]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/object_safety.rs
traits with self-containing supertraits are not object safe
[rust.git] / src / librustc / traits / object_safety.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! "Object safety" refers to the ability for a trait to be converted
12 //! to an object. In general, traits may only be converted to an
13 //! object if all of their methods meet certain criteria. In particular,
14 //! they must:
15 //!
16 //!   - have a suitable receiver from which we can extract a vtable;
17 //!   - not reference the erased type `Self` except for in this receiver;
18 //!   - not have generic type parameters
19
20 use super::elaborate_predicates;
21
22 use hir::def_id::DefId;
23 use traits;
24 use ty::{self, Ty, TyCtxt, TypeFoldable};
25 use ty::subst::Substs;
26 use syntax::ast;
27
28 #[derive(Clone, Debug, PartialEq, Eq, Hash)]
29 pub enum ObjectSafetyViolation {
30     /// Self : Sized declared on the trait
31     SizedSelf,
32
33     /// Supertrait reference references `Self` an in illegal location
34     /// (e.g. `trait Foo : Bar<Self>`)
35     SupertraitSelf,
36
37     /// Method has something illegal
38     Method(ast::Name, MethodViolationCode),
39 }
40
41 /// Reasons a method might not be object-safe.
42 #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
43 pub enum MethodViolationCode {
44     /// e.g., `fn foo()`
45     StaticMethod,
46
47     /// e.g., `fn foo(&self, x: Self)` or `fn foo(&self) -> Self`
48     ReferencesSelf,
49
50     /// e.g., `fn foo<A>()`
51     Generic,
52 }
53
54 impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
55     pub fn is_object_safe(self, trait_def_id: DefId) -> bool {
56         // Because we query yes/no results frequently, we keep a cache:
57         let def = self.lookup_trait_def(trait_def_id);
58
59         let result = def.object_safety().unwrap_or_else(|| {
60             let result = self.object_safety_violations(trait_def_id).is_empty();
61
62             // Record just a yes/no result in the cache; this is what is
63             // queried most frequently. Note that this may overwrite a
64             // previous result, but always with the same thing.
65             def.set_object_safety(result);
66
67             result
68         });
69
70         debug!("is_object_safe({:?}) = {}", trait_def_id, result);
71
72         result
73     }
74
75     /// Returns the object safety violations that affect
76     /// astconv - currently, Self in supertraits. This is needed
77     /// because `object_safety_violations` can't be used during
78     /// type collection.
79     pub fn astconv_object_safety_violations(self, trait_def_id: DefId)
80                                             -> Vec<ObjectSafetyViolation>
81     {
82         let mut violations = vec![];
83
84         for def_id in traits::supertrait_def_ids(self, trait_def_id) {
85             if self.supertraits_reference_self(def_id) {
86                 violations.push(ObjectSafetyViolation::SupertraitSelf);
87             }
88         }
89
90         debug!("astconv_object_safety_violations(trait_def_id={:?}) = {:?}",
91                trait_def_id,
92                violations);
93
94         violations
95     }
96
97     pub fn object_safety_violations(self, trait_def_id: DefId)
98                                     -> Vec<ObjectSafetyViolation>
99     {
100         traits::supertrait_def_ids(self, trait_def_id)
101             .flat_map(|def_id| self.object_safety_violations_for_trait(def_id))
102             .collect()
103     }
104
105     fn object_safety_violations_for_trait(self, trait_def_id: DefId)
106                                           -> Vec<ObjectSafetyViolation>
107     {
108         // Check methods for violations.
109         let mut violations: Vec<_> = self.associated_items(trait_def_id)
110             .filter(|item| item.kind == ty::AssociatedKind::Method)
111             .filter_map(|item| {
112                 self.object_safety_violation_for_method(trait_def_id, &item)
113                     .map(|code| ObjectSafetyViolation::Method(item.name, code))
114             }).collect();
115
116         // Check the trait itself.
117         if self.trait_has_sized_self(trait_def_id) {
118             violations.push(ObjectSafetyViolation::SizedSelf);
119         }
120         if self.supertraits_reference_self(trait_def_id) {
121             violations.push(ObjectSafetyViolation::SupertraitSelf);
122         }
123
124         debug!("object_safety_violations_for_trait(trait_def_id={:?}) = {:?}",
125                trait_def_id,
126                violations);
127
128         violations
129     }
130
131     fn supertraits_reference_self(self, trait_def_id: DefId) -> bool {
132         let trait_ref = ty::Binder(ty::TraitRef {
133             def_id: trait_def_id,
134             substs: Substs::identity_for_item(self, trait_def_id)
135         });
136         let predicates = self.item_super_predicates(trait_def_id);
137         predicates
138             .predicates
139             .into_iter()
140             .map(|predicate| predicate.subst_supertrait(self, &trait_ref))
141             .any(|predicate| {
142                 match predicate {
143                     ty::Predicate::Trait(ref data) => {
144                         // In the case of a trait predicate, we can skip the "self" type.
145                         data.skip_binder().input_types().skip(1).any(|t| t.has_self_ty())
146                     }
147                     ty::Predicate::Projection(..) |
148                     ty::Predicate::WellFormed(..) |
149                     ty::Predicate::ObjectSafe(..) |
150                     ty::Predicate::TypeOutlives(..) |
151                     ty::Predicate::RegionOutlives(..) |
152                     ty::Predicate::ClosureKind(..) |
153                     ty::Predicate::Equate(..) => {
154                         false
155                     }
156                 }
157             })
158     }
159
160     fn trait_has_sized_self(self, trait_def_id: DefId) -> bool {
161         self.generics_require_sized_self(trait_def_id)
162     }
163
164     fn generics_require_sized_self(self, def_id: DefId) -> bool {
165         let sized_def_id = match self.lang_items.sized_trait() {
166             Some(def_id) => def_id,
167             None => { return false; /* No Sized trait, can't require it! */ }
168         };
169
170         // Search for a predicate like `Self : Sized` amongst the trait bounds.
171         let free_substs = self.construct_free_substs(def_id,
172             self.region_maps.node_extent(ast::DUMMY_NODE_ID));
173         let predicates = self.item_predicates(def_id);
174         let predicates = predicates.instantiate(self, free_substs).predicates;
175         elaborate_predicates(self, predicates)
176             .any(|predicate| {
177                 match predicate {
178                     ty::Predicate::Trait(ref trait_pred) if trait_pred.def_id() == sized_def_id => {
179                         trait_pred.0.self_ty().is_self()
180                     }
181                     ty::Predicate::Projection(..) |
182                     ty::Predicate::Trait(..) |
183                     ty::Predicate::Equate(..) |
184                     ty::Predicate::RegionOutlives(..) |
185                     ty::Predicate::WellFormed(..) |
186                     ty::Predicate::ObjectSafe(..) |
187                     ty::Predicate::ClosureKind(..) |
188                     ty::Predicate::TypeOutlives(..) => {
189                         false
190                     }
191                 }
192             })
193     }
194
195     /// Returns `Some(_)` if this method makes the containing trait not object safe.
196     fn object_safety_violation_for_method(self,
197                                           trait_def_id: DefId,
198                                           method: &ty::AssociatedItem)
199                                           -> Option<MethodViolationCode>
200     {
201         // Any method that has a `Self : Sized` requisite is otherwise
202         // exempt from the regulations.
203         if self.generics_require_sized_self(method.def_id) {
204             return None;
205         }
206
207         self.virtual_call_violation_for_method(trait_def_id, method)
208     }
209
210     /// We say a method is *vtable safe* if it can be invoked on a trait
211     /// object.  Note that object-safe traits can have some
212     /// non-vtable-safe methods, so long as they require `Self:Sized` or
213     /// otherwise ensure that they cannot be used when `Self=Trait`.
214     pub fn is_vtable_safe_method(self,
215                                  trait_def_id: DefId,
216                                  method: &ty::AssociatedItem)
217                                  -> bool
218     {
219         // Any method that has a `Self : Sized` requisite can't be called.
220         if self.generics_require_sized_self(method.def_id) {
221             return false;
222         }
223
224         self.virtual_call_violation_for_method(trait_def_id, method).is_none()
225     }
226
227     /// Returns `Some(_)` if this method cannot be called on a trait
228     /// object; this does not necessarily imply that the enclosing trait
229     /// is not object safe, because the method might have a where clause
230     /// `Self:Sized`.
231     fn virtual_call_violation_for_method(self,
232                                          trait_def_id: DefId,
233                                          method: &ty::AssociatedItem)
234                                          -> Option<MethodViolationCode>
235     {
236         // The method's first parameter must be something that derefs (or
237         // autorefs) to `&self`. For now, we only accept `self`, `&self`
238         // and `Box<Self>`.
239         if !method.method_has_self_argument {
240             return Some(MethodViolationCode::StaticMethod);
241         }
242
243         // The `Self` type is erased, so it should not appear in list of
244         // arguments or return type apart from the receiver.
245         let ref sig = self.item_type(method.def_id).fn_sig();
246         for input_ty in &sig.skip_binder().inputs()[1..] {
247             if self.contains_illegal_self_type_reference(trait_def_id, input_ty) {
248                 return Some(MethodViolationCode::ReferencesSelf);
249             }
250         }
251         if self.contains_illegal_self_type_reference(trait_def_id, sig.output().skip_binder()) {
252             return Some(MethodViolationCode::ReferencesSelf);
253         }
254
255         // We can't monomorphize things like `fn foo<A>(...)`.
256         if !self.item_generics(method.def_id).types.is_empty() {
257             return Some(MethodViolationCode::Generic);
258         }
259
260         None
261     }
262
263     fn contains_illegal_self_type_reference(self,
264                                             trait_def_id: DefId,
265                                             ty: Ty<'tcx>)
266                                             -> bool
267     {
268         // This is somewhat subtle. In general, we want to forbid
269         // references to `Self` in the argument and return types,
270         // since the value of `Self` is erased. However, there is one
271         // exception: it is ok to reference `Self` in order to access
272         // an associated type of the current trait, since we retain
273         // the value of those associated types in the object type
274         // itself.
275         //
276         // ```rust
277         // trait SuperTrait {
278         //     type X;
279         // }
280         //
281         // trait Trait : SuperTrait {
282         //     type Y;
283         //     fn foo(&self, x: Self) // bad
284         //     fn foo(&self) -> Self // bad
285         //     fn foo(&self) -> Option<Self> // bad
286         //     fn foo(&self) -> Self::Y // OK, desugars to next example
287         //     fn foo(&self) -> <Self as Trait>::Y // OK
288         //     fn foo(&self) -> Self::X // OK, desugars to next example
289         //     fn foo(&self) -> <Self as SuperTrait>::X // OK
290         // }
291         // ```
292         //
293         // However, it is not as simple as allowing `Self` in a projected
294         // type, because there are illegal ways to use `Self` as well:
295         //
296         // ```rust
297         // trait Trait : SuperTrait {
298         //     ...
299         //     fn foo(&self) -> <Self as SomeOtherTrait>::X;
300         // }
301         // ```
302         //
303         // Here we will not have the type of `X` recorded in the
304         // object type, and we cannot resolve `Self as SomeOtherTrait`
305         // without knowing what `Self` is.
306
307         let mut supertraits: Option<Vec<ty::PolyTraitRef<'tcx>>> = None;
308         let mut error = false;
309         ty.maybe_walk(|ty| {
310             match ty.sty {
311                 ty::TyParam(ref param_ty) => {
312                     if param_ty.is_self() {
313                         error = true;
314                     }
315
316                     false // no contained types to walk
317                 }
318
319                 ty::TyProjection(ref data) => {
320                     // This is a projected type `<Foo as SomeTrait>::X`.
321
322                     // Compute supertraits of current trait lazily.
323                     if supertraits.is_none() {
324                         let trait_ref = ty::Binder(ty::TraitRef {
325                             def_id: trait_def_id,
326                             substs: Substs::identity_for_item(self, trait_def_id)
327                         });
328                         supertraits = Some(traits::supertraits(self, trait_ref).collect());
329                     }
330
331                     // Determine whether the trait reference `Foo as
332                     // SomeTrait` is in fact a supertrait of the
333                     // current trait. In that case, this type is
334                     // legal, because the type `X` will be specified
335                     // in the object type.  Note that we can just use
336                     // direct equality here because all of these types
337                     // are part of the formal parameter listing, and
338                     // hence there should be no inference variables.
339                     let projection_trait_ref = ty::Binder(data.trait_ref.clone());
340                     let is_supertrait_of_current_trait =
341                         supertraits.as_ref().unwrap().contains(&projection_trait_ref);
342
343                     if is_supertrait_of_current_trait {
344                         false // do not walk contained types, do not report error, do collect $200
345                     } else {
346                         true // DO walk contained types, POSSIBLY reporting an error
347                     }
348                 }
349
350                 _ => true, // walk contained types, if any
351             }
352         });
353
354         error
355     }
356 }