]> git.lizzy.rs Git - rust.git/blob - src/librustc/middle/typeck/astconv.rs
rollup merge of #17314 : eddyb/span-no-gc
[rust.git] / src / librustc / middle / typeck / astconv.rs
1 // Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 /*!
12  * Conversion from AST representation of types to the ty.rs
13  * representation.  The main routine here is `ast_ty_to_ty()`: each use
14  * is parameterized by an instance of `AstConv` and a `RegionScope`.
15  *
16  * The parameterization of `ast_ty_to_ty()` is because it behaves
17  * somewhat differently during the collect and check phases,
18  * particularly with respect to looking up the types of top-level
19  * items.  In the collect phase, the crate context is used as the
20  * `AstConv` instance; in this phase, the `get_item_ty()` function
21  * triggers a recursive call to `ty_of_item()`  (note that
22  * `ast_ty_to_ty()` will detect recursive types and report an error).
23  * In the check phase, when the FnCtxt is used as the `AstConv`,
24  * `get_item_ty()` just looks up the item type in `tcx.tcache`.
25  *
26  * The `RegionScope` trait controls what happens when the user does
27  * not specify a region in some location where a region is required
28  * (e.g., if the user writes `&Foo` as a type rather than `&'a Foo`).
29  * See the `rscope` module for more details.
30  *
31  * Unlike the `AstConv` trait, the region scope can change as we descend
32  * the type.  This is to accommodate the fact that (a) fn types are binding
33  * scopes and (b) the default region may change.  To understand case (a),
34  * consider something like:
35  *
36  *   type foo = { x: &a.int, y: |&a.int| }
37  *
38  * The type of `x` is an error because there is no region `a` in scope.
39  * In the type of `y`, however, region `a` is considered a bound region
40  * as it does not already appear in scope.
41  *
42  * Case (b) says that if you have a type:
43  *   type foo<'a> = ...;
44  *   type bar = fn(&foo, &a.foo)
45  * The fully expanded version of type bar is:
46  *   type bar = fn(&'foo &, &a.foo<'a>)
47  * Note that the self region for the `foo` defaulted to `&` in the first
48  * case but `&a` in the second.  Basically, defaults that appear inside
49  * an rptr (`&r.T`) use the region `r` that appears in the rptr.
50  */
51
52 use middle::const_eval;
53 use middle::def;
54 use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem};
55 use middle::lang_items::{FnOnceTraitLangItem};
56 use middle::resolve_lifetime as rl;
57 use middle::subst::{FnSpace, TypeSpace, SelfSpace, Subst, Substs};
58 use middle::subst::{VecPerParamSpace};
59 use middle::ty;
60 use middle::typeck::lookup_def_tcx;
61 use middle::typeck::infer;
62 use middle::typeck::rscope::{ExplicitRscope, RegionScope, SpecificRscope};
63 use middle::typeck::rscope;
64 use middle::typeck::TypeAndSubsts;
65 use middle::typeck;
66 use util::ppaux::{Repr, UserString};
67
68 use std::collections::HashMap;
69 use std::rc::Rc;
70 use syntax::abi;
71 use syntax::{ast, ast_util};
72 use syntax::codemap::Span;
73 use syntax::parse::token;
74
75 pub trait AstConv<'tcx> {
76     fn tcx<'a>(&'a self) -> &'a ty::ctxt<'tcx>;
77     fn get_item_ty(&self, id: ast::DefId) -> ty::Polytype;
78     fn get_trait_def(&self, id: ast::DefId) -> Rc<ty::TraitDef>;
79
80     /// What type should we use when a type is omitted?
81     fn ty_infer(&self, span: Span) -> ty::t;
82
83     /// Returns true if associated types from the given trait and type are
84     /// allowed to be used here and false otherwise.
85     fn associated_types_of_trait_are_valid(&self,
86                                            ty: ty::t,
87                                            trait_id: ast::DefId)
88                                            -> bool;
89
90     /// Returns the binding of the given associated type for some type.
91     fn associated_type_binding(&self,
92                                span: Span,
93                                ty: Option<ty::t>,
94                                trait_id: ast::DefId,
95                                associated_type_id: ast::DefId)
96                                -> ty::t;
97 }
98
99 pub fn ast_region_to_region(tcx: &ty::ctxt, lifetime: &ast::Lifetime)
100                             -> ty::Region {
101     let r = match tcx.named_region_map.find(&lifetime.id) {
102         None => {
103             // should have been recorded by the `resolve_lifetime` pass
104             tcx.sess.span_bug(lifetime.span, "unresolved lifetime");
105         }
106
107         Some(&rl::DefStaticRegion) => {
108             ty::ReStatic
109         }
110
111         Some(&rl::DefLateBoundRegion(binder_id, _, id)) => {
112             ty::ReLateBound(binder_id, ty::BrNamed(ast_util::local_def(id),
113                                                    lifetime.name))
114         }
115
116         Some(&rl::DefEarlyBoundRegion(space, index, id)) => {
117             ty::ReEarlyBound(id, space, index, lifetime.name)
118         }
119
120         Some(&rl::DefFreeRegion(scope_id, id)) => {
121             ty::ReFree(ty::FreeRegion {
122                     scope_id: scope_id,
123                     bound_region: ty::BrNamed(ast_util::local_def(id),
124                                               lifetime.name)
125                 })
126         }
127     };
128
129     debug!("ast_region_to_region(lifetime={} id={}) yields {}",
130            lifetime.repr(tcx),
131            lifetime.id,
132            r.repr(tcx));
133
134     r
135 }
136
137 pub fn opt_ast_region_to_region<'tcx, AC: AstConv<'tcx>, RS: RegionScope>(
138     this: &AC,
139     rscope: &RS,
140     default_span: Span,
141     opt_lifetime: &Option<ast::Lifetime>) -> ty::Region
142 {
143     let r = match *opt_lifetime {
144         Some(ref lifetime) => {
145             ast_region_to_region(this.tcx(), lifetime)
146         }
147
148         None => {
149             match rscope.anon_regions(default_span, 1) {
150                 Err(()) => {
151                     debug!("optional region in illegal location");
152                     span_err!(this.tcx().sess, default_span, E0106,
153                         "missing lifetime specifier");
154                     ty::ReStatic
155                 }
156
157                 Ok(rs) => {
158                     *rs.get(0)
159                 }
160             }
161         }
162     };
163
164     debug!("opt_ast_region_to_region(opt_lifetime={}) yields {}",
165             opt_lifetime.repr(this.tcx()),
166             r.repr(this.tcx()));
167
168     r
169 }
170
171 fn ast_path_substs<'tcx,AC,RS>(
172                    this: &AC,
173                    rscope: &RS,
174                    decl_def_id: ast::DefId,
175                    decl_generics: &ty::Generics,
176                    self_ty: Option<ty::t>,
177                    associated_ty: Option<ty::t>,
178                    path: &ast::Path)
179                    -> Substs
180                    where AC: AstConv<'tcx>, RS: RegionScope {
181     /*!
182      * Given a path `path` that refers to an item `I` with the
183      * declared generics `decl_generics`, returns an appropriate
184      * set of substitutions for this particular reference to `I`.
185      */
186
187     let tcx = this.tcx();
188
189     // ast_path_substs() is only called to convert paths that are
190     // known to refer to traits, types, or structs. In these cases,
191     // all type parameters defined for the item being referenced will
192     // be in the TypeSpace or SelfSpace.
193     //
194     // Note: in the case of traits, the self parameter is also
195     // defined, but we don't currently create a `type_param_def` for
196     // `Self` because it is implicit.
197     assert!(decl_generics.regions.all(|d| d.space == TypeSpace));
198     assert!(decl_generics.types.all(|d| d.space != FnSpace));
199
200     // If the type is parameterized by the this region, then replace this
201     // region with the current anon region binding (in other words,
202     // whatever & would get replaced with).
203     let expected_num_region_params = decl_generics.regions.len(TypeSpace);
204     let supplied_num_region_params = path.segments.last().unwrap().lifetimes.len();
205     let regions = if expected_num_region_params == supplied_num_region_params {
206         path.segments.last().unwrap().lifetimes.iter().map(
207             |l| ast_region_to_region(this.tcx(), l)).collect::<Vec<_>>()
208     } else {
209         let anon_regions =
210             rscope.anon_regions(path.span, expected_num_region_params);
211
212         if supplied_num_region_params != 0 || anon_regions.is_err() {
213             span_err!(tcx.sess, path.span, E0107,
214                 "wrong number of lifetime parameters: expected {}, found {}",
215                 expected_num_region_params, supplied_num_region_params);
216         }
217
218         match anon_regions {
219             Ok(v) => v.into_iter().collect(),
220             Err(()) => Vec::from_fn(expected_num_region_params,
221                                     |_| ty::ReStatic) // hokey
222         }
223     };
224
225     // Convert the type parameters supplied by the user.
226     let ty_param_defs = decl_generics.types.get_slice(TypeSpace);
227     let supplied_ty_param_count = path.segments.iter().flat_map(|s| s.types.iter()).count();
228     let formal_ty_param_count =
229         ty_param_defs.iter()
230                      .take_while(|x| !ty::is_associated_type(tcx, x.def_id))
231                      .count();
232     let required_ty_param_count =
233         ty_param_defs.iter()
234                      .take_while(|x| {
235                         x.default.is_none() &&
236                         !ty::is_associated_type(tcx, x.def_id)
237                      })
238                      .count();
239     if supplied_ty_param_count < required_ty_param_count {
240         let expected = if required_ty_param_count < formal_ty_param_count {
241             "expected at least"
242         } else {
243             "expected"
244         };
245         this.tcx().sess.span_fatal(path.span,
246             format!("wrong number of type arguments: {} {}, found {}",
247                     expected,
248                     required_ty_param_count,
249                     supplied_ty_param_count).as_slice());
250     } else if supplied_ty_param_count > formal_ty_param_count {
251         let expected = if required_ty_param_count < formal_ty_param_count {
252             "expected at most"
253         } else {
254             "expected"
255         };
256         this.tcx().sess.span_fatal(path.span,
257             format!("wrong number of type arguments: {} {}, found {}",
258                     expected,
259                     formal_ty_param_count,
260                     supplied_ty_param_count).as_slice());
261     }
262
263     if supplied_ty_param_count > required_ty_param_count
264         && !this.tcx().sess.features.borrow().default_type_params {
265         span_err!(this.tcx().sess, path.span, E0108,
266             "default type parameters are experimental and possibly buggy");
267         span_note!(this.tcx().sess, path.span,
268             "add #![feature(default_type_params)] to the crate attributes to enable");
269     }
270
271     let tps = path.segments
272                   .iter()
273                   .flat_map(|s| s.types.iter())
274                   .map(|a_t| ast_ty_to_ty(this, rscope, &**a_t))
275                   .collect();
276
277     let mut substs = Substs::new_type(tps, regions);
278
279     match self_ty {
280         None => {
281             // If no self-type is provided, it's still possible that
282             // one was declared, because this could be an object type.
283         }
284         Some(ty) => {
285             // If a self-type is provided, one should have been
286             // "declared" (in other words, this should be a
287             // trait-ref).
288             assert!(decl_generics.types.get_self().is_some());
289             substs.types.push(SelfSpace, ty);
290         }
291     }
292
293     for param in ty_param_defs.slice_from(supplied_ty_param_count).iter() {
294         match param.default {
295             Some(default) => {
296                 // This is a default type parameter.
297                 let default = default.subst_spanned(tcx,
298                                                     &substs,
299                                                     Some(path.span));
300                 substs.types.push(TypeSpace, default);
301             }
302             None => {
303                 // This is an associated type.
304                 substs.types.push(
305                     TypeSpace,
306                     this.associated_type_binding(path.span,
307                                                  associated_ty,
308                                                  decl_def_id,
309                                                  param.def_id))
310             }
311         }
312     }
313
314     substs
315 }
316
317 pub fn ast_path_to_trait_ref<'tcx,AC,RS>(this: &AC,
318                                          rscope: &RS,
319                                          trait_def_id: ast::DefId,
320                                          self_ty: Option<ty::t>,
321                                          associated_type: Option<ty::t>,
322                                          path: &ast::Path)
323                                          -> Rc<ty::TraitRef>
324                                          where AC: AstConv<'tcx>,
325                                                RS: RegionScope {
326     let trait_def = this.get_trait_def(trait_def_id);
327     Rc::new(ty::TraitRef {
328         def_id: trait_def_id,
329         substs: ast_path_substs(this,
330                                 rscope,
331                                 trait_def_id,
332                                 &trait_def.generics,
333                                 self_ty,
334                                 associated_type,
335                                 path)
336     })
337 }
338
339 pub fn ast_path_to_ty<'tcx, AC: AstConv<'tcx>, RS: RegionScope>(
340     this: &AC,
341     rscope: &RS,
342     did: ast::DefId,
343     path: &ast::Path)
344     -> TypeAndSubsts {
345     let tcx = this.tcx();
346     let ty::Polytype {
347         generics: generics,
348         ty: decl_ty
349     } = this.get_item_ty(did);
350
351     let substs = ast_path_substs(this,
352                                  rscope,
353                                  did,
354                                  &generics,
355                                  None,
356                                  None,
357                                  path);
358     let ty = decl_ty.subst(tcx, &substs);
359     TypeAndSubsts { substs: substs, ty: ty }
360 }
361
362 /// Returns the type that this AST path refers to. If the path has no type
363 /// parameters and the corresponding type has type parameters, fresh type
364 /// and/or region variables are substituted.
365 ///
366 /// This is used when checking the constructor in struct literals.
367 pub fn ast_path_to_ty_relaxed<'tcx, AC: AstConv<'tcx>,
368                               RS:RegionScope>(
369                               this: &AC,
370                               rscope: &RS,
371                               did: ast::DefId,
372                               path: &ast::Path)
373                               -> TypeAndSubsts {
374     let tcx = this.tcx();
375     let ty::Polytype {
376         generics: generics,
377         ty: decl_ty
378     } = this.get_item_ty(did);
379
380     let substs = if (generics.has_type_params(TypeSpace) ||
381         generics.has_region_params(TypeSpace)) &&
382             path.segments.iter().all(|s| {
383                 s.lifetimes.len() == 0 && s.types.len() == 0
384             }) {
385         let type_params = Vec::from_fn(generics.types.len(TypeSpace),
386                                        |_| this.ty_infer(path.span));
387         let region_params =
388             rscope.anon_regions(path.span, generics.regions.len(TypeSpace))
389                   .unwrap();
390         Substs::new(VecPerParamSpace::params_from_type(type_params),
391                     VecPerParamSpace::params_from_type(region_params))
392     } else {
393         ast_path_substs(this, rscope, did, &generics, None, None, path)
394     };
395
396     let ty = decl_ty.subst(tcx, &substs);
397     TypeAndSubsts {
398         substs: substs,
399         ty: ty,
400     }
401 }
402
403 pub static NO_REGIONS: uint = 1;
404 pub static NO_TPS: uint = 2;
405
406 fn check_path_args(tcx: &ty::ctxt,
407                    path: &ast::Path,
408                    flags: uint) {
409     if (flags & NO_TPS) != 0u {
410         if !path.segments.iter().all(|s| s.types.is_empty()) {
411             span_err!(tcx.sess, path.span, E0109,
412                 "type parameters are not allowed on this type");
413         }
414     }
415
416     if (flags & NO_REGIONS) != 0u {
417         if !path.segments.last().unwrap().lifetimes.is_empty() {
418             span_err!(tcx.sess, path.span, E0110,
419                 "region parameters are not allowed on this type");
420         }
421     }
422 }
423
424 pub fn ast_ty_to_prim_ty(tcx: &ty::ctxt, ast_ty: &ast::Ty) -> Option<ty::t> {
425     match ast_ty.node {
426         ast::TyPath(ref path, _, id) => {
427             let a_def = match tcx.def_map.borrow().find(&id) {
428                 None => {
429                     tcx.sess.span_bug(ast_ty.span,
430                                       format!("unbound path {}",
431                                               path.repr(tcx)).as_slice())
432                 }
433                 Some(&d) => d
434             };
435             match a_def {
436                 def::DefPrimTy(nty) => {
437                     match nty {
438                         ast::TyBool => {
439                             check_path_args(tcx, path, NO_TPS | NO_REGIONS);
440                             Some(ty::mk_bool())
441                         }
442                         ast::TyChar => {
443                             check_path_args(tcx, path, NO_TPS | NO_REGIONS);
444                             Some(ty::mk_char())
445                         }
446                         ast::TyInt(it) => {
447                             check_path_args(tcx, path, NO_TPS | NO_REGIONS);
448                             Some(ty::mk_mach_int(it))
449                         }
450                         ast::TyUint(uit) => {
451                             check_path_args(tcx, path, NO_TPS | NO_REGIONS);
452                             Some(ty::mk_mach_uint(uit))
453                         }
454                         ast::TyFloat(ft) => {
455                             check_path_args(tcx, path, NO_TPS | NO_REGIONS);
456                             Some(ty::mk_mach_float(ft))
457                         }
458                         ast::TyStr => {
459                             Some(ty::mk_str(tcx))
460                         }
461                     }
462                 }
463                 _ => None
464             }
465         }
466         _ => None
467     }
468 }
469
470 /// Converts the given AST type to a built-in type. A "built-in type" is, at
471 /// present, either a core numeric type, a string, or `Box`.
472 pub fn ast_ty_to_builtin_ty<'tcx, AC: AstConv<'tcx>, RS: RegionScope>(
473         this: &AC,
474         rscope: &RS,
475         ast_ty: &ast::Ty)
476         -> Option<ty::t> {
477     match ast_ty_to_prim_ty(this.tcx(), ast_ty) {
478         Some(typ) => return Some(typ),
479         None => {}
480     }
481
482     match ast_ty.node {
483         ast::TyPath(ref path, _, id) => {
484             let a_def = match this.tcx().def_map.borrow().find(&id) {
485                 None => {
486                     this.tcx()
487                         .sess
488                         .span_bug(ast_ty.span,
489                                   format!("unbound path {}",
490                                           path.repr(this.tcx())).as_slice())
491                 }
492                 Some(&d) => d
493             };
494
495             // FIXME(#12938): This is a hack until we have full support for
496             // DST.
497             match a_def {
498                 def::DefTy(did, _) | def::DefStruct(did)
499                         if Some(did) == this.tcx().lang_items.owned_box() => {
500                     if path.segments
501                            .iter()
502                            .flat_map(|s| s.types.iter())
503                            .count() > 1 {
504                         span_err!(this.tcx().sess, path.span, E0047,
505                                   "`Box` has only one type parameter");
506                     }
507
508                     for inner_ast_type in path.segments
509                                               .iter()
510                                               .flat_map(|s| s.types.iter()) {
511                         return Some(mk_pointer(this,
512                                                rscope,
513                                                ast::MutImmutable,
514                                                &**inner_ast_type,
515                                                Uniq,
516                                                |typ| ty::mk_uniq(this.tcx(), typ)));
517                     }
518                     span_err!(this.tcx().sess, path.span, E0113,
519                               "not enough type parameters supplied to `Box<T>`");
520                     Some(ty::mk_err())
521                 }
522                 def::DefTy(did, _) | def::DefStruct(did)
523                         if Some(did) == this.tcx().lang_items.gc() => {
524                     if path.segments
525                            .iter()
526                            .flat_map(|s| s.types.iter())
527                            .count() > 1 {
528                         span_err!(this.tcx().sess, path.span, E0048,
529                                   "`Gc` has only one type parameter");
530                     }
531
532                     for inner_ast_type in path.segments
533                                               .iter()
534                                               .flat_map(|s| s.types.iter()) {
535                         return Some(mk_pointer(this,
536                                                rscope,
537                                                ast::MutImmutable,
538                                                &**inner_ast_type,
539                                                Box,
540                                                |typ| {
541                             match ty::get(typ).sty {
542                                 ty::ty_str => {
543                                     span_err!(this.tcx().sess, path.span, E0114,
544                                               "`Gc<str>` is not a type");
545                                     ty::mk_err()
546                                 }
547                                 ty::ty_vec(_, None) => {
548                                     span_err!(this.tcx().sess, path.span, E0115,
549                                               "`Gc<[T]>` is not a type");
550                                     ty::mk_err()
551                                 }
552                                 _ => ty::mk_box(this.tcx(), typ),
553                             }
554                         }))
555                     }
556                     this.tcx().sess.span_bug(path.span,
557                                              "not enough type parameters \
558                                               supplied to `Gc<T>`")
559                 }
560                 _ => None
561             }
562         }
563         _ => None
564     }
565 }
566
567 #[deriving(Show)]
568 enum PointerTy {
569     Box,
570     RPtr(ty::Region),
571     Uniq
572 }
573
574 impl PointerTy {
575     fn default_region(&self) -> ty::Region {
576         match *self {
577             Box => ty::ReStatic,
578             Uniq => ty::ReStatic,
579             RPtr(r) => r,
580         }
581     }
582 }
583
584 pub fn trait_ref_for_unboxed_function<'tcx, AC: AstConv<'tcx>,
585                                       RS:RegionScope>(
586                                       this: &AC,
587                                       rscope: &RS,
588                                       kind: ast::UnboxedClosureKind,
589                                       decl: &ast::FnDecl,
590                                       self_ty: Option<ty::t>)
591                                       -> ty::TraitRef {
592     let lang_item = match kind {
593         ast::FnUnboxedClosureKind => FnTraitLangItem,
594         ast::FnMutUnboxedClosureKind => FnMutTraitLangItem,
595         ast::FnOnceUnboxedClosureKind => FnOnceTraitLangItem,
596     };
597     let trait_did = this.tcx().lang_items.require(lang_item).unwrap();
598     let input_types = decl.inputs
599                           .iter()
600                           .map(|input| {
601                             ast_ty_to_ty(this, rscope, &*input.ty)
602                           }).collect::<Vec<_>>();
603     let input_tuple = if input_types.len() == 0 {
604         ty::mk_nil()
605     } else {
606         ty::mk_tup(this.tcx(), input_types)
607     };
608     let output_type = ast_ty_to_ty(this, rscope, &*decl.output);
609     let mut substs = Substs::new_type(vec!(input_tuple, output_type),
610                                       Vec::new());
611
612     match self_ty {
613         Some(s) => substs.types.push(SelfSpace, s),
614         None => ()
615     }
616
617     ty::TraitRef {
618         def_id: trait_did,
619         substs: substs,
620     }
621 }
622
623 // Handle `~`, `Box`, and `&` being able to mean strs and vecs.
624 // If a_seq_ty is a str or a vec, make it a str/vec.
625 // Also handle first-class trait types.
626 fn mk_pointer<'tcx, AC: AstConv<'tcx>, RS: RegionScope>(
627         this: &AC,
628         rscope: &RS,
629         a_seq_mutbl: ast::Mutability,
630         a_seq_ty: &ast::Ty,
631         ptr_ty: PointerTy,
632         constr: |ty::t| -> ty::t)
633         -> ty::t {
634     let tcx = this.tcx();
635     debug!("mk_pointer(ptr_ty={})", ptr_ty);
636
637     match a_seq_ty.node {
638         ast::TyVec(ref ty) => {
639             let ty = ast_ty_to_ty(this, rscope, &**ty);
640             return constr(ty::mk_vec(tcx, ty, None));
641         }
642         ast::TyUnboxedFn(ref unboxed_function) => {
643             let ty::TraitRef {
644                 def_id,
645                 substs
646             } = trait_ref_for_unboxed_function(this,
647                                                rscope,
648                                                unboxed_function.kind,
649                                                &*unboxed_function.decl,
650                                                None);
651             let r = ptr_ty.default_region();
652             let tr = ty::mk_trait(this.tcx(),
653                                   def_id,
654                                   substs,
655                                   ty::region_existential_bound(r));
656             match ptr_ty {
657                 Uniq => {
658                     return ty::mk_uniq(this.tcx(), tr);
659                 }
660                 RPtr(r) => {
661                     return ty::mk_rptr(this.tcx(),
662                                        r,
663                                        ty::mt {mutbl: a_seq_mutbl, ty: tr});
664                 }
665                 _ => {
666                     tcx.sess.span_err(
667                         a_seq_ty.span,
668                         "~trait or &trait are the only supported \
669                          forms of casting-to-trait");
670                     return ty::mk_err();
671                 }
672
673             }
674         }
675         ast::TyPath(ref path, ref opt_bounds, id) => {
676             // Note that the "bounds must be empty if path is not a trait"
677             // restriction is enforced in the below case for ty_path, which
678             // will run after this as long as the path isn't a trait.
679             match tcx.def_map.borrow().find(&id) {
680                 Some(&def::DefPrimTy(ast::TyStr)) => {
681                     check_path_args(tcx, path, NO_TPS | NO_REGIONS);
682                     match ptr_ty {
683                         Uniq => {
684                             return constr(ty::mk_str(tcx));
685                         }
686                         RPtr(r) => {
687                             return ty::mk_str_slice(tcx, r, ast::MutImmutable);
688                         }
689                         _ => {
690                             tcx.sess
691                                .span_err(path.span,
692                                          "managed strings are not supported")
693                         }
694                     }
695                 }
696                 Some(&def::DefTrait(trait_def_id)) => {
697                     let result = ast_path_to_trait_ref(this,
698                                                        rscope,
699                                                        trait_def_id,
700                                                        None,
701                                                        None,
702                                                        path);
703                     let bounds = match *opt_bounds {
704                         None => {
705                             conv_existential_bounds(this,
706                                                     rscope,
707                                                     path.span,
708                                                     [result.clone()].as_slice(),
709                                                     [].as_slice())
710                         }
711                         Some(ref bounds) => {
712                             conv_existential_bounds(this,
713                                                     rscope,
714                                                     path.span,
715                                                     [result.clone()].as_slice(),
716                                                     bounds.as_slice())
717                         }
718                     };
719                     let tr = ty::mk_trait(tcx,
720                                           result.def_id,
721                                           result.substs.clone(),
722                                           bounds);
723                     return match ptr_ty {
724                         Uniq => {
725                             return ty::mk_uniq(tcx, tr);
726                         }
727                         RPtr(r) => {
728                             return ty::mk_rptr(tcx, r, ty::mt{mutbl: a_seq_mutbl, ty: tr});
729                         }
730                         _ => {
731                             tcx.sess.span_err(
732                                 path.span,
733                                 "~trait or &trait are the only supported \
734                                  forms of casting-to-trait");
735                             return ty::mk_err();
736                         }
737                     };
738                 }
739                 _ => {}
740             }
741         }
742         _ => {}
743     }
744
745     constr(ast_ty_to_ty(this, rscope, a_seq_ty))
746 }
747
748 fn associated_ty_to_ty<'tcx,AC,RS>(this: &AC,
749                                    rscope: &RS,
750                                    trait_path: &ast::Path,
751                                    for_ast_type: &ast::Ty,
752                                    trait_type_id: ast::DefId,
753                                    span: Span)
754                                    -> ty::t
755                                    where AC: AstConv<'tcx>, RS: RegionScope {
756     // Find the trait that this associated type belongs to.
757     let trait_did = match ty::impl_or_trait_item(this.tcx(),
758                                                  trait_type_id).container() {
759         ty::ImplContainer(_) => {
760             this.tcx().sess.span_bug(span,
761                                      "associated_ty_to_ty(): impl associated \
762                                       types shouldn't go through this \
763                                       function")
764         }
765         ty::TraitContainer(trait_id) => trait_id,
766     };
767
768     let for_type = ast_ty_to_ty(this, rscope, for_ast_type);
769     if !this.associated_types_of_trait_are_valid(for_type, trait_did) {
770         this.tcx().sess.span_err(span,
771                                  "this associated type is not \
772                                   allowed in this context");
773         return ty::mk_err()
774     }
775
776     let trait_ref = ast_path_to_trait_ref(this,
777                                           rscope,
778                                           trait_did,
779                                           None,
780                                           Some(for_type),
781                                           trait_path);
782     let trait_def = this.get_trait_def(trait_did);
783     for type_parameter in trait_def.generics.types.iter() {
784         if type_parameter.def_id == trait_type_id {
785             return *trait_ref.substs.types.get(type_parameter.space,
786                                                type_parameter.index)
787         }
788     }
789     this.tcx().sess.span_bug(span,
790                              "this associated type didn't get added \
791                               as a parameter for some reason")
792 }
793
794 // Parses the programmer's textual representation of a type into our
795 // internal notion of a type.
796 pub fn ast_ty_to_ty<'tcx, AC: AstConv<'tcx>, RS: RegionScope>(
797         this: &AC, rscope: &RS, ast_ty: &ast::Ty) -> ty::t {
798
799     let tcx = this.tcx();
800
801     let mut ast_ty_to_ty_cache = tcx.ast_ty_to_ty_cache.borrow_mut();
802     match ast_ty_to_ty_cache.find(&ast_ty.id) {
803         Some(&ty::atttce_resolved(ty)) => return ty,
804         Some(&ty::atttce_unresolved) => {
805             tcx.sess.span_fatal(ast_ty.span,
806                                 "illegal recursive type; insert an enum \
807                                  or struct in the cycle, if this is \
808                                  desired");
809         }
810         None => { /* go on */ }
811     }
812     ast_ty_to_ty_cache.insert(ast_ty.id, ty::atttce_unresolved);
813     drop(ast_ty_to_ty_cache);
814
815     let typ = ast_ty_to_builtin_ty(this, rscope, ast_ty).unwrap_or_else(|| {
816         match ast_ty.node {
817             ast::TyNil => ty::mk_nil(),
818             ast::TyBot => ty::mk_bot(),
819             ast::TyBox(ref ty) => {
820                 mk_pointer(this, rscope, ast::MutImmutable, &**ty, Box,
821                            |ty| ty::mk_box(tcx, ty))
822             }
823             ast::TyUniq(ref ty) => {
824                 mk_pointer(this, rscope, ast::MutImmutable, &**ty, Uniq,
825                            |ty| ty::mk_uniq(tcx, ty))
826             }
827             ast::TyVec(ref ty) => {
828                 ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty), None)
829             }
830             ast::TyPtr(ref mt) => {
831                 ty::mk_ptr(tcx, ty::mt {
832                     ty: ast_ty_to_ty(this, rscope, &*mt.ty),
833                     mutbl: mt.mutbl
834                 })
835             }
836             ast::TyRptr(ref region, ref mt) => {
837                 let r = opt_ast_region_to_region(this, rscope, ast_ty.span, region);
838                 debug!("ty_rptr r={}", r.repr(this.tcx()));
839                 mk_pointer(this, rscope, mt.mutbl, &*mt.ty, RPtr(r),
840                            |ty| ty::mk_rptr(tcx, r, ty::mt {ty: ty, mutbl: mt.mutbl}))
841             }
842             ast::TyTup(ref fields) => {
843                 let flds = fields.iter()
844                                  .map(|t| ast_ty_to_ty(this, rscope, &**t))
845                                  .collect();
846                 ty::mk_tup(tcx, flds)
847             }
848             ast::TyParen(ref typ) => ast_ty_to_ty(this, rscope, &**typ),
849             ast::TyBareFn(ref bf) => {
850                 if bf.decl.variadic && bf.abi != abi::C {
851                     tcx.sess.span_err(ast_ty.span,
852                                       "variadic function must have C calling convention");
853                 }
854                 ty::mk_bare_fn(tcx, ty_of_bare_fn(this, ast_ty.id, bf.fn_style,
855                                                   bf.abi, &*bf.decl))
856             }
857             ast::TyClosure(ref f) => {
858                 // Use corresponding trait store to figure out default bounds
859                 // if none were specified.
860                 let bounds = conv_existential_bounds(this,
861                                                      rscope,
862                                                      ast_ty.span,
863                                                      [].as_slice(),
864                                                      f.bounds.as_slice());
865                 let fn_decl = ty_of_closure(this,
866                                             ast_ty.id,
867                                             f.fn_style,
868                                             f.onceness,
869                                             bounds,
870                                             ty::RegionTraitStore(
871                                                 bounds.region_bound,
872                                                 ast::MutMutable),
873                                             &*f.decl,
874                                             abi::Rust,
875                                             None);
876                 ty::mk_closure(tcx, fn_decl)
877             }
878             ast::TyProc(ref f) => {
879                 // Use corresponding trait store to figure out default bounds
880                 // if none were specified.
881                 let bounds = conv_existential_bounds(this, rscope,
882                                                      ast_ty.span,
883                                                      [].as_slice(),
884                                                      f.bounds.as_slice());
885
886                 let fn_decl = ty_of_closure(this,
887                                             ast_ty.id,
888                                             f.fn_style,
889                                             f.onceness,
890                                             bounds,
891                                             ty::UniqTraitStore,
892                                             &*f.decl,
893                                             abi::Rust,
894                                             None);
895
896                 ty::mk_closure(tcx, fn_decl)
897             }
898             ast::TyUnboxedFn(..) => {
899                 tcx.sess.span_err(ast_ty.span,
900                                   "cannot use unboxed functions here");
901                 ty::mk_err()
902             }
903             ast::TyPath(ref path, ref bounds, id) => {
904                 let a_def = match tcx.def_map.borrow().find(&id) {
905                     None => {
906                         tcx.sess
907                            .span_bug(ast_ty.span,
908                                      format!("unbound path {}",
909                                              path.repr(tcx)).as_slice())
910                     }
911                     Some(&d) => d
912                 };
913                 // Kind bounds on path types are only supported for traits.
914                 match a_def {
915                     // But don't emit the error if the user meant to do a trait anyway.
916                     def::DefTrait(..) => { },
917                     _ if bounds.is_some() =>
918                         tcx.sess.span_err(ast_ty.span,
919                                           "kind bounds can only be used on trait types"),
920                     _ => { },
921                 }
922                 match a_def {
923                     def::DefTrait(trait_def_id) => {
924                         let result = ast_path_to_trait_ref(this,
925                                                            rscope,
926                                                            trait_def_id,
927                                                            None,
928                                                            None,
929                                                            path);
930                         let empty_bounds: &[ast::TyParamBound] = &[];
931                         let ast_bounds = match *bounds {
932                             Some(ref b) => b.as_slice(),
933                             None => empty_bounds
934                         };
935                         let bounds = conv_existential_bounds(this,
936                                                              rscope,
937                                                              ast_ty.span,
938                                                              &[result.clone()],
939                                                              ast_bounds);
940                         ty::mk_trait(tcx,
941                                      result.def_id,
942                                      result.substs.clone(),
943                                      bounds)
944                     }
945                     def::DefTy(did, _) | def::DefStruct(did) => {
946                         ast_path_to_ty(this, rscope, did, path).ty
947                     }
948                     def::DefTyParam(space, id, n) => {
949                         check_path_args(tcx, path, NO_TPS | NO_REGIONS);
950                         ty::mk_param(tcx, space, n, id)
951                     }
952                     def::DefSelfTy(id) => {
953                         // n.b.: resolve guarantees that the this type only appears in a
954                         // trait, which we rely upon in various places when creating
955                         // substs
956                         check_path_args(tcx, path, NO_TPS | NO_REGIONS);
957                         let did = ast_util::local_def(id);
958                         ty::mk_self_type(tcx, did)
959                     }
960                     def::DefMod(id) => {
961                         tcx.sess.span_fatal(ast_ty.span,
962                             format!("found module name used as a type: {}",
963                                     tcx.map.node_to_string(id.node)).as_slice());
964                     }
965                     def::DefPrimTy(_) => {
966                         fail!("DefPrimTy arm missed in previous ast_ty_to_prim_ty call");
967                     }
968                     def::DefAssociatedTy(trait_type_id) => {
969                         let path_str = tcx.map.path_to_string(
970                             tcx.map.get_parent(trait_type_id.node));
971                         tcx.sess.span_err(ast_ty.span,
972                                           format!("ambiguous associated \
973                                                    type; specify the type \
974                                                    using the syntax `<Type \
975                                                    as {}>::{}`",
976                                                   path_str,
977                                                   token::get_ident(
978                                                       path.segments
979                                                           .last()
980                                                           .unwrap()
981                                                           .identifier)
982                                                   .get()).as_slice());
983                         ty::mk_err()
984                     }
985                     _ => {
986                         tcx.sess.span_fatal(ast_ty.span,
987                                             format!("found value name used \
988                                                      as a type: {:?}",
989                                                     a_def).as_slice());
990                     }
991                 }
992             }
993             ast::TyQPath(ref qpath) => {
994                 match tcx.def_map.borrow().find(&ast_ty.id) {
995                     None => {
996                         tcx.sess.span_bug(ast_ty.span,
997                                           "unbound qualified path")
998                     }
999                     Some(&def::DefAssociatedTy(trait_type_id)) => {
1000                         associated_ty_to_ty(this,
1001                                             rscope,
1002                                             &qpath.trait_name,
1003                                             &*qpath.for_type,
1004                                             trait_type_id,
1005                                             ast_ty.span)
1006                     }
1007                     Some(_) => {
1008                         tcx.sess.span_err(ast_ty.span,
1009                                           "this qualified path does not name \
1010                                            an associated type");
1011                         ty::mk_err()
1012                     }
1013                 }
1014             }
1015             ast::TyFixedLengthVec(ref ty, ref e) => {
1016                 match const_eval::eval_const_expr_partial(tcx, &**e) {
1017                     Ok(ref r) => {
1018                         match *r {
1019                             const_eval::const_int(i) =>
1020                                 ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
1021                                            Some(i as uint)),
1022                             const_eval::const_uint(i) =>
1023                                 ty::mk_vec(tcx, ast_ty_to_ty(this, rscope, &**ty),
1024                                            Some(i as uint)),
1025                             _ => {
1026                                 tcx.sess.span_fatal(
1027                                     ast_ty.span, "expected constant expr for vector length");
1028                             }
1029                         }
1030                     }
1031                     Err(ref r) => {
1032                         tcx.sess.span_fatal(
1033                             ast_ty.span,
1034                             format!("expected constant expr for vector \
1035                                      length: {}",
1036                                     *r).as_slice());
1037                     }
1038                 }
1039             }
1040             ast::TyTypeof(ref _e) => {
1041                 tcx.sess.span_bug(ast_ty.span, "typeof is reserved but unimplemented");
1042             }
1043             ast::TyInfer => {
1044                 // TyInfer also appears as the type of arguments or return
1045                 // values in a ExprFnBlock, ExprProc, or ExprUnboxedFn, or as
1046                 // the type of local variables. Both of these cases are
1047                 // handled specially and will not descend into this routine.
1048                 this.ty_infer(ast_ty.span)
1049             }
1050         }
1051     });
1052
1053     tcx.ast_ty_to_ty_cache.borrow_mut().insert(ast_ty.id, ty::atttce_resolved(typ));
1054     return typ;
1055 }
1056
1057 pub fn ty_of_arg<'tcx, AC: AstConv<'tcx>, RS: RegionScope>(this: &AC, rscope: &RS,
1058                                                            a: &ast::Arg,
1059                                                            expected_ty: Option<ty::t>)
1060                                                            -> ty::t {
1061     match a.ty.node {
1062         ast::TyInfer if expected_ty.is_some() => expected_ty.unwrap(),
1063         ast::TyInfer => this.ty_infer(a.ty.span),
1064         _ => ast_ty_to_ty(this, rscope, &*a.ty),
1065     }
1066 }
1067
1068 struct SelfInfo<'a> {
1069     untransformed_self_ty: ty::t,
1070     explicit_self: &'a ast::ExplicitSelf,
1071 }
1072
1073 pub fn ty_of_method<'tcx, AC: AstConv<'tcx>>(
1074                     this: &AC,
1075                     id: ast::NodeId,
1076                     fn_style: ast::FnStyle,
1077                     untransformed_self_ty: ty::t,
1078                     explicit_self: &ast::ExplicitSelf,
1079                     decl: &ast::FnDecl,
1080                     abi: abi::Abi)
1081                     -> (ty::BareFnTy, ty::ExplicitSelfCategory) {
1082     let self_info = Some(SelfInfo {
1083         untransformed_self_ty: untransformed_self_ty,
1084         explicit_self: explicit_self,
1085     });
1086     let (bare_fn_ty, optional_explicit_self_category) =
1087         ty_of_method_or_bare_fn(this,
1088                                 id,
1089                                 fn_style,
1090                                 abi,
1091                                 self_info,
1092                                 decl);
1093     (bare_fn_ty, optional_explicit_self_category.unwrap())
1094 }
1095
1096 pub fn ty_of_bare_fn<'tcx, AC: AstConv<'tcx>>(this: &AC, id: ast::NodeId,
1097                                               fn_style: ast::FnStyle, abi: abi::Abi,
1098                                               decl: &ast::FnDecl) -> ty::BareFnTy {
1099     let (bare_fn_ty, _) =
1100         ty_of_method_or_bare_fn(this, id, fn_style, abi, None, decl);
1101     bare_fn_ty
1102 }
1103
1104 fn ty_of_method_or_bare_fn<'tcx, AC: AstConv<'tcx>>(
1105                            this: &AC,
1106                            id: ast::NodeId,
1107                            fn_style: ast::FnStyle,
1108                            abi: abi::Abi,
1109                            opt_self_info: Option<SelfInfo>,
1110                            decl: &ast::FnDecl)
1111                            -> (ty::BareFnTy,
1112                                Option<ty::ExplicitSelfCategory>) {
1113     debug!("ty_of_method_or_bare_fn");
1114
1115     // New region names that appear inside of the arguments of the function
1116     // declaration are bound to that function type.
1117     let rb = rscope::BindingRscope::new(id);
1118
1119     // `implied_output_region` is the region that will be assumed for any
1120     // region parameters in the return type. In accordance with the rules for
1121     // lifetime elision, we can determine it in two ways. First (determined
1122     // here), if self is by-reference, then the implied output region is the
1123     // region of the self parameter.
1124     let mut explicit_self_category_result = None;
1125     let (self_ty, mut implied_output_region) = match opt_self_info {
1126         None => (None, None),
1127         Some(self_info) => {
1128             // Figure out and record the explicit self category.
1129             let explicit_self_category =
1130                 determine_explicit_self_category(this, &rb, &self_info);
1131             explicit_self_category_result = Some(explicit_self_category);
1132             match explicit_self_category {
1133                 ty::StaticExplicitSelfCategory => (None, None),
1134                 ty::ByValueExplicitSelfCategory => {
1135                     (Some(self_info.untransformed_self_ty), None)
1136                 }
1137                 ty::ByReferenceExplicitSelfCategory(region, mutability) => {
1138                     (Some(ty::mk_rptr(this.tcx(),
1139                                       region,
1140                                       ty::mt {
1141                                         ty: self_info.untransformed_self_ty,
1142                                         mutbl: mutability
1143                                       })),
1144                      Some(region))
1145                 }
1146                 ty::ByBoxExplicitSelfCategory => {
1147                     (Some(ty::mk_uniq(this.tcx(),
1148                                       self_info.untransformed_self_ty)),
1149                      None)
1150                 }
1151             }
1152         }
1153     };
1154
1155     // HACK(eddyb) replace the fake self type in the AST with the actual type.
1156     let input_tys = if self_ty.is_some() {
1157         decl.inputs.slice_from(1)
1158     } else {
1159         decl.inputs.as_slice()
1160     };
1161     let input_tys = input_tys.iter().map(|a| ty_of_arg(this, &rb, a, None));
1162     let self_and_input_tys: Vec<_> =
1163         self_ty.into_iter().chain(input_tys).collect();
1164
1165     // Second, if there was exactly one lifetime (either a substitution or a
1166     // reference) in the arguments, then any anonymous regions in the output
1167     // have that lifetime.
1168     if implied_output_region.is_none() {
1169         let mut self_and_input_tys_iter = self_and_input_tys.iter();
1170         if self_ty.is_some() {
1171             // Skip the first argument if `self` is present.
1172             drop(self_and_input_tys_iter.next())
1173         }
1174
1175         let mut accumulator = Vec::new();
1176         for input_type in self_and_input_tys_iter {
1177             ty::accumulate_lifetimes_in_type(&mut accumulator, *input_type)
1178         }
1179         if accumulator.len() == 1 {
1180             implied_output_region = Some(*accumulator.get(0));
1181         }
1182     }
1183
1184     let output_ty = match decl.output.node {
1185         ast::TyInfer => this.ty_infer(decl.output.span),
1186         _ => {
1187             match implied_output_region {
1188                 Some(implied_output_region) => {
1189                     let rb = SpecificRscope::new(implied_output_region);
1190                     ast_ty_to_ty(this, &rb, &*decl.output)
1191                 }
1192                 None => {
1193                     // All regions must be explicitly specified in the output
1194                     // if the lifetime elision rules do not apply. This saves
1195                     // the user from potentially-confusing errors.
1196                     let rb = ExplicitRscope;
1197                     ast_ty_to_ty(this, &rb, &*decl.output)
1198                 }
1199             }
1200         }
1201     };
1202
1203     (ty::BareFnTy {
1204         fn_style: fn_style,
1205         abi: abi,
1206         sig: ty::FnSig {
1207             binder_id: id,
1208             inputs: self_and_input_tys,
1209             output: output_ty,
1210             variadic: decl.variadic
1211         }
1212     }, explicit_self_category_result)
1213 }
1214
1215 fn determine_explicit_self_category<'tcx, AC: AstConv<'tcx>,
1216                                     RS:RegionScope>(
1217                                     this: &AC,
1218                                     rscope: &RS,
1219                                     self_info: &SelfInfo)
1220                                     -> ty::ExplicitSelfCategory {
1221     match self_info.explicit_self.node {
1222         ast::SelfStatic => ty::StaticExplicitSelfCategory,
1223         ast::SelfValue(_) => ty::ByValueExplicitSelfCategory,
1224         ast::SelfRegion(ref lifetime, mutability, _) => {
1225             let region =
1226                 opt_ast_region_to_region(this,
1227                                          rscope,
1228                                          self_info.explicit_self.span,
1229                                          lifetime);
1230             ty::ByReferenceExplicitSelfCategory(region, mutability)
1231         }
1232         ast::SelfExplicit(ref ast_type, _) => {
1233             let explicit_type = ast_ty_to_ty(this, rscope, &**ast_type);
1234
1235             {
1236                 let inference_context = infer::new_infer_ctxt(this.tcx());
1237                 let expected_self = self_info.untransformed_self_ty;
1238                 let actual_self = explicit_type;
1239                 let result = infer::mk_eqty(
1240                     &inference_context,
1241                     false,
1242                     infer::Misc(self_info.explicit_self.span),
1243                     expected_self,
1244                     actual_self);
1245                 match result {
1246                     Ok(_) => {
1247                         inference_context.resolve_regions_and_report_errors();
1248                         return ty::ByValueExplicitSelfCategory
1249                     }
1250                     Err(_) => {}
1251                 }
1252             }
1253
1254             match ty::get(explicit_type).sty {
1255                 ty::ty_rptr(region, tm) => {
1256                     typeck::require_same_types(
1257                         this.tcx(),
1258                         None,
1259                         false,
1260                         self_info.explicit_self.span,
1261                         self_info.untransformed_self_ty,
1262                         tm.ty,
1263                         || "not a valid type for `self`".to_owned());
1264                     return ty::ByReferenceExplicitSelfCategory(region,
1265                                                                tm.mutbl)
1266                 }
1267                 ty::ty_uniq(typ) => {
1268                     typeck::require_same_types(
1269                         this.tcx(),
1270                         None,
1271                         false,
1272                         self_info.explicit_self.span,
1273                         self_info.untransformed_self_ty,
1274                         typ,
1275                         || "not a valid type for `self`".to_owned());
1276                     return ty::ByBoxExplicitSelfCategory
1277                 }
1278                 _ => {
1279                     this.tcx()
1280                         .sess
1281                         .span_err(self_info.explicit_self.span,
1282                                   "not a valid type for `self`");
1283                     return ty::ByValueExplicitSelfCategory
1284                 }
1285             }
1286         }
1287     }
1288 }
1289
1290 pub fn ty_of_closure<'tcx, AC: AstConv<'tcx>>(
1291     this: &AC,
1292     id: ast::NodeId,
1293     fn_style: ast::FnStyle,
1294     onceness: ast::Onceness,
1295     bounds: ty::ExistentialBounds,
1296     store: ty::TraitStore,
1297     decl: &ast::FnDecl,
1298     abi: abi::Abi,
1299     expected_sig: Option<ty::FnSig>)
1300     -> ty::ClosureTy
1301 {
1302     debug!("ty_of_fn_decl");
1303
1304     // new region names that appear inside of the fn decl are bound to
1305     // that function type
1306     let rb = rscope::BindingRscope::new(id);
1307
1308     let input_tys = decl.inputs.iter().enumerate().map(|(i, a)| {
1309         let expected_arg_ty = expected_sig.as_ref().and_then(|e| {
1310             // no guarantee that the correct number of expected args
1311             // were supplied
1312             if i < e.inputs.len() {
1313                 Some(*e.inputs.get(i))
1314             } else {
1315                 None
1316             }
1317         });
1318         ty_of_arg(this, &rb, a, expected_arg_ty)
1319     }).collect();
1320
1321     let expected_ret_ty = expected_sig.map(|e| e.output);
1322     let output_ty = match decl.output.node {
1323         ast::TyInfer if expected_ret_ty.is_some() => expected_ret_ty.unwrap(),
1324         ast::TyInfer => this.ty_infer(decl.output.span),
1325         _ => ast_ty_to_ty(this, &rb, &*decl.output)
1326     };
1327
1328     ty::ClosureTy {
1329         fn_style: fn_style,
1330         onceness: onceness,
1331         store: store,
1332         bounds: bounds,
1333         abi: abi,
1334         sig: ty::FnSig {binder_id: id,
1335                         inputs: input_tys,
1336                         output: output_ty,
1337                         variadic: decl.variadic}
1338     }
1339 }
1340
1341 pub fn conv_existential_bounds<'tcx, AC: AstConv<'tcx>, RS:RegionScope>(
1342     this: &AC,
1343     rscope: &RS,
1344     span: Span,
1345     main_trait_refs: &[Rc<ty::TraitRef>],
1346     ast_bounds: &[ast::TyParamBound])
1347     -> ty::ExistentialBounds
1348 {
1349     /*!
1350      * Given an existential type like `Foo+'a+Bar`, this routine
1351      * converts the `'a` and `Bar` intos an `ExistentialBounds`
1352      * struct. The `main_trait_refs` argument specifies the `Foo` --
1353      * it is absent for closures. Eventually this should all be
1354      * normalized, I think, so that there is no "main trait ref" and
1355      * instead we just have a flat list of bounds as the existential
1356      * type.
1357      */
1358
1359     let ast_bound_refs: Vec<&ast::TyParamBound> =
1360         ast_bounds.iter().collect();
1361
1362     let PartitionedBounds { builtin_bounds,
1363                             trait_bounds,
1364                             region_bounds,
1365                             unboxed_fn_ty_bounds } =
1366         partition_bounds(this.tcx(), span, ast_bound_refs.as_slice());
1367
1368     if !trait_bounds.is_empty() {
1369         let b = trait_bounds.get(0);
1370         this.tcx().sess.span_err(
1371             b.path.span,
1372             format!("only the builtin traits can be used \
1373                      as closure or object bounds").as_slice());
1374     }
1375
1376     if !unboxed_fn_ty_bounds.is_empty() {
1377         this.tcx().sess.span_err(
1378             span,
1379             format!("only the builtin traits can be used \
1380                      as closure or object bounds").as_slice());
1381     }
1382
1383     // The "main trait refs", rather annoyingly, have no type
1384     // specified for the `Self` parameter of the trait. The reason for
1385     // this is that they are, after all, *existential* types, and
1386     // hence that type is unknown. However, leaving this type missing
1387     // causes the substitution code to go all awry when walking the
1388     // bounds, so here we clone those trait refs and insert ty::err as
1389     // the self type. Perhaps we should do this more generally, it'd
1390     // be convenient (or perhaps something else, i.e., ty::erased).
1391     let main_trait_refs: Vec<Rc<ty::TraitRef>> =
1392         main_trait_refs.iter()
1393         .map(|t|
1394              Rc::new(ty::TraitRef {
1395                  def_id: t.def_id,
1396                  substs: t.substs.with_self_ty(ty::mk_err()) }))
1397         .collect();
1398
1399     let region_bound = compute_region_bound(this,
1400                                             rscope,
1401                                             span,
1402                                             builtin_bounds,
1403                                             region_bounds.as_slice(),
1404                                             main_trait_refs.as_slice());
1405
1406     ty::ExistentialBounds {
1407         region_bound: region_bound,
1408         builtin_bounds: builtin_bounds,
1409     }
1410 }
1411
1412 pub fn compute_opt_region_bound(tcx: &ty::ctxt,
1413                                 span: Span,
1414                                 builtin_bounds: ty::BuiltinBounds,
1415                                 region_bounds: &[&ast::Lifetime],
1416                                 trait_bounds: &[Rc<ty::TraitRef>])
1417                                 -> Option<ty::Region>
1418 {
1419     /*!
1420      * Given the bounds on a type parameter / existential type,
1421      * determines what single region bound (if any) we can use to
1422      * summarize this type. The basic idea is that we will use the
1423      * bound the user provided, if they provided one, and otherwise
1424      * search the supertypes of trait bounds for region bounds. It may
1425      * be that we can derive no bound at all, in which case we return
1426      * `None`.
1427      */
1428
1429     if region_bounds.len() > 1 {
1430         tcx.sess.span_err(
1431             region_bounds[1].span,
1432             format!("only a single explicit lifetime bound is permitted").as_slice());
1433     }
1434
1435     if region_bounds.len() != 0 {
1436         // Explicitly specified region bound. Use that.
1437         let r = region_bounds[0];
1438         return Some(ast_region_to_region(tcx, r));
1439     }
1440
1441     // No explicit region bound specified. Therefore, examine trait
1442     // bounds and see if we can derive region bounds from those.
1443     let derived_region_bounds =
1444         ty::required_region_bounds(
1445             tcx,
1446             [],
1447             builtin_bounds,
1448             trait_bounds);
1449
1450     // If there are no derived region bounds, then report back that we
1451     // can find no region bound.
1452     if derived_region_bounds.len() == 0 {
1453         return None;
1454     }
1455
1456     // If any of the derived region bounds are 'static, that is always
1457     // the best choice.
1458     if derived_region_bounds.iter().any(|r| ty::ReStatic == *r) {
1459         return Some(ty::ReStatic);
1460     }
1461
1462     // Determine whether there is exactly one unique region in the set
1463     // of derived region bounds. If so, use that. Otherwise, report an
1464     // error.
1465     let r = *derived_region_bounds.get(0);
1466     if derived_region_bounds.slice_from(1).iter().any(|r1| r != *r1) {
1467         tcx.sess.span_err(
1468             span,
1469             format!("ambiguous lifetime bound, \
1470                      explicit lifetime bound required").as_slice());
1471     }
1472     return Some(r);
1473 }
1474
1475 fn compute_region_bound<'tcx, AC: AstConv<'tcx>, RS:RegionScope>(
1476     this: &AC,
1477     rscope: &RS,
1478     span: Span,
1479     builtin_bounds: ty::BuiltinBounds,
1480     region_bounds: &[&ast::Lifetime],
1481     trait_bounds: &[Rc<ty::TraitRef>])
1482     -> ty::Region
1483 {
1484     /*!
1485      * A version of `compute_opt_region_bound` for use where some
1486      * region bound is required (existential types,
1487      * basically). Reports an error if no region bound can be derived
1488      * and we are in an `rscope` that does not provide a default.
1489      */
1490
1491     match compute_opt_region_bound(this.tcx(), span, builtin_bounds,
1492                                    region_bounds, trait_bounds) {
1493         Some(r) => r,
1494         None => {
1495             match rscope.default_region_bound(span) {
1496                 Some(r) => { r }
1497                 None => {
1498                     this.tcx().sess.span_err(
1499                         span,
1500                         format!("explicit lifetime bound required").as_slice());
1501                     ty::ReStatic
1502                 }
1503             }
1504         }
1505     }
1506 }
1507
1508 pub struct PartitionedBounds<'a> {
1509     pub builtin_bounds: ty::BuiltinBounds,
1510     pub trait_bounds: Vec<&'a ast::TraitRef>,
1511     pub unboxed_fn_ty_bounds: Vec<&'a ast::UnboxedFnBound>,
1512     pub region_bounds: Vec<&'a ast::Lifetime>,
1513 }
1514
1515 pub fn partition_bounds<'a>(tcx: &ty::ctxt,
1516                             _span: Span,
1517                             ast_bounds: &'a [&ast::TyParamBound])
1518                             -> PartitionedBounds<'a>
1519 {
1520     /*!
1521      * Divides a list of bounds from the AST into three groups:
1522      * builtin bounds (Copy, Sized etc), general trait bounds,
1523      * and region bounds.
1524      */
1525
1526     let mut builtin_bounds = ty::empty_builtin_bounds();
1527     let mut region_bounds = Vec::new();
1528     let mut trait_bounds = Vec::new();
1529     let mut unboxed_fn_ty_bounds = Vec::new();
1530     let mut trait_def_ids = HashMap::new();
1531     for &ast_bound in ast_bounds.iter() {
1532         match *ast_bound {
1533             ast::TraitTyParamBound(ref b) => {
1534                 match lookup_def_tcx(tcx, b.path.span, b.ref_id) {
1535                     def::DefTrait(trait_did) => {
1536                         match trait_def_ids.find(&trait_did) {
1537                             // Already seen this trait. We forbid
1538                             // duplicates in the list (for some
1539                             // reason).
1540                             Some(span) => {
1541                                 span_err!(
1542                                     tcx.sess, b.path.span, E0127,
1543                                     "trait `{}` already appears in the \
1544                                      list of bounds",
1545                                     b.path.user_string(tcx));
1546                                 tcx.sess.span_note(
1547                                     *span,
1548                                     "previous appearance is here");
1549
1550                                 continue;
1551                             }
1552
1553                             None => { }
1554                         }
1555
1556                         trait_def_ids.insert(trait_did, b.path.span);
1557
1558                         if ty::try_add_builtin_trait(tcx,
1559                                                      trait_did,
1560                                                      &mut builtin_bounds) {
1561                             continue; // success
1562                         }
1563                     }
1564                     _ => {
1565                         // Not a trait? that's an error, but it'll get
1566                         // reported later.
1567                     }
1568                 }
1569                 trait_bounds.push(b);
1570             }
1571             ast::RegionTyParamBound(ref l) => {
1572                 region_bounds.push(l);
1573             }
1574             ast::UnboxedFnTyParamBound(ref unboxed_function) => {
1575                 unboxed_fn_ty_bounds.push(&**unboxed_function);
1576             }
1577         }
1578     }
1579
1580     PartitionedBounds {
1581         builtin_bounds: builtin_bounds,
1582         trait_bounds: trait_bounds,
1583         region_bounds: region_bounds,
1584         unboxed_fn_ty_bounds: unboxed_fn_ty_bounds
1585     }
1586 }
1587