]> git.lizzy.rs Git - rust.git/blob - src/librustc/traits/auto_trait.rs
Rollup merge of #66654 - ecstatic-morse:check-consts-ref, r=eddyb,matthewjasper
[rust.git] / src / librustc / traits / auto_trait.rs
1 //! Support code for rustdoc and external tools.
2 //! You really don't want to be using this unless you need to.
3
4 use super::*;
5
6 use crate::infer::region_constraints::{Constraint, RegionConstraintData};
7 use crate::infer::InferCtxt;
8 use crate::ty::fold::TypeFolder;
9 use crate::ty::{Region, RegionVid};
10
11 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
12
13 use std::collections::hash_map::Entry;
14 use std::collections::VecDeque;
15
16 // FIXME(twk): this is obviously not nice to duplicate like that
17 #[derive(Eq, PartialEq, Hash, Copy, Clone, Debug)]
18 pub enum RegionTarget<'tcx> {
19     Region(Region<'tcx>),
20     RegionVid(RegionVid),
21 }
22
23 #[derive(Default, Debug, Clone)]
24 pub struct RegionDeps<'tcx> {
25     larger: FxHashSet<RegionTarget<'tcx>>,
26     smaller: FxHashSet<RegionTarget<'tcx>>,
27 }
28
29 pub enum AutoTraitResult<A> {
30     ExplicitImpl,
31     PositiveImpl(A),
32     NegativeImpl,
33 }
34
35 impl<A> AutoTraitResult<A> {
36     fn is_auto(&self) -> bool {
37         match *self {
38             AutoTraitResult::PositiveImpl(_) | AutoTraitResult::NegativeImpl => true,
39             _ => false,
40         }
41     }
42 }
43
44 pub struct AutoTraitInfo<'cx> {
45     pub full_user_env: ty::ParamEnv<'cx>,
46     pub region_data: RegionConstraintData<'cx>,
47     pub vid_to_region: FxHashMap<ty::RegionVid, ty::Region<'cx>>,
48 }
49
50 pub struct AutoTraitFinder<'tcx> {
51     tcx: TyCtxt<'tcx>,
52 }
53
54 impl<'tcx> AutoTraitFinder<'tcx> {
55     pub fn new(tcx: TyCtxt<'tcx>) -> Self {
56         AutoTraitFinder { tcx }
57     }
58
59     /// Makes a best effort to determine whether and under which conditions an auto trait is
60     /// implemented for a type. For example, if you have
61     ///
62     /// ```
63     /// struct Foo<T> { data: Box<T> }
64     /// ```
65     ///
66     /// then this might return that Foo<T>: Send if T: Send (encoded in the AutoTraitResult type).
67     /// The analysis attempts to account for custom impls as well as other complex cases. This
68     /// result is intended for use by rustdoc and other such consumers.
69     ///
70     /// (Note that due to the coinductive nature of Send, the full and correct result is actually
71     /// quite simple to generate. That is, when a type has no custom impl, it is Send iff its field
72     /// types are all Send. So, in our example, we might have that Foo<T>: Send if Box<T>: Send.
73     /// But this is often not the best way to present to the user.)
74     ///
75     /// Warning: The API should be considered highly unstable, and it may be refactored or removed
76     /// in the future.
77     pub fn find_auto_trait_generics<A>(
78         &self,
79         ty: Ty<'tcx>,
80         orig_env: ty::ParamEnv<'tcx>,
81         trait_did: DefId,
82         auto_trait_callback: impl Fn(&InferCtxt<'_, 'tcx>, AutoTraitInfo<'tcx>) -> A,
83     ) -> AutoTraitResult<A> {
84         let tcx = self.tcx;
85
86         let trait_ref = ty::TraitRef {
87             def_id: trait_did,
88             substs: tcx.mk_substs_trait(ty, &[]),
89         };
90
91         let trait_pred = ty::Binder::bind(trait_ref);
92
93         let bail_out = tcx.infer_ctxt().enter(|infcx| {
94             let mut selcx = SelectionContext::with_negative(&infcx, true);
95             let result = selcx.select(&Obligation::new(
96                 ObligationCause::dummy(),
97                 orig_env,
98                 trait_pred.to_poly_trait_predicate(),
99             ));
100
101             match result {
102                 Ok(Some(Vtable::VtableImpl(_))) => {
103                     debug!(
104                         "find_auto_trait_generics({:?}): \
105                          manual impl found, bailing out",
106                         trait_ref
107                     );
108                     true
109                 }
110                 _ => false
111             }
112         });
113
114         // If an explicit impl exists, it always takes priority over an auto impl
115         if bail_out {
116             return AutoTraitResult::ExplicitImpl;
117         }
118
119         return tcx.infer_ctxt().enter(|mut infcx| {
120             let mut fresh_preds = FxHashSet::default();
121
122             // Due to the way projections are handled by SelectionContext, we need to run
123             // evaluate_predicates twice: once on the original param env, and once on the result of
124             // the first evaluate_predicates call.
125             //
126             // The problem is this: most of rustc, including SelectionContext and traits::project,
127             // are designed to work with a concrete usage of a type (e.g., Vec<u8>
128             // fn<T>() { Vec<T> }. This information will generally never change - given
129             // the 'T' in fn<T>() { ... }, we'll never know anything else about 'T'.
130             // If we're unable to prove that 'T' implements a particular trait, we're done -
131             // there's nothing left to do but error out.
132             //
133             // However, synthesizing an auto trait impl works differently. Here, we start out with
134             // a set of initial conditions - the ParamEnv of the struct/enum/union we're dealing
135             // with - and progressively discover the conditions we need to fulfill for it to
136             // implement a certain auto trait. This ends up breaking two assumptions made by trait
137             // selection and projection:
138             //
139             // * We can always cache the result of a particular trait selection for the lifetime of
140             // an InfCtxt
141             // * Given a projection bound such as '<T as SomeTrait>::SomeItem = K', if 'T:
142             // SomeTrait' doesn't hold, then we don't need to care about the 'SomeItem = K'
143             //
144             // We fix the first assumption by manually clearing out all of the InferCtxt's caches
145             // in between calls to SelectionContext.select. This allows us to keep all of the
146             // intermediate types we create bound to the 'tcx lifetime, rather than needing to lift
147             // them between calls.
148             //
149             // We fix the second assumption by reprocessing the result of our first call to
150             // evaluate_predicates. Using the example of '<T as SomeTrait>::SomeItem = K', our first
151             // pass will pick up 'T: SomeTrait', but not 'SomeItem = K'. On our second pass,
152             // traits::project will see that 'T: SomeTrait' is in our ParamEnv, allowing
153             // SelectionContext to return it back to us.
154
155             let (new_env, user_env) = match self.evaluate_predicates(
156                 &mut infcx,
157                 trait_did,
158                 ty,
159                 orig_env,
160                 orig_env,
161                 &mut fresh_preds,
162                 false,
163             ) {
164                 Some(e) => e,
165                 None => return AutoTraitResult::NegativeImpl,
166             };
167
168             let (full_env, full_user_env) = self.evaluate_predicates(
169                 &mut infcx,
170                 trait_did,
171                 ty,
172                 new_env,
173                 user_env,
174                 &mut fresh_preds,
175                 true,
176             ).unwrap_or_else(|| {
177                 panic!(
178                     "Failed to fully process: {:?} {:?} {:?}",
179                     ty, trait_did, orig_env
180                 )
181             });
182
183             debug!(
184                 "find_auto_trait_generics({:?}): fulfilling \
185                  with {:?}",
186                 trait_ref, full_env
187             );
188             infcx.clear_caches();
189
190             // At this point, we already have all of the bounds we need. FulfillmentContext is used
191             // to store all of the necessary region/lifetime bounds in the InferContext, as well as
192             // an additional sanity check.
193             let mut fulfill = FulfillmentContext::new();
194             fulfill.register_bound(
195                 &infcx,
196                 full_env,
197                 ty,
198                 trait_did,
199                 ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID),
200             );
201             fulfill.select_all_or_error(&infcx).unwrap_or_else(|e| {
202                 panic!(
203                     "Unable to fulfill trait {:?} for '{:?}': {:?}",
204                     trait_did, ty, e
205                 )
206             });
207
208             let body_id_map: FxHashMap<_, _> = infcx
209                 .region_obligations
210                 .borrow()
211                 .iter()
212                 .map(|&(id, _)| (id, vec![]))
213                 .collect();
214
215             infcx.process_registered_region_obligations(&body_id_map, None, full_env);
216
217             let region_data = infcx
218                 .borrow_region_constraints()
219                 .region_constraint_data()
220                 .clone();
221
222             let vid_to_region = self.map_vid_to_region(&region_data);
223
224             let info = AutoTraitInfo {
225                 full_user_env,
226                 region_data,
227                 vid_to_region,
228             };
229
230             return AutoTraitResult::PositiveImpl(auto_trait_callback(&infcx, info));
231         });
232     }
233 }
234
235 impl AutoTraitFinder<'tcx> {
236     /// The core logic responsible for computing the bounds for our synthesized impl.
237     ///
238     /// To calculate the bounds, we call `SelectionContext.select` in a loop. Like
239     /// `FulfillmentContext`, we recursively select the nested obligations of predicates we
240     /// encounter. However, whenever we encounter an `UnimplementedError` involving a type
241     /// parameter, we add it to our `ParamEnv`. Since our goal is to determine when a particular
242     /// type implements an auto trait, Unimplemented errors tell us what conditions need to be met.
243     ///
244     /// This method ends up working somewhat similarly to `FulfillmentContext`, but with a few key
245     /// differences. `FulfillmentContext` works under the assumption that it's dealing with concrete
246     /// user code. According, it considers all possible ways that a `Predicate` could be met, which
247     /// isn't always what we want for a synthesized impl. For example, given the predicate `T:
248     /// Iterator`, `FulfillmentContext` can end up reporting an Unimplemented error for `T:
249     /// IntoIterator` -- since there's an implementation of `Iterator` where `T: IntoIterator`,
250     /// `FulfillmentContext` will drive `SelectionContext` to consider that impl before giving up.
251     /// If we were to rely on `FulfillmentContext`s decision, we might end up synthesizing an impl
252     /// like this:
253     ///
254     ///     impl<T> Send for Foo<T> where T: IntoIterator
255     ///
256     /// While it might be technically true that Foo implements Send where `T: IntoIterator`,
257     /// the bound is overly restrictive - it's really only necessary that `T: Iterator`.
258     ///
259     /// For this reason, `evaluate_predicates` handles predicates with type variables specially.
260     /// When we encounter an `Unimplemented` error for a bound such as `T: Iterator`, we immediately
261     /// add it to our `ParamEnv`, and add it to our stack for recursive evaluation. When we later
262     /// select it, we'll pick up any nested bounds, without ever inferring that `T: IntoIterator`
263     /// needs to hold.
264     ///
265     /// One additional consideration is supertrait bounds. Normally, a `ParamEnv` is only ever
266     /// constructed once for a given type. As part of the construction process, the `ParamEnv` will
267     /// have any supertrait bounds normalized -- e.g., if we have a type `struct Foo<T: Copy>`, the
268     /// `ParamEnv` will contain `T: Copy` and `T: Clone`, since `Copy: Clone`. When we construct our
269     /// own `ParamEnv`, we need to do this ourselves, through `traits::elaborate_predicates`, or
270     /// else `SelectionContext` will choke on the missing predicates. However, this should never
271     /// show up in the final synthesized generics: we don't want our generated docs page to contain
272     /// something like `T: Copy + Clone`, as that's redundant. Therefore, we keep track of a
273     /// separate `user_env`, which only holds the predicates that will actually be displayed to the
274     /// user.
275     fn evaluate_predicates(
276         &self,
277         infcx: &InferCtxt<'_, 'tcx>,
278         trait_did: DefId,
279         ty: Ty<'tcx>,
280         param_env: ty::ParamEnv<'tcx>,
281         user_env: ty::ParamEnv<'tcx>,
282         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
283         only_projections: bool,
284     ) -> Option<(ty::ParamEnv<'tcx>, ty::ParamEnv<'tcx>)> {
285         let tcx = infcx.tcx;
286
287         let mut select = SelectionContext::with_negative(&infcx, true);
288
289         let mut already_visited = FxHashSet::default();
290         let mut predicates = VecDeque::new();
291         predicates.push_back(ty::Binder::bind(ty::TraitPredicate {
292             trait_ref: ty::TraitRef {
293                 def_id: trait_did,
294                 substs: infcx.tcx.mk_substs_trait(ty, &[]),
295             },
296         }));
297
298         let mut computed_preds: FxHashSet<_> = param_env.caller_bounds.iter().cloned().collect();
299         let mut user_computed_preds: FxHashSet<_> =
300             user_env.caller_bounds.iter().cloned().collect();
301
302         let mut new_env = param_env;
303         let dummy_cause = ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID);
304
305         while let Some(pred) = predicates.pop_front() {
306             infcx.clear_caches();
307
308             if !already_visited.insert(pred) {
309                 continue;
310             }
311
312             // Call `infcx.resolve_vars_if_possible` to see if we can
313             // get rid of any inference variables.
314             let obligation = infcx.resolve_vars_if_possible(
315                 &Obligation::new(dummy_cause.clone(), new_env, pred)
316             );
317             let result = select.select(&obligation);
318
319             match &result {
320                 &Ok(Some(ref vtable)) => {
321                     // If we see an explicit negative impl (e.g., `impl !Send for MyStruct`),
322                     // we immediately bail out, since it's impossible for us to continue.
323                     match vtable {
324                         Vtable::VtableImpl(VtableImplData { impl_def_id, .. }) => {
325                             // Blame 'tidy' for the weird bracket placement.
326                             if infcx.tcx.impl_polarity(*impl_def_id) == ty::ImplPolarity::Negative
327                             {
328                                 debug!("evaluate_nested_obligations: found explicit negative impl\
329                                         {:?}, bailing out", impl_def_id);
330                                 return None;
331                             }
332                         },
333                         _ => {}
334                     }
335
336                     let obligations = vtable.clone().nested_obligations().into_iter();
337
338                     if !self.evaluate_nested_obligations(
339                         ty,
340                         obligations,
341                         &mut user_computed_preds,
342                         fresh_preds,
343                         &mut predicates,
344                         &mut select,
345                         only_projections,
346                     ) {
347                         return None;
348                     }
349                 }
350                 &Ok(None) => {}
351                 &Err(SelectionError::Unimplemented) => {
352                     if self.is_param_no_infer(pred.skip_binder().trait_ref.substs) {
353                         already_visited.remove(&pred);
354                         self.add_user_pred(
355                             &mut user_computed_preds,
356                             ty::Predicate::Trait(pred),
357                         );
358                         predicates.push_back(pred);
359                     } else {
360                         debug!(
361                             "evaluate_nested_obligations: `Unimplemented` found, bailing: \
362                              {:?} {:?} {:?}",
363                             ty,
364                             pred,
365                             pred.skip_binder().trait_ref.substs
366                         );
367                         return None;
368                     }
369                 }
370                 _ => panic!("Unexpected error for '{:?}': {:?}", ty, result),
371             };
372
373             computed_preds.extend(user_computed_preds.iter().cloned());
374             let normalized_preds =
375                 elaborate_predicates(tcx, computed_preds.iter().cloned().collect());
376             new_env = ty::ParamEnv::new(
377                 tcx.mk_predicates(normalized_preds),
378                 param_env.reveal,
379                 None
380             );
381         }
382
383         let final_user_env = ty::ParamEnv::new(
384             tcx.mk_predicates(user_computed_preds.into_iter()),
385             user_env.reveal,
386             None
387         );
388         debug!(
389             "evaluate_nested_obligations(ty={:?}, trait_did={:?}): succeeded with '{:?}' \
390              '{:?}'",
391             ty, trait_did, new_env, final_user_env
392         );
393
394         return Some((new_env, final_user_env));
395     }
396
397     /// This method is designed to work around the following issue:
398     /// When we compute auto trait bounds, we repeatedly call `SelectionContext.select`,
399     /// progressively building a `ParamEnv` based on the results we get.
400     /// However, our usage of `SelectionContext` differs from its normal use within the compiler,
401     /// in that we capture and re-reprocess predicates from `Unimplemented` errors.
402     ///
403     /// This can lead to a corner case when dealing with region parameters.
404     /// During our selection loop in `evaluate_predicates`, we might end up with
405     /// two trait predicates that differ only in their region parameters:
406     /// one containing a HRTB lifetime parameter, and one containing a 'normal'
407     /// lifetime parameter. For example:
408     ///
409     ///     T as MyTrait<'a>
410     ///     T as MyTrait<'static>
411     ///
412     /// If we put both of these predicates in our computed `ParamEnv`, we'll
413     /// confuse `SelectionContext`, since it will (correctly) view both as being applicable.
414     ///
415     /// To solve this, we pick the 'more strict' lifetime bound -- i.e., the HRTB
416     /// Our end goal is to generate a user-visible description of the conditions
417     /// under which a type implements an auto trait. A trait predicate involving
418     /// a HRTB means that the type needs to work with any choice of lifetime,
419     /// not just one specific lifetime (e.g., `'static`).
420     fn add_user_pred<'c>(
421         &self,
422         user_computed_preds: &mut FxHashSet<ty::Predicate<'c>>,
423         new_pred: ty::Predicate<'c>,
424     ) {
425         let mut should_add_new = true;
426         user_computed_preds.retain(|&old_pred| {
427             match (&new_pred, old_pred) {
428                 (&ty::Predicate::Trait(new_trait), ty::Predicate::Trait(old_trait)) => {
429                     if new_trait.def_id() == old_trait.def_id() {
430                         let new_substs = new_trait.skip_binder().trait_ref.substs;
431                         let old_substs = old_trait.skip_binder().trait_ref.substs;
432
433                         if !new_substs.types().eq(old_substs.types()) {
434                             // We can't compare lifetimes if the types are different,
435                             // so skip checking `old_pred`.
436                             return true;
437                         }
438
439                         for (new_region, old_region) in
440                             new_substs.regions().zip(old_substs.regions())
441                         {
442                             match (new_region, old_region) {
443                                 // If both predicates have an `ReLateBound` (a HRTB) in the
444                                 // same spot, we do nothing.
445                                 (
446                                     ty::RegionKind::ReLateBound(_, _),
447                                     ty::RegionKind::ReLateBound(_, _),
448                                 ) => {}
449
450                                 (ty::RegionKind::ReLateBound(_, _), _) |
451                                 (_, ty::RegionKind::ReVar(_)) => {
452                                     // One of these is true:
453                                     // The new predicate has a HRTB in a spot where the old
454                                     // predicate does not (if they both had a HRTB, the previous
455                                     // match arm would have executed). A HRBT is a 'stricter'
456                                     // bound than anything else, so we want to keep the newer
457                                     // predicate (with the HRBT) in place of the old predicate.
458                                     //
459                                     // OR
460                                     //
461                                     // The old predicate has a region variable where the new
462                                     // predicate has some other kind of region. An region
463                                     // variable isn't something we can actually display to a user,
464                                     // so we choose their new predicate (which doesn't have a region
465                                     // varaible).
466                                     //
467                                     // In both cases, we want to remove the old predicate,
468                                     // from `user_computed_preds`, and replace it with the new
469                                     // one. Having both the old and the new
470                                     // predicate in a `ParamEnv` would confuse `SelectionContext`.
471                                     //
472                                     // We're currently in the predicate passed to 'retain',
473                                     // so we return `false` to remove the old predicate from
474                                     // `user_computed_preds`.
475                                     return false;
476                                 }
477                                 (_, ty::RegionKind::ReLateBound(_, _)) |
478                                 (ty::RegionKind::ReVar(_), _) => {
479                                     // This is the opposite situation as the previous arm.
480                                     // One of these is true:
481                                     //
482                                     // The old predicate has a HRTB lifetime in a place where the
483                                     // new predicate does not.
484                                     //
485                                     // OR
486                                     //
487                                     // The new predicate has a region variable where the old
488                                     // predicate has some other type of region.
489                                     //
490                                     // We want to leave the old
491                                     // predicate in `user_computed_preds`, and skip adding
492                                     // new_pred to `user_computed_params`.
493                                     should_add_new = false
494                                 },
495                                 _ => {}
496                             }
497                         }
498                     }
499                 }
500                 _ => {}
501             }
502             return true;
503         });
504
505         if should_add_new {
506             user_computed_preds.insert(new_pred);
507         }
508     }
509
510     /// This is very similar to `handle_lifetimes`. However, instead of matching `ty::Region`s
511     /// to each other, we match `ty::RegionVid`s to `ty::Region`s.
512     fn map_vid_to_region<'cx>(
513         &self,
514         regions: &RegionConstraintData<'cx>,
515     ) -> FxHashMap<ty::RegionVid, ty::Region<'cx>> {
516         let mut vid_map: FxHashMap<RegionTarget<'cx>, RegionDeps<'cx>> = FxHashMap::default();
517         let mut finished_map = FxHashMap::default();
518
519         for constraint in regions.constraints.keys() {
520             match constraint {
521                 &Constraint::VarSubVar(r1, r2) => {
522                     {
523                         let deps1 = vid_map.entry(RegionTarget::RegionVid(r1)).or_default();
524                         deps1.larger.insert(RegionTarget::RegionVid(r2));
525                     }
526
527                     let deps2 = vid_map.entry(RegionTarget::RegionVid(r2)).or_default();
528                     deps2.smaller.insert(RegionTarget::RegionVid(r1));
529                 }
530                 &Constraint::RegSubVar(region, vid) => {
531                     {
532                         let deps1 = vid_map.entry(RegionTarget::Region(region)).or_default();
533                         deps1.larger.insert(RegionTarget::RegionVid(vid));
534                     }
535
536                     let deps2 = vid_map.entry(RegionTarget::RegionVid(vid)).or_default();
537                     deps2.smaller.insert(RegionTarget::Region(region));
538                 }
539                 &Constraint::VarSubReg(vid, region) => {
540                     finished_map.insert(vid, region);
541                 }
542                 &Constraint::RegSubReg(r1, r2) => {
543                     {
544                         let deps1 = vid_map.entry(RegionTarget::Region(r1)).or_default();
545                         deps1.larger.insert(RegionTarget::Region(r2));
546                     }
547
548                     let deps2 = vid_map.entry(RegionTarget::Region(r2)).or_default();
549                     deps2.smaller.insert(RegionTarget::Region(r1));
550                 }
551             }
552         }
553
554         while !vid_map.is_empty() {
555             let target = vid_map.keys().next().expect("Keys somehow empty").clone();
556             let deps = vid_map.remove(&target).expect("Entry somehow missing");
557
558             for smaller in deps.smaller.iter() {
559                 for larger in deps.larger.iter() {
560                     match (smaller, larger) {
561                         (&RegionTarget::Region(_), &RegionTarget::Region(_)) => {
562                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
563                                 let smaller_deps = v.into_mut();
564                                 smaller_deps.larger.insert(*larger);
565                                 smaller_deps.larger.remove(&target);
566                             }
567
568                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
569                                 let larger_deps = v.into_mut();
570                                 larger_deps.smaller.insert(*smaller);
571                                 larger_deps.smaller.remove(&target);
572                             }
573                         }
574                         (&RegionTarget::RegionVid(v1), &RegionTarget::Region(r1)) => {
575                             finished_map.insert(v1, r1);
576                         }
577                         (&RegionTarget::Region(_), &RegionTarget::RegionVid(_)) => {
578                             // Do nothing; we don't care about regions that are smaller than vids.
579                         }
580                         (&RegionTarget::RegionVid(_), &RegionTarget::RegionVid(_)) => {
581                             if let Entry::Occupied(v) = vid_map.entry(*smaller) {
582                                 let smaller_deps = v.into_mut();
583                                 smaller_deps.larger.insert(*larger);
584                                 smaller_deps.larger.remove(&target);
585                             }
586
587                             if let Entry::Occupied(v) = vid_map.entry(*larger) {
588                                 let larger_deps = v.into_mut();
589                                 larger_deps.smaller.insert(*smaller);
590                                 larger_deps.smaller.remove(&target);
591                             }
592                         }
593                     }
594                 }
595             }
596         }
597         finished_map
598     }
599
600     fn is_param_no_infer(&self, substs: SubstsRef<'_>) -> bool {
601         return self.is_of_param(substs.type_at(0)) &&
602             !substs.types().any(|t| t.has_infer_types());
603     }
604
605     pub fn is_of_param(&self, ty: Ty<'_>) -> bool {
606         return match ty.kind {
607             ty::Param(_) => true,
608             ty::Projection(p) => self.is_of_param(p.self_ty()),
609             _ => false,
610         };
611     }
612
613     fn is_self_referential_projection(&self, p: ty::PolyProjectionPredicate<'_>) -> bool {
614         match p.ty().skip_binder().kind {
615             ty::Projection(proj) if proj == p.skip_binder().projection_ty => {
616                 true
617             },
618             _ => false
619         }
620     }
621
622     fn evaluate_nested_obligations(
623         &self,
624         ty: Ty<'_>,
625         nested: impl Iterator<Item = Obligation<'tcx, ty::Predicate<'tcx>>>,
626         computed_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
627         fresh_preds: &mut FxHashSet<ty::Predicate<'tcx>>,
628         predicates: &mut VecDeque<ty::PolyTraitPredicate<'tcx>>,
629         select: &mut SelectionContext<'_, 'tcx>,
630         only_projections: bool,
631     ) -> bool {
632         let dummy_cause = ObligationCause::misc(DUMMY_SP, hir::DUMMY_HIR_ID);
633
634         for (obligation, mut predicate) in nested
635             .map(|o| (o.clone(), o.predicate))
636         {
637             let is_new_pred =
638                 fresh_preds.insert(self.clean_pred(select.infcx(), predicate));
639
640             // Resolve any inference variables that we can, to help selection succeed
641             predicate = select.infcx().resolve_vars_if_possible(&predicate);
642
643             // We only add a predicate as a user-displayable bound if
644             // it involves a generic parameter, and doesn't contain
645             // any inference variables.
646             //
647             // Displaying a bound involving a concrete type (instead of a generic
648             // parameter) would be pointless, since it's always true
649             // (e.g. u8: Copy)
650             // Displaying an inference variable is impossible, since they're
651             // an internal compiler detail without a defined visual representation
652             //
653             // We check this by calling is_of_param on the relevant types
654             // from the various possible predicates
655             match &predicate {
656                 &ty::Predicate::Trait(p) => {
657                     if self.is_param_no_infer(p.skip_binder().trait_ref.substs)
658                         && !only_projections
659                         && is_new_pred {
660
661                         self.add_user_pred(computed_preds, predicate);
662                     }
663                     predicates.push_back(p);
664                 }
665                 &ty::Predicate::Projection(p) => {
666                     debug!("evaluate_nested_obligations: examining projection predicate {:?}",
667                            predicate);
668
669                     // As described above, we only want to display
670                     // bounds which include a generic parameter but don't include
671                     // an inference variable.
672                     // Additionally, we check if we've seen this predicate before,
673                     // to avoid rendering duplicate bounds to the user.
674                     if self.is_param_no_infer(p.skip_binder().projection_ty.substs)
675                         && !p.ty().skip_binder().has_infer_types()
676                         && is_new_pred {
677                             debug!("evaluate_nested_obligations: adding projection predicate\
678                             to computed_preds: {:?}", predicate);
679
680                             // Under unusual circumstances, we can end up with a self-refeential
681                             // projection predicate. For example:
682                             // <T as MyType>::Value == <T as MyType>::Value
683                             // Not only is displaying this to the user pointless,
684                             // having it in the ParamEnv will cause an issue if we try to call
685                             // poly_project_and_unify_type on the predicate, since this kind of
686                             // predicate will normally never end up in a ParamEnv.
687                             //
688                             // For these reasons, we ignore these weird predicates,
689                             // ensuring that we're able to properly synthesize an auto trait impl
690                             if self.is_self_referential_projection(p) {
691                                 debug!("evaluate_nested_obligations: encountered a projection
692                                  predicate equating a type with itself! Skipping");
693
694                             } else {
695                                 self.add_user_pred(computed_preds, predicate);
696                             }
697                     }
698
699                     // There are three possible cases when we project a predicate:
700                     //
701                     // 1. We encounter an error. This means that it's impossible for
702                     // our current type to implement the auto trait - there's bound
703                     // that we could add to our ParamEnv that would 'fix' this kind
704                     // of error, as it's not caused by an unimplemented type.
705                     //
706                     // 2. We successfully project the predicate (Ok(Some(_))), generating
707                     //  some subobligations. We then process these subobligations
708                     //  like any other generated sub-obligations.
709                     //
710                     // 3. We receieve an 'ambiguous' result (Ok(None))
711                     // If we were actually trying to compile a crate,
712                     // we would need to re-process this obligation later.
713                     // However, all we care about is finding out what bounds
714                     // are needed for our type to implement a particular auto trait.
715                     // We've already added this obligation to our computed ParamEnv
716                     // above (if it was necessary). Therefore, we don't need
717                     // to do any further processing of the obligation.
718                     //
719                     // Note that we *must* try to project *all* projection predicates
720                     // we encounter, even ones without inference variable.
721                     // This ensures that we detect any projection errors,
722                     // which indicate that our type can *never* implement the given
723                     // auto trait. In that case, we will generate an explicit negative
724                     // impl (e.g. 'impl !Send for MyType'). However, we don't
725                     // try to process any of the generated subobligations -
726                     // they contain no new information, since we already know
727                     // that our type implements the projected-through trait,
728                     // and can lead to weird region issues.
729                     //
730                     // Normally, we'll generate a negative impl as a result of encountering
731                     // a type with an explicit negative impl of an auto trait
732                     // (for example, raw pointers have !Send and !Sync impls)
733                     // However, through some **interesting** manipulations of the type
734                     // system, it's actually possible to write a type that never
735                     // implements an auto trait due to a projection error, not a normal
736                     // negative impl error. To properly handle this case, we need
737                     // to ensure that we catch any potential projection errors,
738                     // and turn them into an explicit negative impl for our type.
739                     debug!("Projecting and unifying projection predicate {:?}",
740                            predicate);
741
742                     match poly_project_and_unify_type(select, &obligation.with(p)) {
743                         Err(e) => {
744                             debug!(
745                                 "evaluate_nested_obligations: Unable to unify predicate \
746                                  '{:?}' '{:?}', bailing out",
747                                 ty, e
748                             );
749                             return false;
750                         }
751                         Ok(Some(v)) => {
752                             // We only care about sub-obligations
753                             // when we started out trying to unify
754                             // some inference variables. See the comment above
755                             // for more infomration
756                             if p.ty().skip_binder().has_infer_types() {
757                                 if !self.evaluate_nested_obligations(
758                                     ty,
759                                     v.clone().iter().cloned(),
760                                     computed_preds,
761                                     fresh_preds,
762                                     predicates,
763                                     select,
764                                     only_projections,
765                                 ) {
766                                     return false;
767                                 }
768                             }
769                         }
770                         Ok(None) => {
771                             // It's ok not to make progress when hvave no inference variables -
772                             // in that case, we were only performing unifcation to check if an
773                             // error occurred (which would indicate that it's impossible for our
774                             // type to implement the auto trait).
775                             // However, we should always make progress (either by generating
776                             // subobligations or getting an error) when we started off with
777                             // inference variables
778                             if p.ty().skip_binder().has_infer_types() {
779                                 panic!("Unexpected result when selecting {:?} {:?}", ty, obligation)
780                             }
781                         }
782                     }
783                 }
784                 &ty::Predicate::RegionOutlives(ref binder) => {
785                     if select
786                         .infcx()
787                         .region_outlives_predicate(&dummy_cause, binder)
788                         .is_err()
789                     {
790                         return false;
791                     }
792                 }
793                 &ty::Predicate::TypeOutlives(ref binder) => {
794                     match (
795                         binder.no_bound_vars(),
796                         binder.map_bound_ref(|pred| pred.0).no_bound_vars(),
797                     ) {
798                         (None, Some(t_a)) => {
799                             select.infcx().register_region_obligation_with_cause(
800                                 t_a,
801                                 select.infcx().tcx.lifetimes.re_static,
802                                 &dummy_cause,
803                             );
804                         }
805                         (Some(ty::OutlivesPredicate(t_a, r_b)), _) => {
806                             select.infcx().register_region_obligation_with_cause(
807                                 t_a,
808                                 r_b,
809                                 &dummy_cause,
810                             );
811                         }
812                         _ => {}
813                     };
814                 }
815                 _ => panic!("Unexpected predicate {:?} {:?}", ty, predicate),
816             };
817         }
818         return true;
819     }
820
821     pub fn clean_pred(
822         &self,
823         infcx: &InferCtxt<'_, 'tcx>,
824         p: ty::Predicate<'tcx>,
825     ) -> ty::Predicate<'tcx> {
826         infcx.freshen(p)
827     }
828 }
829
830 // Replaces all ReVars in a type with ty::Region's, using the provided map
831 pub struct RegionReplacer<'a, 'tcx> {
832     vid_to_region: &'a FxHashMap<ty::RegionVid, ty::Region<'tcx>>,
833     tcx: TyCtxt<'tcx>,
834 }
835
836 impl<'a, 'tcx> TypeFolder<'tcx> for RegionReplacer<'a, 'tcx> {
837     fn tcx<'b>(&'b self) -> TyCtxt<'tcx> {
838         self.tcx
839     }
840
841     fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> {
842         (match r {
843             &ty::ReVar(vid) => self.vid_to_region.get(&vid).cloned(),
844             _ => None,
845         }).unwrap_or_else(|| r.super_fold_with(self))
846     }
847 }