4294 }
4295
4296 impl<'o, 'tcx> Iterator for TraitObligationStackList<'o, 'tcx> {
4297     type Item = &'o TraitObligationStack<'o, 'tcx>;
4298
4299     fn next(&mut self) -> Option<&'o TraitObligationStack<'o, 'tcx>> {
4300         match self.head {
4301             Some(o) => {
4302                 *self = o.previous;
4303                 Some(o)
4304             }
4305             None => None,
4306         }
4307     }
4308 }
4309
4310 impl<'o, 'tcx> fmt::Debug for TraitObligationStack<'o, 'tcx> {
4311     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4312         write!(f, "TraitObligationStack({:?})", self.obligation)
4313     }
4314 }
4315
4316 #[derive(Clone, Eq, PartialEq)]
4317 pub struct WithDepNode<T> {
4318     dep_node: DepNodeIndex,
4319     cached_value: T,
4320 }
4321
4322 impl<T: Clone> WithDepNode<T> {
4323     pub fn new(dep_node: DepNodeIndex, cached_value: T) -> Self {
4324         WithDepNode {
4325             dep_node,
4326             cached_value,
4327         }
4328     }
4329
4330     pub fn get(&self, tcx: TyCtxt<'_>) -> T {
4331         tcx.dep_graph.read_index(self.dep_node);
4332         self.cached_value.clone()
4333     }
4334 }