]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/fulfill.rs
rustdoc: Hide `self: Box<Self>` in list of deref methods
[rust.git] / src / librustc / traits / fulfill.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use dep_graph::DepGraph;
12 use infer::{InferCtxt, InferOk};
13 use ty::{self, Ty, TypeFoldable, ToPolyTraitRef, TyCtxt, ToPredicate};
14 use ty::error::ExpectedFound;
15 use rustc_data_structures::obligation_forest::{ObligationForest, Error};
16 use rustc_data_structures::obligation_forest::{ForestObligation, ObligationProcessor};
17 use std::marker::PhantomData;
18 use syntax::ast;
19 use util::nodemap::{FxHashSet, NodeMap};
20 use hir::def_id::DefId;
21
22 use super::CodeAmbiguity;
23 use super::CodeProjectionError;
24 use super::CodeSelectionError;
25 use super::{FulfillmentError, FulfillmentErrorCode};
26 use super::{ObligationCause, PredicateObligation, Obligation};
27 use super::project;
28 use super::select::SelectionContext;
29 use super::Unimplemented;
30
31 impl<'tcx> ForestObligation for PendingPredicateObligation<'tcx> {
32     type Predicate = ty::Predicate<'tcx>;
33
34     fn as_predicate(&self) -> &Self::Predicate { &self.obligation.predicate }
35 }
36
37 pub struct GlobalFulfilledPredicates<'tcx> {
38     set: FxHashSet<ty::PolyTraitPredicate<'tcx>>,
39     dep_graph: DepGraph,
40 }
41
42 /// The fulfillment context is used to drive trait resolution.  It
43 /// consists of a list of obligations that must be (eventually)
44 /// satisfied. The job is to track which are satisfied, which yielded
45 /// errors, and which are still pending. At any point, users can call
46 /// `select_where_possible`, and the fulfilment context will try to do
47 /// selection, retaining only those obligations that remain
48 /// ambiguous. This may be helpful in pushing type inference
49 /// along. Once all type inference constraints have been generated, the
50 /// method `select_all_or_error` can be used to report any remaining
51 /// ambiguous cases as errors.
52
53 pub struct FulfillmentContext<'tcx> {
54     // A list of all obligations that have been registered with this
55     // fulfillment context.
56     predicates: ObligationForest<PendingPredicateObligation<'tcx>>,
57
58     // A set of constraints that regionck must validate. Each
59     // constraint has the form `T:'a`, meaning "some type `T` must
60     // outlive the lifetime 'a". These constraints derive from
61     // instantiated type parameters. So if you had a struct defined
62     // like
63     //
64     //     struct Foo<T:'static> { ... }
65     //
66     // then in some expression `let x = Foo { ... }` it will
67     // instantiate the type parameter `T` with a fresh type `$0`. At
68     // the same time, it will record a region obligation of
69     // `$0:'static`. This will get checked later by regionck. (We
70     // can't generally check these things right away because we have
71     // to wait until types are resolved.)
72     //
73     // These are stored in a map keyed to the id of the innermost
74     // enclosing fn body / static initializer expression. This is
75     // because the location where the obligation was incurred can be
76     // relevant with respect to which sublifetime assumptions are in
77     // place. The reason that we store under the fn-id, and not
78     // something more fine-grained, is so that it is easier for
79     // regionck to be sure that it has found *all* the region
80     // obligations (otherwise, it's easy to fail to walk to a
81     // particular node-id).
82     region_obligations: NodeMap<Vec<RegionObligation<'tcx>>>,
83 }
84
85 #[derive(Clone)]
86 pub struct RegionObligation<'tcx> {
87     pub sub_region: ty::Region<'tcx>,
88     pub sup_type: Ty<'tcx>,
89     pub cause: ObligationCause<'tcx>,
90 }
91
92 #[derive(Clone, Debug)]
93 pub struct PendingPredicateObligation<'tcx> {
94     pub obligation: PredicateObligation<'tcx>,
95     pub stalled_on: Vec<Ty<'tcx>>,
96 }
97
98 impl<'a, 'gcx, 'tcx> FulfillmentContext<'tcx> {
99     /// Creates a new fulfillment context.
100     pub fn new() -> FulfillmentContext<'tcx> {
101         FulfillmentContext {
102             predicates: ObligationForest::new(),
103             region_obligations: NodeMap(),
104         }
105     }
106
107     /// "Normalize" a projection type `<SomeType as SomeTrait>::X` by
108     /// creating a fresh type variable `$0` as well as a projection
109     /// predicate `<SomeType as SomeTrait>::X == $0`. When the
110     /// inference engine runs, it will attempt to find an impl of
111     /// `SomeTrait` or a where clause that lets us unify `$0` with
112     /// something concrete. If this fails, we'll unify `$0` with
113     /// `projection_ty` again.
114     pub fn normalize_projection_type(&mut self,
115                                      infcx: &InferCtxt<'a, 'gcx, 'tcx>,
116                                      projection_ty: ty::ProjectionTy<'tcx>,
117                                      cause: ObligationCause<'tcx>)
118                                      -> Ty<'tcx>
119     {
120         debug!("normalize_projection_type(projection_ty={:?})",
121                projection_ty);
122
123         assert!(!projection_ty.has_escaping_regions());
124
125         // FIXME(#20304) -- cache
126
127         let mut selcx = SelectionContext::new(infcx);
128         let normalized = project::normalize_projection_type(&mut selcx, projection_ty, cause, 0);
129
130         for obligation in normalized.obligations {
131             self.register_predicate_obligation(infcx, obligation);
132         }
133
134         debug!("normalize_projection_type: result={:?}", normalized.value);
135
136         normalized.value
137     }
138
139     pub fn register_bound(&mut self,
140                           infcx: &InferCtxt<'a, 'gcx, 'tcx>,
141                           ty: Ty<'tcx>,
142                           def_id: DefId,
143                           cause: ObligationCause<'tcx>)
144     {
145         let trait_ref = ty::TraitRef {
146             def_id: def_id,
147             substs: infcx.tcx.mk_substs_trait(ty, &[]),
148         };
149         self.register_predicate_obligation(infcx, Obligation {
150             cause: cause,
151             recursion_depth: 0,
152             predicate: trait_ref.to_predicate()
153         });
154     }
155
156     pub fn register_region_obligation(&mut self,
157                                       t_a: Ty<'tcx>,
158                                       r_b: ty::Region<'tcx>,
159                                       cause: ObligationCause<'tcx>)
160     {
161         register_region_obligation(t_a, r_b, cause, &mut self.region_obligations);
162     }
163
164     pub fn register_predicate_obligation(&mut self,
165                                          infcx: &InferCtxt<'a, 'gcx, 'tcx>,
166                                          obligation: PredicateObligation<'tcx>)
167     {
168         // this helps to reduce duplicate errors, as well as making
169         // debug output much nicer to read and so on.
170         let obligation = infcx.resolve_type_vars_if_possible(&obligation);
171
172         debug!("register_predicate_obligation(obligation={:?})", obligation);
173
174         assert!(!infcx.is_in_snapshot());
175
176         if infcx.tcx.fulfilled_predicates.borrow().check_duplicate(&obligation.predicate) {
177             debug!("register_predicate_obligation: duplicate");
178             return
179         }
180
181         self.predicates.register_obligation(PendingPredicateObligation {
182             obligation: obligation,
183             stalled_on: vec![]
184         });
185     }
186
187     pub fn register_predicate_obligations(&mut self,
188                                           infcx: &InferCtxt<'a, 'gcx, 'tcx>,
189                                           obligations: Vec<PredicateObligation<'tcx>>)
190     {
191         for obligation in obligations {
192             self.register_predicate_obligation(infcx, obligation);
193         }
194     }
195
196
197     pub fn region_obligations(&self,
198                               body_id: ast::NodeId)
199                               -> &[RegionObligation<'tcx>]
200     {
201         match self.region_obligations.get(&body_id) {
202             None => Default::default(),
203             Some(vec) => vec,
204         }
205     }
206
207     pub fn select_all_or_error(&mut self,
208                                infcx: &InferCtxt<'a, 'gcx, 'tcx>)
209                                -> Result<(),Vec<FulfillmentError<'tcx>>>
210     {
211         self.select_where_possible(infcx)?;
212
213         let errors: Vec<_> =
214             self.predicates.to_errors(CodeAmbiguity)
215                            .into_iter()
216                            .map(|e| to_fulfillment_error(e))
217                            .collect();
218         if errors.is_empty() {
219             Ok(())
220         } else {
221             Err(errors)
222         }
223     }
224
225     pub fn select_where_possible(&mut self,
226                                  infcx: &InferCtxt<'a, 'gcx, 'tcx>)
227                                  -> Result<(),Vec<FulfillmentError<'tcx>>>
228     {
229         let mut selcx = SelectionContext::new(infcx);
230         self.select(&mut selcx)
231     }
232
233     pub fn pending_obligations(&self) -> Vec<PendingPredicateObligation<'tcx>> {
234         self.predicates.pending_obligations()
235     }
236
237     /// Attempts to select obligations using `selcx`. If `only_new_obligations` is true, then it
238     /// only attempts to select obligations that haven't been seen before.
239     fn select(&mut self, selcx: &mut SelectionContext<'a, 'gcx, 'tcx>)
240               -> Result<(),Vec<FulfillmentError<'tcx>>> {
241         debug!("select(obligation-forest-size={})", self.predicates.len());
242
243         let mut errors = Vec::new();
244
245         loop {
246             debug!("select: starting another iteration");
247
248             // Process pending obligations.
249             let outcome = self.predicates.process_obligations(&mut FulfillProcessor {
250                 selcx: selcx,
251                 region_obligations: &mut self.region_obligations,
252             });
253             debug!("select: outcome={:?}", outcome);
254
255             // these are obligations that were proven to be true.
256             for pending_obligation in outcome.completed {
257                 let predicate = &pending_obligation.obligation.predicate;
258                 selcx.tcx().fulfilled_predicates.borrow_mut()
259                            .add_if_global(selcx.tcx(), predicate);
260             }
261
262             errors.extend(
263                 outcome.errors.into_iter()
264                               .map(|e| to_fulfillment_error(e)));
265
266             // If nothing new was added, no need to keep looping.
267             if outcome.stalled {
268                 break;
269             }
270         }
271
272         debug!("select({} predicates remaining, {} errors) done",
273                self.predicates.len(), errors.len());
274
275         if errors.is_empty() {
276             Ok(())
277         } else {
278             Err(errors)
279         }
280     }
281 }
282
283 struct FulfillProcessor<'a, 'b: 'a, 'gcx: 'tcx, 'tcx: 'b> {
284     selcx: &'a mut SelectionContext<'b, 'gcx, 'tcx>,
285     region_obligations: &'a mut NodeMap<Vec<RegionObligation<'tcx>>>,
286 }
287
288 impl<'a, 'b, 'gcx, 'tcx> ObligationProcessor for FulfillProcessor<'a, 'b, 'gcx, 'tcx> {
289     type Obligation = PendingPredicateObligation<'tcx>;
290     type Error = FulfillmentErrorCode<'tcx>;
291
292     fn process_obligation(&mut self,
293                           obligation: &mut Self::Obligation)
294                           -> Result<Option<Vec<Self::Obligation>>, Self::Error>
295     {
296         process_predicate(self.selcx,
297                           obligation,
298                           self.region_obligations)
299             .map(|os| os.map(|os| os.into_iter().map(|o| PendingPredicateObligation {
300                 obligation: o,
301                 stalled_on: vec![]
302             }).collect()))
303     }
304
305     fn process_backedge<'c, I>(&mut self, cycle: I,
306                                _marker: PhantomData<&'c PendingPredicateObligation<'tcx>>)
307         where I: Clone + Iterator<Item=&'c PendingPredicateObligation<'tcx>>,
308     {
309         if coinductive_match(self.selcx, cycle.clone()) {
310             debug!("process_child_obligations: coinductive match");
311         } else {
312             let cycle : Vec<_> = cycle.map(|c| c.obligation.clone()).collect();
313             self.selcx.infcx().report_overflow_error_cycle(&cycle);
314         }
315     }
316 }
317
318 /// Return the set of type variables contained in a trait ref
319 fn trait_ref_type_vars<'a, 'gcx, 'tcx>(selcx: &mut SelectionContext<'a, 'gcx, 'tcx>,
320                                        t: ty::PolyTraitRef<'tcx>) -> Vec<Ty<'tcx>>
321 {
322     t.skip_binder() // ok b/c this check doesn't care about regions
323      .input_types()
324      .map(|t| selcx.infcx().resolve_type_vars_if_possible(&t))
325      .filter(|t| t.has_infer_types())
326      .flat_map(|t| t.walk())
327      .filter(|t| match t.sty { ty::TyInfer(_) => true, _ => false })
328      .collect()
329 }
330
331 /// Processes a predicate obligation and returns either:
332 /// - `Ok(Some(v))` if the predicate is true, presuming that `v` are also true
333 /// - `Ok(None)` if we don't have enough info to be sure
334 /// - `Err` if the predicate does not hold
335 fn process_predicate<'a, 'gcx, 'tcx>(
336     selcx: &mut SelectionContext<'a, 'gcx, 'tcx>,
337     pending_obligation: &mut PendingPredicateObligation<'tcx>,
338     region_obligations: &mut NodeMap<Vec<RegionObligation<'tcx>>>)
339     -> Result<Option<Vec<PredicateObligation<'tcx>>>,
340               FulfillmentErrorCode<'tcx>>
341 {
342     // if we were stalled on some unresolved variables, first check
343     // whether any of them have been resolved; if not, don't bother
344     // doing more work yet
345     if !pending_obligation.stalled_on.is_empty() {
346         if pending_obligation.stalled_on.iter().all(|&ty| {
347             let resolved_ty = selcx.infcx().shallow_resolve(&ty);
348             resolved_ty == ty // nothing changed here
349         }) {
350             debug!("process_predicate: pending obligation {:?} still stalled on {:?}",
351                    selcx.infcx().resolve_type_vars_if_possible(&pending_obligation.obligation),
352                    pending_obligation.stalled_on);
353             return Ok(None);
354         }
355         pending_obligation.stalled_on = vec![];
356     }
357
358     let obligation = &mut pending_obligation.obligation;
359
360     if obligation.predicate.has_infer_types() {
361         obligation.predicate = selcx.infcx().resolve_type_vars_if_possible(&obligation.predicate);
362     }
363
364     match obligation.predicate {
365         ty::Predicate::Trait(ref data) => {
366             if selcx.tcx().fulfilled_predicates.borrow().check_duplicate_trait(data) {
367                 return Ok(Some(vec![]));
368             }
369
370             let trait_obligation = obligation.with(data.clone());
371             match selcx.select(&trait_obligation) {
372                 Ok(Some(vtable)) => {
373                     debug!("selecting trait `{:?}` at depth {} yielded Ok(Some)",
374                           data, obligation.recursion_depth);
375                     Ok(Some(vtable.nested_obligations()))
376                 }
377                 Ok(None) => {
378                     debug!("selecting trait `{:?}` at depth {} yielded Ok(None)",
379                           data, obligation.recursion_depth);
380
381                     // This is a bit subtle: for the most part, the
382                     // only reason we can fail to make progress on
383                     // trait selection is because we don't have enough
384                     // information about the types in the trait. One
385                     // exception is that we sometimes haven't decided
386                     // what kind of closure a closure is. *But*, in
387                     // that case, it turns out, the type of the
388                     // closure will also change, because the closure
389                     // also includes references to its upvars as part
390                     // of its type, and those types are resolved at
391                     // the same time.
392                     //
393                     // FIXME(#32286) logic seems false if no upvars
394                     pending_obligation.stalled_on =
395                         trait_ref_type_vars(selcx, data.to_poly_trait_ref());
396
397                     debug!("process_predicate: pending obligation {:?} now stalled on {:?}",
398                            selcx.infcx().resolve_type_vars_if_possible(obligation),
399                            pending_obligation.stalled_on);
400
401                     Ok(None)
402                 }
403                 Err(selection_err) => {
404                     info!("selecting trait `{:?}` at depth {} yielded Err",
405                           data, obligation.recursion_depth);
406
407                     Err(CodeSelectionError(selection_err))
408                 }
409             }
410         }
411
412         ty::Predicate::Equate(ref binder) => {
413             match selcx.infcx().equality_predicate(&obligation.cause, binder) {
414                 Ok(InferOk { obligations, value: () }) => {
415                     Ok(Some(obligations))
416                 },
417                 Err(_) => Err(CodeSelectionError(Unimplemented)),
418             }
419         }
420
421         ty::Predicate::RegionOutlives(ref binder) => {
422             match selcx.infcx().region_outlives_predicate(&obligation.cause, binder) {
423                 Ok(()) => Ok(Some(Vec::new())),
424                 Err(_) => Err(CodeSelectionError(Unimplemented)),
425             }
426         }
427
428         ty::Predicate::TypeOutlives(ref binder) => {
429             // Check if there are higher-ranked regions.
430             match selcx.tcx().no_late_bound_regions(binder) {
431                 // If there are, inspect the underlying type further.
432                 None => {
433                     // Convert from `Binder<OutlivesPredicate<Ty, Region>>` to `Binder<Ty>`.
434                     let binder = binder.map_bound_ref(|pred| pred.0);
435
436                     // Check if the type has any bound regions.
437                     match selcx.tcx().no_late_bound_regions(&binder) {
438                         // If so, this obligation is an error (for now). Eventually we should be
439                         // able to support additional cases here, like `for<'a> &'a str: 'a`.
440                         None => {
441                             Err(CodeSelectionError(Unimplemented))
442                         }
443                         // Otherwise, we have something of the form
444                         // `for<'a> T: 'a where 'a not in T`, which we can treat as `T: 'static`.
445                         Some(t_a) => {
446                             let r_static = selcx.tcx().types.re_static;
447                             register_region_obligation(t_a, r_static,
448                                                        obligation.cause.clone(),
449                                                        region_obligations);
450                             Ok(Some(vec![]))
451                         }
452                     }
453                 }
454                 // If there aren't, register the obligation.
455                 Some(ty::OutlivesPredicate(t_a, r_b)) => {
456                     register_region_obligation(t_a, r_b,
457                                                obligation.cause.clone(),
458                                                region_obligations);
459                     Ok(Some(vec![]))
460                 }
461             }
462         }
463
464         ty::Predicate::Projection(ref data) => {
465             let project_obligation = obligation.with(data.clone());
466             match project::poly_project_and_unify_type(selcx, &project_obligation) {
467                 Ok(None) => {
468                     pending_obligation.stalled_on =
469                         trait_ref_type_vars(selcx, data.to_poly_trait_ref());
470                     Ok(None)
471                 }
472                 Ok(v) => Ok(v),
473                 Err(e) => Err(CodeProjectionError(e))
474             }
475         }
476
477         ty::Predicate::ObjectSafe(trait_def_id) => {
478             if !selcx.tcx().is_object_safe(trait_def_id) {
479                 Err(CodeSelectionError(Unimplemented))
480             } else {
481                 Ok(Some(Vec::new()))
482             }
483         }
484
485         ty::Predicate::ClosureKind(closure_def_id, kind) => {
486             match selcx.infcx().closure_kind(closure_def_id) {
487                 Some(closure_kind) => {
488                     if closure_kind.extends(kind) {
489                         Ok(Some(vec![]))
490                     } else {
491                         Err(CodeSelectionError(Unimplemented))
492                     }
493                 }
494                 None => {
495                     Ok(None)
496                 }
497             }
498         }
499
500         ty::Predicate::WellFormed(ty) => {
501             match ty::wf::obligations(selcx.infcx(), obligation.cause.body_id,
502                                       ty, obligation.cause.span) {
503                 None => {
504                     pending_obligation.stalled_on = vec![ty];
505                     Ok(None)
506                 }
507                 s => Ok(s)
508             }
509         }
510
511         ty::Predicate::Subtype(ref subtype) => {
512             match selcx.infcx().subtype_predicate(&obligation.cause, subtype) {
513                 None => {
514                     // none means that both are unresolved
515                     pending_obligation.stalled_on = vec![subtype.skip_binder().a,
516                                                          subtype.skip_binder().b];
517                     Ok(None)
518                 }
519                 Some(Ok(ok)) => {
520                     Ok(Some(ok.obligations))
521                 }
522                 Some(Err(err)) => {
523                     let expected_found = ExpectedFound::new(subtype.skip_binder().a_is_expected,
524                                                             subtype.skip_binder().a,
525                                                             subtype.skip_binder().b);
526                     Err(FulfillmentErrorCode::CodeSubtypeError(expected_found, err))
527                 }
528             }
529         }
530     }
531 }
532
533 /// For defaulted traits, we use a co-inductive strategy to solve, so
534 /// that recursion is ok. This routine returns true if the top of the
535 /// stack (`cycle[0]`):
536 /// - is a defaulted trait, and
537 /// - it also appears in the backtrace at some position `X`; and,
538 /// - all the predicates at positions `X..` between `X` an the top are
539 ///   also defaulted traits.
540 fn coinductive_match<'a,'c,'gcx,'tcx,I>(selcx: &mut SelectionContext<'a,'gcx,'tcx>,
541                                         cycle: I) -> bool
542     where I: Iterator<Item=&'c PendingPredicateObligation<'tcx>>,
543           'tcx: 'c
544 {
545     let mut cycle = cycle;
546     cycle
547         .all(|bt_obligation| {
548             let result = coinductive_obligation(selcx, &bt_obligation.obligation);
549             debug!("coinductive_match: bt_obligation={:?} coinductive={}",
550                    bt_obligation, result);
551             result
552         })
553 }
554
555 fn coinductive_obligation<'a,'gcx,'tcx>(selcx: &SelectionContext<'a,'gcx,'tcx>,
556                                           obligation: &PredicateObligation<'tcx>)
557                                           -> bool {
558     match obligation.predicate {
559         ty::Predicate::Trait(ref data) => {
560             selcx.tcx().trait_has_default_impl(data.def_id())
561         }
562         _ => {
563             false
564         }
565     }
566 }
567
568 fn register_region_obligation<'tcx>(t_a: Ty<'tcx>,
569                                     r_b: ty::Region<'tcx>,
570                                     cause: ObligationCause<'tcx>,
571                                     region_obligations: &mut NodeMap<Vec<RegionObligation<'tcx>>>)
572 {
573     let region_obligation = RegionObligation { sup_type: t_a,
574                                                sub_region: r_b,
575                                                cause: cause };
576
577     debug!("register_region_obligation({:?}, cause={:?})",
578            region_obligation, region_obligation.cause);
579
580     region_obligations.entry(region_obligation.cause.body_id)
581                       .or_insert(vec![])
582                       .push(region_obligation);
583
584 }
585
586 impl<'a, 'gcx, 'tcx> GlobalFulfilledPredicates<'gcx> {
587     pub fn new(dep_graph: DepGraph) -> GlobalFulfilledPredicates<'gcx> {
588         GlobalFulfilledPredicates {
589             set: FxHashSet(),
590             dep_graph: dep_graph,
591         }
592     }
593
594     pub fn check_duplicate(&self, key: &ty::Predicate<'tcx>) -> bool {
595         if let ty::Predicate::Trait(ref data) = *key {
596             self.check_duplicate_trait(data)
597         } else {
598             false
599         }
600     }
601
602     pub fn check_duplicate_trait(&self, data: &ty::PolyTraitPredicate<'tcx>) -> bool {
603         // For the global predicate registry, when we find a match, it
604         // may have been computed by some other task, so we want to
605         // add a read from the node corresponding to the predicate
606         // processing to make sure we get the transitive dependencies.
607         if self.set.contains(data) {
608             debug_assert!(data.is_global());
609             self.dep_graph.read(data.dep_node());
610             debug!("check_duplicate: global predicate `{:?}` already proved elsewhere", data);
611
612             true
613         } else {
614             false
615         }
616     }
617
618     fn add_if_global(&mut self, tcx: TyCtxt<'a, 'gcx, 'tcx>, key: &ty::Predicate<'tcx>) {
619         if let ty::Predicate::Trait(ref data) = *key {
620             // We only add things to the global predicate registry
621             // after the current task has proved them, and hence
622             // already has the required read edges, so we don't need
623             // to add any more edges here.
624             if data.is_global() {
625                 if let Some(data) = tcx.lift_to_global(data) {
626                     if self.set.insert(data.clone()) {
627                         debug!("add_if_global: global predicate `{:?}` added", data);
628                     }
629                 }
630             }
631         }
632     }
633 }
634
635 fn to_fulfillment_error<'tcx>(
636     error: Error<PendingPredicateObligation<'tcx>, FulfillmentErrorCode<'tcx>>)
637     -> FulfillmentError<'tcx>
638 {
639     let obligation = error.backtrace.into_iter().next().unwrap().obligation;
640     FulfillmentError::new(obligation, error.error)
641 }