]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/error_reporting.rs
Auto merge of #45333 - alkis:master, r=bluss
[rust.git] / src / librustc / traits / error_reporting.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use super::{
12     FulfillmentError,
13     FulfillmentErrorCode,
14     MismatchedProjectionTypes,
15     Obligation,
16     ObligationCause,
17     ObligationCauseCode,
18     OnUnimplementedDirective,
19     OnUnimplementedNote,
20     OutputTypeParameterMismatch,
21     TraitNotObjectSafe,
22     ConstEvalFailure,
23     PredicateObligation,
24     Reveal,
25     SelectionContext,
26     SelectionError,
27     ObjectSafetyViolation,
28 };
29
30 use errors::DiagnosticBuilder;
31 use hir;
32 use hir::def_id::DefId;
33 use infer::{self, InferCtxt};
34 use infer::type_variable::TypeVariableOrigin;
35 use middle::const_val;
36 use rustc::lint::builtin::EXTRA_REQUIREMENT_IN_IMPL;
37 use std::fmt;
38 use syntax::ast;
39 use ty::{self, AdtKind, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
40 use ty::error::ExpectedFound;
41 use ty::fast_reject;
42 use ty::fold::TypeFolder;
43 use ty::subst::Subst;
44 use ty::SubtypePredicate;
45 use util::nodemap::{FxHashMap, FxHashSet};
46
47 use syntax_pos::{DUMMY_SP, Span};
48
49 impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
50     pub fn report_fulfillment_errors(&self,
51                                      errors: &Vec<FulfillmentError<'tcx>>,
52                                      body_id: Option<hir::BodyId>) {
53         #[derive(Debug)]
54         struct ErrorDescriptor<'tcx> {
55             predicate: ty::Predicate<'tcx>,
56             index: Option<usize>, // None if this is an old error
57         }
58
59         let mut error_map : FxHashMap<_, _> =
60             self.reported_trait_errors.borrow().iter().map(|(&span, predicates)| {
61                 (span, predicates.iter().map(|predicate| ErrorDescriptor {
62                     predicate: predicate.clone(),
63                     index: None
64                 }).collect())
65             }).collect();
66
67         for (index, error) in errors.iter().enumerate() {
68             error_map.entry(error.obligation.cause.span).or_insert(Vec::new()).push(
69                 ErrorDescriptor {
70                     predicate: error.obligation.predicate.clone(),
71                     index: Some(index)
72                 });
73
74             self.reported_trait_errors.borrow_mut()
75                 .entry(error.obligation.cause.span).or_insert(Vec::new())
76                 .push(error.obligation.predicate.clone());
77         }
78
79         // We do this in 2 passes because we want to display errors in order, tho
80         // maybe it *is* better to sort errors by span or something.
81         let mut is_suppressed: Vec<bool> = errors.iter().map(|_| false).collect();
82         for (_, error_set) in error_map.iter() {
83             // We want to suppress "duplicate" errors with the same span.
84             for error in error_set {
85                 if let Some(index) = error.index {
86                     // Suppress errors that are either:
87                     // 1) strictly implied by another error.
88                     // 2) implied by an error with a smaller index.
89                     for error2 in error_set {
90                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
91                             // Avoid errors being suppressed by already-suppressed
92                             // errors, to prevent all errors from being suppressed
93                             // at once.
94                             continue
95                         }
96
97                         if self.error_implies(&error2.predicate, &error.predicate) &&
98                             !(error2.index >= error.index &&
99                               self.error_implies(&error.predicate, &error2.predicate))
100                         {
101                             info!("skipping {:?} (implied by {:?})", error, error2);
102                             is_suppressed[index] = true;
103                             break
104                         }
105                     }
106                 }
107             }
108         }
109
110         for (error, suppressed) in errors.iter().zip(is_suppressed) {
111             if !suppressed {
112                 self.report_fulfillment_error(error, body_id);
113             }
114         }
115     }
116
117     // returns if `cond` not occurring implies that `error` does not occur - i.e. that
118     // `error` occurring implies that `cond` occurs.
119     fn error_implies(&self,
120                      cond: &ty::Predicate<'tcx>,
121                      error: &ty::Predicate<'tcx>)
122                      -> bool
123     {
124         if cond == error {
125             return true
126         }
127
128         let (cond, error) = match (cond, error) {
129             (&ty::Predicate::Trait(..), &ty::Predicate::Trait(ref error))
130                 => (cond, error),
131             _ => {
132                 // FIXME: make this work in other cases too.
133                 return false
134             }
135         };
136
137         for implication in super::elaborate_predicates(self.tcx, vec![cond.clone()]) {
138             if let ty::Predicate::Trait(implication) = implication {
139                 let error = error.to_poly_trait_ref();
140                 let implication = implication.to_poly_trait_ref();
141                 // FIXME: I'm just not taking associated types at all here.
142                 // Eventually I'll need to implement param-env-aware
143                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
144                 let param_env = ty::ParamEnv::empty(Reveal::UserFacing);
145                 if let Ok(_) = self.can_sub(param_env, error, implication) {
146                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
147                     return true
148                 }
149             }
150         }
151
152         false
153     }
154
155     fn report_fulfillment_error(&self, error: &FulfillmentError<'tcx>,
156                                 body_id: Option<hir::BodyId>) {
157         debug!("report_fulfillment_errors({:?})", error);
158         match error.code {
159             FulfillmentErrorCode::CodeSelectionError(ref e) => {
160                 self.report_selection_error(&error.obligation, e);
161             }
162             FulfillmentErrorCode::CodeProjectionError(ref e) => {
163                 self.report_projection_error(&error.obligation, e);
164             }
165             FulfillmentErrorCode::CodeAmbiguity => {
166                 self.maybe_report_ambiguity(&error.obligation, body_id);
167             }
168             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
169                 self.report_mismatched_types(&error.obligation.cause,
170                                              expected_found.expected,
171                                              expected_found.found,
172                                              err.clone())
173                     .emit();
174             }
175         }
176     }
177
178     fn report_projection_error(&self,
179                                obligation: &PredicateObligation<'tcx>,
180                                error: &MismatchedProjectionTypes<'tcx>)
181     {
182         let predicate =
183             self.resolve_type_vars_if_possible(&obligation.predicate);
184
185         if predicate.references_error() {
186             return
187         }
188
189         self.probe(|_| {
190             let err_buf;
191             let mut err = &error.err;
192             let mut values = None;
193
194             // try to find the mismatched types to report the error with.
195             //
196             // this can fail if the problem was higher-ranked, in which
197             // cause I have no idea for a good error message.
198             if let ty::Predicate::Projection(ref data) = predicate {
199                 let mut selcx = SelectionContext::new(self);
200                 let (data, _) = self.replace_late_bound_regions_with_fresh_var(
201                     obligation.cause.span,
202                     infer::LateBoundRegionConversionTime::HigherRankedType,
203                     data);
204                 let normalized = super::normalize_projection_type(
205                     &mut selcx,
206                     obligation.param_env,
207                     data.projection_ty,
208                     obligation.cause.clone(),
209                     0
210                 );
211                 if let Err(error) = self.at(&obligation.cause, obligation.param_env)
212                                         .eq(normalized.value, data.ty) {
213                     values = Some(infer::ValuePairs::Types(ExpectedFound {
214                         expected: normalized.value,
215                         found: data.ty,
216                     }));
217                     err_buf = error;
218                     err = &err_buf;
219                 }
220             }
221
222             let mut diag = struct_span_err!(
223                 self.tcx.sess, obligation.cause.span, E0271,
224                 "type mismatch resolving `{}`", predicate
225             );
226             self.note_type_err(&mut diag, &obligation.cause, None, values, err);
227             self.note_obligation_cause(&mut diag, obligation);
228             diag.emit();
229         });
230     }
231
232     fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
233         /// returns the fuzzy category of a given type, or None
234         /// if the type can be equated to any type.
235         fn type_category<'tcx>(t: Ty<'tcx>) -> Option<u32> {
236             match t.sty {
237                 ty::TyBool => Some(0),
238                 ty::TyChar => Some(1),
239                 ty::TyStr => Some(2),
240                 ty::TyInt(..) | ty::TyUint(..) | ty::TyInfer(ty::IntVar(..)) => Some(3),
241                 ty::TyFloat(..) | ty::TyInfer(ty::FloatVar(..)) => Some(4),
242                 ty::TyRef(..) | ty::TyRawPtr(..) => Some(5),
243                 ty::TyArray(..) | ty::TySlice(..) => Some(6),
244                 ty::TyFnDef(..) | ty::TyFnPtr(..) => Some(7),
245                 ty::TyDynamic(..) => Some(8),
246                 ty::TyClosure(..) => Some(9),
247                 ty::TyTuple(..) => Some(10),
248                 ty::TyProjection(..) => Some(11),
249                 ty::TyParam(..) => Some(12),
250                 ty::TyAnon(..) => Some(13),
251                 ty::TyNever => Some(14),
252                 ty::TyAdt(adt, ..) => match adt.adt_kind() {
253                     AdtKind::Struct => Some(15),
254                     AdtKind::Union => Some(16),
255                     AdtKind::Enum => Some(17),
256                 },
257                 ty::TyGenerator(..) => Some(18),
258                 ty::TyForeign(..) => Some(19),
259                 ty::TyInfer(..) | ty::TyError => None
260             }
261         }
262
263         match (type_category(a), type_category(b)) {
264             (Some(cat_a), Some(cat_b)) => match (&a.sty, &b.sty) {
265                 (&ty::TyAdt(def_a, _), &ty::TyAdt(def_b, _)) => def_a == def_b,
266                 _ => cat_a == cat_b
267             },
268             // infer and error can be equated to all types
269             _ => true
270         }
271     }
272
273     fn impl_similar_to(&self,
274                        trait_ref: ty::PolyTraitRef<'tcx>,
275                        obligation: &PredicateObligation<'tcx>)
276                        -> Option<DefId>
277     {
278         let tcx = self.tcx;
279         let param_env = obligation.param_env;
280         let trait_ref = tcx.erase_late_bound_regions(&trait_ref);
281         let trait_self_ty = trait_ref.self_ty();
282
283         let mut self_match_impls = vec![];
284         let mut fuzzy_match_impls = vec![];
285
286         self.tcx.for_each_relevant_impl(
287             trait_ref.def_id, trait_self_ty, |def_id| {
288                 let impl_substs = self.fresh_substs_for_item(obligation.cause.span, def_id);
289                 let impl_trait_ref = tcx
290                     .impl_trait_ref(def_id)
291                     .unwrap()
292                     .subst(tcx, impl_substs);
293
294                 let impl_self_ty = impl_trait_ref.self_ty();
295
296                 if let Ok(..) = self.can_eq(param_env, trait_self_ty, impl_self_ty) {
297                     self_match_impls.push(def_id);
298
299                     if trait_ref.substs.types().skip(1)
300                         .zip(impl_trait_ref.substs.types().skip(1))
301                         .all(|(u,v)| self.fuzzy_match_tys(u, v))
302                     {
303                         fuzzy_match_impls.push(def_id);
304                     }
305                 }
306             });
307
308         let impl_def_id = if self_match_impls.len() == 1 {
309             self_match_impls[0]
310         } else if fuzzy_match_impls.len() == 1 {
311             fuzzy_match_impls[0]
312         } else {
313             return None
314         };
315
316         if tcx.has_attr(impl_def_id, "rustc_on_unimplemented") {
317             Some(impl_def_id)
318         } else {
319             None
320         }
321     }
322
323     fn on_unimplemented_note(
324         &self,
325         trait_ref: ty::PolyTraitRef<'tcx>,
326         obligation: &PredicateObligation<'tcx>) ->
327         OnUnimplementedNote
328     {
329         let def_id = self.impl_similar_to(trait_ref, obligation)
330             .unwrap_or(trait_ref.def_id());
331         let trait_ref = *trait_ref.skip_binder();
332
333         let desugaring;
334         let method;
335         let mut flags = vec![];
336         let direct = match obligation.cause.code {
337             ObligationCauseCode::BuiltinDerivedObligation(..) |
338             ObligationCauseCode::ImplDerivedObligation(..) => false,
339             _ => true
340         };
341         if direct {
342             // this is a "direct", user-specified, rather than derived,
343             // obligation.
344             flags.push(("direct", None));
345         }
346
347         if let ObligationCauseCode::ItemObligation(item) = obligation.cause.code {
348             // FIXME: maybe also have some way of handling methods
349             // from other traits? That would require name resolution,
350             // which we might want to be some sort of hygienic.
351             //
352             // Currently I'm leaving it for what I need for `try`.
353             if self.tcx.trait_of_item(item) == Some(trait_ref.def_id) {
354                 method = self.tcx.item_name(item);
355                 flags.push(("from_method", None));
356                 flags.push(("from_method", Some(&*method)));
357             }
358         }
359
360         if let Some(k) = obligation.cause.span.compiler_desugaring_kind() {
361             desugaring = k.as_symbol().as_str();
362             flags.push(("from_desugaring", None));
363             flags.push(("from_desugaring", Some(&*desugaring)));
364         }
365
366         if let Ok(Some(command)) = OnUnimplementedDirective::of_item(
367             self.tcx, trait_ref.def_id, def_id
368         ) {
369             command.evaluate(self.tcx, trait_ref, &flags)
370         } else {
371             OnUnimplementedNote::empty()
372         }
373     }
374
375     fn find_similar_impl_candidates(&self,
376                                     trait_ref: ty::PolyTraitRef<'tcx>)
377                                     -> Vec<ty::TraitRef<'tcx>>
378     {
379         let simp = fast_reject::simplify_type(self.tcx,
380                                               trait_ref.skip_binder().self_ty(),
381                                               true);
382         let mut impl_candidates = Vec::new();
383
384         match simp {
385             Some(simp) => self.tcx.for_each_impl(trait_ref.def_id(), |def_id| {
386                 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
387                 let imp_simp = fast_reject::simplify_type(self.tcx,
388                                                           imp.self_ty(),
389                                                           true);
390                 if let Some(imp_simp) = imp_simp {
391                     if simp != imp_simp {
392                         return;
393                     }
394                 }
395                 impl_candidates.push(imp);
396             }),
397             None => self.tcx.for_each_impl(trait_ref.def_id(), |def_id| {
398                 impl_candidates.push(
399                     self.tcx.impl_trait_ref(def_id).unwrap());
400             })
401         };
402         impl_candidates
403     }
404
405     fn report_similar_impl_candidates(&self,
406                                       impl_candidates: Vec<ty::TraitRef<'tcx>>,
407                                       err: &mut DiagnosticBuilder)
408     {
409         if impl_candidates.is_empty() {
410             return;
411         }
412
413         let end = if impl_candidates.len() <= 5 {
414             impl_candidates.len()
415         } else {
416             4
417         };
418         err.help(&format!("the following implementations were found:{}{}",
419                           &impl_candidates[0..end].iter().map(|candidate| {
420                               format!("\n  {:?}", candidate)
421                           }).collect::<String>(),
422                           if impl_candidates.len() > 5 {
423                               format!("\nand {} others", impl_candidates.len() - 4)
424                           } else {
425                               "".to_owned()
426                           }
427                           ));
428     }
429
430     /// Reports that an overflow has occurred and halts compilation. We
431     /// halt compilation unconditionally because it is important that
432     /// overflows never be masked -- they basically represent computations
433     /// whose result could not be truly determined and thus we can't say
434     /// if the program type checks or not -- and they are unusual
435     /// occurrences in any case.
436     pub fn report_overflow_error<T>(&self,
437                                     obligation: &Obligation<'tcx, T>,
438                                     suggest_increasing_limit: bool) -> !
439         where T: fmt::Display + TypeFoldable<'tcx>
440     {
441         let predicate =
442             self.resolve_type_vars_if_possible(&obligation.predicate);
443         let mut err = struct_span_err!(self.tcx.sess, obligation.cause.span, E0275,
444                                        "overflow evaluating the requirement `{}`",
445                                        predicate);
446
447         if suggest_increasing_limit {
448             self.suggest_new_overflow_limit(&mut err);
449         }
450
451         self.note_obligation_cause(&mut err, obligation);
452
453         err.emit();
454         self.tcx.sess.abort_if_errors();
455         bug!();
456     }
457
458     /// Reports that a cycle was detected which led to overflow and halts
459     /// compilation. This is equivalent to `report_overflow_error` except
460     /// that we can give a more helpful error message (and, in particular,
461     /// we do not suggest increasing the overflow limit, which is not
462     /// going to help).
463     pub fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
464         let cycle = self.resolve_type_vars_if_possible(&cycle.to_owned());
465         assert!(cycle.len() > 0);
466
467         debug!("report_overflow_error_cycle: cycle={:?}", cycle);
468
469         self.report_overflow_error(&cycle[0], false);
470     }
471
472     pub fn report_extra_impl_obligation(&self,
473                                         error_span: Span,
474                                         item_name: ast::Name,
475                                         _impl_item_def_id: DefId,
476                                         trait_item_def_id: DefId,
477                                         requirement: &fmt::Display,
478                                         lint_id: Option<ast::NodeId>) // (*)
479                                         -> DiagnosticBuilder<'tcx>
480     {
481         // (*) This parameter is temporary and used only for phasing
482         // in the bug fix to #18937. If it is `Some`, it has a kind of
483         // weird effect -- the diagnostic is reported as a lint, and
484         // the builder which is returned is marked as canceled.
485
486         let msg = "impl has stricter requirements than trait";
487         let mut err = match lint_id {
488             Some(node_id) => {
489                 self.tcx.struct_span_lint_node(EXTRA_REQUIREMENT_IN_IMPL,
490                                                node_id,
491                                                error_span,
492                                                msg)
493             }
494             None => {
495                 struct_span_err!(self.tcx.sess,
496                                  error_span,
497                                  E0276,
498                                  "{}", msg)
499             }
500         };
501
502         if let Some(trait_item_span) = self.tcx.hir.span_if_local(trait_item_def_id) {
503             let span = self.tcx.sess.codemap().def_span(trait_item_span);
504             err.span_label(span, format!("definition of `{}` from trait", item_name));
505         }
506
507         err.span_label(
508             error_span,
509             format!("impl has extra requirement {}", requirement));
510
511         err
512     }
513
514
515     /// Get the parent trait chain start
516     fn get_parent_trait_ref(&self, code: &ObligationCauseCode<'tcx>) -> Option<String> {
517         match code {
518             &ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
519                 let parent_trait_ref = self.resolve_type_vars_if_possible(
520                     &data.parent_trait_ref);
521                 match self.get_parent_trait_ref(&data.parent_code) {
522                     Some(t) => Some(t),
523                     None => Some(format!("{}", parent_trait_ref.0.self_ty())),
524                 }
525             }
526             _ => None,
527         }
528     }
529
530     pub fn report_selection_error(&self,
531                                   obligation: &PredicateObligation<'tcx>,
532                                   error: &SelectionError<'tcx>)
533     {
534         let span = obligation.cause.span;
535
536         let mut err = match *error {
537             SelectionError::Unimplemented => {
538                 if let ObligationCauseCode::CompareImplMethodObligation {
539                     item_name, impl_item_def_id, trait_item_def_id, lint_id
540                 } = obligation.cause.code {
541                     self.report_extra_impl_obligation(
542                         span,
543                         item_name,
544                         impl_item_def_id,
545                         trait_item_def_id,
546                         &format!("`{}`", obligation.predicate),
547                         lint_id)
548                         .emit();
549                     return;
550                 }
551                 match obligation.predicate {
552                     ty::Predicate::Trait(ref trait_predicate) => {
553                         let trait_predicate =
554                             self.resolve_type_vars_if_possible(trait_predicate);
555
556                         if self.tcx.sess.has_errors() && trait_predicate.references_error() {
557                             return;
558                         }
559                         let trait_ref = trait_predicate.to_poly_trait_ref();
560                         let (post_message, pre_message) =
561                             self.get_parent_trait_ref(&obligation.cause.code)
562                                 .map(|t| (format!(" in `{}`", t), format!("within `{}`, ", t)))
563                             .unwrap_or((String::new(), String::new()));
564
565                         let OnUnimplementedNote { message, label }
566                             = self.on_unimplemented_note(trait_ref, obligation);
567                         let have_alt_message = message.is_some() || label.is_some();
568
569                         let mut err = struct_span_err!(
570                             self.tcx.sess,
571                             span,
572                             E0277,
573                             "{}",
574                             message.unwrap_or_else(|| {
575                                 format!("the trait bound `{}` is not satisfied{}",
576                                          trait_ref.to_predicate(), post_message)
577                             }));
578
579                         if let Some(ref s) = label {
580                             // If it has a custom "#[rustc_on_unimplemented]"
581                             // error message, let's display it as the label!
582                             err.span_label(span, s.as_str());
583                             err.help(&format!("{}the trait `{}` is not implemented for `{}`",
584                                               pre_message,
585                                               trait_ref,
586                                               trait_ref.self_ty()));
587                         } else {
588                             err.span_label(span,
589                                            &*format!("{}the trait `{}` is not implemented for `{}`",
590                                                      pre_message,
591                                                      trait_ref,
592                                                      trait_ref.self_ty()));
593                         }
594
595                         // Try to report a help message
596                         if !trait_ref.has_infer_types() &&
597                             self.predicate_can_apply(obligation.param_env, trait_ref) {
598                             // If a where-clause may be useful, remind the
599                             // user that they can add it.
600                             //
601                             // don't display an on-unimplemented note, as
602                             // these notes will often be of the form
603                             //     "the type `T` can't be frobnicated"
604                             // which is somewhat confusing.
605                             err.help(&format!("consider adding a `where {}` bound",
606                                                 trait_ref.to_predicate()));
607                         } else if !have_alt_message {
608                             // Can't show anything else useful, try to find similar impls.
609                             let impl_candidates = self.find_similar_impl_candidates(trait_ref);
610                             self.report_similar_impl_candidates(impl_candidates, &mut err);
611                         }
612
613                         err
614                     }
615
616                     ty::Predicate::Subtype(ref predicate) => {
617                         // Errors for Subtype predicates show up as
618                         // `FulfillmentErrorCode::CodeSubtypeError`,
619                         // not selection error.
620                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
621                     }
622
623                     ty::Predicate::Equate(ref predicate) => {
624                         let predicate = self.resolve_type_vars_if_possible(predicate);
625                         let err = self.equality_predicate(&obligation.cause,
626                                                           obligation.param_env,
627                                                           &predicate).err().unwrap();
628                         struct_span_err!(self.tcx.sess, span, E0278,
629                             "the requirement `{}` is not satisfied (`{}`)",
630                             predicate, err)
631                     }
632
633                     ty::Predicate::RegionOutlives(ref predicate) => {
634                         let predicate = self.resolve_type_vars_if_possible(predicate);
635                         let err = self.region_outlives_predicate(&obligation.cause,
636                                                                     &predicate).err().unwrap();
637                         struct_span_err!(self.tcx.sess, span, E0279,
638                             "the requirement `{}` is not satisfied (`{}`)",
639                             predicate, err)
640                     }
641
642                     ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
643                         let predicate =
644                             self.resolve_type_vars_if_possible(&obligation.predicate);
645                         struct_span_err!(self.tcx.sess, span, E0280,
646                             "the requirement `{}` is not satisfied",
647                             predicate)
648                     }
649
650                     ty::Predicate::ObjectSafe(trait_def_id) => {
651                         let violations = self.tcx.object_safety_violations(trait_def_id);
652                         self.tcx.report_object_safety_error(span,
653                                                             trait_def_id,
654                                                             violations)
655                     }
656
657                     ty::Predicate::ClosureKind(closure_def_id, kind) => {
658                         let found_kind = self.closure_kind(closure_def_id).unwrap();
659                         let closure_span = self.tcx.hir.span_if_local(closure_def_id).unwrap();
660                         let node_id = self.tcx.hir.as_local_node_id(closure_def_id).unwrap();
661                         let mut err = struct_span_err!(
662                             self.tcx.sess, closure_span, E0525,
663                             "expected a closure that implements the `{}` trait, \
664                                 but this closure only implements `{}`",
665                             kind,
666                             found_kind);
667
668                         err.span_label(
669                             obligation.cause.span,
670                             format!("the requirement to implement `{}` derives from here", kind));
671
672                         // Additional context information explaining why the closure only implements
673                         // a particular trait.
674                         if let Some(tables) = self.in_progress_tables {
675                             let tables = tables.borrow();
676                             let closure_hir_id = self.tcx.hir.node_to_hir_id(node_id);
677                             match tables.closure_kinds().get(closure_hir_id) {
678                                 Some(&(ty::ClosureKind::FnOnce, Some((span, name)))) => {
679                                     err.span_note(span, &format!(
680                                         "closure is `FnOnce` because it moves the \
681                                          variable `{}` out of its environment", name));
682                                 },
683                                 Some(&(ty::ClosureKind::FnMut, Some((span, name)))) => {
684                                     err.span_note(span, &format!(
685                                         "closure is `FnMut` because it mutates the \
686                                          variable `{}` here", name));
687                                 },
688                                 _ => {}
689                             }
690                         }
691
692                         err.emit();
693                         return;
694                     }
695
696                     ty::Predicate::WellFormed(ty) => {
697                         // WF predicates cannot themselves make
698                         // errors. They can only block due to
699                         // ambiguity; otherwise, they always
700                         // degenerate into other obligations
701                         // (which may fail).
702                         span_bug!(span, "WF predicate not satisfied for {:?}", ty);
703                     }
704
705                     ty::Predicate::ConstEvaluatable(..) => {
706                         // Errors for `ConstEvaluatable` predicates show up as
707                         // `SelectionError::ConstEvalFailure`,
708                         // not `Unimplemented`.
709                         span_bug!(span,
710                             "const-evaluatable requirement gave wrong error: `{:?}`", obligation)
711                     }
712                 }
713             }
714
715             OutputTypeParameterMismatch(ref found_trait_ref, ref expected_trait_ref, _) => {
716                 let found_trait_ref = self.resolve_type_vars_if_possible(&*found_trait_ref);
717                 let expected_trait_ref = self.resolve_type_vars_if_possible(&*expected_trait_ref);
718                 if expected_trait_ref.self_ty().references_error() {
719                     return;
720                 }
721                 let found_trait_ty = found_trait_ref.self_ty();
722
723                 let found_did = found_trait_ty.ty_to_def_id();
724                 let found_span = found_did.and_then(|did| {
725                     self.tcx.hir.span_if_local(did)
726                 });
727
728                 let found_ty_count =
729                     match found_trait_ref.skip_binder().substs.type_at(1).sty {
730                         ty::TyTuple(ref tys, _) => tys.len(),
731                         _ => 1,
732                     };
733                 let (expected_tys, expected_ty_count) =
734                     match expected_trait_ref.skip_binder().substs.type_at(1).sty {
735                         ty::TyTuple(ref tys, _) =>
736                             (tys.iter().map(|t| &t.sty).collect(), tys.len()),
737                         ref sty => (vec![sty], 1),
738                     };
739                 if found_ty_count == expected_ty_count {
740                     self.report_closure_arg_mismatch(span,
741                                                      found_span,
742                                                      found_trait_ref,
743                                                      expected_trait_ref)
744                 } else {
745                     let expected_tuple = if expected_ty_count == 1 {
746                         expected_tys.first().and_then(|t| {
747                             if let &&ty::TyTuple(ref tuptys, _) = t {
748                                 Some(tuptys.len())
749                             } else {
750                                 None
751                             }
752                         })
753                     } else {
754                         None
755                     };
756
757                     // FIXME(#44150): Expand this to "N args expected but a N-tuple found."
758                     // Type of the 1st expected argument is somehow provided as type of a
759                     // found one in that case.
760                     //
761                     // ```
762                     // [1i32, 2, 3].sort_by(|(a, b)| ..)
763                     // //                   ^^^^^^^^
764                     // // expected_trait_ref:  std::ops::FnMut<(&i32, &i32)>
765                     // //    found_trait_ref:  std::ops::FnMut<(&i32,)>
766                     // ```
767
768                     let (closure_span, closure_args) = found_did
769                         .and_then(|did| self.tcx.hir.get_if_local(did))
770                         .and_then(|node| {
771                             if let hir::map::NodeExpr(
772                                 &hir::Expr {
773                                     node: hir::ExprClosure(_, ref decl, id, span, _),
774                                     ..
775                                 }) = node
776                             {
777                                 let ty_snips = decl.inputs.iter()
778                                     .map(|ty| {
779                                         self.tcx.sess.codemap().span_to_snippet(ty.span).ok()
780                                             .and_then(|snip| {
781                                                 // filter out dummy spans
782                                                 if snip == "," || snip == "|" {
783                                                     None
784                                                 } else {
785                                                     Some(snip)
786                                                 }
787                                             })
788                                     })
789                                     .collect::<Vec<Option<String>>>();
790
791                                 let body = self.tcx.hir.body(id);
792                                 let pat_snips = body.arguments.iter()
793                                     .map(|arg|
794                                         self.tcx.sess.codemap().span_to_snippet(arg.pat.span).ok())
795                                     .collect::<Option<Vec<String>>>();
796
797                                 Some((span, pat_snips, ty_snips))
798                             } else {
799                                 None
800                             }
801                         })
802                         .map(|(span, pat, ty)| (Some(span), Some((pat, ty))))
803                         .unwrap_or((None, None));
804                     let closure_args = closure_args.and_then(|(pat, ty)| Some((pat?, ty)));
805
806                     self.report_arg_count_mismatch(
807                         span,
808                         closure_span.or(found_span),
809                         expected_ty_count,
810                         expected_tuple,
811                         found_ty_count,
812                         closure_args,
813                         found_trait_ty.is_closure()
814                     )
815                 }
816             }
817
818             TraitNotObjectSafe(did) => {
819                 let violations = self.tcx.object_safety_violations(did);
820                 self.tcx.report_object_safety_error(span, did,
821                                                     violations)
822             }
823
824             ConstEvalFailure(ref err) => {
825                 if let const_val::ErrKind::TypeckError = err.kind {
826                     return;
827                 }
828                 err.struct_error(self.tcx, span, "constant expression")
829             }
830         };
831         self.note_obligation_cause(&mut err, obligation);
832         err.emit();
833     }
834
835     fn report_arg_count_mismatch(
836         &self,
837         span: Span,
838         found_span: Option<Span>,
839         expected: usize,
840         expected_tuple: Option<usize>,
841         found: usize,
842         closure_args: Option<(Vec<String>, Vec<Option<String>>)>,
843         is_closure: bool
844     ) -> DiagnosticBuilder<'tcx> {
845         use std::borrow::Cow;
846
847         let kind = if is_closure { "closure" } else { "function" };
848
849         let args_str = |n, distinct| format!(
850                 "{} {}argument{}",
851                 n,
852                 if distinct && n >= 2 { "distinct " } else { "" },
853                 if n == 1 { "" } else { "s" },
854             );
855
856         let expected_str = if let Some(n) = expected_tuple {
857             assert!(expected == 1);
858             if closure_args.as_ref().map(|&(ref pats, _)| pats.len()) == Some(n) {
859                 Cow::from("a single tuple as argument")
860             } else {
861                 // be verbose when numbers differ
862                 Cow::from(format!("a single {}-tuple as argument", n))
863             }
864         } else {
865             Cow::from(args_str(expected, false))
866         };
867
868         let found_str = if expected_tuple.is_some() {
869             args_str(found, true)
870         } else {
871             args_str(found, false)
872         };
873
874
875         let mut err = struct_span_err!(self.tcx.sess, span, E0593,
876             "{} is expected to take {}, but it takes {}",
877             kind,
878             expected_str,
879             found_str,
880         );
881
882         err.span_label(
883             span,
884             format!(
885                 "expected {} that takes {}",
886                 kind,
887                 expected_str,
888             )
889         );
890
891         if let Some(span) = found_span {
892             if let (Some(expected_tuple), Some((pats, tys))) = (expected_tuple, closure_args) {
893                 if expected_tuple != found || pats.len() != found {
894                     err.span_label(span, format!("takes {}", found_str));
895                 } else {
896                     let sugg = format!(
897                         "|({}){}|",
898                         pats.join(", "),
899
900                         // add type annotations if available
901                         if tys.iter().any(|ty| ty.is_some()) {
902                             Cow::from(format!(
903                                 ": ({})",
904                                 tys.into_iter().map(|ty| if let Some(ty) = ty {
905                                     ty
906                                 } else {
907                                     "_".to_string()
908                                 }).collect::<Vec<String>>().join(", ")
909                             ))
910                         } else {
911                             Cow::from("")
912                         },
913                     );
914
915                     err.span_suggestion(
916                         span,
917                         "consider changing the closure to accept a tuple",
918                         sugg
919                     );
920                 }
921             } else {
922                 err.span_label(span, format!("takes {}", found_str));
923             }
924         }
925
926         err
927     }
928
929     fn report_closure_arg_mismatch(&self,
930                            span: Span,
931                            found_span: Option<Span>,
932                            expected_ref: ty::PolyTraitRef<'tcx>,
933                            found: ty::PolyTraitRef<'tcx>)
934         -> DiagnosticBuilder<'tcx>
935     {
936         fn build_fn_sig_string<'a, 'gcx, 'tcx>(tcx: ty::TyCtxt<'a, 'gcx, 'tcx>,
937                                                trait_ref: &ty::TraitRef<'tcx>) -> String {
938             let inputs = trait_ref.substs.type_at(1);
939             let sig = if let ty::TyTuple(inputs, _) = inputs.sty {
940                 tcx.mk_fn_sig(
941                     inputs.iter().map(|&x| x),
942                     tcx.mk_infer(ty::TyVar(ty::TyVid { index: 0 })),
943                     false,
944                     hir::Unsafety::Normal,
945                     ::syntax::abi::Abi::Rust
946                 )
947             } else {
948                 tcx.mk_fn_sig(
949                     ::std::iter::once(inputs),
950                     tcx.mk_infer(ty::TyVar(ty::TyVid { index: 0 })),
951                     false,
952                     hir::Unsafety::Normal,
953                     ::syntax::abi::Abi::Rust
954                 )
955             };
956             format!("{}", ty::Binder(sig))
957         }
958
959         let argument_is_closure = expected_ref.skip_binder().substs.type_at(0).is_closure();
960         let mut err = struct_span_err!(self.tcx.sess, span, E0631,
961                                        "type mismatch in {} arguments",
962                                        if argument_is_closure { "closure" } else { "function" });
963
964         let found_str = format!(
965             "expected signature of `{}`",
966             build_fn_sig_string(self.tcx, found.skip_binder())
967         );
968         err.span_label(span, found_str);
969
970         let found_span = found_span.unwrap_or(span);
971         let expected_str = format!(
972             "found signature of `{}`",
973             build_fn_sig_string(self.tcx, expected_ref.skip_binder())
974         );
975         err.span_label(found_span, expected_str);
976
977         err
978     }
979 }
980
981 impl<'a, 'gcx, 'tcx> TyCtxt<'a, 'gcx, 'tcx> {
982     pub fn recursive_type_with_infinite_size_error(self,
983                                                    type_def_id: DefId)
984                                                    -> DiagnosticBuilder<'tcx>
985     {
986         assert!(type_def_id.is_local());
987         let span = self.hir.span_if_local(type_def_id).unwrap();
988         let span = self.sess.codemap().def_span(span);
989         let mut err = struct_span_err!(self.sess, span, E0072,
990                                        "recursive type `{}` has infinite size",
991                                        self.item_path_str(type_def_id));
992         err.span_label(span, "recursive type has infinite size");
993         err.help(&format!("insert indirection (e.g., a `Box`, `Rc`, or `&`) \
994                            at some point to make `{}` representable",
995                           self.item_path_str(type_def_id)));
996         err
997     }
998
999     pub fn report_object_safety_error(self,
1000                                       span: Span,
1001                                       trait_def_id: DefId,
1002                                       violations: Vec<ObjectSafetyViolation>)
1003                                       -> DiagnosticBuilder<'tcx>
1004     {
1005         let trait_str = self.item_path_str(trait_def_id);
1006         let span = self.sess.codemap().def_span(span);
1007         let mut err = struct_span_err!(
1008             self.sess, span, E0038,
1009             "the trait `{}` cannot be made into an object",
1010             trait_str);
1011         err.span_label(span, format!("the trait `{}` cannot be made into an object", trait_str));
1012
1013         let mut reported_violations = FxHashSet();
1014         for violation in violations {
1015             if !reported_violations.insert(violation.clone()) {
1016                 continue;
1017             }
1018             err.note(&violation.error_msg());
1019         }
1020         err
1021     }
1022 }
1023
1024 impl<'a, 'gcx, 'tcx> InferCtxt<'a, 'gcx, 'tcx> {
1025     fn maybe_report_ambiguity(&self, obligation: &PredicateObligation<'tcx>,
1026                               body_id: Option<hir::BodyId>) {
1027         // Unable to successfully determine, probably means
1028         // insufficient type information, but could mean
1029         // ambiguous impls. The latter *ought* to be a
1030         // coherence violation, so we don't report it here.
1031
1032         let predicate = self.resolve_type_vars_if_possible(&obligation.predicate);
1033         let span = obligation.cause.span;
1034
1035         debug!("maybe_report_ambiguity(predicate={:?}, obligation={:?})",
1036                predicate,
1037                obligation);
1038
1039         // Ambiguity errors are often caused as fallout from earlier
1040         // errors. So just ignore them if this infcx is tainted.
1041         if self.is_tainted_by_errors() {
1042             return;
1043         }
1044
1045         match predicate {
1046             ty::Predicate::Trait(ref data) => {
1047                 let trait_ref = data.to_poly_trait_ref();
1048                 let self_ty = trait_ref.self_ty();
1049                 if predicate.references_error() {
1050                     return;
1051                 }
1052                 // Typically, this ambiguity should only happen if
1053                 // there are unresolved type inference variables
1054                 // (otherwise it would suggest a coherence
1055                 // failure). But given #21974 that is not necessarily
1056                 // the case -- we can have multiple where clauses that
1057                 // are only distinguished by a region, which results
1058                 // in an ambiguity even when all types are fully
1059                 // known, since we don't dispatch based on region
1060                 // relationships.
1061
1062                 // This is kind of a hack: it frequently happens that some earlier
1063                 // error prevents types from being fully inferred, and then we get
1064                 // a bunch of uninteresting errors saying something like "<generic
1065                 // #0> doesn't implement Sized".  It may even be true that we
1066                 // could just skip over all checks where the self-ty is an
1067                 // inference variable, but I was afraid that there might be an
1068                 // inference variable created, registered as an obligation, and
1069                 // then never forced by writeback, and hence by skipping here we'd
1070                 // be ignoring the fact that we don't KNOW the type works
1071                 // out. Though even that would probably be harmless, given that
1072                 // we're only talking about builtin traits, which are known to be
1073                 // inhabited. But in any case I just threw in this check for
1074                 // has_errors() to be sure that compilation isn't happening
1075                 // anyway. In that case, why inundate the user.
1076                 if !self.tcx.sess.has_errors() {
1077                     if
1078                         self.tcx.lang_items().sized_trait()
1079                         .map_or(false, |sized_id| sized_id == trait_ref.def_id())
1080                     {
1081                         self.need_type_info(body_id, span, self_ty);
1082                     } else {
1083                         let mut err = struct_span_err!(self.tcx.sess,
1084                                                         span, E0283,
1085                                                         "type annotations required: \
1086                                                         cannot resolve `{}`",
1087                                                         predicate);
1088                         self.note_obligation_cause(&mut err, obligation);
1089                         err.emit();
1090                     }
1091                 }
1092             }
1093
1094             ty::Predicate::WellFormed(ty) => {
1095                 // Same hacky approach as above to avoid deluging user
1096                 // with error messages.
1097                 if !ty.references_error() && !self.tcx.sess.has_errors() {
1098                     self.need_type_info(body_id, span, ty);
1099                 }
1100             }
1101
1102             ty::Predicate::Subtype(ref data) => {
1103                 if data.references_error() || self.tcx.sess.has_errors() {
1104                     // no need to overload user in such cases
1105                 } else {
1106                     let &SubtypePredicate { a_is_expected: _, a, b } = data.skip_binder();
1107                     // both must be type variables, or the other would've been instantiated
1108                     assert!(a.is_ty_var() && b.is_ty_var());
1109                     self.need_type_info(body_id,
1110                                         obligation.cause.span,
1111                                         a);
1112                 }
1113             }
1114
1115             _ => {
1116                 if !self.tcx.sess.has_errors() {
1117                     let mut err = struct_span_err!(self.tcx.sess,
1118                                                    obligation.cause.span, E0284,
1119                                                    "type annotations required: \
1120                                                     cannot resolve `{}`",
1121                                                    predicate);
1122                     self.note_obligation_cause(&mut err, obligation);
1123                     err.emit();
1124                 }
1125             }
1126         }
1127     }
1128
1129     /// Returns whether the trait predicate may apply for *some* assignment
1130     /// to the type parameters.
1131     fn predicate_can_apply(&self,
1132                            param_env: ty::ParamEnv<'tcx>,
1133                            pred: ty::PolyTraitRef<'tcx>)
1134                            -> bool {
1135         struct ParamToVarFolder<'a, 'gcx: 'a+'tcx, 'tcx: 'a> {
1136             infcx: &'a InferCtxt<'a, 'gcx, 'tcx>,
1137             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>
1138         }
1139
1140         impl<'a, 'gcx, 'tcx> TypeFolder<'gcx, 'tcx> for ParamToVarFolder<'a, 'gcx, 'tcx> {
1141             fn tcx<'b>(&'b self) -> TyCtxt<'b, 'gcx, 'tcx> { self.infcx.tcx }
1142
1143             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1144                 if let ty::TyParam(ty::ParamTy {name, ..}) = ty.sty {
1145                     let infcx = self.infcx;
1146                     self.var_map.entry(ty).or_insert_with(||
1147                         infcx.next_ty_var(
1148                             TypeVariableOrigin::TypeParameterDefinition(DUMMY_SP, name)))
1149                 } else {
1150                     ty.super_fold_with(self)
1151                 }
1152             }
1153         }
1154
1155         self.probe(|_| {
1156             let mut selcx = SelectionContext::new(self);
1157
1158             let cleaned_pred = pred.fold_with(&mut ParamToVarFolder {
1159                 infcx: self,
1160                 var_map: FxHashMap()
1161             });
1162
1163             let cleaned_pred = super::project::normalize(
1164                 &mut selcx,
1165                 param_env,
1166                 ObligationCause::dummy(),
1167                 &cleaned_pred
1168             ).value;
1169
1170             let obligation = Obligation::new(
1171                 ObligationCause::dummy(),
1172                 param_env,
1173                 cleaned_pred.to_predicate()
1174             );
1175
1176             selcx.evaluate_obligation(&obligation)
1177         })
1178     }
1179
1180     fn note_obligation_cause<T>(&self,
1181                                 err: &mut DiagnosticBuilder,
1182                                 obligation: &Obligation<'tcx, T>)
1183         where T: fmt::Display
1184     {
1185         self.note_obligation_cause_code(err,
1186                                         &obligation.predicate,
1187                                         &obligation.cause.code);
1188     }
1189
1190     fn note_obligation_cause_code<T>(&self,
1191                                      err: &mut DiagnosticBuilder,
1192                                      predicate: &T,
1193                                      cause_code: &ObligationCauseCode<'tcx>)
1194         where T: fmt::Display
1195     {
1196         let tcx = self.tcx;
1197         match *cause_code {
1198             ObligationCauseCode::ExprAssignable |
1199             ObligationCauseCode::MatchExpressionArm { .. } |
1200             ObligationCauseCode::IfExpression |
1201             ObligationCauseCode::IfExpressionWithNoElse |
1202             ObligationCauseCode::EquatePredicate |
1203             ObligationCauseCode::MainFunctionType |
1204             ObligationCauseCode::StartFunctionType |
1205             ObligationCauseCode::IntrinsicType |
1206             ObligationCauseCode::MethodReceiver |
1207             ObligationCauseCode::ReturnNoExpression |
1208             ObligationCauseCode::MiscObligation => {
1209             }
1210             ObligationCauseCode::SliceOrArrayElem => {
1211                 err.note("slice and array elements must have `Sized` type");
1212             }
1213             ObligationCauseCode::TupleElem => {
1214                 err.note("only the last element of a tuple may have a dynamically sized type");
1215             }
1216             ObligationCauseCode::ProjectionWf(data) => {
1217                 err.note(&format!("required so that the projection `{}` is well-formed",
1218                                   data));
1219             }
1220             ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
1221                 err.note(&format!("required so that reference `{}` does not outlive its referent",
1222                                   ref_ty));
1223             }
1224             ObligationCauseCode::ObjectTypeBound(object_ty, region) => {
1225                 err.note(&format!("required so that the lifetime bound of `{}` for `{}` \
1226                                    is satisfied",
1227                                   region, object_ty));
1228             }
1229             ObligationCauseCode::ItemObligation(item_def_id) => {
1230                 let item_name = tcx.item_path_str(item_def_id);
1231                 err.note(&format!("required by `{}`", item_name));
1232             }
1233             ObligationCauseCode::ObjectCastObligation(object_ty) => {
1234                 err.note(&format!("required for the cast to the object type `{}`",
1235                                   self.ty_to_string(object_ty)));
1236             }
1237             ObligationCauseCode::RepeatVec => {
1238                 err.note("the `Copy` trait is required because the \
1239                           repeated element will be copied");
1240             }
1241             ObligationCauseCode::VariableType(_) => {
1242                 err.note("all local variables must have a statically known size");
1243             }
1244             ObligationCauseCode::SizedReturnType => {
1245                 err.note("the return type of a function must have a \
1246                           statically known size");
1247             }
1248             ObligationCauseCode::AssignmentLhsSized => {
1249                 err.note("the left-hand-side of an assignment must have a statically known size");
1250             }
1251             ObligationCauseCode::TupleInitializerSized => {
1252                 err.note("tuples must have a statically known size to be initialized");
1253             }
1254             ObligationCauseCode::StructInitializerSized => {
1255                 err.note("structs must have a statically known size to be initialized");
1256             }
1257             ObligationCauseCode::FieldSized(ref item) => {
1258                 match *item {
1259                     AdtKind::Struct => {
1260                         err.note("only the last field of a struct may have a dynamically \
1261                                   sized type");
1262                     }
1263                     AdtKind::Union => {
1264                         err.note("no field of a union may have a dynamically sized type");
1265                     }
1266                     AdtKind::Enum => {
1267                         err.note("no field of an enum variant may have a dynamically sized type");
1268                     }
1269                 }
1270             }
1271             ObligationCauseCode::ConstSized => {
1272                 err.note("constant expressions must have a statically known size");
1273             }
1274             ObligationCauseCode::SharedStatic => {
1275                 err.note("shared static variables must have a type that implements `Sync`");
1276             }
1277             ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
1278                 let parent_trait_ref = self.resolve_type_vars_if_possible(&data.parent_trait_ref);
1279                 err.note(&format!("required because it appears within the type `{}`",
1280                                   parent_trait_ref.0.self_ty()));
1281                 let parent_predicate = parent_trait_ref.to_predicate();
1282                 self.note_obligation_cause_code(err,
1283                                                 &parent_predicate,
1284                                                 &data.parent_code);
1285             }
1286             ObligationCauseCode::ImplDerivedObligation(ref data) => {
1287                 let parent_trait_ref = self.resolve_type_vars_if_possible(&data.parent_trait_ref);
1288                 err.note(
1289                     &format!("required because of the requirements on the impl of `{}` for `{}`",
1290                              parent_trait_ref,
1291                              parent_trait_ref.0.self_ty()));
1292                 let parent_predicate = parent_trait_ref.to_predicate();
1293                 self.note_obligation_cause_code(err,
1294                                                 &parent_predicate,
1295                                                 &data.parent_code);
1296             }
1297             ObligationCauseCode::CompareImplMethodObligation { .. } => {
1298                 err.note(
1299                     &format!("the requirement `{}` appears on the impl method \
1300                               but not on the corresponding trait method",
1301                              predicate));
1302             }
1303             ObligationCauseCode::ReturnType(_) |
1304             ObligationCauseCode::BlockTailExpression(_) => (),
1305         }
1306     }
1307
1308     fn suggest_new_overflow_limit(&self, err: &mut DiagnosticBuilder) {
1309         let current_limit = self.tcx.sess.recursion_limit.get();
1310         let suggested_limit = current_limit * 2;
1311         err.help(&format!("consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
1312                           suggested_limit));
1313     }
1314 }