]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/error_reporting.rs
Merge branch 'master' into rusty-hermit
[rust.git] / src / librustc / traits / error_reporting.rs
1 use super::{
2     ConstEvalFailure,
3     EvaluationResult,
4     FulfillmentError,
5     FulfillmentErrorCode,
6     MismatchedProjectionTypes,
7     ObjectSafetyViolation,
8     Obligation,
9     ObligationCause,
10     ObligationCauseCode,
11     OnUnimplementedDirective,
12     OnUnimplementedNote,
13     OutputTypeParameterMismatch,
14     Overflow,
15     PredicateObligation,
16     SelectionContext,
17     SelectionError,
18     TraitNotObjectSafe,
19 };
20
21 use crate::hir;
22 use crate::hir::Node;
23 use crate::hir::def_id::DefId;
24 use crate::infer::{self, InferCtxt};
25 use crate::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
26 use crate::session::DiagnosticMessageId;
27 use crate::ty::{self, AdtKind, DefIdTree, ToPredicate, ToPolyTraitRef, Ty, TyCtxt, TypeFoldable};
28 use crate::ty::GenericParamDefKind;
29 use crate::ty::error::ExpectedFound;
30 use crate::ty::fast_reject;
31 use crate::ty::fold::TypeFolder;
32 use crate::ty::subst::Subst;
33 use crate::ty::SubtypePredicate;
34 use crate::util::nodemap::{FxHashMap, FxHashSet};
35
36 use errors::{Applicability, DiagnosticBuilder, pluralise};
37 use std::fmt;
38 use syntax::ast;
39 use syntax::symbol::{sym, kw};
40 use syntax_pos::{DUMMY_SP, Span, ExpnKind, MultiSpan};
41
42 impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
43     pub fn report_fulfillment_errors(
44         &self,
45         errors: &[FulfillmentError<'tcx>],
46         body_id: Option<hir::BodyId>,
47         fallback_has_occurred: bool,
48     ) {
49         #[derive(Debug)]
50         struct ErrorDescriptor<'tcx> {
51             predicate: ty::Predicate<'tcx>,
52             index: Option<usize>, // None if this is an old error
53         }
54
55         let mut error_map: FxHashMap<_, Vec<_>> =
56             self.reported_trait_errors.borrow().iter().map(|(&span, predicates)| {
57                 (span, predicates.iter().map(|predicate| ErrorDescriptor {
58                     predicate: predicate.clone(),
59                     index: None
60                 }).collect())
61             }).collect();
62
63         for (index, error) in errors.iter().enumerate() {
64             // We want to ignore desugarings here: spans are equivalent even
65             // if one is the result of a desugaring and the other is not.
66             let mut span = error.obligation.cause.span;
67             let expn_data = span.ctxt().outer_expn_data();
68             if let ExpnKind::Desugaring(_) = expn_data.kind {
69                 span = expn_data.call_site;
70             }
71
72             error_map.entry(span).or_default().push(
73                 ErrorDescriptor {
74                     predicate: error.obligation.predicate.clone(),
75                     index: Some(index)
76                 }
77             );
78
79             self.reported_trait_errors.borrow_mut()
80                 .entry(span).or_default()
81                 .push(error.obligation.predicate.clone());
82         }
83
84         // We do this in 2 passes because we want to display errors in order, though
85         // maybe it *is* better to sort errors by span or something.
86         let mut is_suppressed = vec![false; errors.len()];
87         for (_, error_set) in error_map.iter() {
88             // We want to suppress "duplicate" errors with the same span.
89             for error in error_set {
90                 if let Some(index) = error.index {
91                     // Suppress errors that are either:
92                     // 1) strictly implied by another error.
93                     // 2) implied by an error with a smaller index.
94                     for error2 in error_set {
95                         if error2.index.map_or(false, |index2| is_suppressed[index2]) {
96                             // Avoid errors being suppressed by already-suppressed
97                             // errors, to prevent all errors from being suppressed
98                             // at once.
99                             continue
100                         }
101
102                         if self.error_implies(&error2.predicate, &error.predicate) &&
103                             !(error2.index >= error.index &&
104                               self.error_implies(&error.predicate, &error2.predicate))
105                         {
106                             info!("skipping {:?} (implied by {:?})", error, error2);
107                             is_suppressed[index] = true;
108                             break
109                         }
110                     }
111                 }
112             }
113         }
114
115         for (error, suppressed) in errors.iter().zip(is_suppressed) {
116             if !suppressed {
117                 self.report_fulfillment_error(error, body_id, fallback_has_occurred);
118             }
119         }
120     }
121
122     // returns if `cond` not occurring implies that `error` does not occur - i.e., that
123     // `error` occurring implies that `cond` occurs.
124     fn error_implies(
125         &self,
126         cond: &ty::Predicate<'tcx>,
127         error: &ty::Predicate<'tcx>,
128     ) -> bool {
129         if cond == error {
130             return true
131         }
132
133         let (cond, error) = match (cond, error) {
134             (&ty::Predicate::Trait(..), &ty::Predicate::Trait(ref error))
135                 => (cond, error),
136             _ => {
137                 // FIXME: make this work in other cases too.
138                 return false
139             }
140         };
141
142         for implication in super::elaborate_predicates(self.tcx, vec![cond.clone()]) {
143             if let ty::Predicate::Trait(implication) = implication {
144                 let error = error.to_poly_trait_ref();
145                 let implication = implication.to_poly_trait_ref();
146                 // FIXME: I'm just not taking associated types at all here.
147                 // Eventually I'll need to implement param-env-aware
148                 // `Γ₁ ⊦ φ₁ => Γ₂ ⊦ φ₂` logic.
149                 let param_env = ty::ParamEnv::empty();
150                 if self.can_sub(param_env, error, implication).is_ok() {
151                     debug!("error_implies: {:?} -> {:?} -> {:?}", cond, error, implication);
152                     return true
153                 }
154             }
155         }
156
157         false
158     }
159
160     fn report_fulfillment_error(
161         &self,
162         error: &FulfillmentError<'tcx>,
163         body_id: Option<hir::BodyId>,
164         fallback_has_occurred: bool,
165     ) {
166         debug!("report_fulfillment_errors({:?})", error);
167         match error.code {
168             FulfillmentErrorCode::CodeSelectionError(ref selection_error) => {
169                 self.report_selection_error(
170                     &error.obligation,
171                     selection_error,
172                     fallback_has_occurred,
173                     error.points_at_arg_span,
174                 );
175             }
176             FulfillmentErrorCode::CodeProjectionError(ref e) => {
177                 self.report_projection_error(&error.obligation, e);
178             }
179             FulfillmentErrorCode::CodeAmbiguity => {
180                 self.maybe_report_ambiguity(&error.obligation, body_id);
181             }
182             FulfillmentErrorCode::CodeSubtypeError(ref expected_found, ref err) => {
183                 self.report_mismatched_types(
184                     &error.obligation.cause,
185                     expected_found.expected,
186                     expected_found.found,
187                     err.clone(),
188                 ).emit();
189             }
190         }
191     }
192
193     fn report_projection_error(
194         &self,
195         obligation: &PredicateObligation<'tcx>,
196         error: &MismatchedProjectionTypes<'tcx>,
197     ) {
198         let predicate =
199             self.resolve_vars_if_possible(&obligation.predicate);
200
201         if predicate.references_error() {
202             return
203         }
204
205         self.probe(|_| {
206             let err_buf;
207             let mut err = &error.err;
208             let mut values = None;
209
210             // try to find the mismatched types to report the error with.
211             //
212             // this can fail if the problem was higher-ranked, in which
213             // cause I have no idea for a good error message.
214             if let ty::Predicate::Projection(ref data) = predicate {
215                 let mut selcx = SelectionContext::new(self);
216                 let (data, _) = self.replace_bound_vars_with_fresh_vars(
217                     obligation.cause.span,
218                     infer::LateBoundRegionConversionTime::HigherRankedType,
219                     data
220                 );
221                 let mut obligations = vec![];
222                 let normalized_ty = super::normalize_projection_type(
223                     &mut selcx,
224                     obligation.param_env,
225                     data.projection_ty,
226                     obligation.cause.clone(),
227                     0,
228                     &mut obligations
229                 );
230                 if let Err(error) = self.at(&obligation.cause, obligation.param_env)
231                                         .eq(normalized_ty, data.ty) {
232                     values = Some(infer::ValuePairs::Types(ExpectedFound {
233                         expected: normalized_ty,
234                         found: data.ty,
235                     }));
236                     err_buf = error;
237                     err = &err_buf;
238                 }
239             }
240
241             let msg = format!("type mismatch resolving `{}`", predicate);
242             let error_id = (DiagnosticMessageId::ErrorId(271),
243                             Some(obligation.cause.span), msg);
244             let fresh = self.tcx.sess.one_time_diagnostics.borrow_mut().insert(error_id);
245             if fresh {
246                 let mut diag = struct_span_err!(
247                     self.tcx.sess, obligation.cause.span, E0271,
248                     "type mismatch resolving `{}`", predicate
249                 );
250                 self.note_type_err(&mut diag, &obligation.cause, None, values, err);
251                 self.note_obligation_cause(&mut diag, obligation);
252                 diag.emit();
253             }
254         });
255     }
256
257     fn fuzzy_match_tys(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
258         /// returns the fuzzy category of a given type, or None
259         /// if the type can be equated to any type.
260         fn type_category(t: Ty<'_>) -> Option<u32> {
261             match t.kind {
262                 ty::Bool => Some(0),
263                 ty::Char => Some(1),
264                 ty::Str => Some(2),
265                 ty::Int(..) | ty::Uint(..) | ty::Infer(ty::IntVar(..)) => Some(3),
266                 ty::Float(..) | ty::Infer(ty::FloatVar(..)) => Some(4),
267                 ty::Ref(..) | ty::RawPtr(..) => Some(5),
268                 ty::Array(..) | ty::Slice(..) => Some(6),
269                 ty::FnDef(..) | ty::FnPtr(..) => Some(7),
270                 ty::Dynamic(..) => Some(8),
271                 ty::Closure(..) => Some(9),
272                 ty::Tuple(..) => Some(10),
273                 ty::Projection(..) => Some(11),
274                 ty::Param(..) => Some(12),
275                 ty::Opaque(..) => Some(13),
276                 ty::Never => Some(14),
277                 ty::Adt(adt, ..) => match adt.adt_kind() {
278                     AdtKind::Struct => Some(15),
279                     AdtKind::Union => Some(16),
280                     AdtKind::Enum => Some(17),
281                 },
282                 ty::Generator(..) => Some(18),
283                 ty::Foreign(..) => Some(19),
284                 ty::GeneratorWitness(..) => Some(20),
285                 ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error => None,
286                 ty::UnnormalizedProjection(..) => bug!("only used with chalk-engine"),
287             }
288         }
289
290         match (type_category(a), type_category(b)) {
291             (Some(cat_a), Some(cat_b)) => match (&a.kind, &b.kind) {
292                 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => def_a == def_b,
293                 _ => cat_a == cat_b
294             },
295             // infer and error can be equated to all types
296             _ => true
297         }
298     }
299
300     fn impl_similar_to(&self,
301                        trait_ref: ty::PolyTraitRef<'tcx>,
302                        obligation: &PredicateObligation<'tcx>)
303                        -> Option<DefId>
304     {
305         let tcx = self.tcx;
306         let param_env = obligation.param_env;
307         let trait_ref = tcx.erase_late_bound_regions(&trait_ref);
308         let trait_self_ty = trait_ref.self_ty();
309
310         let mut self_match_impls = vec![];
311         let mut fuzzy_match_impls = vec![];
312
313         self.tcx.for_each_relevant_impl(
314             trait_ref.def_id, trait_self_ty, |def_id| {
315                 let impl_substs = self.fresh_substs_for_item(obligation.cause.span, def_id);
316                 let impl_trait_ref = tcx
317                     .impl_trait_ref(def_id)
318                     .unwrap()
319                     .subst(tcx, impl_substs);
320
321                 let impl_self_ty = impl_trait_ref.self_ty();
322
323                 if let Ok(..) = self.can_eq(param_env, trait_self_ty, impl_self_ty) {
324                     self_match_impls.push(def_id);
325
326                     if trait_ref.substs.types().skip(1)
327                         .zip(impl_trait_ref.substs.types().skip(1))
328                         .all(|(u,v)| self.fuzzy_match_tys(u, v))
329                     {
330                         fuzzy_match_impls.push(def_id);
331                     }
332                 }
333             });
334
335         let impl_def_id = if self_match_impls.len() == 1 {
336             self_match_impls[0]
337         } else if fuzzy_match_impls.len() == 1 {
338             fuzzy_match_impls[0]
339         } else {
340             return None
341         };
342
343         if tcx.has_attr(impl_def_id, sym::rustc_on_unimplemented) {
344             Some(impl_def_id)
345         } else {
346             None
347         }
348     }
349
350     fn on_unimplemented_note(
351         &self,
352         trait_ref: ty::PolyTraitRef<'tcx>,
353         obligation: &PredicateObligation<'tcx>,
354     ) -> OnUnimplementedNote {
355         let def_id = self.impl_similar_to(trait_ref, obligation)
356             .unwrap_or_else(|| trait_ref.def_id());
357         let trait_ref = *trait_ref.skip_binder();
358
359         let mut flags = vec![];
360         match obligation.cause.code {
361             ObligationCauseCode::BuiltinDerivedObligation(..) |
362             ObligationCauseCode::ImplDerivedObligation(..) => {}
363             _ => {
364                 // this is a "direct", user-specified, rather than derived,
365                 // obligation.
366                 flags.push((sym::direct, None));
367             }
368         }
369
370         if let ObligationCauseCode::ItemObligation(item) = obligation.cause.code {
371             // FIXME: maybe also have some way of handling methods
372             // from other traits? That would require name resolution,
373             // which we might want to be some sort of hygienic.
374             //
375             // Currently I'm leaving it for what I need for `try`.
376             if self.tcx.trait_of_item(item) == Some(trait_ref.def_id) {
377                 let method = self.tcx.item_name(item);
378                 flags.push((sym::from_method, None));
379                 flags.push((sym::from_method, Some(method.to_string())));
380             }
381         }
382         if let Some(t) = self.get_parent_trait_ref(&obligation.cause.code) {
383             flags.push((sym::parent_trait, Some(t)));
384         }
385
386         if let Some(k) = obligation.cause.span.desugaring_kind() {
387             flags.push((sym::from_desugaring, None));
388             flags.push((sym::from_desugaring, Some(format!("{:?}", k))));
389         }
390         let generics = self.tcx.generics_of(def_id);
391         let self_ty = trait_ref.self_ty();
392         // This is also included through the generics list as `Self`,
393         // but the parser won't allow you to use it
394         flags.push((sym::_Self, Some(self_ty.to_string())));
395         if let Some(def) = self_ty.ty_adt_def() {
396             // We also want to be able to select self's original
397             // signature with no type arguments resolved
398             flags.push((sym::_Self, Some(self.tcx.type_of(def.did).to_string())));
399         }
400
401         for param in generics.params.iter() {
402             let value = match param.kind {
403                 GenericParamDefKind::Type { .. } |
404                 GenericParamDefKind::Const => {
405                     trait_ref.substs[param.index as usize].to_string()
406                 },
407                 GenericParamDefKind::Lifetime => continue,
408             };
409             let name = param.name.as_symbol();
410             flags.push((name, Some(value)));
411         }
412
413         if let Some(true) = self_ty.ty_adt_def().map(|def| def.did.is_local()) {
414             flags.push((sym::crate_local, None));
415         }
416
417         // Allow targeting all integers using `{integral}`, even if the exact type was resolved
418         if self_ty.is_integral() {
419             flags.push((sym::_Self, Some("{integral}".to_owned())));
420         }
421
422         if let ty::Array(aty, len) = self_ty.kind {
423             flags.push((sym::_Self, Some("[]".to_owned())));
424             flags.push((sym::_Self, Some(format!("[{}]", aty))));
425             if let Some(def) = aty.ty_adt_def() {
426                 // We also want to be able to select the array's type's original
427                 // signature with no type arguments resolved
428                 flags.push((
429                     sym::_Self,
430                     Some(format!("[{}]", self.tcx.type_of(def.did).to_string())),
431                 ));
432                 let tcx = self.tcx;
433                 if let Some(len) = len.try_eval_usize(tcx, ty::ParamEnv::empty()) {
434                     flags.push((
435                         sym::_Self,
436                         Some(format!("[{}; {}]", self.tcx.type_of(def.did).to_string(), len)),
437                     ));
438                 } else {
439                     flags.push((
440                         sym::_Self,
441                         Some(format!("[{}; _]", self.tcx.type_of(def.did).to_string())),
442                     ));
443                 }
444             }
445         }
446
447         if let Ok(Some(command)) = OnUnimplementedDirective::of_item(
448             self.tcx, trait_ref.def_id, def_id
449         ) {
450             command.evaluate(self.tcx, trait_ref, &flags[..])
451         } else {
452             OnUnimplementedNote::empty()
453         }
454     }
455
456     fn find_similar_impl_candidates(
457         &self,
458         trait_ref: ty::PolyTraitRef<'tcx>,
459     ) -> Vec<ty::TraitRef<'tcx>> {
460         let simp = fast_reject::simplify_type(self.tcx, trait_ref.skip_binder().self_ty(), true);
461         let all_impls = self.tcx.all_impls(trait_ref.def_id());
462
463         match simp {
464             Some(simp) => all_impls.iter().filter_map(|&def_id| {
465                 let imp = self.tcx.impl_trait_ref(def_id).unwrap();
466                 let imp_simp = fast_reject::simplify_type(self.tcx, imp.self_ty(), true);
467                 if let Some(imp_simp) = imp_simp {
468                     if simp != imp_simp {
469                         return None
470                     }
471                 }
472
473                 Some(imp)
474             }).collect(),
475             None => all_impls.iter().map(|&def_id|
476                 self.tcx.impl_trait_ref(def_id).unwrap()
477             ).collect()
478         }
479     }
480
481     fn report_similar_impl_candidates(
482         &self,
483         impl_candidates: Vec<ty::TraitRef<'tcx>>,
484         err: &mut DiagnosticBuilder<'_>,
485     ) {
486         if impl_candidates.is_empty() {
487             return;
488         }
489
490         let len = impl_candidates.len();
491         let end = if impl_candidates.len() <= 5 {
492             impl_candidates.len()
493         } else {
494             4
495         };
496
497         let normalize = |candidate| self.tcx.infer_ctxt().enter(|ref infcx| {
498             let normalized = infcx
499                 .at(&ObligationCause::dummy(), ty::ParamEnv::empty())
500                 .normalize(candidate)
501                 .ok();
502             match normalized {
503                 Some(normalized) => format!("\n  {:?}", normalized.value),
504                 None => format!("\n  {:?}", candidate),
505             }
506         });
507
508         // Sort impl candidates so that ordering is consistent for UI tests.
509         let mut normalized_impl_candidates = impl_candidates
510             .iter()
511             .map(normalize)
512             .collect::<Vec<String>>();
513
514         // Sort before taking the `..end` range,
515         // because the ordering of `impl_candidates` may not be deterministic:
516         // https://github.com/rust-lang/rust/pull/57475#issuecomment-455519507
517         normalized_impl_candidates.sort();
518
519         err.help(&format!("the following implementations were found:{}{}",
520                           normalized_impl_candidates[..end].join(""),
521                           if len > 5 {
522                               format!("\nand {} others", len - 4)
523                           } else {
524                               String::new()
525                           }
526                           ));
527     }
528
529     /// Reports that an overflow has occurred and halts compilation. We
530     /// halt compilation unconditionally because it is important that
531     /// overflows never be masked -- they basically represent computations
532     /// whose result could not be truly determined and thus we can't say
533     /// if the program type checks or not -- and they are unusual
534     /// occurrences in any case.
535     pub fn report_overflow_error<T>(&self,
536                                     obligation: &Obligation<'tcx, T>,
537                                     suggest_increasing_limit: bool) -> !
538         where T: fmt::Display + TypeFoldable<'tcx>
539     {
540         let predicate =
541             self.resolve_vars_if_possible(&obligation.predicate);
542         let mut err = struct_span_err!(self.tcx.sess, obligation.cause.span, E0275,
543                                        "overflow evaluating the requirement `{}`",
544                                        predicate);
545
546         if suggest_increasing_limit {
547             self.suggest_new_overflow_limit(&mut err);
548         }
549
550         self.note_obligation_cause_code(&mut err, &obligation.predicate, &obligation.cause.code,
551                                         &mut vec![]);
552
553         err.emit();
554         self.tcx.sess.abort_if_errors();
555         bug!();
556     }
557
558     /// Reports that a cycle was detected which led to overflow and halts
559     /// compilation. This is equivalent to `report_overflow_error` except
560     /// that we can give a more helpful error message (and, in particular,
561     /// we do not suggest increasing the overflow limit, which is not
562     /// going to help).
563     pub fn report_overflow_error_cycle(&self, cycle: &[PredicateObligation<'tcx>]) -> ! {
564         let cycle = self.resolve_vars_if_possible(&cycle.to_owned());
565         assert!(cycle.len() > 0);
566
567         debug!("report_overflow_error_cycle: cycle={:?}", cycle);
568
569         self.report_overflow_error(&cycle[0], false);
570     }
571
572     pub fn report_extra_impl_obligation(&self,
573                                         error_span: Span,
574                                         item_name: ast::Name,
575                                         _impl_item_def_id: DefId,
576                                         trait_item_def_id: DefId,
577                                         requirement: &dyn fmt::Display)
578                                         -> DiagnosticBuilder<'tcx>
579     {
580         let msg = "impl has stricter requirements than trait";
581         let sp = self.tcx.sess.source_map().def_span(error_span);
582
583         let mut err = struct_span_err!(self.tcx.sess, sp, E0276, "{}", msg);
584
585         if let Some(trait_item_span) = self.tcx.hir().span_if_local(trait_item_def_id) {
586             let span = self.tcx.sess.source_map().def_span(trait_item_span);
587             err.span_label(span, format!("definition of `{}` from trait", item_name));
588         }
589
590         err.span_label(sp, format!("impl has extra requirement {}", requirement));
591
592         err
593     }
594
595
596     /// Gets the parent trait chain start
597     fn get_parent_trait_ref(&self, code: &ObligationCauseCode<'tcx>) -> Option<String> {
598         match code {
599             &ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
600                 let parent_trait_ref = self.resolve_vars_if_possible(
601                     &data.parent_trait_ref);
602                 match self.get_parent_trait_ref(&data.parent_code) {
603                     Some(t) => Some(t),
604                     None => Some(parent_trait_ref.skip_binder().self_ty().to_string()),
605                 }
606             }
607             _ => None,
608         }
609     }
610
611     pub fn report_selection_error(
612         &self,
613         obligation: &PredicateObligation<'tcx>,
614         error: &SelectionError<'tcx>,
615         fallback_has_occurred: bool,
616         points_at_arg: bool,
617     ) {
618         let span = obligation.cause.span;
619
620         let mut err = match *error {
621             SelectionError::Unimplemented => {
622                 if let ObligationCauseCode::CompareImplMethodObligation {
623                     item_name, impl_item_def_id, trait_item_def_id,
624                 } = obligation.cause.code {
625                     self.report_extra_impl_obligation(
626                         span,
627                         item_name,
628                         impl_item_def_id,
629                         trait_item_def_id,
630                         &format!("`{}`", obligation.predicate))
631                         .emit();
632                     return;
633                 }
634                 match obligation.predicate {
635                     ty::Predicate::Trait(ref trait_predicate) => {
636                         let trait_predicate =
637                             self.resolve_vars_if_possible(trait_predicate);
638
639                         if self.tcx.sess.has_errors() && trait_predicate.references_error() {
640                             return;
641                         }
642                         let trait_ref = trait_predicate.to_poly_trait_ref();
643                         let (post_message, pre_message) =
644                             self.get_parent_trait_ref(&obligation.cause.code)
645                                 .map(|t| (format!(" in `{}`", t), format!("within `{}`, ", t)))
646                             .unwrap_or_default();
647
648                         let OnUnimplementedNote { message, label, note }
649                             = self.on_unimplemented_note(trait_ref, obligation);
650                         let have_alt_message = message.is_some() || label.is_some();
651                         let is_try = self.tcx.sess.source_map().span_to_snippet(span)
652                             .map(|s| &s == "?")
653                             .unwrap_or(false);
654                         let is_from = format!("{}", trait_ref).starts_with("std::convert::From<");
655                         let (message, note) = if is_try && is_from {
656                             (Some(format!(
657                                 "`?` couldn't convert the error to `{}`",
658                                 trait_ref.self_ty(),
659                             )), Some(
660                                 "the question mark operation (`?`) implicitly performs a \
661                                  conversion on the error value using the `From` trait".to_owned()
662                             ))
663                         } else {
664                             (message, note)
665                         };
666
667                         let mut err = struct_span_err!(
668                             self.tcx.sess,
669                             span,
670                             E0277,
671                             "{}",
672                             message.unwrap_or_else(|| format!(
673                                 "the trait bound `{}` is not satisfied{}",
674                                 trait_ref.to_predicate(),
675                                 post_message,
676                             )));
677
678                         let explanation =
679                             if obligation.cause.code == ObligationCauseCode::MainFunctionType {
680                                 "consider using `()`, or a `Result`".to_owned()
681                             } else {
682                                 format!(
683                                     "{}the trait `{}` is not implemented for `{}`",
684                                     pre_message,
685                                     trait_ref,
686                                     trait_ref.self_ty(),
687                                 )
688                             };
689
690                         if let Some(ref s) = label {
691                             // If it has a custom `#[rustc_on_unimplemented]`
692                             // error message, let's display it as the label!
693                             err.span_label(span, s.as_str());
694                             err.help(&explanation);
695                         } else {
696                             err.span_label(span, explanation);
697                         }
698                         if let Some(ref s) = note {
699                             // If it has a custom `#[rustc_on_unimplemented]` note, let's display it
700                             err.note(s.as_str());
701                         }
702
703                         self.suggest_borrow_on_unsized_slice(&obligation.cause.code, &mut err);
704                         self.suggest_fn_call(&obligation, &mut err, &trait_ref, points_at_arg);
705                         self.suggest_remove_reference(&obligation, &mut err, &trait_ref);
706                         self.suggest_semicolon_removal(&obligation, &mut err, span, &trait_ref);
707
708                         // Try to report a help message
709                         if !trait_ref.has_infer_types() &&
710                             self.predicate_can_apply(obligation.param_env, trait_ref) {
711                             // If a where-clause may be useful, remind the
712                             // user that they can add it.
713                             //
714                             // don't display an on-unimplemented note, as
715                             // these notes will often be of the form
716                             //     "the type `T` can't be frobnicated"
717                             // which is somewhat confusing.
718                             self.suggest_restricting_param_bound(
719                                 &mut err,
720                                 &trait_ref,
721                                 obligation.cause.body_id,
722                             );
723                         } else {
724                             if !have_alt_message {
725                                 // Can't show anything else useful, try to find similar impls.
726                                 let impl_candidates = self.find_similar_impl_candidates(trait_ref);
727                                 self.report_similar_impl_candidates(impl_candidates, &mut err);
728                             }
729                             self.suggest_change_mut(
730                                 &obligation,
731                                 &mut err,
732                                 &trait_ref,
733                                 points_at_arg,
734                             );
735                         }
736
737                         // If this error is due to `!: Trait` not implemented but `(): Trait` is
738                         // implemented, and fallback has occurred, then it could be due to a
739                         // variable that used to fallback to `()` now falling back to `!`. Issue a
740                         // note informing about the change in behaviour.
741                         if trait_predicate.skip_binder().self_ty().is_never()
742                             && fallback_has_occurred
743                         {
744                             let predicate = trait_predicate.map_bound(|mut trait_pred| {
745                                 trait_pred.trait_ref.substs = self.tcx.mk_substs_trait(
746                                     self.tcx.mk_unit(),
747                                     &trait_pred.trait_ref.substs[1..],
748                                 );
749                                 trait_pred
750                             });
751                             let unit_obligation = Obligation {
752                                 predicate: ty::Predicate::Trait(predicate),
753                                 .. obligation.clone()
754                             };
755                             if self.predicate_may_hold(&unit_obligation) {
756                                 err.note("the trait is implemented for `()`. \
757                                          Possibly this error has been caused by changes to \
758                                          Rust's type-inference algorithm \
759                                          (see: https://github.com/rust-lang/rust/issues/48950 \
760                                          for more info). Consider whether you meant to use the \
761                                          type `()` here instead.");
762                             }
763                         }
764
765                         err
766                     }
767
768                     ty::Predicate::Subtype(ref predicate) => {
769                         // Errors for Subtype predicates show up as
770                         // `FulfillmentErrorCode::CodeSubtypeError`,
771                         // not selection error.
772                         span_bug!(span, "subtype requirement gave wrong error: `{:?}`", predicate)
773                     }
774
775                     ty::Predicate::RegionOutlives(ref predicate) => {
776                         let predicate = self.resolve_vars_if_possible(predicate);
777                         let err = self.region_outlives_predicate(&obligation.cause,
778                                                                  &predicate).err().unwrap();
779                         struct_span_err!(
780                             self.tcx.sess, span, E0279,
781                             "the requirement `{}` is not satisfied (`{}`)",
782                             predicate, err,
783                         )
784                     }
785
786                     ty::Predicate::Projection(..) | ty::Predicate::TypeOutlives(..) => {
787                         let predicate =
788                             self.resolve_vars_if_possible(&obligation.predicate);
789                         struct_span_err!(self.tcx.sess, span, E0280,
790                             "the requirement `{}` is not satisfied",
791                             predicate)
792                     }
793
794                     ty::Predicate::ObjectSafe(trait_def_id) => {
795                         let violations = self.tcx.object_safety_violations(trait_def_id);
796                         if let Some(err) = self.tcx.report_object_safety_error(
797                             span,
798                             trait_def_id,
799                             violations,
800                         ) {
801                             err
802                         } else {
803                             return;
804                         }
805                     }
806
807                     ty::Predicate::ClosureKind(closure_def_id, closure_substs, kind) => {
808                         let found_kind = self.closure_kind(closure_def_id, closure_substs).unwrap();
809                         let closure_span = self.tcx.sess.source_map()
810                             .def_span(self.tcx.hir().span_if_local(closure_def_id).unwrap());
811                         let hir_id = self.tcx.hir().as_local_hir_id(closure_def_id).unwrap();
812                         let mut err = struct_span_err!(
813                             self.tcx.sess, closure_span, E0525,
814                             "expected a closure that implements the `{}` trait, \
815                              but this closure only implements `{}`",
816                             kind,
817                             found_kind);
818
819                         err.span_label(
820                             closure_span,
821                             format!("this closure implements `{}`, not `{}`", found_kind, kind));
822                         err.span_label(
823                             obligation.cause.span,
824                             format!("the requirement to implement `{}` derives from here", kind));
825
826                         // Additional context information explaining why the closure only implements
827                         // a particular trait.
828                         if let Some(tables) = self.in_progress_tables {
829                             let tables = tables.borrow();
830                             match (found_kind, tables.closure_kind_origins().get(hir_id)) {
831                                 (ty::ClosureKind::FnOnce, Some((span, name))) => {
832                                     err.span_label(*span, format!(
833                                         "closure is `FnOnce` because it moves the \
834                                          variable `{}` out of its environment", name));
835                                 },
836                                 (ty::ClosureKind::FnMut, Some((span, name))) => {
837                                     err.span_label(*span, format!(
838                                         "closure is `FnMut` because it mutates the \
839                                          variable `{}` here", name));
840                                 },
841                                 _ => {}
842                             }
843                         }
844
845                         err.emit();
846                         return;
847                     }
848
849                     ty::Predicate::WellFormed(ty) => {
850                         if !self.tcx.sess.opts.debugging_opts.chalk {
851                             // WF predicates cannot themselves make
852                             // errors. They can only block due to
853                             // ambiguity; otherwise, they always
854                             // degenerate into other obligations
855                             // (which may fail).
856                             span_bug!(span, "WF predicate not satisfied for {:?}", ty);
857                         } else {
858                             // FIXME: we'll need a better message which takes into account
859                             // which bounds actually failed to hold.
860                             self.tcx.sess.struct_span_err(
861                                 span,
862                                 &format!("the type `{}` is not well-formed (chalk)", ty)
863                             )
864                         }
865                     }
866
867                     ty::Predicate::ConstEvaluatable(..) => {
868                         // Errors for `ConstEvaluatable` predicates show up as
869                         // `SelectionError::ConstEvalFailure`,
870                         // not `Unimplemented`.
871                         span_bug!(span,
872                             "const-evaluatable requirement gave wrong error: `{:?}`", obligation)
873                     }
874                 }
875             }
876
877             OutputTypeParameterMismatch(ref found_trait_ref, ref expected_trait_ref, _) => {
878                 let found_trait_ref = self.resolve_vars_if_possible(&*found_trait_ref);
879                 let expected_trait_ref = self.resolve_vars_if_possible(&*expected_trait_ref);
880
881                 if expected_trait_ref.self_ty().references_error() {
882                     return;
883                 }
884
885                 let found_trait_ty = found_trait_ref.self_ty();
886
887                 let found_did = match found_trait_ty.kind {
888                     ty::Closure(did, _) | ty::Foreign(did) | ty::FnDef(did, _) => Some(did),
889                     ty::Adt(def, _) => Some(def.did),
890                     _ => None,
891                 };
892
893                 let found_span = found_did.and_then(|did|
894                     self.tcx.hir().span_if_local(did)
895                 ).map(|sp| self.tcx.sess.source_map().def_span(sp)); // the sp could be an fn def
896
897                 if self.reported_closure_mismatch.borrow().contains(&(span, found_span)) {
898                     // We check closures twice, with obligations flowing in different directions,
899                     // but we want to complain about them only once.
900                     return;
901                 }
902
903                 self.reported_closure_mismatch.borrow_mut().insert((span, found_span));
904
905                 let found = match found_trait_ref.skip_binder().substs.type_at(1).kind {
906                     ty::Tuple(ref tys) => vec![ArgKind::empty(); tys.len()],
907                     _ => vec![ArgKind::empty()],
908                 };
909
910                 let expected_ty = expected_trait_ref.skip_binder().substs.type_at(1);
911                 let expected = match expected_ty.kind {
912                     ty::Tuple(ref tys) => tys.iter()
913                         .map(|t| ArgKind::from_expected_ty(t.expect_ty(), Some(span))).collect(),
914                     _ => vec![ArgKind::Arg("_".to_owned(), expected_ty.to_string())],
915                 };
916
917                 if found.len() == expected.len() {
918                     self.report_closure_arg_mismatch(span,
919                                                      found_span,
920                                                      found_trait_ref,
921                                                      expected_trait_ref)
922                 } else {
923                     let (closure_span, found) = found_did
924                         .and_then(|did| self.tcx.hir().get_if_local(did))
925                         .map(|node| {
926                             let (found_span, found) = self.get_fn_like_arguments(node);
927                             (Some(found_span), found)
928                         }).unwrap_or((found_span, found));
929
930                     self.report_arg_count_mismatch(span,
931                                                    closure_span,
932                                                    expected,
933                                                    found,
934                                                    found_trait_ty.is_closure())
935                 }
936             }
937
938             TraitNotObjectSafe(did) => {
939                 let violations = self.tcx.object_safety_violations(did);
940                 if let Some(err) = self.tcx.report_object_safety_error(span, did, violations) {
941                     err
942                 } else {
943                     return;
944                 }
945             }
946
947             // already reported in the query
948             ConstEvalFailure(err) => {
949                 self.tcx.sess.delay_span_bug(
950                     span,
951                     &format!("constant in type had an ignored error: {:?}", err),
952                 );
953                 return;
954             }
955
956             Overflow => {
957                 bug!("overflow should be handled before the `report_selection_error` path");
958             }
959         };
960
961         self.note_obligation_cause(&mut err, obligation);
962
963         err.emit();
964     }
965
966     fn suggest_restricting_param_bound(
967         &self,
968         err: &mut DiagnosticBuilder<'_>,
969         trait_ref: &ty::PolyTraitRef<'_>,
970         body_id: hir::HirId,
971     ) {
972         let self_ty = trait_ref.self_ty();
973         let (param_ty, projection) = match &self_ty.kind {
974             ty::Param(_) => (true, None),
975             ty::Projection(projection) => (false, Some(projection)),
976             _ => return,
977         };
978
979         let mut suggest_restriction = |generics: &hir::Generics, msg| {
980             let span = generics.where_clause.span_for_predicates_or_empty_place();
981             if !span.from_expansion() && span.desugaring_kind().is_none() {
982                 err.span_suggestion(
983                     generics.where_clause.span_for_predicates_or_empty_place().shrink_to_hi(),
984                     &format!("consider further restricting {}", msg),
985                     format!(
986                         "{} {} ",
987                         if !generics.where_clause.predicates.is_empty() {
988                             ","
989                         } else {
990                             " where"
991                         },
992                         trait_ref.to_predicate(),
993                     ),
994                     Applicability::MachineApplicable,
995                 );
996             }
997         };
998
999         // FIXME: Add check for trait bound that is already present, particularly `?Sized` so we
1000         //        don't suggest `T: Sized + ?Sized`.
1001         let mut hir_id = body_id;
1002         while let Some(node) = self.tcx.hir().find(hir_id) {
1003             match node {
1004                 hir::Node::TraitItem(hir::TraitItem {
1005                     generics,
1006                     kind: hir::TraitItemKind::Method(..), ..
1007                 }) if param_ty && self_ty == self.tcx.types.self_param => {
1008                     // Restricting `Self` for a single method.
1009                     suggest_restriction(&generics, "`Self`");
1010                     return;
1011                 }
1012
1013                 hir::Node::Item(hir::Item {
1014                     kind: hir::ItemKind::Fn(_, _, generics, _), ..
1015                 }) |
1016                 hir::Node::TraitItem(hir::TraitItem {
1017                     generics,
1018                     kind: hir::TraitItemKind::Method(..), ..
1019                 }) |
1020                 hir::Node::ImplItem(hir::ImplItem {
1021                     generics,
1022                     kind: hir::ImplItemKind::Method(..), ..
1023                 }) |
1024                 hir::Node::Item(hir::Item {
1025                     kind: hir::ItemKind::Trait(_, _, generics, _, _), ..
1026                 }) |
1027                 hir::Node::Item(hir::Item {
1028                     kind: hir::ItemKind::Impl(_, _, _, generics, ..), ..
1029                 }) if projection.is_some() => {
1030                     // Missing associated type bound.
1031                     suggest_restriction(&generics, "the associated type");
1032                     return;
1033                 }
1034
1035                 hir::Node::Item(hir::Item { kind: hir::ItemKind::Struct(_, generics), span, .. }) |
1036                 hir::Node::Item(hir::Item { kind: hir::ItemKind::Enum(_, generics), span, .. }) |
1037                 hir::Node::Item(hir::Item { kind: hir::ItemKind::Union(_, generics), span, .. }) |
1038                 hir::Node::Item(hir::Item {
1039                     kind: hir::ItemKind::Trait(_, _, generics, ..), span, ..
1040                 }) |
1041                 hir::Node::Item(hir::Item {
1042                     kind: hir::ItemKind::Impl(_, _, _, generics, ..), span, ..
1043                 }) |
1044                 hir::Node::Item(hir::Item {
1045                     kind: hir::ItemKind::Fn(_, _, generics, _), span, ..
1046                 }) |
1047                 hir::Node::Item(hir::Item {
1048                     kind: hir::ItemKind::TyAlias(_, generics), span, ..
1049                 }) |
1050                 hir::Node::Item(hir::Item {
1051                     kind: hir::ItemKind::TraitAlias(generics, _), span, ..
1052                 }) |
1053                 hir::Node::Item(hir::Item {
1054                     kind: hir::ItemKind::OpaqueTy(hir::OpaqueTy { generics, .. }), span, ..
1055                 }) |
1056                 hir::Node::TraitItem(hir::TraitItem { generics, span, .. }) |
1057                 hir::Node::ImplItem(hir::ImplItem { generics, span, .. })
1058                 if param_ty => {
1059                     // Missing generic type parameter bound.
1060                     let restrict_msg = "consider further restricting this bound";
1061                     let param_name = self_ty.to_string();
1062                     for param in generics.params.iter().filter(|p| {
1063                         &param_name == std::convert::AsRef::<str>::as_ref(&p.name.ident().as_str())
1064                     }) {
1065                         if param_name.starts_with("impl ") {
1066                             // `impl Trait` in argument:
1067                             // `fn foo(x: impl Trait) {}` → `fn foo(t: impl Trait + Trait2) {}`
1068                             err.span_suggestion(
1069                                 param.span,
1070                                 restrict_msg,
1071                                 // `impl CurrentTrait + MissingTrait`
1072                                 format!("{} + {}", param.name.ident(), trait_ref),
1073                                 Applicability::MachineApplicable,
1074                             );
1075                         } else if generics.where_clause.predicates.is_empty() &&
1076                                 param.bounds.is_empty()
1077                         {
1078                             // If there are no bounds whatsoever, suggest adding a constraint
1079                             // to the type parameter:
1080                             // `fn foo<T>(t: T) {}` → `fn foo<T: Trait>(t: T) {}`
1081                             err.span_suggestion(
1082                                 param.span,
1083                                 "consider restricting this bound",
1084                                 format!("{}", trait_ref.to_predicate()),
1085                                 Applicability::MachineApplicable,
1086                             );
1087                         } else if !generics.where_clause.predicates.is_empty() {
1088                             // There is a `where` clause, so suggest expanding it:
1089                             // `fn foo<T>(t: T) where T: Debug {}` →
1090                             // `fn foo<T>(t: T) where T: Debug, T: Trait {}`
1091                             err.span_suggestion(
1092                                 generics.where_clause.span().unwrap().shrink_to_hi(),
1093                                 &format!(
1094                                     "consider further restricting type parameter `{}`",
1095                                     param_name,
1096                                 ),
1097                                 format!(", {}", trait_ref.to_predicate()),
1098                                 Applicability::MachineApplicable,
1099                             );
1100                         } else {
1101                             // If there is no `where` clause lean towards constraining to the
1102                             // type parameter:
1103                             // `fn foo<X: Bar, T>(t: T, x: X) {}` → `fn foo<T: Trait>(t: T) {}`
1104                             // `fn foo<T: Bar>(t: T) {}` → `fn foo<T: Bar + Trait>(t: T) {}`
1105                             let sp = param.span.with_hi(span.hi());
1106                             let span = self.tcx.sess.source_map()
1107                                 .span_through_char(sp, ':');
1108                             if sp != param.span && sp != span {
1109                                 // Only suggest if we have high certainty that the span
1110                                 // covers the colon in `foo<T: Trait>`.
1111                                 err.span_suggestion(span, restrict_msg, format!(
1112                                     "{} + ",
1113                                     trait_ref.to_predicate(),
1114                                 ), Applicability::MachineApplicable);
1115                             } else {
1116                                 err.span_label(param.span, &format!(
1117                                     "consider adding a `where {}` bound",
1118                                     trait_ref.to_predicate(),
1119                                 ));
1120                             }
1121                         }
1122                         return;
1123                     }
1124                 }
1125
1126                 hir::Node::Crate => return,
1127
1128                 _ => {}
1129             }
1130
1131             hir_id = self.tcx.hir().get_parent_item(hir_id);
1132         }
1133     }
1134
1135     /// When encountering an assignment of an unsized trait, like `let x = ""[..];`, provide a
1136     /// suggestion to borrow the initializer in order to use have a slice instead.
1137     fn suggest_borrow_on_unsized_slice(
1138         &self,
1139         code: &ObligationCauseCode<'tcx>,
1140         err: &mut DiagnosticBuilder<'tcx>,
1141     ) {
1142         if let &ObligationCauseCode::VariableType(hir_id) = code {
1143             let parent_node = self.tcx.hir().get_parent_node(hir_id);
1144             if let Some(Node::Local(ref local)) = self.tcx.hir().find(parent_node) {
1145                 if let Some(ref expr) = local.init {
1146                     if let hir::ExprKind::Index(_, _) = expr.kind {
1147                         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(expr.span) {
1148                             err.span_suggestion(
1149                                 expr.span,
1150                                 "consider borrowing here",
1151                                 format!("&{}", snippet),
1152                                 Applicability::MachineApplicable
1153                             );
1154                         }
1155                     }
1156                 }
1157             }
1158         }
1159     }
1160
1161     fn suggest_fn_call(
1162         &self,
1163         obligation: &PredicateObligation<'tcx>,
1164         err: &mut DiagnosticBuilder<'tcx>,
1165         trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
1166         points_at_arg: bool,
1167     ) {
1168         let self_ty = trait_ref.self_ty();
1169         match self_ty.kind {
1170             ty::FnDef(def_id, _) => {
1171                 // We tried to apply the bound to an `fn`. Check whether calling it would evaluate
1172                 // to a type that *would* satisfy the trait binding. If it would, suggest calling
1173                 // it: `bar(foo)` -> `bar(foo)`. This case is *very* likely to be hit if `foo` is
1174                 // `async`.
1175                 let output_ty = self_ty.fn_sig(self.tcx).output();
1176                 let new_trait_ref = ty::TraitRef {
1177                     def_id: trait_ref.def_id(),
1178                     substs: self.tcx.mk_substs_trait(output_ty.skip_binder(), &[]),
1179                 };
1180                 let obligation = Obligation::new(
1181                     obligation.cause.clone(),
1182                     obligation.param_env,
1183                     new_trait_ref.to_predicate(),
1184                 );
1185                 match self.evaluate_obligation(&obligation) {
1186                     Ok(EvaluationResult::EvaluatedToOk) |
1187                     Ok(EvaluationResult::EvaluatedToOkModuloRegions) |
1188                     Ok(EvaluationResult::EvaluatedToAmbig) => {
1189                         if let Some(hir::Node::Item(hir::Item {
1190                             ident,
1191                             kind: hir::ItemKind::Fn(.., body_id),
1192                             ..
1193                         })) = self.tcx.hir().get_if_local(def_id) {
1194                             let body = self.tcx.hir().body(*body_id);
1195                             let msg = "use parentheses to call the function";
1196                             let snippet = format!(
1197                                 "{}({})",
1198                                 ident,
1199                                 body.params.iter()
1200                                     .map(|arg| match &arg.pat.kind {
1201                                         hir::PatKind::Binding(_, _, ident, None)
1202                                         if ident.name != kw::SelfLower => ident.to_string(),
1203                                         _ => "_".to_string(),
1204                                     }).collect::<Vec<_>>().join(", "),
1205                             );
1206                             // When the obligation error has been ensured to have been caused by
1207                             // an argument, the `obligation.cause.span` points at the expression
1208                             // of the argument, so we can provide a suggestion. This is signaled
1209                             // by `points_at_arg`. Otherwise, we give a more general note.
1210                             if points_at_arg {
1211                                 err.span_suggestion(
1212                                     obligation.cause.span,
1213                                     msg,
1214                                     snippet,
1215                                     Applicability::HasPlaceholders,
1216                                 );
1217                             } else {
1218                                 err.help(&format!("{}: `{}`", msg, snippet));
1219                             }
1220                         }
1221                     }
1222                     _ => {}
1223                 }
1224             }
1225             _ => {}
1226         }
1227     }
1228
1229     /// Whenever references are used by mistake, like `for (i, e) in &vec.iter().enumerate()`,
1230     /// suggest removing these references until we reach a type that implements the trait.
1231     fn suggest_remove_reference(
1232         &self,
1233         obligation: &PredicateObligation<'tcx>,
1234         err: &mut DiagnosticBuilder<'tcx>,
1235         trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
1236     ) {
1237         let trait_ref = trait_ref.skip_binder();
1238         let span = obligation.cause.span;
1239
1240         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
1241             let refs_number = snippet.chars()
1242                 .filter(|c| !c.is_whitespace())
1243                 .take_while(|c| *c == '&')
1244                 .count();
1245             if let Some('\'') = snippet.chars()
1246                 .filter(|c| !c.is_whitespace())
1247                 .skip(refs_number)
1248                 .next()
1249             { // Do not suggest removal of borrow from type arguments.
1250                 return;
1251             }
1252
1253             let mut trait_type = trait_ref.self_ty();
1254
1255             for refs_remaining in 0..refs_number {
1256                 if let ty::Ref(_, t_type, _) = trait_type.kind {
1257                     trait_type = t_type;
1258
1259                     let substs = self.tcx.mk_substs_trait(trait_type, &[]);
1260                     let new_trait_ref = ty::TraitRef::new(trait_ref.def_id, substs);
1261                     let new_obligation = Obligation::new(
1262                         ObligationCause::dummy(),
1263                         obligation.param_env,
1264                         new_trait_ref.to_predicate(),
1265                     );
1266
1267                     if self.predicate_may_hold(&new_obligation) {
1268                         let sp = self.tcx.sess.source_map()
1269                             .span_take_while(span, |c| c.is_whitespace() || *c == '&');
1270
1271                         let remove_refs = refs_remaining + 1;
1272                         let format_str = format!("consider removing {} leading `&`-references",
1273                                                  remove_refs);
1274
1275                         err.span_suggestion_short(
1276                             sp, &format_str, String::new(), Applicability::MachineApplicable
1277                         );
1278                         break;
1279                     }
1280                 } else {
1281                     break;
1282                 }
1283             }
1284         }
1285     }
1286
1287     /// Check if the trait bound is implemented for a different mutability and note it in the
1288     /// final error.
1289     fn suggest_change_mut(
1290         &self,
1291         obligation: &PredicateObligation<'tcx>,
1292         err: &mut DiagnosticBuilder<'tcx>,
1293         trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
1294         points_at_arg: bool,
1295     ) {
1296         let span = obligation.cause.span;
1297         if let Ok(snippet) = self.tcx.sess.source_map().span_to_snippet(span) {
1298             let refs_number = snippet.chars()
1299                 .filter(|c| !c.is_whitespace())
1300                 .take_while(|c| *c == '&')
1301                 .count();
1302             if let Some('\'') = snippet.chars()
1303                 .filter(|c| !c.is_whitespace())
1304                 .skip(refs_number)
1305                 .next()
1306             { // Do not suggest removal of borrow from type arguments.
1307                 return;
1308             }
1309             let trait_ref = self.resolve_vars_if_possible(trait_ref);
1310             if trait_ref.has_infer_types() {
1311                 // Do not ICE while trying to find if a reborrow would succeed on a trait with
1312                 // unresolved bindings.
1313                 return;
1314             }
1315
1316             if let ty::Ref(region, t_type, mutability) = trait_ref.skip_binder().self_ty().kind {
1317                 let trait_type = match mutability {
1318                     hir::Mutability::MutMutable => self.tcx.mk_imm_ref(region, t_type),
1319                     hir::Mutability::MutImmutable => self.tcx.mk_mut_ref(region, t_type),
1320                 };
1321
1322                 let substs = self.tcx.mk_substs_trait(&trait_type, &[]);
1323                 let new_trait_ref = ty::TraitRef::new(trait_ref.skip_binder().def_id, substs);
1324                 let new_obligation = Obligation::new(
1325                     ObligationCause::dummy(),
1326                     obligation.param_env,
1327                     new_trait_ref.to_predicate(),
1328                 );
1329
1330                 if self.evaluate_obligation_no_overflow(
1331                     &new_obligation,
1332                 ).must_apply_modulo_regions() {
1333                     let sp = self.tcx.sess.source_map()
1334                         .span_take_while(span, |c| c.is_whitespace() || *c == '&');
1335                     if points_at_arg &&
1336                         mutability == hir::Mutability::MutImmutable &&
1337                         refs_number > 0
1338                     {
1339                         err.span_suggestion(
1340                             sp,
1341                             "consider changing this borrow's mutability",
1342                             "&mut ".to_string(),
1343                             Applicability::MachineApplicable,
1344                         );
1345                     } else {
1346                         err.note(&format!(
1347                             "`{}` is implemented for `{:?}`, but not for `{:?}`",
1348                             trait_ref,
1349                             trait_type,
1350                             trait_ref.skip_binder().self_ty(),
1351                         ));
1352                     }
1353                 }
1354             }
1355         }
1356     }
1357
1358     fn suggest_semicolon_removal(
1359         &self,
1360         obligation: &PredicateObligation<'tcx>,
1361         err: &mut DiagnosticBuilder<'tcx>,
1362         span: Span,
1363         trait_ref: &ty::Binder<ty::TraitRef<'tcx>>,
1364     ) {
1365         let hir = self.tcx.hir();
1366         let parent_node = hir.get_parent_node(obligation.cause.body_id);
1367         let node = hir.find(parent_node);
1368         if let Some(hir::Node::Item(hir::Item {
1369             kind: hir::ItemKind::Fn(decl, _, _, body_id),
1370             ..
1371         })) = node {
1372             let body = hir.body(*body_id);
1373             if let hir::ExprKind::Block(blk, _) = &body.value.kind {
1374                 if decl.output.span().overlaps(span) && blk.expr.is_none() &&
1375                     "()" == &trait_ref.self_ty().to_string()
1376                 {
1377                     // FIXME(estebank): When encountering a method with a trait
1378                     // bound not satisfied in the return type with a body that has
1379                     // no return, suggest removal of semicolon on last statement.
1380                     // Once that is added, close #54771.
1381                     if let Some(ref stmt) = blk.stmts.last() {
1382                         let sp = self.tcx.sess.source_map().end_point(stmt.span);
1383                         err.span_label(sp, "consider removing this semicolon");
1384                     }
1385                 }
1386             }
1387         }
1388     }
1389
1390     /// Given some node representing a fn-like thing in the HIR map,
1391     /// returns a span and `ArgKind` information that describes the
1392     /// arguments it expects. This can be supplied to
1393     /// `report_arg_count_mismatch`.
1394     pub fn get_fn_like_arguments(&self, node: Node<'_>) -> (Span, Vec<ArgKind>) {
1395         match node {
1396             Node::Expr(&hir::Expr {
1397                 kind: hir::ExprKind::Closure(_, ref _decl, id, span, _),
1398                 ..
1399             }) => {
1400                 (self.tcx.sess.source_map().def_span(span),
1401                  self.tcx.hir().body(id).params.iter()
1402                     .map(|arg| {
1403                         if let hir::Pat {
1404                             kind: hir::PatKind::Tuple(ref args, _),
1405                             span,
1406                             ..
1407                         } = *arg.pat {
1408                             ArgKind::Tuple(
1409                                 Some(span),
1410                                 args.iter().map(|pat| {
1411                                     let snippet = self.tcx.sess.source_map()
1412                                         .span_to_snippet(pat.span).unwrap();
1413                                     (snippet, "_".to_owned())
1414                                 }).collect::<Vec<_>>(),
1415                             )
1416                         } else {
1417                             let name = self.tcx.sess.source_map()
1418                                 .span_to_snippet(arg.pat.span).unwrap();
1419                             ArgKind::Arg(name, "_".to_owned())
1420                         }
1421                     })
1422                     .collect::<Vec<ArgKind>>())
1423             }
1424             Node::Item(&hir::Item {
1425                 span,
1426                 kind: hir::ItemKind::Fn(ref decl, ..),
1427                 ..
1428             }) |
1429             Node::ImplItem(&hir::ImplItem {
1430                 span,
1431                 kind: hir::ImplItemKind::Method(hir::MethodSig { ref decl, .. }, _),
1432                 ..
1433             }) |
1434             Node::TraitItem(&hir::TraitItem {
1435                 span,
1436                 kind: hir::TraitItemKind::Method(hir::MethodSig { ref decl, .. }, _),
1437                 ..
1438             }) => {
1439                 (self.tcx.sess.source_map().def_span(span), decl.inputs.iter()
1440                         .map(|arg| match arg.clone().kind {
1441                     hir::TyKind::Tup(ref tys) => ArgKind::Tuple(
1442                         Some(arg.span),
1443                         vec![("_".to_owned(), "_".to_owned()); tys.len()]
1444                     ),
1445                     _ => ArgKind::empty()
1446                 }).collect::<Vec<ArgKind>>())
1447             }
1448             Node::Ctor(ref variant_data) => {
1449                 let span = variant_data.ctor_hir_id()
1450                     .map(|hir_id| self.tcx.hir().span(hir_id))
1451                     .unwrap_or(DUMMY_SP);
1452                 let span = self.tcx.sess.source_map().def_span(span);
1453
1454                 (span, vec![ArgKind::empty(); variant_data.fields().len()])
1455             }
1456             _ => panic!("non-FnLike node found: {:?}", node),
1457         }
1458     }
1459
1460     /// Reports an error when the number of arguments needed by a
1461     /// trait match doesn't match the number that the expression
1462     /// provides.
1463     pub fn report_arg_count_mismatch(
1464         &self,
1465         span: Span,
1466         found_span: Option<Span>,
1467         expected_args: Vec<ArgKind>,
1468         found_args: Vec<ArgKind>,
1469         is_closure: bool,
1470     ) -> DiagnosticBuilder<'tcx> {
1471         let kind = if is_closure { "closure" } else { "function" };
1472
1473         let args_str = |arguments: &[ArgKind], other: &[ArgKind]| {
1474             let arg_length = arguments.len();
1475             let distinct = match &other[..] {
1476                 &[ArgKind::Tuple(..)] => true,
1477                 _ => false,
1478             };
1479             match (arg_length, arguments.get(0)) {
1480                 (1, Some(&ArgKind::Tuple(_, ref fields))) => {
1481                     format!("a single {}-tuple as argument", fields.len())
1482                 }
1483                 _ => format!("{} {}argument{}",
1484                              arg_length,
1485                              if distinct && arg_length > 1 { "distinct " } else { "" },
1486                              pluralise!(arg_length))
1487             }
1488         };
1489
1490         let expected_str = args_str(&expected_args, &found_args);
1491         let found_str = args_str(&found_args, &expected_args);
1492
1493         let mut err = struct_span_err!(
1494             self.tcx.sess,
1495             span,
1496             E0593,
1497             "{} is expected to take {}, but it takes {}",
1498             kind,
1499             expected_str,
1500             found_str,
1501         );
1502
1503         err.span_label(span, format!("expected {} that takes {}", kind, expected_str));
1504
1505         if let Some(found_span) = found_span {
1506             err.span_label(found_span, format!("takes {}", found_str));
1507
1508             // move |_| { ... }
1509             // ^^^^^^^^-- def_span
1510             //
1511             // move |_| { ... }
1512             // ^^^^^-- prefix
1513             let prefix_span = self.tcx.sess.source_map().span_until_non_whitespace(found_span);
1514             // move |_| { ... }
1515             //      ^^^-- pipe_span
1516             let pipe_span = if let Some(span) = found_span.trim_start(prefix_span) {
1517                 span
1518             } else {
1519                 found_span
1520             };
1521
1522             // Suggest to take and ignore the arguments with expected_args_length `_`s if
1523             // found arguments is empty (assume the user just wants to ignore args in this case).
1524             // For example, if `expected_args_length` is 2, suggest `|_, _|`.
1525             if found_args.is_empty() && is_closure {
1526                 let underscores = vec!["_"; expected_args.len()].join(", ");
1527                 err.span_suggestion(
1528                     pipe_span,
1529                     &format!(
1530                         "consider changing the closure to take and ignore the expected argument{}",
1531                         if expected_args.len() < 2 {
1532                             ""
1533                         } else {
1534                             "s"
1535                         }
1536                     ),
1537                     format!("|{}|", underscores),
1538                     Applicability::MachineApplicable,
1539                 );
1540             }
1541
1542             if let &[ArgKind::Tuple(_, ref fields)] = &found_args[..] {
1543                 if fields.len() == expected_args.len() {
1544                     let sugg = fields.iter()
1545                         .map(|(name, _)| name.to_owned())
1546                         .collect::<Vec<String>>()
1547                         .join(", ");
1548                     err.span_suggestion(
1549                         found_span,
1550                         "change the closure to take multiple arguments instead of a single tuple",
1551                         format!("|{}|", sugg),
1552                         Applicability::MachineApplicable,
1553                     );
1554                 }
1555             }
1556             if let &[ArgKind::Tuple(_, ref fields)] = &expected_args[..] {
1557                 if fields.len() == found_args.len() && is_closure {
1558                     let sugg = format!(
1559                         "|({}){}|",
1560                         found_args.iter()
1561                             .map(|arg| match arg {
1562                                 ArgKind::Arg(name, _) => name.to_owned(),
1563                                 _ => "_".to_owned(),
1564                             })
1565                             .collect::<Vec<String>>()
1566                             .join(", "),
1567                         // add type annotations if available
1568                         if found_args.iter().any(|arg| match arg {
1569                             ArgKind::Arg(_, ty) => ty != "_",
1570                             _ => false,
1571                         }) {
1572                             format!(": ({})",
1573                                     fields.iter()
1574                                         .map(|(_, ty)| ty.to_owned())
1575                                         .collect::<Vec<String>>()
1576                                         .join(", "))
1577                         } else {
1578                             String::new()
1579                         },
1580                     );
1581                     err.span_suggestion(
1582                         found_span,
1583                         "change the closure to accept a tuple instead of individual arguments",
1584                         sugg,
1585                         Applicability::MachineApplicable,
1586                     );
1587                 }
1588             }
1589         }
1590
1591         err
1592     }
1593
1594     fn report_closure_arg_mismatch(
1595         &self,
1596         span: Span,
1597         found_span: Option<Span>,
1598         expected_ref: ty::PolyTraitRef<'tcx>,
1599         found: ty::PolyTraitRef<'tcx>,
1600     ) -> DiagnosticBuilder<'tcx> {
1601         fn build_fn_sig_string<'tcx>(tcx: TyCtxt<'tcx>, trait_ref: &ty::TraitRef<'tcx>) -> String {
1602             let inputs = trait_ref.substs.type_at(1);
1603             let sig = if let ty::Tuple(inputs) = inputs.kind {
1604                 tcx.mk_fn_sig(
1605                     inputs.iter().map(|k| k.expect_ty()),
1606                     tcx.mk_ty_infer(ty::TyVar(ty::TyVid { index: 0 })),
1607                     false,
1608                     hir::Unsafety::Normal,
1609                     ::rustc_target::spec::abi::Abi::Rust
1610                 )
1611             } else {
1612                 tcx.mk_fn_sig(
1613                     ::std::iter::once(inputs),
1614                     tcx.mk_ty_infer(ty::TyVar(ty::TyVid { index: 0 })),
1615                     false,
1616                     hir::Unsafety::Normal,
1617                     ::rustc_target::spec::abi::Abi::Rust
1618                 )
1619             };
1620             ty::Binder::bind(sig).to_string()
1621         }
1622
1623         let argument_is_closure = expected_ref.skip_binder().substs.type_at(0).is_closure();
1624         let mut err = struct_span_err!(self.tcx.sess, span, E0631,
1625                                        "type mismatch in {} arguments",
1626                                        if argument_is_closure { "closure" } else { "function" });
1627
1628         let found_str = format!(
1629             "expected signature of `{}`",
1630             build_fn_sig_string(self.tcx, found.skip_binder())
1631         );
1632         err.span_label(span, found_str);
1633
1634         let found_span = found_span.unwrap_or(span);
1635         let expected_str = format!(
1636             "found signature of `{}`",
1637             build_fn_sig_string(self.tcx, expected_ref.skip_binder())
1638         );
1639         err.span_label(found_span, expected_str);
1640
1641         err
1642     }
1643 }
1644
1645 impl<'tcx> TyCtxt<'tcx> {
1646     pub fn recursive_type_with_infinite_size_error(self,
1647                                                    type_def_id: DefId)
1648                                                    -> DiagnosticBuilder<'tcx>
1649     {
1650         assert!(type_def_id.is_local());
1651         let span = self.hir().span_if_local(type_def_id).unwrap();
1652         let span = self.sess.source_map().def_span(span);
1653         let mut err = struct_span_err!(self.sess, span, E0072,
1654                                        "recursive type `{}` has infinite size",
1655                                        self.def_path_str(type_def_id));
1656         err.span_label(span, "recursive type has infinite size");
1657         err.help(&format!("insert indirection (e.g., a `Box`, `Rc`, or `&`) \
1658                            at some point to make `{}` representable",
1659                           self.def_path_str(type_def_id)));
1660         err
1661     }
1662
1663     pub fn report_object_safety_error(
1664         self,
1665         span: Span,
1666         trait_def_id: DefId,
1667         violations: Vec<ObjectSafetyViolation>,
1668     ) -> Option<DiagnosticBuilder<'tcx>> {
1669         if self.sess.trait_methods_not_found.borrow().contains(&span) {
1670             // Avoid emitting error caused by non-existing method (#58734)
1671             return None;
1672         }
1673         let trait_str = self.def_path_str(trait_def_id);
1674         let span = self.sess.source_map().def_span(span);
1675         let mut err = struct_span_err!(
1676             self.sess, span, E0038,
1677             "the trait `{}` cannot be made into an object",
1678             trait_str);
1679         err.span_label(span, format!("the trait `{}` cannot be made into an object", trait_str));
1680
1681         let mut reported_violations = FxHashSet::default();
1682         for violation in violations {
1683             if reported_violations.insert(violation.clone()) {
1684                 match violation.span() {
1685                     Some(span) => err.span_label(span, violation.error_msg()),
1686                     None => err.note(&violation.error_msg()),
1687                 };
1688             }
1689         }
1690         Some(err)
1691     }
1692 }
1693
1694 impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
1695     fn maybe_report_ambiguity(
1696         &self,
1697         obligation: &PredicateObligation<'tcx>,
1698         body_id: Option<hir::BodyId>,
1699     ) {
1700         // Unable to successfully determine, probably means
1701         // insufficient type information, but could mean
1702         // ambiguous impls. The latter *ought* to be a
1703         // coherence violation, so we don't report it here.
1704
1705         let predicate = self.resolve_vars_if_possible(&obligation.predicate);
1706         let span = obligation.cause.span;
1707
1708         debug!(
1709             "maybe_report_ambiguity(predicate={:?}, obligation={:?} body_id={:?}, code={:?})",
1710             predicate,
1711             obligation,
1712             body_id,
1713             obligation.cause.code,
1714         );
1715
1716         // Ambiguity errors are often caused as fallout from earlier
1717         // errors. So just ignore them if this infcx is tainted.
1718         if self.is_tainted_by_errors() {
1719             return;
1720         }
1721
1722         match predicate {
1723             ty::Predicate::Trait(ref data) => {
1724                 let trait_ref = data.to_poly_trait_ref();
1725                 let self_ty = trait_ref.self_ty();
1726                 debug!("self_ty {:?} {:?} trait_ref {:?}", self_ty, self_ty.kind, trait_ref);
1727
1728                 if predicate.references_error() {
1729                     return;
1730                 }
1731                 // Typically, this ambiguity should only happen if
1732                 // there are unresolved type inference variables
1733                 // (otherwise it would suggest a coherence
1734                 // failure). But given #21974 that is not necessarily
1735                 // the case -- we can have multiple where clauses that
1736                 // are only distinguished by a region, which results
1737                 // in an ambiguity even when all types are fully
1738                 // known, since we don't dispatch based on region
1739                 // relationships.
1740
1741                 // This is kind of a hack: it frequently happens that some earlier
1742                 // error prevents types from being fully inferred, and then we get
1743                 // a bunch of uninteresting errors saying something like "<generic
1744                 // #0> doesn't implement Sized".  It may even be true that we
1745                 // could just skip over all checks where the self-ty is an
1746                 // inference variable, but I was afraid that there might be an
1747                 // inference variable created, registered as an obligation, and
1748                 // then never forced by writeback, and hence by skipping here we'd
1749                 // be ignoring the fact that we don't KNOW the type works
1750                 // out. Though even that would probably be harmless, given that
1751                 // we're only talking about builtin traits, which are known to be
1752                 // inhabited. We used to check for `self.tcx.sess.has_errors()` to
1753                 // avoid inundating the user with unnecessary errors, but we now
1754                 // check upstream for type errors and dont add the obligations to
1755                 // begin with in those cases.
1756                 if
1757                     self.tcx.lang_items().sized_trait()
1758                     .map_or(false, |sized_id| sized_id == trait_ref.def_id())
1759                 {
1760                     self.need_type_info_err(body_id, span, self_ty).emit();
1761                 } else {
1762                     let mut err = struct_span_err!(
1763                         self.tcx.sess,
1764                         span,
1765                         E0283,
1766                         "type annotations needed: cannot resolve `{}`",
1767                         predicate,
1768                     );
1769                     self.note_obligation_cause(&mut err, obligation);
1770                     err.emit();
1771                 }
1772             }
1773
1774             ty::Predicate::WellFormed(ty) => {
1775                 // Same hacky approach as above to avoid deluging user
1776                 // with error messages.
1777                 if !ty.references_error() && !self.tcx.sess.has_errors() {
1778                     self.need_type_info_err(body_id, span, ty).emit();
1779                 }
1780             }
1781
1782             ty::Predicate::Subtype(ref data) => {
1783                 if data.references_error() || self.tcx.sess.has_errors() {
1784                     // no need to overload user in such cases
1785                 } else {
1786                     let &SubtypePredicate { a_is_expected: _, a, b } = data.skip_binder();
1787                     // both must be type variables, or the other would've been instantiated
1788                     assert!(a.is_ty_var() && b.is_ty_var());
1789                     self.need_type_info_err(body_id,
1790                                             obligation.cause.span,
1791                                             a).emit();
1792                 }
1793             }
1794
1795             _ => {
1796                 if !self.tcx.sess.has_errors() {
1797                     let mut err = struct_span_err!(
1798                         self.tcx.sess,
1799                         obligation.cause.span,
1800                         E0284,
1801                         "type annotations needed: cannot resolve `{}`",
1802                         predicate,
1803                     );
1804                     self.note_obligation_cause(&mut err, obligation);
1805                     err.emit();
1806                 }
1807             }
1808         }
1809     }
1810
1811     /// Returns `true` if the trait predicate may apply for *some* assignment
1812     /// to the type parameters.
1813     fn predicate_can_apply(
1814         &self,
1815         param_env: ty::ParamEnv<'tcx>,
1816         pred: ty::PolyTraitRef<'tcx>,
1817     ) -> bool {
1818         struct ParamToVarFolder<'a, 'tcx> {
1819             infcx: &'a InferCtxt<'a, 'tcx>,
1820             var_map: FxHashMap<Ty<'tcx>, Ty<'tcx>>,
1821         }
1822
1823         impl<'a, 'tcx> TypeFolder<'tcx> for ParamToVarFolder<'a, 'tcx> {
1824             fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { self.infcx.tcx }
1825
1826             fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1827                 if let ty::Param(ty::ParamTy {name, .. }) = ty.kind {
1828                     let infcx = self.infcx;
1829                     self.var_map.entry(ty).or_insert_with(||
1830                         infcx.next_ty_var(
1831                             TypeVariableOrigin {
1832                                 kind: TypeVariableOriginKind::TypeParameterDefinition(name),
1833                                 span: DUMMY_SP,
1834                             }
1835                         )
1836                     )
1837                 } else {
1838                     ty.super_fold_with(self)
1839                 }
1840             }
1841         }
1842
1843         self.probe(|_| {
1844             let mut selcx = SelectionContext::new(self);
1845
1846             let cleaned_pred = pred.fold_with(&mut ParamToVarFolder {
1847                 infcx: self,
1848                 var_map: Default::default()
1849             });
1850
1851             let cleaned_pred = super::project::normalize(
1852                 &mut selcx,
1853                 param_env,
1854                 ObligationCause::dummy(),
1855                 &cleaned_pred
1856             ).value;
1857
1858             let obligation = Obligation::new(
1859                 ObligationCause::dummy(),
1860                 param_env,
1861                 cleaned_pred.to_predicate()
1862             );
1863
1864             self.predicate_may_hold(&obligation)
1865         })
1866     }
1867
1868     fn note_obligation_cause(
1869         &self,
1870         err: &mut DiagnosticBuilder<'_>,
1871         obligation: &PredicateObligation<'tcx>,
1872     ) {
1873         // First, attempt to add note to this error with an async-await-specific
1874         // message, and fall back to regular note otherwise.
1875         if !self.note_obligation_cause_for_async_await(err, obligation) {
1876             self.note_obligation_cause_code(err, &obligation.predicate, &obligation.cause.code,
1877                                             &mut vec![]);
1878         }
1879     }
1880
1881     /// Adds an async-await specific note to the diagnostic:
1882     ///
1883     /// ```ignore (diagnostic)
1884     /// note: future does not implement `std::marker::Send` because this value is used across an
1885     ///       await
1886     ///   --> $DIR/issue-64130-non-send-future-diags.rs:15:5
1887     ///    |
1888     /// LL |     let g = x.lock().unwrap();
1889     ///    |         - has type `std::sync::MutexGuard<'_, u32>`
1890     /// LL |     baz().await;
1891     ///    |     ^^^^^^^^^^^ await occurs here, with `g` maybe used later
1892     /// LL | }
1893     ///    | - `g` is later dropped here
1894     /// ```
1895     ///
1896     /// Returns `true` if an async-await specific note was added to the diagnostic.
1897     fn note_obligation_cause_for_async_await(
1898         &self,
1899         err: &mut DiagnosticBuilder<'_>,
1900         obligation: &PredicateObligation<'tcx>,
1901     ) -> bool {
1902         debug!("note_obligation_cause_for_async_await: obligation.predicate={:?} \
1903                 obligation.cause.span={:?}", obligation.predicate, obligation.cause.span);
1904         let source_map = self.tcx.sess.source_map();
1905
1906         // Look into the obligation predicate to determine the type in the generator which meant
1907         // that the predicate was not satisifed.
1908         let (trait_ref, target_ty) = match obligation.predicate {
1909             ty::Predicate::Trait(trait_predicate) =>
1910                 (trait_predicate.skip_binder().trait_ref, trait_predicate.skip_binder().self_ty()),
1911             _ => return false,
1912         };
1913         debug!("note_obligation_cause_for_async_await: target_ty={:?}", target_ty);
1914
1915         // Attempt to detect an async-await error by looking at the obligation causes, looking
1916         // for only generators, generator witnesses, opaque types or `std::future::GenFuture` to
1917         // be present.
1918         //
1919         // When a future does not implement a trait because of a captured type in one of the
1920         // generators somewhere in the call stack, then the result is a chain of obligations.
1921         // Given a `async fn` A that calls a `async fn` B which captures a non-send type and that
1922         // future is passed as an argument to a function C which requires a `Send` type, then the
1923         // chain looks something like this:
1924         //
1925         // - `BuiltinDerivedObligation` with a generator witness (B)
1926         // - `BuiltinDerivedObligation` with a generator (B)
1927         // - `BuiltinDerivedObligation` with `std::future::GenFuture` (B)
1928         // - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
1929         // - `BuiltinDerivedObligation` with `impl std::future::Future` (B)
1930         // - `BuiltinDerivedObligation` with a generator witness (A)
1931         // - `BuiltinDerivedObligation` with a generator (A)
1932         // - `BuiltinDerivedObligation` with `std::future::GenFuture` (A)
1933         // - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
1934         // - `BuiltinDerivedObligation` with `impl std::future::Future` (A)
1935         // - `BindingObligation` with `impl_send (Send requirement)
1936         //
1937         // The first obligations in the chain can be used to get the details of the type that is
1938         // captured but the entire chain must be inspected to detect this case.
1939         let mut generator = None;
1940         let mut next_code = Some(&obligation.cause.code);
1941         while let Some(code) = next_code {
1942             debug!("note_obligation_cause_for_async_await: code={:?}", code);
1943             match code {
1944                 ObligationCauseCode::BuiltinDerivedObligation(derived_obligation) |
1945                 ObligationCauseCode::ImplDerivedObligation(derived_obligation) => {
1946                     debug!("note_obligation_cause_for_async_await: self_ty.kind={:?}",
1947                            derived_obligation.parent_trait_ref.self_ty().kind);
1948                     match derived_obligation.parent_trait_ref.self_ty().kind {
1949                         ty::Adt(ty::AdtDef { did, .. }, ..) if
1950                             self.tcx.is_diagnostic_item(sym::gen_future, *did) => {},
1951                         ty::Generator(did, ..) => generator = generator.or(Some(did)),
1952                         ty::GeneratorWitness(_) | ty::Opaque(..) => {},
1953                         _ => return false,
1954                     }
1955
1956                     next_code = Some(derived_obligation.parent_code.as_ref());
1957                 },
1958                 ObligationCauseCode::ItemObligation(_) | ObligationCauseCode::BindingObligation(..)
1959                     if generator.is_some() => break,
1960                 _ => return false,
1961             }
1962         }
1963
1964         let generator_did = generator.expect("can only reach this if there was a generator");
1965
1966         // Only continue to add a note if the generator is from an `async` function.
1967         let parent_node = self.tcx.parent(generator_did)
1968             .and_then(|parent_did| self.tcx.hir().get_if_local(parent_did));
1969         debug!("note_obligation_cause_for_async_await: parent_node={:?}", parent_node);
1970         if let Some(hir::Node::Item(hir::Item {
1971             kind: hir::ItemKind::Fn(_, header, _, _),
1972             ..
1973         })) = parent_node {
1974             debug!("note_obligation_cause_for_async_await: header={:?}", header);
1975             if header.asyncness != hir::IsAsync::Async {
1976                 return false;
1977             }
1978         }
1979
1980         let span = self.tcx.def_span(generator_did);
1981         let tables = self.tcx.typeck_tables_of(generator_did);
1982         debug!("note_obligation_cause_for_async_await: generator_did={:?} span={:?} ",
1983                generator_did, span);
1984
1985         // Look for a type inside the generator interior that matches the target type to get
1986         // a span.
1987         let target_span = tables.generator_interior_types.iter()
1988             .find(|ty::GeneratorInteriorTypeCause { ty, .. }| ty::TyS::same_type(*ty, target_ty))
1989             .map(|ty::GeneratorInteriorTypeCause { span, scope_span, .. }|
1990                  (span, source_map.span_to_snippet(*span), scope_span));
1991         if let Some((target_span, Ok(snippet), scope_span)) = target_span {
1992             // Look at the last interior type to get a span for the `.await`.
1993             let await_span = tables.generator_interior_types.iter().map(|i| i.span).last().unwrap();
1994             let mut span = MultiSpan::from_span(await_span);
1995             span.push_span_label(
1996                 await_span, format!("await occurs here, with `{}` maybe used later", snippet));
1997
1998             span.push_span_label(*target_span, format!("has type `{}`", target_ty));
1999
2000             // If available, use the scope span to annotate the drop location.
2001             if let Some(scope_span) = scope_span {
2002                 span.push_span_label(
2003                     source_map.end_point(*scope_span),
2004                     format!("`{}` is later dropped here", snippet),
2005                 );
2006             }
2007
2008             err.span_note(span, &format!(
2009                 "future does not implement `{}` as this value is used across an await",
2010                 trait_ref,
2011             ));
2012
2013             // Add a note for the item obligation that remains - normally a note pointing to the
2014             // bound that introduced the obligation (e.g. `T: Send`).
2015             debug!("note_obligation_cause_for_async_await: next_code={:?}", next_code);
2016             self.note_obligation_cause_code(
2017                 err,
2018                 &obligation.predicate,
2019                 next_code.unwrap(),
2020                 &mut Vec::new(),
2021             );
2022
2023             true
2024         } else {
2025             false
2026         }
2027     }
2028
2029     fn note_obligation_cause_code<T>(&self,
2030                                      err: &mut DiagnosticBuilder<'_>,
2031                                      predicate: &T,
2032                                      cause_code: &ObligationCauseCode<'tcx>,
2033                                      obligated_types: &mut Vec<&ty::TyS<'tcx>>)
2034         where T: fmt::Display
2035     {
2036         let tcx = self.tcx;
2037         match *cause_code {
2038             ObligationCauseCode::ExprAssignable |
2039             ObligationCauseCode::MatchExpressionArm { .. } |
2040             ObligationCauseCode::MatchExpressionArmPattern { .. } |
2041             ObligationCauseCode::IfExpression { .. } |
2042             ObligationCauseCode::IfExpressionWithNoElse |
2043             ObligationCauseCode::MainFunctionType |
2044             ObligationCauseCode::StartFunctionType |
2045             ObligationCauseCode::IntrinsicType |
2046             ObligationCauseCode::MethodReceiver |
2047             ObligationCauseCode::ReturnNoExpression |
2048             ObligationCauseCode::MiscObligation => {}
2049             ObligationCauseCode::SliceOrArrayElem => {
2050                 err.note("slice and array elements must have `Sized` type");
2051             }
2052             ObligationCauseCode::TupleElem => {
2053                 err.note("only the last element of a tuple may have a dynamically sized type");
2054             }
2055             ObligationCauseCode::ProjectionWf(data) => {
2056                 err.note(&format!(
2057                     "required so that the projection `{}` is well-formed",
2058                     data,
2059                 ));
2060             }
2061             ObligationCauseCode::ReferenceOutlivesReferent(ref_ty) => {
2062                 err.note(&format!(
2063                     "required so that reference `{}` does not outlive its referent",
2064                     ref_ty,
2065                 ));
2066             }
2067             ObligationCauseCode::ObjectTypeBound(object_ty, region) => {
2068                 err.note(&format!(
2069                     "required so that the lifetime bound of `{}` for `{}` is satisfied",
2070                     region,
2071                     object_ty,
2072                 ));
2073             }
2074             ObligationCauseCode::ItemObligation(item_def_id) => {
2075                 let item_name = tcx.def_path_str(item_def_id);
2076                 let msg = format!("required by `{}`", item_name);
2077
2078                 if let Some(sp) = tcx.hir().span_if_local(item_def_id) {
2079                     let sp = tcx.sess.source_map().def_span(sp);
2080                     err.span_label(sp, &msg);
2081                 } else {
2082                     err.note(&msg);
2083                 }
2084             }
2085             ObligationCauseCode::BindingObligation(item_def_id, span) => {
2086                 let item_name = tcx.def_path_str(item_def_id);
2087                 let msg = format!("required by this bound in `{}`", item_name);
2088                 if let Some(ident) = tcx.opt_item_name(item_def_id) {
2089                     err.span_label(ident.span, "");
2090                 }
2091                 if span != DUMMY_SP {
2092                     err.span_label(span, &msg);
2093                 } else {
2094                     err.note(&msg);
2095                 }
2096             }
2097             ObligationCauseCode::ObjectCastObligation(object_ty) => {
2098                 err.note(&format!("required for the cast to the object type `{}`",
2099                                   self.ty_to_string(object_ty)));
2100             }
2101             ObligationCauseCode::RepeatVec => {
2102                 err.note("the `Copy` trait is required because the \
2103                           repeated element will be copied");
2104             }
2105             ObligationCauseCode::VariableType(_) => {
2106                 err.note("all local variables must have a statically known size");
2107                 if !self.tcx.features().unsized_locals {
2108                     err.help("unsized locals are gated as an unstable feature");
2109                 }
2110             }
2111             ObligationCauseCode::SizedArgumentType => {
2112                 err.note("all function arguments must have a statically known size");
2113                 if !self.tcx.features().unsized_locals {
2114                     err.help("unsized locals are gated as an unstable feature");
2115                 }
2116             }
2117             ObligationCauseCode::SizedReturnType => {
2118                 err.note("the return type of a function must have a \
2119                           statically known size");
2120             }
2121             ObligationCauseCode::SizedYieldType => {
2122                 err.note("the yield type of a generator must have a \
2123                           statically known size");
2124             }
2125             ObligationCauseCode::AssignmentLhsSized => {
2126                 err.note("the left-hand-side of an assignment must have a statically known size");
2127             }
2128             ObligationCauseCode::TupleInitializerSized => {
2129                 err.note("tuples must have a statically known size to be initialized");
2130             }
2131             ObligationCauseCode::StructInitializerSized => {
2132                 err.note("structs must have a statically known size to be initialized");
2133             }
2134             ObligationCauseCode::FieldSized { adt_kind: ref item, last } => {
2135                 match *item {
2136                     AdtKind::Struct => {
2137                         if last {
2138                             err.note("the last field of a packed struct may only have a \
2139                                       dynamically sized type if it does not need drop to be run");
2140                         } else {
2141                             err.note("only the last field of a struct may have a dynamically \
2142                                       sized type");
2143                         }
2144                     }
2145                     AdtKind::Union => {
2146                         err.note("no field of a union may have a dynamically sized type");
2147                     }
2148                     AdtKind::Enum => {
2149                         err.note("no field of an enum variant may have a dynamically sized type");
2150                     }
2151                 }
2152             }
2153             ObligationCauseCode::ConstSized => {
2154                 err.note("constant expressions must have a statically known size");
2155             }
2156             ObligationCauseCode::SharedStatic => {
2157                 err.note("shared static variables must have a type that implements `Sync`");
2158             }
2159             ObligationCauseCode::BuiltinDerivedObligation(ref data) => {
2160                 let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
2161                 let ty = parent_trait_ref.skip_binder().self_ty();
2162                 err.note(&format!("required because it appears within the type `{}`", ty));
2163                 obligated_types.push(ty);
2164
2165                 let parent_predicate = parent_trait_ref.to_predicate();
2166                 if !self.is_recursive_obligation(obligated_types, &data.parent_code) {
2167                     self.note_obligation_cause_code(err,
2168                                                     &parent_predicate,
2169                                                     &data.parent_code,
2170                                                     obligated_types);
2171                 }
2172             }
2173             ObligationCauseCode::ImplDerivedObligation(ref data) => {
2174                 let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
2175                 err.note(
2176                     &format!("required because of the requirements on the impl of `{}` for `{}`",
2177                              parent_trait_ref,
2178                              parent_trait_ref.skip_binder().self_ty()));
2179                 let parent_predicate = parent_trait_ref.to_predicate();
2180                 self.note_obligation_cause_code(err,
2181                                                 &parent_predicate,
2182                                                 &data.parent_code,
2183                                                 obligated_types);
2184             }
2185             ObligationCauseCode::CompareImplMethodObligation { .. } => {
2186                 err.note(
2187                     &format!("the requirement `{}` appears on the impl method \
2188                               but not on the corresponding trait method",
2189                              predicate));
2190             }
2191             ObligationCauseCode::ReturnType |
2192             ObligationCauseCode::ReturnValue(_) |
2193             ObligationCauseCode::BlockTailExpression(_) => (),
2194             ObligationCauseCode::TrivialBound => {
2195                 err.help("see issue #48214");
2196                 if tcx.sess.opts.unstable_features.is_nightly_build() {
2197                     err.help("add `#![feature(trivial_bounds)]` to the \
2198                               crate attributes to enable",
2199                     );
2200                 }
2201             }
2202         }
2203     }
2204
2205     fn suggest_new_overflow_limit(&self, err: &mut DiagnosticBuilder<'_>) {
2206         let current_limit = self.tcx.sess.recursion_limit.get();
2207         let suggested_limit = current_limit * 2;
2208         err.help(&format!("consider adding a `#![recursion_limit=\"{}\"]` attribute to your crate",
2209                           suggested_limit));
2210     }
2211
2212     fn is_recursive_obligation(&self,
2213                                obligated_types: &mut Vec<&ty::TyS<'tcx>>,
2214                                cause_code: &ObligationCauseCode<'tcx>) -> bool {
2215         if let ObligationCauseCode::BuiltinDerivedObligation(ref data) = cause_code {
2216             let parent_trait_ref = self.resolve_vars_if_possible(&data.parent_trait_ref);
2217
2218             if obligated_types.iter().any(|ot| ot == &parent_trait_ref.skip_binder().self_ty()) {
2219                 return true;
2220             }
2221         }
2222         false
2223     }
2224 }
2225
2226 /// Summarizes information
2227 #[derive(Clone)]
2228 pub enum ArgKind {
2229     /// An argument of non-tuple type. Parameters are (name, ty)
2230     Arg(String, String),
2231
2232     /// An argument of tuple type. For a "found" argument, the span is
2233     /// the locationo in the source of the pattern. For a "expected"
2234     /// argument, it will be None. The vector is a list of (name, ty)
2235     /// strings for the components of the tuple.
2236     Tuple(Option<Span>, Vec<(String, String)>),
2237 }
2238
2239 impl ArgKind {
2240     fn empty() -> ArgKind {
2241         ArgKind::Arg("_".to_owned(), "_".to_owned())
2242     }
2243
2244     /// Creates an `ArgKind` from the expected type of an
2245     /// argument. It has no name (`_`) and an optional source span.
2246     pub fn from_expected_ty(t: Ty<'_>, span: Option<Span>) -> ArgKind {
2247         match t.kind {
2248             ty::Tuple(ref tys) => ArgKind::Tuple(
2249                 span,
2250                 tys.iter()
2251                    .map(|ty| ("_".to_owned(), ty.to_string()))
2252                    .collect::<Vec<_>>()
2253             ),
2254             _ => ArgKind::Arg("_".to_owned(), t.to_string()),
2255         }
2256     }
2257 }