]> git.lizzy.rs Git - rust.git/blob - src/librustc/middle/ty/wf.rs
Auto merge of #31461 - jseyfried:remove_import_resolutions, r=nrc
[rust.git] / src / librustc / middle / ty / wf.rs
1 // Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 use middle::def_id::DefId;
12 use middle::infer::InferCtxt;
13 use middle::ty::outlives::{self, Component};
14 use middle::subst::Substs;
15 use middle::traits;
16 use middle::ty::{self, ToPredicate, Ty, TypeFoldable};
17 use std::iter::once;
18 use syntax::ast;
19 use syntax::codemap::Span;
20 use util::common::ErrorReported;
21
22 /// Returns the set of obligations needed to make `ty` well-formed.
23 /// If `ty` contains unresolved inference variables, this may include
24 /// further WF obligations. However, if `ty` IS an unresolved
25 /// inference variable, returns `None`, because we are not able to
26 /// make any progress at all. This is to prevent "livelock" where we
27 /// say "$0 is WF if $0 is WF".
28 pub fn obligations<'a,'tcx>(infcx: &InferCtxt<'a, 'tcx>,
29                             body_id: ast::NodeId,
30                             ty: Ty<'tcx>,
31                             span: Span)
32                             -> Option<Vec<traits::PredicateObligation<'tcx>>>
33 {
34     let mut wf = WfPredicates { infcx: infcx,
35                                 body_id: body_id,
36                                 span: span,
37                                 out: vec![] };
38     if wf.compute(ty) {
39         debug!("wf::obligations({:?}, body_id={:?}) = {:?}", ty, body_id, wf.out);
40         let result = wf.normalize();
41         debug!("wf::obligations({:?}, body_id={:?}) ~~> {:?}", ty, body_id, result);
42         Some(result)
43     } else {
44         None // no progress made, return None
45     }
46 }
47
48 /// Returns the obligations that make this trait reference
49 /// well-formed.  For example, if there is a trait `Set` defined like
50 /// `trait Set<K:Eq>`, then the trait reference `Foo: Set<Bar>` is WF
51 /// if `Bar: Eq`.
52 pub fn trait_obligations<'a,'tcx>(infcx: &InferCtxt<'a, 'tcx>,
53                                   body_id: ast::NodeId,
54                                   trait_ref: &ty::TraitRef<'tcx>,
55                                   span: Span)
56                                   -> Vec<traits::PredicateObligation<'tcx>>
57 {
58     let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
59     wf.compute_trait_ref(trait_ref);
60     wf.normalize()
61 }
62
63 pub fn predicate_obligations<'a,'tcx>(infcx: &InferCtxt<'a, 'tcx>,
64                                       body_id: ast::NodeId,
65                                       predicate: &ty::Predicate<'tcx>,
66                                       span: Span)
67                                       -> Vec<traits::PredicateObligation<'tcx>>
68 {
69     let mut wf = WfPredicates { infcx: infcx, body_id: body_id, span: span, out: vec![] };
70
71     // (*) ok to skip binders, because wf code is prepared for it
72     match *predicate {
73         ty::Predicate::Trait(ref t) => {
74             wf.compute_trait_ref(&t.skip_binder().trait_ref); // (*)
75         }
76         ty::Predicate::Equate(ref t) => {
77             wf.compute(t.skip_binder().0);
78             wf.compute(t.skip_binder().1);
79         }
80         ty::Predicate::RegionOutlives(..) => {
81         }
82         ty::Predicate::TypeOutlives(ref t) => {
83             wf.compute(t.skip_binder().0);
84         }
85         ty::Predicate::Projection(ref t) => {
86             let t = t.skip_binder(); // (*)
87             wf.compute_projection(t.projection_ty);
88             wf.compute(t.ty);
89         }
90         ty::Predicate::WellFormed(t) => {
91             wf.compute(t);
92         }
93         ty::Predicate::ObjectSafe(_) => {
94         }
95     }
96
97     wf.normalize()
98 }
99
100 /// Implied bounds are region relationships that we deduce
101 /// automatically.  The idea is that (e.g.) a caller must check that a
102 /// function's argument types are well-formed immediately before
103 /// calling that fn, and hence the *callee* can assume that its
104 /// argument types are well-formed. This may imply certain relationships
105 /// between generic parameters. For example:
106 ///
107 ///     fn foo<'a,T>(x: &'a T)
108 ///
109 /// can only be called with a `'a` and `T` such that `&'a T` is WF.
110 /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`.
111 #[derive(Debug)]
112 pub enum ImpliedBound<'tcx> {
113     RegionSubRegion(ty::Region, ty::Region),
114     RegionSubParam(ty::Region, ty::ParamTy),
115     RegionSubProjection(ty::Region, ty::ProjectionTy<'tcx>),
116 }
117
118 /// Compute the implied bounds that a callee/impl can assume based on
119 /// the fact that caller/projector has ensured that `ty` is WF.  See
120 /// the `ImpliedBound` type for more details.
121 pub fn implied_bounds<'a,'tcx>(
122     infcx: &'a InferCtxt<'a,'tcx>,
123     body_id: ast::NodeId,
124     ty: Ty<'tcx>,
125     span: Span)
126     -> Vec<ImpliedBound<'tcx>>
127 {
128     // Sometimes when we ask what it takes for T: WF, we get back that
129     // U: WF is required; in that case, we push U onto this stack and
130     // process it next. Currently (at least) these resulting
131     // predicates are always guaranteed to be a subset of the original
132     // type, so we need not fear non-termination.
133     let mut wf_types = vec![ty];
134
135     let mut implied_bounds = vec![];
136
137     while let Some(ty) = wf_types.pop() {
138         // Compute the obligations for `ty` to be well-formed. If `ty` is
139         // an unresolved inference variable, just substituted an empty set
140         // -- because the return type here is going to be things we *add*
141         // to the environment, it's always ok for this set to be smaller
142         // than the ultimate set. (Note: normally there won't be
143         // unresolved inference variables here anyway, but there might be
144         // during typeck under some circumstances.)
145         let obligations = obligations(infcx, body_id, ty, span).unwrap_or(vec![]);
146
147         // From the full set of obligations, just filter down to the
148         // region relationships.
149         implied_bounds.extend(
150             obligations
151             .into_iter()
152             .flat_map(|obligation| {
153                 assert!(!obligation.has_escaping_regions());
154                 match obligation.predicate {
155                     ty::Predicate::Trait(..) |
156                     ty::Predicate::Equate(..) |
157                     ty::Predicate::Projection(..) |
158                     ty::Predicate::ObjectSafe(..) =>
159                         vec![],
160
161                     ty::Predicate::WellFormed(subty) => {
162                         wf_types.push(subty);
163                         vec![]
164                     }
165
166                     ty::Predicate::RegionOutlives(ref data) =>
167                         match infcx.tcx.no_late_bound_regions(data) {
168                             None =>
169                                 vec![],
170                             Some(ty::OutlivesPredicate(r_a, r_b)) =>
171                                 vec![ImpliedBound::RegionSubRegion(r_b, r_a)],
172                         },
173
174                     ty::Predicate::TypeOutlives(ref data) =>
175                         match infcx.tcx.no_late_bound_regions(data) {
176                             None => vec![],
177                             Some(ty::OutlivesPredicate(ty_a, r_b)) => {
178                                 let components = outlives::components(infcx, ty_a);
179                                 implied_bounds_from_components(r_b, components)
180                             }
181                         },
182                 }}));
183     }
184
185     implied_bounds
186 }
187
188 /// When we have an implied bound that `T: 'a`, we can further break
189 /// this down to determine what relationships would have to hold for
190 /// `T: 'a` to hold. We get to assume that the caller has validated
191 /// those relationships.
192 fn implied_bounds_from_components<'tcx>(sub_region: ty::Region,
193                                         sup_components: Vec<Component<'tcx>>)
194                                         -> Vec<ImpliedBound<'tcx>>
195 {
196     sup_components
197         .into_iter()
198         .flat_map(|component| {
199             match component {
200                 Component::Region(r) =>
201                     vec!(ImpliedBound::RegionSubRegion(sub_region, r)),
202                 Component::Param(p) =>
203                     vec!(ImpliedBound::RegionSubParam(sub_region, p)),
204                 Component::Projection(p) =>
205                     vec!(ImpliedBound::RegionSubProjection(sub_region, p)),
206                 Component::EscapingProjection(_) =>
207                     // If the projection has escaping regions, don't
208                     // try to infer any implied bounds even for its
209                     // free components. This is conservative, because
210                     // the caller will still have to prove that those
211                     // free components outlive `sub_region`. But the
212                     // idea is that the WAY that the caller proves
213                     // that may change in the future and we want to
214                     // give ourselves room to get smarter here.
215                     vec!(),
216                 Component::UnresolvedInferenceVariable(..) =>
217                     vec!(),
218             }
219         })
220         .collect()
221 }
222
223 struct WfPredicates<'a,'tcx:'a> {
224     infcx: &'a InferCtxt<'a, 'tcx>,
225     body_id: ast::NodeId,
226     span: Span,
227     out: Vec<traits::PredicateObligation<'tcx>>,
228 }
229
230 impl<'a,'tcx> WfPredicates<'a,'tcx> {
231     fn cause(&mut self, code: traits::ObligationCauseCode<'tcx>) -> traits::ObligationCause<'tcx> {
232         traits::ObligationCause::new(self.span, self.body_id, code)
233     }
234
235     fn normalize(&mut self) -> Vec<traits::PredicateObligation<'tcx>> {
236         let cause = self.cause(traits::MiscObligation);
237         let infcx = &mut self.infcx;
238         self.out.iter()
239                 .inspect(|pred| assert!(!pred.has_escaping_regions()))
240                 .flat_map(|pred| {
241                     let mut selcx = traits::SelectionContext::new(infcx);
242                     let pred = traits::normalize(&mut selcx, cause.clone(), pred);
243                     once(pred.value).chain(pred.obligations)
244                 })
245                 .collect()
246     }
247
248     /// Pushes the obligations required for `trait_ref` to be WF into
249     /// `self.out`.
250     fn compute_trait_ref(&mut self, trait_ref: &ty::TraitRef<'tcx>) {
251         let obligations = self.nominal_obligations(trait_ref.def_id, trait_ref.substs);
252         self.out.extend(obligations);
253
254         let cause = self.cause(traits::MiscObligation);
255         self.out.extend(
256             trait_ref.substs.types
257                             .as_slice()
258                             .iter()
259                             .filter(|ty| !ty.has_escaping_regions())
260                             .map(|ty| traits::Obligation::new(cause.clone(),
261                                                               ty::Predicate::WellFormed(ty))));
262     }
263
264     /// Pushes the obligations required for `trait_ref::Item` to be WF
265     /// into `self.out`.
266     fn compute_projection(&mut self, data: ty::ProjectionTy<'tcx>) {
267         // A projection is well-formed if (a) the trait ref itself is
268         // WF WF and (b) the trait-ref holds.  (It may also be
269         // normalizable and be WF that way.)
270
271         self.compute_trait_ref(&data.trait_ref);
272
273         if !data.has_escaping_regions() {
274             let predicate = data.trait_ref.to_predicate();
275             let cause = self.cause(traits::ProjectionWf(data));
276             self.out.push(traits::Obligation::new(cause, predicate));
277         }
278     }
279
280     /// Push new obligations into `out`. Returns true if it was able
281     /// to generate all the predicates needed to validate that `ty0`
282     /// is WF. Returns false if `ty0` is an unresolved type variable,
283     /// in which case we are not able to simplify at all.
284     fn compute(&mut self, ty0: Ty<'tcx>) -> bool {
285         let mut subtys = ty0.walk();
286         while let Some(ty) = subtys.next() {
287             match ty.sty {
288                 ty::TyBool |
289                 ty::TyChar |
290                 ty::TyInt(..) |
291                 ty::TyUint(..) |
292                 ty::TyFloat(..) |
293                 ty::TyError |
294                 ty::TyStr |
295                 ty::TyParam(_) => {
296                     // WfScalar, WfParameter, etc
297                 }
298
299                 ty::TySlice(subty) |
300                 ty::TyArray(subty, _) => {
301                     if !subty.has_escaping_regions() {
302                         let cause = self.cause(traits::SliceOrArrayElem);
303                         match traits::trait_ref_for_builtin_bound(self.infcx.tcx,
304                                                                   ty::BoundSized,
305                                                                   subty) {
306                             Ok(trait_ref) => {
307                                 self.out.push(
308                                     traits::Obligation::new(cause,
309                                                             trait_ref.to_predicate()));
310                             }
311                             Err(ErrorReported) => { }
312                         }
313                     }
314                 }
315
316                 ty::TyBox(_) |
317                 ty::TyTuple(_) |
318                 ty::TyRawPtr(_) => {
319                     // simple cases that are WF if their type args are WF
320                 }
321
322                 ty::TyProjection(data) => {
323                     subtys.skip_current_subtree(); // subtree handled by compute_projection
324                     self.compute_projection(data);
325                 }
326
327                 ty::TyEnum(def, substs) |
328                 ty::TyStruct(def, substs) => {
329                     // WfNominalType
330                     let obligations = self.nominal_obligations(def.did, substs);
331                     self.out.extend(obligations);
332                 }
333
334                 ty::TyRef(r, mt) => {
335                     // WfReference
336                     if !r.has_escaping_regions() && !mt.ty.has_escaping_regions() {
337                         let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
338                         self.out.push(
339                             traits::Obligation::new(
340                                 cause,
341                                 ty::Predicate::TypeOutlives(
342                                     ty::Binder(
343                                         ty::OutlivesPredicate(mt.ty, *r)))));
344                     }
345                 }
346
347                 ty::TyClosure(..) => {
348                     // the types in a closure are always the types of
349                     // local variables (or possibly references to local
350                     // variables), we'll walk those.
351                     //
352                     // (Though, local variables are probably not
353                     // needed, as they are separately checked w/r/t
354                     // WFedness.)
355                 }
356
357                 ty::TyBareFn(..) => {
358                     // let the loop iterator into the argument/return
359                     // types appearing in the fn signature
360                 }
361
362                 ty::TyTrait(ref data) => {
363                     // WfObject
364                     //
365                     // Here, we defer WF checking due to higher-ranked
366                     // regions. This is perhaps not ideal.
367                     self.from_object_ty(ty, data);
368
369                     // FIXME(#27579) RFC also considers adding trait
370                     // obligations that don't refer to Self and
371                     // checking those
372
373                     let cause = self.cause(traits::MiscObligation);
374                     self.out.push(
375                         traits::Obligation::new(
376                             cause,
377                             ty::Predicate::ObjectSafe(data.principal_def_id())));
378                 }
379
380                 // Inference variables are the complicated case, since we don't
381                 // know what type they are. We do two things:
382                 //
383                 // 1. Check if they have been resolved, and if so proceed with
384                 //    THAT type.
385                 // 2. If not, check whether this is the type that we
386                 //    started with (ty0). In that case, we've made no
387                 //    progress at all, so return false. Otherwise,
388                 //    we've at least simplified things (i.e., we went
389                 //    from `Vec<$0>: WF` to `$0: WF`, so we can
390                 //    register a pending obligation and keep
391                 //    moving. (Goal is that an "inductive hypothesis"
392                 //    is satisfied to ensure termination.)
393                 ty::TyInfer(_) => {
394                     let ty = self.infcx.shallow_resolve(ty);
395                     if let ty::TyInfer(_) = ty.sty { // not yet resolved...
396                         if ty == ty0 { // ...this is the type we started from! no progress.
397                             return false;
398                         }
399
400                         let cause = self.cause(traits::MiscObligation);
401                         self.out.push( // ...not the type we started from, so we made progress.
402                             traits::Obligation::new(cause, ty::Predicate::WellFormed(ty)));
403                     } else {
404                         // Yes, resolved, proceed with the
405                         // result. Should never return false because
406                         // `ty` is not a TyInfer.
407                         assert!(self.compute(ty));
408                     }
409                 }
410             }
411         }
412
413         // if we made it through that loop above, we made progress!
414         return true;
415     }
416
417     fn nominal_obligations(&mut self,
418                            def_id: DefId,
419                            substs: &Substs<'tcx>)
420                            -> Vec<traits::PredicateObligation<'tcx>>
421     {
422         let predicates =
423             self.infcx.tcx.lookup_predicates(def_id)
424                           .instantiate(self.infcx.tcx, substs);
425         let cause = self.cause(traits::ItemObligation(def_id));
426         predicates.predicates
427                   .into_iter()
428                   .map(|pred| traits::Obligation::new(cause.clone(), pred))
429                   .filter(|pred| !pred.has_escaping_regions())
430                   .collect()
431     }
432
433     fn from_object_ty(&mut self, ty: Ty<'tcx>, data: &ty::TraitTy<'tcx>) {
434         // Imagine a type like this:
435         //
436         //     trait Foo { }
437         //     trait Bar<'c> : 'c { }
438         //
439         //     &'b (Foo+'c+Bar<'d>)
440         //         ^
441         //
442         // In this case, the following relationships must hold:
443         //
444         //     'b <= 'c
445         //     'd <= 'c
446         //
447         // The first conditions is due to the normal region pointer
448         // rules, which say that a reference cannot outlive its
449         // referent.
450         //
451         // The final condition may be a bit surprising. In particular,
452         // you may expect that it would have been `'c <= 'd`, since
453         // usually lifetimes of outer things are conservative
454         // approximations for inner things. However, it works somewhat
455         // differently with trait objects: here the idea is that if the
456         // user specifies a region bound (`'c`, in this case) it is the
457         // "master bound" that *implies* that bounds from other traits are
458         // all met. (Remember that *all bounds* in a type like
459         // `Foo+Bar+Zed` must be met, not just one, hence if we write
460         // `Foo<'x>+Bar<'y>`, we know that the type outlives *both* 'x and
461         // 'y.)
462         //
463         // Note: in fact we only permit builtin traits, not `Bar<'d>`, I
464         // am looking forward to the future here.
465
466         if !data.has_escaping_regions() {
467             let implicit_bounds =
468                 object_region_bounds(self.infcx.tcx,
469                                      &data.principal,
470                                      data.bounds.builtin_bounds);
471
472             let explicit_bound = data.bounds.region_bound;
473
474             for implicit_bound in implicit_bounds {
475                 let cause = self.cause(traits::ReferenceOutlivesReferent(ty));
476                 let outlives = ty::Binder(ty::OutlivesPredicate(explicit_bound, implicit_bound));
477                 self.out.push(traits::Obligation::new(cause, outlives.to_predicate()));
478             }
479         }
480     }
481 }
482
483 /// Given an object type like `SomeTrait+Send`, computes the lifetime
484 /// bounds that must hold on the elided self type. These are derived
485 /// from the declarations of `SomeTrait`, `Send`, and friends -- if
486 /// they declare `trait SomeTrait : 'static`, for example, then
487 /// `'static` would appear in the list. The hard work is done by
488 /// `ty::required_region_bounds`, see that for more information.
489 pub fn object_region_bounds<'tcx>(
490     tcx: &ty::ctxt<'tcx>,
491     principal: &ty::PolyTraitRef<'tcx>,
492     others: ty::BuiltinBounds)
493     -> Vec<ty::Region>
494 {
495     // Since we don't actually *know* the self type for an object,
496     // this "open(err)" serves as a kind of dummy standin -- basically
497     // a skolemized type.
498     let open_ty = tcx.mk_infer(ty::FreshTy(0));
499
500     // Note that we preserve the overall binding levels here.
501     assert!(!open_ty.has_escaping_regions());
502     let substs = tcx.mk_substs(principal.0.substs.with_self_ty(open_ty));
503     let trait_refs = vec!(ty::Binder(ty::TraitRef::new(principal.0.def_id, substs)));
504
505     let mut predicates = others.to_predicates(tcx, open_ty);
506     predicates.extend(trait_refs.iter().map(|t| t.to_predicate()));
507
508     tcx.required_region_bounds(open_ty, predicates)
509 }