]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/error_reporting.rs
Rollup merge of #46050 - sunfishcode:read_to_end, r=sfackler
[rust.git] / src / librustc / traits / error_reporting.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use super::{
12     FulfillmentError,
13     FulfillmentErrorCode,
14     MismatchedProjectionTypes,
15     Obligation,
16     ObligationCause,
17     ObligationCauseCode,
18     OnUnimplementedDirective,
19     OnUnimplementedNote,
20     OutputTypeParameterMismatch,
21     TraitNotObjectSafe,
22     ConstEvalFailure,
23     PredicateObligation,
24     Reveal,
25     SelectionContext,
26     SelectionError,
27     ObjectSafetyViolation,
28 };
29
30 use errors::DiagnosticBuilder;
31 use hir;
32 use hir::def_id::DefId;
33 use infer::{self, InferCtxt};
34 use infer::type_variable::TypeVariableOrigin;
35 use middle::const_val;
36 use std::fmt;
37 use syntax::ast;
38 use session::DiagnosticMessageId;
39 use ty::{self, AdtKind, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
40 use ty::error::ExpectedFound;
41 use ty::fast_reject;
42 use ty::fold::TypeFolder;
43 use ty::subst::Subst;
44 use ty::SubtypePredicate;
45 use util::nodemap::{FxHashMap, FxHashSet};
46
47 use syntax_pos::{DUMMY_SP, Span};
48
49 impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
50     pub fn report_fulfillment_errors(&self,
51                                      errors: &Vec<FulfillmentError<'tcx>>,
52                                      body_id: Option<hir::BodyId>) {
53         #[derive(Debug)]
54         struct ErrorDescriptor<'tcx> {
55             predicate: ty::Predicate<'tcx>,
56             index: Option<usize>, // None if this is an old error
57         }
58
59         let mut error_map : FxHashMap<_, _> =
60             self.reported_trait_errors.borrow().iter().map(|(&span, predicates)| {
61                 (span, predicates.iter().map(|predicate| ErrorDescriptor {
62                     predicate: predicate.clone(),
63                     index: None
64                 }).collect())
65             }).collect();
66
67         for (index, error) in errors.iter().enumerate() {
68             error_map.entry(error.obligation.cause.span).or_insert(Vec::new()).push(
69                 ErrorDescriptor {
70                     predicate: error.obligation.predicate.clone(),
71                     index: Some(index)
72                 });
73
74             self.reported_trait_errors.borrow_mut()
75                 .entry(error.obligation.cause.span).or_insert(Vec::new())
76                 .push(error.obligation.predicate.clone());
77         }
78
79         // We do this in 2 passes because we want to display errors in order, tho
80         // maybe it *is* better to sort errors by span or something.
81         let mut is_suppressed: Vec<bool> = errors.iter().map(|_| false).collect();
82         for (_, error_set) in error_map.iter() {
83             // We want to suppress "duplicate" errors with the same span.
84             for error in error_set {
85                 if let Some(index) = error.index {
86                     // Suppress errors that are either:
87                     // 1) strictly implied by another error.
88                     // 2) implied by an error with a smaller index.
89                     for error2 in error_set {
90                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
91                             // Avoid errors being suppressed by already-suppressed
92                             // errors, to prevent all errors from being suppressed
93                             // at once.
94                             continue
95                         }
96
97                         if self.error_implies(&error2.predicate, &error.predicate) &&
98                             !(error2.index >= error.index &&
99                               self.error_implies(&error.predicate, &error2.predicate))
100                         {
101                             info!("skipping {:?} (implied by {:?})", error, error2);
102                             is_suppressed[index] = true;
103                             break
104                         }
105                     }
106                 }
107             }
108         }
109
110         for (error, suppressed) in errors.iter().zip(is_suppressed) {
111             if !suppressed {
112                 self.report_fulfillment_error(error, body_id);
113             }
114         }
115     }
116
117     // returns if `cond` not occurring implies that `error` does not occur - i.e. that
118     // `error` occurring implies that `cond` occurs.
119     fn error_implies(&self,
120                      cond: &ty::Predicate<'tcx>,
121                      error: &ty::Predicate<'tcx>)
122                      -> bool
123     {
124         if cond == error {
125             return true
126         }
127
128         let (cond, error) = match (cond, error) {
129             (&ty::Predicate::Trait(..), &ty::Predicate::Trait(ref error))
130                 => (cond, error),
131             _ => {
132                 // FIXME: make this work in other cases too.
133                 return false
134             }
135         };
136
137         for implication in super::elaborate_predicates(self.tcx, vec![cond.clone()]) {
138             if let ty::Predicate::Trait(implication) = implication {
139                 let error = error.to_poly_trait_ref();
140                 let implication = implication.to_poly_trait_ref();
141                 // FIXME: I'm just not taking associated types at all here.
142                 // Eventually I'll need to implement param-env-aware
143                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
144                 let param_env = ty::ParamEnv::empty(Reveal::UserFacing);
145                 if let Ok(_) = self.can_sub(param_env, error, implication) {
146                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
147                     return true
148                 }
149             }
150         }
151
152         false
153     }
154
155     fn report_fulfillment_error(&self, error: &FulfillmentError<'tcx>,
156                                 body_id: Option<hir::BodyId>) {
157         debug!("report_fulfillment_errors({:?})", error);
158         match error.code {
159             FulfillmentErrorCode::CodeSelectionError(ref e) => {
160                 self.report_selection_error(&error.obligation, e);
161             }
162             FulfillmentErrorCode::CodeProjectionError(ref e) => {
163                 self.report_projection_error(&error.obligation, e);
164             }
165             FulfillmentErrorCode::CodeAmbiguity => {
166                 self.maybe_report_ambiguity(&error.obligation, body_id);
167             }
168             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
169                 self.report_mismatched_types(&error.obligation.cause,
170                                              expected_found.expected,
171                                              expected_found.found,
172                                              err.clone())
173                     .emit();
174             }
175         }
176     }
177
178     fn report_projection_error(&self,
179                                obligation: &PredicateObligation<'tcx>,
180                                error: &MismatchedProjectionTypes<'tcx>)
181     {
182         let predicate =
183             self.resolve_type_vars_if_possible(&obligation.predicate);
184
185         if predicate.references_error() {
186             return
187         }
188
189         self.probe(|_| {
190             let err_buf;
191             let mut err = &error.err;
192             let mut values = None;
193
194             // try to find the mismatched types to report the error with.
195             //
196             // this can fail if the problem was higher-ranked, in which
197             // cause I have no idea for a good error message.
198             if let ty::Predicate::Projection(ref data) = predicate {
199                 let mut selcx = SelectionContext::new(self);
200                 let (data, _) = self.replace_late_bound_regions_with_fresh_var(
201                     obligation.cause.span,
202                     infer::LateBoundRegionConversionTime::HigherRankedType,
203                     data);
204                 let normalized = super::normalize_projection_type(
205                     &mut selcx,
206                     obligation.param_env,
207                     data.projection_ty,
208                     obligation.cause.clone(),
209                     0
210                 );
211                 if let Err(error) = self.at(&obligation.cause, obligation.param_env)
212                                         .eq(normalized.value, data.ty) {
213                     values = Some(infer::ValuePairs::Types(ExpectedFound {
214                         expected: normalized.value,
215                         found: data.ty,
216                     }));
217                     err_buf = error;
218                     err = &err_buf;
219                 }
220             }
221
222             let msg = format!("type mismatch resolving `{}`", predicate);
223             let error_id = (DiagnosticMessageId::ErrorId(271),
224                             Some(obligation.cause.span), msg.clone());
225             let fresh = self.tcx.sess.one_time_diagnostics.borrow_mut().insert(error_id);
226             if fresh {
227                 let mut diag = struct_span_err!(
228                     self.tcx.sess, obligation.cause.span, E0271,
229                     "type mismatch resolving `{}`", predicate
230                 );
231                 self.note_type_err(&mut diag, &obligation.cause, None, values, err);
232                 self.note_obligation_cause(&mut diag, obligation);
233                 diag.emit();
234             }
235         });
236     }
237
238     fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
239         /// returns the fuzzy category of a given type, or None
240         /// if the type can be equated to any type.
241         fn type_category<'tcx>(t: Ty<'tcx>) -> Option<u32> {
242             match t.sty {
243                 ty::TyBool => Some(0),
244                 ty::TyChar => Some(1),
245                 ty::TyStr => Some(2),
246                 ty::TyInt(..) | ty::TyUint(..) | ty::TyInfer(ty::IntVar(..)) => Some(3),
247                 ty::TyFloat(..) | ty::TyInfer(ty::FloatVar(..)) => Some(4),
248                 ty::TyRef(..) | ty::TyRawPtr(..) => Some(5),
249                 ty::TyArray(..) | ty::TySlice(..) => Some(6),
250                 ty::TyFnDef(..) | ty::TyFnPtr(..) => Some(7),
251                 ty::TyDynamic(..) => Some(8),
252                 ty::TyClosure(..) => Some(9),
253                 ty::TyTuple(..) => Some(10),
254                 ty::TyProjection(..) => Some(11),
255                 ty::TyParam(..) => Some(12),
256                 ty::TyAnon(..) => Some(13),
257                 ty::TyNever => Some(14),
258                 ty::TyAdt(adt, ..) => match adt.adt_kind() {
259                     AdtKind::Struct => Some(15),
260                     AdtKind::Union => Some(16),
261                     AdtKind::Enum => Some(17),
262                 },
263                 ty::TyGenerator(..) => Some(18),
264                 ty::TyForeign(..) => Some(19),
265                 ty::TyInfer(..) | ty::TyError => None
266             }
267         }
268
269         match (type_category(a), type_category(b)) {
270             (Some(cat_a), Some(cat_b)) => match (&a.sty, &b.sty) {
271                 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) => def_a == def_b,
272                 _ => cat_a == cat_b
273             },
274             // infer and error can be equated to all types
275             _ => true
276         }
277     }
278
279     fn impl_similar_to(&self,
280                        trait_ref: ty::PolyTraitRef<'tcx>,
281                        obligation: &PredicateObligation<'tcx>)
282                        -> Option<DefId>
283     {
284         let tcx = self.tcx;
285         let param_env = obligation.param_env;
286         let trait_ref = tcx.erase_late_bound_regions(&trait_ref);
287         let trait_self_ty = trait_ref.self_ty();
288
289         let mut self_match_impls = vec![];
290         let mut fuzzy_match_impls = vec![];
291
292         self.tcx.for_each_relevant_impl(
293             trait_ref.def_id, trait_self_ty, |def_id| {
294                 let impl_substs = self.fresh_substs_for_item(obligation.cause.span, def_id);
295                 let impl_trait_ref = tcx
296                     .impl_trait_ref(def_id)
297                     .unwrap()
298                     .subst(tcx, impl_substs);
299
300                 let impl_self_ty = impl_trait_ref.self_ty();
301
302                 if let Ok(..) = self.can_eq(param_env, trait_self_ty, impl_self_ty) {
303                     self_match_impls.push(def_id);
304
305                     if trait_ref.substs.types().skip(1)
306                         .zip(impl_trait_ref.substs.types().skip(1))
307                         .all(|(u,v)| self.fuzzy_match_tys(u, v))
308                     {
309                         fuzzy_match_impls.push(def_id);
310                     }
311                 }
312             });
313
314         let impl_def_id = if self_match_impls.len() == 1 {
315             self_match_impls[0]
316         } else if fuzzy_match_impls.len() == 1 {
317             fuzzy_match_impls[0]
318         } else {
319             return None
320         };
321
322         if tcx.has_attr(impl_def_id, "rustc_on_unimplemented") {
323             Some(impl_def_id)
324         } else {
325             None
326         }
327     }
328
329     fn on_unimplemented_note(
330         &self,
331         trait_ref: ty::PolyTraitRef<'tcx>,
332         obligation: &PredicateObligation<'tcx>) ->
333         OnUnimplementedNote
334     {
335         let def_id = self.impl_similar_to(trait_ref, obligation)
336             .unwrap_or(trait_ref.def_id());
337         let trait_ref = *trait_ref.skip_binder();
338
339         let desugaring;
340         let method;
341         let mut flags = vec![];
342         let direct = match obligation.cause.code {
343             ObligationCauseCode::BuiltinDerivedObligation(..) |
344             ObligationCauseCode::ImplDerivedObligation(..) => false,
345             _ => true
346         };
347         if direct {
348             // this is a "direct", user-specified, rather than derived,
349             // obligation.
350             flags.push(("direct", None));
351         }
352
353         if let ObligationCauseCode::ItemObligation(item) = obligation.cause.code {
354             // FIXME: maybe also have some way of handling methods
355             // from other traits? That would require name resolution,
356             // which we might want to be some sort of hygienic.
357             //
358             // Currently I'm leaving it for what I need for `try`.
359             if self.tcx.trait_of_item(item) == Some(trait_ref.def_id) {
360                 method = self.tcx.item_name(item);
361                 flags.push(("from_method", None));
362                 flags.push(("from_method", Some(&*method)));
363             }
364         }
365
366         if let Some(k) = obligation.cause.span.compiler_desugaring_kind() {
367             desugaring = k.as_symbol().as_str();
368             flags.push(("from_desugaring", None));
369             flags.push(("from_desugaring", Some(&*desugaring)));
370         }
371
372         if let Ok(Some(command)) = OnUnimplementedDirective::of_item(
373             self.tcx, trait_ref.def_id, def_id
374         ) {
375             command.evaluate(self.tcx, trait_ref, &flags)
376         } else {
377             OnUnimplementedNote::empty()
378         }
379     }
380
381     fn find_similar_impl_candidates(&self,
382                                     trait_ref: ty::PolyTraitRef<'tcx>)
383                                     -> Vec<ty::TraitRef<'tcx>>
384     {
385         let simp = fast_reject::simplify_type(self.tcx,
386                                               trait_ref.skip_binder().self_ty(),
387                                               true);
388         let mut impl_candidates = Vec::new();
389
390         match simp {
391             Some(simp) => self.tcx.for_each_impl(trait_ref.def_id(), |def_id| {
392                 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
393                 let imp_simp = fast_reject::simplify_type(self.tcx,
394                                                           imp.self_ty(),
395                                                           true);
396                 if let Some(imp_simp) = imp_simp {
397                     if simp != imp_simp {
398                         return;
399                     }
400                 }
401                 impl_candidates.push(imp);
402             }),
403             None => self.tcx.for_each_impl(trait_ref.def_id(), |def_id| {
404                 impl_candidates.push(
405                     self.tcx.impl_trait_ref(def_id).unwrap());
406             })
407         };
408         impl_candidates
409     }
410
411     fn report_similar_impl_candidates(&self,
412                                       impl_candidates: Vec<ty::TraitRef<'tcx>>,
413                                       err: &mut DiagnosticBuilder)
414     {
415         if impl_candidates.is_empty() {
416             return;
417         }
418
419         let end = if impl_candidates.len() <= 5 {
420             impl_candidates.len()
421         } else {
422             4
423         };
424         err.help(&format!("the following implementations were found:{}{}",
425                           &impl_candidates[0..end].iter().map(|candidate| {
426                               format!("\n  {:?}", candidate)
427                           }).collect::<String>(),
428                           if impl_candidates.len() > 5 {
429                               format!("\nand {} others", impl_candidates.len() - 4)
430                           } else {
431                               "".to_owned()
432                           }
433                           ));
434     }
435
436     /// Reports that an overflow has occurred and halts compilation. We
437     /// halt compilation unconditionally because it is important that
438     /// overflows never be masked -- they basically represent computations
439     /// whose result could not be truly determined and thus we can't say
440     /// if the program type checks or not -- and they are unusual
441     /// occurrences in any case.
442     pub fn report_overflow_error<T>(&self,
443                                     obligation: &Obligation<'tcx, T>,
444                                     suggest_increasing_limit: bool) -> !
445         where T: fmt::Display + TypeFoldable<'tcx>
446     {
447         let predicate =
448             self.resolve_type_vars_if_possible(&obligation.predicate);
449         let mut err = struct_span_err!(self.tcx.sess, obligation.cause.span, E0275,
450                                        "overflow evaluating the requirement `{}`",
451                                        predicate);
452
453         if suggest_increasing_limit {
454             self.suggest_new_overflow_limit(&mut err);
455         }
456
457         self.note_obligation_cause(&mut err, obligation);
458
459         err.emit();
460         self.tcx.sess.abort_if_errors();
461         bug!();
462     }
463
464     /// Reports that a cycle was detected which led to overflow and halts
465     /// compilation. This is equivalent to `report_overflow_error` except
466     /// that we can give a more helpful error message (and, in particular,
467     /// we do not suggest increasing the overflow limit, which is not
468     /// going to help).
469     pub fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
470         let cycle = self.resolve_type_vars_if_possible(&cycle.to_owned());
471         assert!(cycle.len() > 0);
472
473         debug!("report_overflow_error_cycle: cycle={:?}", cycle);
474
475         self.report_overflow_error(&cycle[0], false);
476     }
477
478     pub fn report_extra_impl_obligation(&self,
479                                         error_span: Span,
480                                         item_name: ast::Name,
481                                         _impl_item_def_id: DefId,
482                                         trait_item_def_id: DefId,
483                                         requirement: &fmt::Display)
484                                         -> DiagnosticBuilder<'tcx>
485     {
486         let msg = "impl has stricter requirements than trait";
487         let mut err = struct_span_err!(self.tcx.sess,
488                                        error_span,
489                                        E0276,
490                                        "{}", msg);
491
492         if let Some(trait_item_span) = self.tcx.hir.span_if_local(trait_item_def_id) {
493             let span = self.tcx.sess.codemap().def_span(trait_item_span);
494             err.span_label(span, format!("definition of `{}` from trait", item_name));
495         }
496
497         err.span_label(
498             error_span,
499             format!("impl has extra requirement {}", requirement));
500
501         err
502     }
503
504
505     /// Get the parent trait chain start
506     fn get_parent_trait_ref(&self, code: &ObligationCauseCode<'tcx>) -> Option<String> {
507         match code {
508             &ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
509                 let parent_trait_ref = self.resolve_type_vars_if_possible(
510                     &data.parent_trait_ref);
511                 match self.get_parent_trait_ref(&data.parent_code) {
512                     Some(t) => Some(t),
513                     None => Some(format!("{}", parent_trait_ref.0.self_ty())),
514                 }
515             }
516             _ => None,
517         }
518     }
519
520     pub fn report_selection_error(&self,
521                                   obligation: &PredicateObligation<'tcx>,
522                                   error: &SelectionError<'tcx>)
523     {
524         let span = obligation.cause.span;
525
526         let mut err = match *error {
527             SelectionError::Unimplemented => {
528                 if let ObligationCauseCode::CompareImplMethodObligation {
529                     item_name, impl_item_def_id, trait_item_def_id,
530                 } = obligation.cause.code {
531                     self.report_extra_impl_obligation(
532                         span,
533                         item_name,
534                         impl_item_def_id,
535                         trait_item_def_id,
536                         &format!("`{}`", obligation.predicate))
537                         .emit();
538                     return;
539                 }
540                 match obligation.predicate {
541                     ty::Predicate::Trait(ref trait_predicate) => {
542                         let trait_predicate =
543                             self.resolve_type_vars_if_possible(trait_predicate);
544
545                         if self.tcx.sess.has_errors() && trait_predicate.references_error() {
546                             return;
547                         }
548                         let trait_ref = trait_predicate.to_poly_trait_ref();
549                         let (post_message, pre_message) =
550                             self.get_parent_trait_ref(&obligation.cause.code)
551                                 .map(|t| (format!(" in `{}`", t), format!("within `{}`, ", t)))
552                             .unwrap_or((String::new(), String::new()));
553
554                         let OnUnimplementedNote { message, label }
555                             = self.on_unimplemented_note(trait_ref, obligation);
556                         let have_alt_message = message.is_some() || label.is_some();
557
558                         let mut err = struct_span_err!(
559                             self.tcx.sess,
560                             span,
561                             E0277,
562                             "{}",
563                             message.unwrap_or_else(|| {
564                                 format!("the trait bound `{}` is not satisfied{}",
565                                          trait_ref.to_predicate(), post_message)
566                             }));
567
568                         if let Some(ref s) = label {
569                             // If it has a custom "#[rustc_on_unimplemented]"
570                             // error message, let's display it as the label!
571                             err.span_label(span, s.as_str());
572                             err.help(&format!("{}the trait `{}` is not implemented for `{}`",
573                                               pre_message,
574                                               trait_ref,
575                                               trait_ref.self_ty()));
576                         } else {
577                             err.span_label(span,
578                                            &*format!("{}the trait `{}` is not implemented for `{}`",
579                                                      pre_message,
580                                                      trait_ref,
581                                                      trait_ref.self_ty()));
582                         }
583
584                         // Try to report a help message
585                         if !trait_ref.has_infer_types() &&
586                             self.predicate_can_apply(obligation.param_env, trait_ref) {
587                             // If a where-clause may be useful, remind the
588                             // user that they can add it.
589                             //
590                             // don't display an on-unimplemented note, as
591                             // these notes will often be of the form
592                             //     "the type `T` can't be frobnicated"
593                             // which is somewhat confusing.
594                             err.help(&format!("consider adding a `where {}` bound",
595                                                 trait_ref.to_predicate()));
596                         } else if !have_alt_message {
597                             // Can't show anything else useful, try to find similar impls.
598                             let impl_candidates = self.find_similar_impl_candidates(trait_ref);
599                             self.report_similar_impl_candidates(impl_candidates, &mut err);
600                         }
601
602                         err
603                     }
604
605                     ty::Predicate::Subtype(ref predicate) => {
606                         // Errors for Subtype predicates show up as
607                         // `FulfillmentErrorCode::CodeSubtypeError`,
608                         // not selection error.
609                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
610                     }
611
612                     ty::Predicate::Equate(ref predicate) => {
613                         let predicate = self.resolve_type_vars_if_possible(predicate);
614                         let err = self.equality_predicate(&obligation.cause,
615                                                           obligation.param_env,
616                                                           &predicate).err().unwrap();
617                         struct_span_err!(self.tcx.sess, span, E0278,
618                             "the requirement `{}` is not satisfied (`{}`)",
619                             predicate, err)
620                     }
621
622                     ty::Predicate::RegionOutlives(ref predicate) => {
623                         let predicate = self.resolve_type_vars_if_possible(predicate);
624                         let err = self.region_outlives_predicate(&obligation.cause,
625                                                                     &predicate).err().unwrap();
626                         struct_span_err!(self.tcx.sess, span, E0279,
627                             "the requirement `{}` is not satisfied (`{}`)",
628                             predicate, err)
629                     }
630
631                     ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
632                         let predicate =
633                             self.resolve_type_vars_if_possible(&obligation.predicate);
634                         struct_span_err!(self.tcx.sess, span, E0280,
635                             "the requirement `{}` is not satisfied",
636                             predicate)
637                     }
638
639                     ty::Predicate::ObjectSafe(trait_def_id) => {
640                         let violations = self.tcx.object_safety_violations(trait_def_id);
641                         self.tcx.report_object_safety_error(span,
642                                                             trait_def_id,
643                                                             violations)
644                     }
645
646                     ty::Predicate::ClosureKind(closure_def_id, kind) => {
647                         let found_kind = self.closure_kind(closure_def_id).unwrap();
648                         let closure_span = self.tcx.hir.span_if_local(closure_def_id).unwrap();
649                         let node_id = self.tcx.hir.as_local_node_id(closure_def_id).unwrap();
650                         let mut err = struct_span_err!(
651                             self.tcx.sess, closure_span, E0525,
652                             "expected a closure that implements the `{}` trait, \
653                                 but this closure only implements `{}`",
654                             kind,
655                             found_kind);
656
657                         err.span_label(
658                             obligation.cause.span,
659                             format!("the requirement to implement `{}` derives from here", kind));
660
661                         // Additional context information explaining why the closure only implements
662                         // a particular trait.
663                         if let Some(tables) = self.in_progress_tables {
664                             let tables = tables.borrow();
665                             let closure_hir_id = self.tcx.hir.node_to_hir_id(node_id);
666                             match tables.closure_kinds().get(closure_hir_id) {
667                                 Some(&(ty::ClosureKind::FnOnce, Some((span, name)))) => {
668                                     err.span_note(span, &format!(
669                                         "closure is `FnOnce` because it moves the \
670                                          variable `{}` out of its environment", name));
671                                 },
672                                 Some(&(ty::ClosureKind::FnMut, Some((span, name)))) => {
673                                     err.span_note(span, &format!(
674                                         "closure is `FnMut` because it mutates the \
675                                          variable `{}` here", name));
676                                 },
677                                 _ => {}
678                             }
679                         }
680
681                         err.emit();
682                         return;
683                     }
684
685                     ty::Predicate::WellFormed(ty) => {
686                         // WF predicates cannot themselves make
687                         // errors. They can only block due to
688                         // ambiguity; otherwise, they always
689                         // degenerate into other obligations
690                         // (which may fail).
691                         span_bug!(span, "WF predicate not satisfied for {:?}", ty);
692                     }
693
694                     ty::Predicate::ConstEvaluatable(..) => {
695                         // Errors for `ConstEvaluatable` predicates show up as
696                         // `SelectionError::ConstEvalFailure`,
697                         // not `Unimplemented`.
698                         span_bug!(span,
699                             "const-evaluatable requirement gave wrong error: `{:?}`", obligation)
700                     }
701                 }
702             }
703
704             OutputTypeParameterMismatch(ref found_trait_ref, ref expected_trait_ref, _) => {
705                 let found_trait_ref = self.resolve_type_vars_if_possible(&*found_trait_ref);
706                 let expected_trait_ref = self.resolve_type_vars_if_possible(&*expected_trait_ref);
707                 if expected_trait_ref.self_ty().references_error() {
708                     return;
709                 }
710                 let found_trait_ty = found_trait_ref.self_ty();
711
712                 let found_did = found_trait_ty.ty_to_def_id();
713                 let found_span = found_did.and_then(|did| {
714                     self.tcx.hir.span_if_local(did)
715                 });
716
717                 let found_ty_count =
718                     match found_trait_ref.skip_binder().substs.type_at(1).sty {
719                         ty::TyTuple(ref tys, _) => tys.len(),
720                         _ => 1,
721                     };
722                 let (expected_tys, expected_ty_count) =
723                     match expected_trait_ref.skip_binder().substs.type_at(1).sty {
724                         ty::TyTuple(ref tys, _) =>
725                             (tys.iter().map(|t| &t.sty).collect(), tys.len()),
726                         ref sty => (vec![sty], 1),
727                     };
728                 if found_ty_count == expected_ty_count {
729                     self.report_closure_arg_mismatch(span,
730                                                      found_span,
731                                                      found_trait_ref,
732                                                      expected_trait_ref)
733                 } else {
734                     let expected_tuple = if expected_ty_count == 1 {
735                         expected_tys.first().and_then(|t| {
736                             if let &&ty::TyTuple(ref tuptys, _) = t {
737                                 Some(tuptys.len())
738                             } else {
739                                 None
740                             }
741                         })
742                     } else {
743                         None
744                     };
745
746                     // FIXME(#44150): Expand this to "N args expected but a N-tuple found."
747                     // Type of the 1st expected argument is somehow provided as type of a
748                     // found one in that case.
749                     //
750                     // ```
751                     // [1i32, 2, 3].sort_by(|(a, b)| ..)
752                     // //                   ^^^^^^^^
753                     // // expected_trait_ref:  std::ops::FnMut<(&i32, &i32)>
754                     // //    found_trait_ref:  std::ops::FnMut<(&i32,)>
755                     // ```
756
757                     let (closure_span, closure_args) = found_did
758                         .and_then(|did| self.tcx.hir.get_if_local(did))
759                         .and_then(|node| {
760                             if let hir::map::NodeExpr(
761                                 &hir::Expr {
762                                     node: hir::ExprClosure(_, ref decl, id, span, _),
763                                     ..
764                                 }) = node
765                             {
766                                 let ty_snips = decl.inputs.iter()
767                                     .map(|ty| {
768                                         self.tcx.sess.codemap().span_to_snippet(ty.span).ok()
769                                             .and_then(|snip| {
770                                                 // filter out dummy spans
771                                                 if snip == "," || snip == "|" {
772                                                     None
773                                                 } else {
774                                                     Some(snip)
775                                                 }
776                                             })
777                                     })
778                                     .collect::<Vec<Option<String>>>();
779
780                                 let body = self.tcx.hir.body(id);
781                                 let pat_snips = body.arguments.iter()
782                                     .map(|arg|
783                                         self.tcx.sess.codemap().span_to_snippet(arg.pat.span).ok())
784                                     .collect::<Option<Vec<String>>>();
785
786                                 Some((span, pat_snips, ty_snips))
787                             } else {
788                                 None
789                             }
790                         })
791                         .map(|(span, pat, ty)| (Some(span), Some((pat, ty))))
792                         .unwrap_or((None, None));
793                     let closure_args = closure_args.and_then(|(pat, ty)| Some((pat?, ty)));
794
795                     self.report_arg_count_mismatch(
796                         span,
797                         closure_span.or(found_span),
798                         expected_ty_count,
799                         expected_tuple,
800                         found_ty_count,
801                         closure_args,
802                         found_trait_ty.is_closure()
803                     )
804                 }
805             }
806
807             TraitNotObjectSafe(did) => {
808                 let violations = self.tcx.object_safety_violations(did);
809                 self.tcx.report_object_safety_error(span, did,
810                                                     violations)
811             }
812
813             ConstEvalFailure(ref err) => {
814                 if let const_val::ErrKind::TypeckError = err.kind {
815                     return;
816                 }
817                 err.struct_error(self.tcx, span, "constant expression")
818             }
819         };
820         self.note_obligation_cause(&mut err, obligation);
821         err.emit();
822     }
823
824     fn report_arg_count_mismatch(
825         &self,
826         span: Span,
827         found_span: Option<Span>,
828         expected: usize,
829         expected_tuple: Option<usize>,
830         found: usize,
831         closure_args: Option<(Vec<String>, Vec<Option<String>>)>,
832         is_closure: bool
833     ) -> DiagnosticBuilder<'tcx> {
834         use std::borrow::Cow;
835
836         let kind = if is_closure { "closure" } else { "function" };
837
838         let args_str = |n, distinct| format!(
839                 "{} {}argument{}",
840                 n,
841                 if distinct && n >= 2 { "distinct " } else { "" },
842                 if n == 1 { "" } else { "s" },
843             );
844
845         let expected_str = if let Some(n) = expected_tuple {
846             assert!(expected == 1);
847             if closure_args.as_ref().map(|&(ref pats, _)| pats.len()) == Some(n) {
848                 Cow::from("a single tuple as argument")
849             } else {
850                 // be verbose when numbers differ
851                 Cow::from(format!("a single {}-tuple as argument", n))
852             }
853         } else {
854             Cow::from(args_str(expected, false))
855         };
856
857         let found_str = if expected_tuple.is_some() {
858             args_str(found, true)
859         } else {
860             args_str(found, false)
861         };
862
863
864         let mut err = struct_span_err!(self.tcx.sess, span, E0593,
865             "{} is expected to take {}, but it takes {}",
866             kind,
867             expected_str,
868             found_str,
869         );
870
871         err.span_label(
872             span,
873             format!(
874                 "expected {} that takes {}",
875                 kind,
876                 expected_str,
877             )
878         );
879
880         if let Some(span) = found_span {
881             if let (Some(expected_tuple), Some((pats, tys))) = (expected_tuple, closure_args) {
882                 if expected_tuple != found || pats.len() != found {
883                     err.span_label(span, format!("takes {}", found_str));
884                 } else {
885                     let sugg = format!(
886                         "|({}){}|",
887                         pats.join(", "),
888
889                         // add type annotations if available
890                         if tys.iter().any(|ty| ty.is_some()) {
891                             Cow::from(format!(
892                                 ": ({})",
893                                 tys.into_iter().map(|ty| if let Some(ty) = ty {
894                                     ty
895                                 } else {
896                                     "_".to_string()
897                                 }).collect::<Vec<String>>().join(", ")
898                             ))
899                         } else {
900                             Cow::from("")
901                         },
902                     );
903
904                     err.span_suggestion(
905                         span,
906                         "consider changing the closure to accept a tuple",
907                         sugg
908                     );
909                 }
910             } else {
911                 err.span_label(span, format!("takes {}", found_str));
912             }
913         }
914
915         err
916     }
917
918     fn report_closure_arg_mismatch(&self,
919                            span: Span,
920                            found_span: Option<Span>,
921                            expected_ref: ty::PolyTraitRef<'tcx>,
922                            found: ty::PolyTraitRef<'tcx>)
923         -> DiagnosticBuilder<'tcx>
924     {
925         fn build_fn_sig_string<'a, 'gcx, 'tcx>(tcx: ty::TyCtxt<'a, 'gcx, 'tcx>,
926                                                trait_ref: &ty::TraitRef<'tcx>) -> String {
927             let inputs = trait_ref.substs.type_at(1);
928             let sig = if let ty::TyTuple(inputs, _) = inputs.sty {
929                 tcx.mk_fn_sig(
930                     inputs.iter().map(|&x| x),
931                     tcx.mk_infer(ty::TyVar(ty::TyVid { index: 0 })),
932                     false,
933                     hir::Unsafety::Normal,
934                     ::syntax::abi::Abi::Rust
935                 )
936             } else {
937                 tcx.mk_fn_sig(
938                     ::std::iter::once(inputs),
939                     tcx.mk_infer(ty::TyVar(ty::TyVid { index: 0 })),
940                     false,
941                     hir::Unsafety::Normal,
942                     ::syntax::abi::Abi::Rust
943                 )
944             };
945             format!("{}", ty::Binder(sig))
946         }
947
948         let argument_is_closure = expected_ref.skip_binder().substs.type_at(0).is_closure();
949         let mut err = struct_span_err!(self.tcx.sess, span, E0631,
950                                        "type mismatch in {} arguments",
951                                        if argument_is_closure { "closure" } else { "function" });
952
953         let found_str = format!(
954             "expected signature of `{}`",
955             build_fn_sig_string(self.tcx, found.skip_binder())
956         );
957         err.span_label(span, found_str);
958
959         let found_span = found_span.unwrap_or(span);
960         let expected_str = format!(
961             "found signature of `{}`",
962             build_fn_sig_string(self.tcx, expected_ref.skip_binder())
963         );
964         err.span_label(found_span, expected_str);
965
966         err
967     }
968 }
969
970 impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
971     pub fn recursive_type_with_infinite_size_error(self,
972                                                    type_def_id: DefId)
973                                                    -> DiagnosticBuilder<'tcx>
974     {
975         assert!(type_def_id.is_local());
976         let span = self.hir.span_if_local(type_def_id).unwrap();
977         let span = self.sess.codemap().def_span(span);
978         let mut err = struct_span_err!(self.sess, span, E0072,
979                                        "recursive type `{}` has infinite size",
980                                        self.item_path_str(type_def_id));
981         err.span_label(span, "recursive type has infinite size");
982         err.help(&format!("insert indirection (e.g., a `Box`, `Rc`, or `&`) \
983                            at some point to make `{}` representable",
984                           self.item_path_str(type_def_id)));
985         err
986     }
987
988     pub fn report_object_safety_error(self,
989                                       span: Span,
990                                       trait_def_id: DefId,
991                                       violations: Vec<ObjectSafetyViolation>)
992                                       -> DiagnosticBuilder<'tcx>
993     {
994         let trait_str = self.item_path_str(trait_def_id);
995         let span = self.sess.codemap().def_span(span);
996         let mut err = struct_span_err!(
997             self.sess, span, E0038,
998             "the trait `{}` cannot be made into an object",
999             trait_str);
1000         err.span_label(span, format!("the trait `{}` cannot be made into an object", trait_str));
1001
1002         let mut reported_violations = FxHashSet();
1003         for violation in violations {
1004             if !reported_violations.insert(violation.clone()) {
1005                 continue;
1006             }
1007             err.note(&violation.error_msg());
1008         }
1009         err
1010     }
1011 }
1012
1013 impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
1014     fn maybe_report_ambiguity(&self, obligation: &PredicateObligation<'tcx>,
1015                               body_id: Option<hir::BodyId>) {
1016         // Unable to successfully determine, probably means
1017         // insufficient type information, but could mean
1018         // ambiguous impls. The latter *ought* to be a
1019         // coherence violation, so we don't report it here.
1020
1021         let predicate = self.resolve_type_vars_if_possible(&obligation.predicate);
1022         let span = obligation.cause.span;
1023
1024         debug!("maybe_report_ambiguity(predicate={:?}, obligation={:?})",
1025                predicate,
1026                obligation);
1027
1028         // Ambiguity errors are often caused as fallout from earlier
1029         // errors. So just ignore them if this infcx is tainted.
1030         if self.is_tainted_by_errors() {
1031             return;
1032         }
1033
1034         match predicate {
1035             ty::Predicate::Trait(ref data) => {
1036                 let trait_ref = data.to_poly_trait_ref();
1037                 let self_ty = trait_ref.self_ty();
1038                 if predicate.references_error() {
1039                     return;
1040                 }
1041                 // Typically, this ambiguity should only happen if
1042                 // there are unresolved type inference variables
1043                 // (otherwise it would suggest a coherence
1044                 // failure). But given #21974 that is not necessarily
1045                 // the case -- we can have multiple where clauses that
1046                 // are only distinguished by a region, which results
1047                 // in an ambiguity even when all types are fully
1048                 // known, since we don't dispatch based on region
1049                 // relationships.
1050
1051                 // This is kind of a hack: it frequently happens that some earlier
1052                 // error prevents types from being fully inferred, and then we get
1053                 // a bunch of uninteresting errors saying something like "<generic
1054                 // #0> doesn't implement Sized".  It may even be true that we
1055                 // could just skip over all checks where the self-ty is an
1056                 // inference variable, but I was afraid that there might be an
1057                 // inference variable created, registered as an obligation, and
1058                 // then never forced by writeback, and hence by skipping here we'd
1059                 // be ignoring the fact that we don't KNOW the type works
1060                 // out. Though even that would probably be harmless, given that
1061                 // we're only talking about builtin traits, which are known to be
1062                 // inhabited. But in any case I just threw in this check for
1063                 // has_errors() to be sure that compilation isn't happening
1064                 // anyway. In that case, why inundate the user.
1065                 if !self.tcx.sess.has_errors() {
1066                     if
1067                         self.tcx.lang_items().sized_trait()
1068                         .map_or(false, |sized_id| sized_id == trait_ref.def_id())
1069                     {
1070                         self.need_type_info(body_id, span, self_ty);
1071                     } else {
1072                         let mut err = struct_span_err!(self.tcx.sess,
1073                                                         span, E0283,
1074                                                         "type annotations required: \
1075                                                         cannot resolve `{}`",
1076                                                         predicate);
1077                         self.note_obligation_cause(&mut err, obligation);
1078                         err.emit();
1079                     }
1080                 }
1081             }
1082
1083             ty::Predicate::WellFormed(ty) => {
1084                 // Same hacky approach as above to avoid deluging user
1085                 // with error messages.
1086                 if !ty.references_error() && !self.tcx.sess.has_errors() {
1087                     self.need_type_info(body_id, span, ty);
1088                 }
1089             }
1090
1091             ty::Predicate::Subtype(ref data) => {
1092                 if data.references_error() || self.tcx.sess.has_errors() {
1093                     // no need to overload user in such cases
1094                 } else {
1095                     let &SubtypePredicate { a_is_expected: _, a, b } = data.skip_binder();
1096                     // both must be type variables, or the other would've been instantiated
1097                     assert!(a.is_ty_var() && b.is_ty_var());
1098                     self.need_type_info(body_id,
1099                                         obligation.cause.span,
1100                                         a);
1101                 }
1102             }
1103
1104             _ => {
1105                 if !self.tcx.sess.has_errors() {
1106                     let mut err = struct_span_err!(self.tcx.sess,
1107                                                    obligation.cause.span, E0284,
1108                                                    "type annotations required: \
1109                                                     cannot resolve `{}`",
1110                                                    predicate);
1111                     self.note_obligation_cause(&mut err, obligation);
1112                     err.emit();
1113                 }
1114             }
1115         }
1116     }
1117
1118     /// Returns whether the trait predicate may apply for *some* assignment
1119     /// to the type parameters.
1120     fn predicate_can_apply(&self,
1121                            param_env: ty::ParamEnv<'tcx>,
1122                            pred: ty::PolyTraitRef<'tcx>)
1123                            -> bool {
1124         struct ParamToVarFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
1125             infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
1126             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>
1127         }
1128
1129         impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for ParamToVarFolder<'a, 'gcx, 'tcx> {
1130             fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.infcx.tcx }
1131
1132             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1133                 if let ty::TyParam(ty::ParamTy {name, ..}) = ty.sty {
1134                     let infcx = self.infcx;
1135                     self.var_map.entry(ty).or_insert_with(||
1136                         infcx.next_ty_var(
1137                             TypeVariableOrigin::TypeParameterDefinition(DUMMY_SP, name)))
1138                 } else {
1139                     ty.super_fold_with(self)
1140                 }
1141             }
1142         }
1143
1144         self.probe(|_| {
1145             let mut selcx = SelectionContext::new(self);
1146
1147             let cleaned_pred = pred.fold_with(&mut ParamToVarFolder {
1148                 infcx: self,
1149                 var_map: FxHashMap()
1150             });
1151
1152             let cleaned_pred = super::project::normalize(
1153                 &mut selcx,
1154                 param_env,
1155                 ObligationCause::dummy(),
1156                 &cleaned_pred
1157             ).value;
1158
1159             let obligation = Obligation::new(
1160                 ObligationCause::dummy(),
1161                 param_env,
1162                 cleaned_pred.to_predicate()
1163             );
1164
1165             selcx.evaluate_obligation(&obligation)
1166         })
1167     }
1168
1169     fn note_obligation_cause<T>(&self,
1170                                 err: &mut DiagnosticBuilder,
1171                                 obligation: &Obligation<'tcx, T>)
1172         where T: fmt::Display
1173     {
1174         self.note_obligation_cause_code(err,
1175                                         &obligation.predicate,
1176                                         &obligation.cause.code);
1177     }
1178
1179     fn note_obligation_cause_code<T>(&self,
1180                                      err: &mut DiagnosticBuilder,
1181                                      predicate: &T,
1182                                      cause_code: &ObligationCauseCode<'tcx>)
1183         where T: fmt::Display
1184     {
1185         let tcx = self.tcx;
1186         match *cause_code {
1187             ObligationCauseCode::ExprAssignable |
1188             ObligationCauseCode::MatchExpressionArm { .. } |
1189             ObligationCauseCode::IfExpression |
1190             ObligationCauseCode::IfExpressionWithNoElse |
1191             ObligationCauseCode::EquatePredicate |
1192             ObligationCauseCode::MainFunctionType |
1193             ObligationCauseCode::StartFunctionType |
1194             ObligationCauseCode::IntrinsicType |
1195             ObligationCauseCode::MethodReceiver |
1196             ObligationCauseCode::ReturnNoExpression |
1197             ObligationCauseCode::MiscObligation => {
1198             }
1199             ObligationCauseCode::SliceOrArrayElem => {
1200                 err.note("slice and array elements must have `Sized` type");
1201             }
1202             ObligationCauseCode::TupleElem => {
1203                 err.note("only the last element of a tuple may have a dynamically sized type");
1204             }
1205             ObligationCauseCode::ProjectionWf(data) => {
1206                 err.note(&format!("required so that the projection `{}` is well-formed",
1207                                   data));
1208             }
1209             ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
1210                 err.note(&format!("required so that reference `{}` does not outlive its referent",
1211                                   ref_ty));
1212             }
1213             ObligationCauseCode::ObjectTypeBound(object_ty, region) => {
1214                 err.note(&format!("required so that the lifetime bound of `{}` for `{}` \
1215                                    is satisfied",
1216                                   region, object_ty));
1217             }
1218             ObligationCauseCode::ItemObligation(item_def_id) => {
1219                 let item_name = tcx.item_path_str(item_def_id);
1220                 err.note(&format!("required by `{}`", item_name));
1221             }
1222             ObligationCauseCode::ObjectCastObligation(object_ty) => {
1223                 err.note(&format!("required for the cast to the object type `{}`",
1224                                   self.ty_to_string(object_ty)));
1225             }
1226             ObligationCauseCode::RepeatVec => {
1227                 err.note("the `Copy` trait is required because the \
1228                           repeated element will be copied");
1229             }
1230             ObligationCauseCode::VariableType(_) => {
1231                 err.note("all local variables must have a statically known size");
1232             }
1233             ObligationCauseCode::SizedReturnType => {
1234                 err.note("the return type of a function must have a \
1235                           statically known size");
1236             }
1237             ObligationCauseCode::AssignmentLhsSized => {
1238                 err.note("the left-hand-side of an assignment must have a statically known size");
1239             }
1240             ObligationCauseCode::TupleInitializerSized => {
1241                 err.note("tuples must have a statically known size to be initialized");
1242             }
1243             ObligationCauseCode::StructInitializerSized => {
1244                 err.note("structs must have a statically known size to be initialized");
1245             }
1246             ObligationCauseCode::FieldSized(ref item) => {
1247                 match *item {
1248                     AdtKind::Struct => {
1249                         err.note("only the last field of a struct may have a dynamically \
1250                                   sized type");
1251                     }
1252                     AdtKind::Union => {
1253                         err.note("no field of a union may have a dynamically sized type");
1254                     }
1255                     AdtKind::Enum => {
1256                         err.note("no field of an enum variant may have a dynamically sized type");
1257                     }
1258                 }
1259             }
1260             ObligationCauseCode::ConstSized => {
1261                 err.note("constant expressions must have a statically known size");
1262             }
1263             ObligationCauseCode::SharedStatic => {
1264                 err.note("shared static variables must have a type that implements `Sync`");
1265             }
1266             ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
1267                 let parent_trait_ref = self.resolve_type_vars_if_possible(&data.parent_trait_ref);
1268                 err.note(&format!("required because it appears within the type `{}`",
1269                                   parent_trait_ref.0.self_ty()));
1270                 let parent_predicate = parent_trait_ref.to_predicate();
1271                 self.note_obligation_cause_code(err,
1272                                                 &parent_predicate,
1273                                                 &data.parent_code);
1274             }
1275             ObligationCauseCode::ImplDerivedObligation(ref data) => {
1276                 let parent_trait_ref = self.resolve_type_vars_if_possible(&data.parent_trait_ref);
1277                 err.note(
1278                     &format!("required because of the requirements on the impl of `{}` for `{}`",
1279                              parent_trait_ref,
1280                              parent_trait_ref.0.self_ty()));
1281                 let parent_predicate = parent_trait_ref.to_predicate();
1282                 self.note_obligation_cause_code(err,
1283                                                 &parent_predicate,
1284                                                 &data.parent_code);
1285             }
1286             ObligationCauseCode::CompareImplMethodObligation { .. } => {
1287                 err.note(
1288                     &format!("the requirement `{}` appears on the impl method \
1289                               but not on the corresponding trait method",
1290                              predicate));
1291             }
1292             ObligationCauseCode::ReturnType(_) |
1293             ObligationCauseCode::BlockTailExpression(_) => (),
1294         }
1295     }
1296
1297     fn suggest_new_overflow_limit(&self, err: &mut DiagnosticBuilder) {
1298         let current_limit = self.tcx.sess.recursion_limit.get();
1299         let suggested_limit = current_limit * 2;
1300         err.help(&format!("consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
1301                           suggested_limit));
1302     }
1303 }