]> git.lizzy.rs Git - rust.git/blob - src/librustc/middle/expr_use_visitor.rs
Auto merge of #24865 - bluss:range-size, r=alexcrichton
[rust.git] / src / librustc / middle / expr_use_visitor.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A different sort of visitor for walking fn bodies.  Unlike the
12 //! normal visitor, which just walks the entire body in one shot, the
13 //! `ExprUseVisitor` determines how expressions are being used.
14
15 pub use self::MutateMode::*;
16 pub use self::LoanCause::*;
17 pub use self::ConsumeMode::*;
18 pub use self::MoveReason::*;
19 pub use self::MatchMode::*;
20 use self::TrackMatchMode::*;
21 use self::OverloadedCallType::*;
22
23 use middle::{def, region, pat_util};
24 use middle::mem_categorization as mc;
25 use middle::mem_categorization::Typer;
26 use middle::ty::{self};
27 use middle::ty::{MethodCall, MethodObject, MethodTraitObject};
28 use middle::ty::{MethodOrigin, MethodParam, MethodTypeParam};
29 use middle::ty::{MethodStatic, MethodStaticClosure};
30 use util::ppaux::Repr;
31
32 use syntax::{ast, ast_util};
33 use syntax::ptr::P;
34 use syntax::codemap::Span;
35
36 ///////////////////////////////////////////////////////////////////////////
37 // The Delegate trait
38
39 /// This trait defines the callbacks you can expect to receive when
40 /// employing the ExprUseVisitor.
41 pub trait Delegate<'tcx> {
42     // The value found at `cmt` is either copied or moved, depending
43     // on mode.
44     fn consume(&mut self,
45                consume_id: ast::NodeId,
46                consume_span: Span,
47                cmt: mc::cmt<'tcx>,
48                mode: ConsumeMode);
49
50     // The value found at `cmt` has been determined to match the
51     // pattern binding `matched_pat`, and its subparts are being
52     // copied or moved depending on `mode`.  Note that `matched_pat`
53     // is called on all variant/structs in the pattern (i.e., the
54     // interior nodes of the pattern's tree structure) while
55     // consume_pat is called on the binding identifiers in the pattern
56     // (which are leaves of the pattern's tree structure).
57     //
58     // Note that variants/structs and identifiers are disjoint; thus
59     // `matched_pat` and `consume_pat` are never both called on the
60     // same input pattern structure (though of `consume_pat` can be
61     // called on a subpart of an input passed to `matched_pat).
62     fn matched_pat(&mut self,
63                    matched_pat: &ast::Pat,
64                    cmt: mc::cmt<'tcx>,
65                    mode: MatchMode);
66
67     // The value found at `cmt` is either copied or moved via the
68     // pattern binding `consume_pat`, depending on mode.
69     fn consume_pat(&mut self,
70                    consume_pat: &ast::Pat,
71                    cmt: mc::cmt<'tcx>,
72                    mode: ConsumeMode);
73
74     // The value found at `borrow` is being borrowed at the point
75     // `borrow_id` for the region `loan_region` with kind `bk`.
76     fn borrow(&mut self,
77               borrow_id: ast::NodeId,
78               borrow_span: Span,
79               cmt: mc::cmt<'tcx>,
80               loan_region: ty::Region,
81               bk: ty::BorrowKind,
82               loan_cause: LoanCause);
83
84     // The local variable `id` is declared but not initialized.
85     fn decl_without_init(&mut self,
86                          id: ast::NodeId,
87                          span: Span);
88
89     // The path at `cmt` is being assigned to.
90     fn mutate(&mut self,
91               assignment_id: ast::NodeId,
92               assignment_span: Span,
93               assignee_cmt: mc::cmt<'tcx>,
94               mode: MutateMode);
95 }
96
97 #[derive(Copy, Clone, PartialEq, Debug)]
98 pub enum LoanCause {
99     ClosureCapture(Span),
100     AddrOf,
101     AutoRef,
102     AutoUnsafe,
103     RefBinding,
104     OverloadedOperator,
105     ClosureInvocation,
106     ForLoop,
107     MatchDiscriminant
108 }
109
110 #[derive(Copy, Clone, PartialEq, Debug)]
111 pub enum ConsumeMode {
112     Copy,                // reference to x where x has a type that copies
113     Move(MoveReason),    // reference to x where x has a type that moves
114 }
115
116 #[derive(Copy, Clone, PartialEq, Debug)]
117 pub enum MoveReason {
118     DirectRefMove,
119     PatBindingMove,
120     CaptureMove,
121 }
122
123 #[derive(Copy, Clone, PartialEq, Debug)]
124 pub enum MatchMode {
125     NonBindingMatch,
126     BorrowingMatch,
127     CopyingMatch,
128     MovingMatch,
129 }
130
131 #[derive(Copy, Clone, PartialEq, Debug)]
132 enum TrackMatchMode {
133     Unknown,
134     Definite(MatchMode),
135     Conflicting,
136 }
137
138 impl TrackMatchMode {
139     // Builds up the whole match mode for a pattern from its constituent
140     // parts.  The lattice looks like this:
141     //
142     //          Conflicting
143     //            /     \
144     //           /       \
145     //      Borrowing   Moving
146     //           \       /
147     //            \     /
148     //            Copying
149     //               |
150     //          NonBinding
151     //               |
152     //            Unknown
153     //
154     // examples:
155     //
156     // * `(_, some_int)` pattern is Copying, since
157     //   NonBinding + Copying => Copying
158     //
159     // * `(some_int, some_box)` pattern is Moving, since
160     //   Copying + Moving => Moving
161     //
162     // * `(ref x, some_box)` pattern is Conflicting, since
163     //   Borrowing + Moving => Conflicting
164     //
165     // Note that the `Unknown` and `Conflicting` states are
166     // represented separately from the other more interesting
167     // `Definite` states, which simplifies logic here somewhat.
168     fn lub(&mut self, mode: MatchMode) {
169         *self = match (*self, mode) {
170             // Note that clause order below is very significant.
171             (Unknown, new) => Definite(new),
172             (Definite(old), new) if old == new => Definite(old),
173
174             (Definite(old), NonBindingMatch) => Definite(old),
175             (Definite(NonBindingMatch), new) => Definite(new),
176
177             (Definite(old), CopyingMatch) => Definite(old),
178             (Definite(CopyingMatch), new) => Definite(new),
179
180             (Definite(_), _) => Conflicting,
181             (Conflicting, _) => *self,
182         };
183     }
184
185     fn match_mode(&self) -> MatchMode {
186         match *self {
187             Unknown => NonBindingMatch,
188             Definite(mode) => mode,
189             Conflicting => {
190                 // Conservatively return MovingMatch to let the
191                 // compiler continue to make progress.
192                 MovingMatch
193             }
194         }
195     }
196 }
197
198 #[derive(Copy, Clone, PartialEq, Debug)]
199 pub enum MutateMode {
200     Init,
201     JustWrite,    // x = y
202     WriteAndRead, // x += y
203 }
204
205 #[derive(Copy, Clone)]
206 enum OverloadedCallType {
207     FnOverloadedCall,
208     FnMutOverloadedCall,
209     FnOnceOverloadedCall,
210 }
211
212 impl OverloadedCallType {
213     fn from_trait_id(tcx: &ty::ctxt, trait_id: ast::DefId)
214                      -> OverloadedCallType {
215         for &(maybe_function_trait, overloaded_call_type) in [
216             (tcx.lang_items.fn_once_trait(), FnOnceOverloadedCall),
217             (tcx.lang_items.fn_mut_trait(), FnMutOverloadedCall),
218             (tcx.lang_items.fn_trait(), FnOverloadedCall)
219         ].iter() {
220             match maybe_function_trait {
221                 Some(function_trait) if function_trait == trait_id => {
222                     return overloaded_call_type
223                 }
224                 _ => continue,
225             }
226         }
227
228         tcx.sess.bug("overloaded call didn't map to known function trait")
229     }
230
231     fn from_method_id(tcx: &ty::ctxt, method_id: ast::DefId)
232                       -> OverloadedCallType {
233         let method_descriptor = match ty::impl_or_trait_item(tcx, method_id) {
234             ty::MethodTraitItem(ref method_descriptor) => {
235                 (*method_descriptor).clone()
236             }
237             _ => {
238                 tcx.sess.bug("overloaded call method wasn't in method map")
239             }
240         };
241         let impl_id = match method_descriptor.container {
242             ty::TraitContainer(_) => {
243                 tcx.sess.bug("statically resolved overloaded call method \
244                               belonged to a trait?!")
245             }
246             ty::ImplContainer(impl_id) => impl_id,
247         };
248         let trait_ref = match ty::impl_trait_ref(tcx, impl_id) {
249             None => {
250                 tcx.sess.bug("statically resolved overloaded call impl \
251                               didn't implement a trait?!")
252             }
253             Some(ref trait_ref) => (*trait_ref).clone(),
254         };
255         OverloadedCallType::from_trait_id(tcx, trait_ref.def_id)
256     }
257
258     fn from_closure(tcx: &ty::ctxt, closure_did: ast::DefId)
259                     -> OverloadedCallType {
260         let trait_did =
261             tcx.closure_kinds
262                .borrow()
263                .get(&closure_did)
264                .expect("OverloadedCallType::from_closure: didn't find closure id")
265                .trait_did(tcx);
266         OverloadedCallType::from_trait_id(tcx, trait_did)
267     }
268
269     fn from_method_origin(tcx: &ty::ctxt, origin: &MethodOrigin)
270                           -> OverloadedCallType {
271         match *origin {
272             MethodStatic(def_id) => {
273                 OverloadedCallType::from_method_id(tcx, def_id)
274             }
275             MethodStaticClosure(def_id) => {
276                 OverloadedCallType::from_closure(tcx, def_id)
277             }
278             MethodTypeParam(MethodParam { ref trait_ref, .. }) |
279             MethodTraitObject(MethodObject { ref trait_ref, .. }) => {
280                 OverloadedCallType::from_trait_id(tcx, trait_ref.def_id)
281             }
282         }
283     }
284 }
285
286 ///////////////////////////////////////////////////////////////////////////
287 // The ExprUseVisitor type
288 //
289 // This is the code that actually walks the tree. Like
290 // mem_categorization, it requires a TYPER, which is a type that
291 // supplies types from the tree. After type checking is complete, you
292 // can just use the tcx as the typer.
293
294 pub struct ExprUseVisitor<'d,'t,'tcx:'t,TYPER:'t> {
295     typer: &'t TYPER,
296     mc: mc::MemCategorizationContext<'t,TYPER>,
297     delegate: &'d mut (Delegate<'tcx>+'d),
298 }
299
300 // If the TYPER results in an error, it's because the type check
301 // failed (or will fail, when the error is uncovered and reported
302 // during writeback). In this case, we just ignore this part of the
303 // code.
304 //
305 // Note that this macro appears similar to try!(), but, unlike try!(),
306 // it does not propagate the error.
307 macro_rules! return_if_err {
308     ($inp: expr) => (
309         match $inp {
310             Ok(v) => v,
311             Err(()) => return
312         }
313     )
314 }
315
316 /// Whether the elements of an overloaded operation are passed by value or by reference
317 enum PassArgs {
318     ByValue,
319     ByRef,
320 }
321
322 impl<'d,'t,'tcx,TYPER:mc::Typer<'tcx>> ExprUseVisitor<'d,'t,'tcx,TYPER> {
323     pub fn new(delegate: &'d mut Delegate<'tcx>,
324                typer: &'t TYPER)
325                -> ExprUseVisitor<'d,'t,'tcx,TYPER> {
326         ExprUseVisitor {
327             typer: typer,
328             mc: mc::MemCategorizationContext::new(typer),
329             delegate: delegate,
330         }
331     }
332
333     pub fn walk_fn(&mut self,
334                    decl: &ast::FnDecl,
335                    body: &ast::Block) {
336         self.walk_arg_patterns(decl, body);
337         self.walk_block(body);
338     }
339
340     fn walk_arg_patterns(&mut self,
341                          decl: &ast::FnDecl,
342                          body: &ast::Block) {
343         for arg in &decl.inputs {
344             let arg_ty = return_if_err!(self.typer.node_ty(arg.pat.id));
345
346             let fn_body_scope = region::CodeExtent::from_node_id(body.id);
347             let arg_cmt = self.mc.cat_rvalue(
348                 arg.id,
349                 arg.pat.span,
350                 ty::ReScope(fn_body_scope), // Args live only as long as the fn body.
351                 arg_ty);
352
353             self.walk_irrefutable_pat(arg_cmt, &*arg.pat);
354         }
355     }
356
357     fn tcx(&self) -> &'t ty::ctxt<'tcx> {
358         self.typer.tcx()
359     }
360
361     fn delegate_consume(&mut self,
362                         consume_id: ast::NodeId,
363                         consume_span: Span,
364                         cmt: mc::cmt<'tcx>) {
365         debug!("delegate_consume(consume_id={}, cmt={})",
366                consume_id, cmt.repr(self.tcx()));
367
368         let mode = copy_or_move(self.typer, &cmt, DirectRefMove);
369         self.delegate.consume(consume_id, consume_span, cmt, mode);
370     }
371
372     fn consume_exprs(&mut self, exprs: &Vec<P<ast::Expr>>) {
373         for expr in exprs {
374             self.consume_expr(&**expr);
375         }
376     }
377
378     pub fn consume_expr(&mut self, expr: &ast::Expr) {
379         debug!("consume_expr(expr={})", expr.repr(self.tcx()));
380
381         let cmt = return_if_err!(self.mc.cat_expr(expr));
382         self.delegate_consume(expr.id, expr.span, cmt);
383         self.walk_expr(expr);
384     }
385
386     fn mutate_expr(&mut self,
387                    assignment_expr: &ast::Expr,
388                    expr: &ast::Expr,
389                    mode: MutateMode) {
390         let cmt = return_if_err!(self.mc.cat_expr(expr));
391         self.delegate.mutate(assignment_expr.id, assignment_expr.span, cmt, mode);
392         self.walk_expr(expr);
393     }
394
395     fn borrow_expr(&mut self,
396                    expr: &ast::Expr,
397                    r: ty::Region,
398                    bk: ty::BorrowKind,
399                    cause: LoanCause) {
400         debug!("borrow_expr(expr={}, r={}, bk={})",
401                expr.repr(self.tcx()), r.repr(self.tcx()), bk.repr(self.tcx()));
402
403         let cmt = return_if_err!(self.mc.cat_expr(expr));
404         self.delegate.borrow(expr.id, expr.span, cmt, r, bk, cause);
405
406         // Note: Unlike consume, we can ignore ExprParen. cat_expr
407         // already skips over them, and walk will uncover any
408         // attachments or whatever.
409         self.walk_expr(expr)
410     }
411
412     fn select_from_expr(&mut self, expr: &ast::Expr) {
413         self.walk_expr(expr)
414     }
415
416     pub fn walk_expr(&mut self, expr: &ast::Expr) {
417         debug!("walk_expr(expr={})", expr.repr(self.tcx()));
418
419         self.walk_adjustment(expr);
420
421         match expr.node {
422             ast::ExprParen(ref subexpr) => {
423                 self.walk_expr(&**subexpr)
424             }
425
426             ast::ExprPath(..) => { }
427
428             ast::ExprUnary(ast::UnDeref, ref base) => {      // *base
429                 if !self.walk_overloaded_operator(expr, &**base, Vec::new(), PassArgs::ByRef) {
430                     self.select_from_expr(&**base);
431                 }
432             }
433
434             ast::ExprField(ref base, _) => {         // base.f
435                 self.select_from_expr(&**base);
436             }
437
438             ast::ExprTupField(ref base, _) => {         // base.<n>
439                 self.select_from_expr(&**base);
440             }
441
442             ast::ExprIndex(ref lhs, ref rhs) => {       // lhs[rhs]
443                 if !self.walk_overloaded_operator(expr,
444                                                   &**lhs,
445                                                   vec![&**rhs],
446                                                   PassArgs::ByValue) {
447                     self.select_from_expr(&**lhs);
448                     self.consume_expr(&**rhs);
449                 }
450             }
451
452             ast::ExprRange(ref start, ref end) => {
453                 start.as_ref().map(|e| self.consume_expr(&**e));
454                 end.as_ref().map(|e| self.consume_expr(&**e));
455             }
456
457             ast::ExprCall(ref callee, ref args) => {    // callee(args)
458                 self.walk_callee(expr, &**callee);
459                 self.consume_exprs(args);
460             }
461
462             ast::ExprMethodCall(_, _, ref args) => { // callee.m(args)
463                 self.consume_exprs(args);
464             }
465
466             ast::ExprStruct(_, ref fields, ref opt_with) => {
467                 self.walk_struct_expr(expr, fields, opt_with);
468             }
469
470             ast::ExprTup(ref exprs) => {
471                 self.consume_exprs(exprs);
472             }
473
474             ast::ExprIf(ref cond_expr, ref then_blk, ref opt_else_expr) => {
475                 self.consume_expr(&**cond_expr);
476                 self.walk_block(&**then_blk);
477                 if let Some(ref else_expr) = *opt_else_expr {
478                     self.consume_expr(&**else_expr);
479                 }
480             }
481
482             ast::ExprIfLet(..) => {
483                 self.tcx().sess.span_bug(expr.span, "non-desugared ExprIfLet");
484             }
485
486             ast::ExprMatch(ref discr, ref arms, _) => {
487                 let discr_cmt = return_if_err!(self.mc.cat_expr(&**discr));
488                 self.borrow_expr(&**discr, ty::ReEmpty, ty::ImmBorrow, MatchDiscriminant);
489
490                 // treatment of the discriminant is handled while walking the arms.
491                 for arm in arms {
492                     let mode = self.arm_move_mode(discr_cmt.clone(), arm);
493                     let mode = mode.match_mode();
494                     self.walk_arm(discr_cmt.clone(), arm, mode);
495                 }
496             }
497
498             ast::ExprVec(ref exprs) => {
499                 self.consume_exprs(exprs);
500             }
501
502             ast::ExprAddrOf(m, ref base) => {   // &base
503                 // make sure that the thing we are pointing out stays valid
504                 // for the lifetime `scope_r` of the resulting ptr:
505                 let expr_ty = return_if_err!(self.typer.node_ty(expr.id));
506                 let r = ty::ty_region(self.tcx(), expr.span, expr_ty);
507                 let bk = ty::BorrowKind::from_mutbl(m);
508                 self.borrow_expr(&**base, r, bk, AddrOf);
509             }
510
511             ast::ExprInlineAsm(ref ia) => {
512                 for &(_, ref input) in &ia.inputs {
513                     self.consume_expr(&**input);
514                 }
515
516                 for &(_, ref output, is_rw) in &ia.outputs {
517                     self.mutate_expr(expr, &**output,
518                                            if is_rw { WriteAndRead } else { JustWrite });
519                 }
520             }
521
522             ast::ExprBreak(..) |
523             ast::ExprAgain(..) |
524             ast::ExprLit(..) => {}
525
526             ast::ExprLoop(ref blk, _) => {
527                 self.walk_block(&**blk);
528             }
529
530             ast::ExprWhile(ref cond_expr, ref blk, _) => {
531                 self.consume_expr(&**cond_expr);
532                 self.walk_block(&**blk);
533             }
534
535             ast::ExprWhileLet(..) => {
536                 self.tcx().sess.span_bug(expr.span, "non-desugared ExprWhileLet");
537             }
538
539             ast::ExprForLoop(..) => {
540                 self.tcx().sess.span_bug(expr.span, "non-desugared ExprForLoop");
541             }
542
543             ast::ExprUnary(op, ref lhs) => {
544                 let pass_args = if ast_util::is_by_value_unop(op) {
545                     PassArgs::ByValue
546                 } else {
547                     PassArgs::ByRef
548                 };
549
550                 if !self.walk_overloaded_operator(expr, &**lhs, Vec::new(), pass_args) {
551                     self.consume_expr(&**lhs);
552                 }
553             }
554
555             ast::ExprBinary(op, ref lhs, ref rhs) => {
556                 let pass_args = if ast_util::is_by_value_binop(op.node) {
557                     PassArgs::ByValue
558                 } else {
559                     PassArgs::ByRef
560                 };
561
562                 if !self.walk_overloaded_operator(expr, &**lhs, vec![&**rhs], pass_args) {
563                     self.consume_expr(&**lhs);
564                     self.consume_expr(&**rhs);
565                 }
566             }
567
568             ast::ExprBlock(ref blk) => {
569                 self.walk_block(&**blk);
570             }
571
572             ast::ExprRet(ref opt_expr) => {
573                 if let Some(ref expr) = *opt_expr {
574                     self.consume_expr(&**expr);
575                 }
576             }
577
578             ast::ExprAssign(ref lhs, ref rhs) => {
579                 self.mutate_expr(expr, &**lhs, JustWrite);
580                 self.consume_expr(&**rhs);
581             }
582
583             ast::ExprCast(ref base, _) => {
584                 self.consume_expr(&**base);
585             }
586
587             ast::ExprAssignOp(_, ref lhs, ref rhs) => {
588                 // This will have to change if/when we support
589                 // overloaded operators for `+=` and so forth.
590                 self.mutate_expr(expr, &**lhs, WriteAndRead);
591                 self.consume_expr(&**rhs);
592             }
593
594             ast::ExprRepeat(ref base, ref count) => {
595                 self.consume_expr(&**base);
596                 self.consume_expr(&**count);
597             }
598
599             ast::ExprClosure(..) => {
600                 self.walk_captures(expr)
601             }
602
603             ast::ExprBox(ref place, ref base) => {
604                 match *place {
605                     Some(ref place) => self.consume_expr(&**place),
606                     None => {}
607                 }
608                 self.consume_expr(&**base);
609             }
610
611             ast::ExprMac(..) => {
612                 self.tcx().sess.span_bug(
613                     expr.span,
614                     "macro expression remains after expansion");
615             }
616         }
617     }
618
619     fn walk_callee(&mut self, call: &ast::Expr, callee: &ast::Expr) {
620         let callee_ty = return_if_err!(self.typer.expr_ty_adjusted(callee));
621         debug!("walk_callee: callee={} callee_ty={}",
622                callee.repr(self.tcx()), callee_ty.repr(self.tcx()));
623         let call_scope = region::CodeExtent::from_node_id(call.id);
624         match callee_ty.sty {
625             ty::ty_bare_fn(..) => {
626                 self.consume_expr(callee);
627             }
628             ty::ty_err => { }
629             _ => {
630                 let overloaded_call_type =
631                     match self.typer.node_method_origin(MethodCall::expr(call.id)) {
632                         Some(method_origin) => {
633                             OverloadedCallType::from_method_origin(
634                                 self.tcx(),
635                                 &method_origin)
636                         }
637                         None => {
638                             self.tcx().sess.span_bug(
639                                 callee.span,
640                                 &format!("unexpected callee type {}", callee_ty.repr(self.tcx())))
641                         }
642                     };
643                 match overloaded_call_type {
644                     FnMutOverloadedCall => {
645                         self.borrow_expr(callee,
646                                          ty::ReScope(call_scope),
647                                          ty::MutBorrow,
648                                          ClosureInvocation);
649                     }
650                     FnOverloadedCall => {
651                         self.borrow_expr(callee,
652                                          ty::ReScope(call_scope),
653                                          ty::ImmBorrow,
654                                          ClosureInvocation);
655                     }
656                     FnOnceOverloadedCall => self.consume_expr(callee),
657                 }
658             }
659         }
660     }
661
662     fn walk_stmt(&mut self, stmt: &ast::Stmt) {
663         match stmt.node {
664             ast::StmtDecl(ref decl, _) => {
665                 match decl.node {
666                     ast::DeclLocal(ref local) => {
667                         self.walk_local(&**local);
668                     }
669
670                     ast::DeclItem(_) => {
671                         // we don't visit nested items in this visitor,
672                         // only the fn body we were given.
673                     }
674                 }
675             }
676
677             ast::StmtExpr(ref expr, _) |
678             ast::StmtSemi(ref expr, _) => {
679                 self.consume_expr(&**expr);
680             }
681
682             ast::StmtMac(..) => {
683                 self.tcx().sess.span_bug(stmt.span, "unexpanded stmt macro");
684             }
685         }
686     }
687
688     fn walk_local(&mut self, local: &ast::Local) {
689         match local.init {
690             None => {
691                 let delegate = &mut self.delegate;
692                 pat_util::pat_bindings(&self.typer.tcx().def_map, &*local.pat,
693                                        |_, id, span, _| {
694                     delegate.decl_without_init(id, span);
695                 })
696             }
697
698             Some(ref expr) => {
699                 // Variable declarations with
700                 // initializers are considered
701                 // "assigns", which is handled by
702                 // `walk_pat`:
703                 self.walk_expr(&**expr);
704                 let init_cmt = return_if_err!(self.mc.cat_expr(&**expr));
705                 self.walk_irrefutable_pat(init_cmt, &*local.pat);
706             }
707         }
708     }
709
710     /// Indicates that the value of `blk` will be consumed, meaning either copied or moved
711     /// depending on its type.
712     fn walk_block(&mut self, blk: &ast::Block) {
713         debug!("walk_block(blk.id={})", blk.id);
714
715         for stmt in &blk.stmts {
716             self.walk_stmt(&**stmt);
717         }
718
719         if let Some(ref tail_expr) = blk.expr {
720             self.consume_expr(&**tail_expr);
721         }
722     }
723
724     fn walk_struct_expr(&mut self,
725                         _expr: &ast::Expr,
726                         fields: &Vec<ast::Field>,
727                         opt_with: &Option<P<ast::Expr>>) {
728         // Consume the expressions supplying values for each field.
729         for field in fields {
730             self.consume_expr(&*field.expr);
731         }
732
733         let with_expr = match *opt_with {
734             Some(ref w) => &**w,
735             None => { return; }
736         };
737
738         let with_cmt = return_if_err!(self.mc.cat_expr(&*with_expr));
739
740         // Select just those fields of the `with`
741         // expression that will actually be used
742         let with_fields = match with_cmt.ty.sty {
743             ty::ty_struct(did, substs) => {
744                 ty::struct_fields(self.tcx(), did, substs)
745             }
746             _ => {
747                 // the base expression should always evaluate to a
748                 // struct; however, when EUV is run during typeck, it
749                 // may not. This will generate an error earlier in typeck,
750                 // so we can just ignore it.
751                 if !self.tcx().sess.has_errors() {
752                     self.tcx().sess.span_bug(
753                         with_expr.span,
754                         "with expression doesn't evaluate to a struct");
755                 }
756                 assert!(self.tcx().sess.has_errors());
757                 vec!()
758             }
759         };
760
761         // Consume those fields of the with expression that are needed.
762         for with_field in &with_fields {
763             if !contains_field_named(with_field, fields) {
764                 let cmt_field = self.mc.cat_field(&*with_expr,
765                                                   with_cmt.clone(),
766                                                   with_field.name,
767                                                   with_field.mt.ty);
768                 self.delegate_consume(with_expr.id, with_expr.span, cmt_field);
769             }
770         }
771
772         // walk the with expression so that complex expressions
773         // are properly handled.
774         self.walk_expr(with_expr);
775
776         fn contains_field_named(field: &ty::field,
777                                 fields: &Vec<ast::Field>)
778                                 -> bool
779         {
780             fields.iter().any(
781                 |f| f.ident.node.name == field.name)
782         }
783     }
784
785     // Invoke the appropriate delegate calls for anything that gets
786     // consumed or borrowed as part of the automatic adjustment
787     // process.
788     fn walk_adjustment(&mut self, expr: &ast::Expr) {
789         let typer = self.typer;
790         if let Some(adjustment) = typer.adjustments().borrow().get(&expr.id) {
791             match *adjustment {
792                 ty::AdjustReifyFnPointer |
793                 ty::AdjustUnsafeFnPointer => {
794                     // Creating a closure/fn-pointer or unsizing consumes
795                     // the input and stores it into the resulting rvalue.
796                     debug!("walk_adjustment(AdjustReifyFnPointer|AdjustUnsafeFnPointer)");
797                     let cmt_unadjusted =
798                         return_if_err!(self.mc.cat_expr_unadjusted(expr));
799                     self.delegate_consume(expr.id, expr.span, cmt_unadjusted);
800                 }
801                 ty::AdjustDerefRef(ref adj) => {
802                     self.walk_autoderefref(expr, adj);
803                 }
804             }
805         }
806     }
807
808     /// Autoderefs for overloaded Deref calls in fact reference their receiver. That is, if we have
809     /// `(*x)` where `x` is of type `Rc<T>`, then this in fact is equivalent to `x.deref()`. Since
810     /// `deref()` is declared with `&self`, this is an autoref of `x`.
811     fn walk_autoderefs(&mut self,
812                        expr: &ast::Expr,
813                        autoderefs: usize) {
814         debug!("walk_autoderefs expr={} autoderefs={}", expr.repr(self.tcx()), autoderefs);
815
816         for i in 0..autoderefs {
817             let deref_id = ty::MethodCall::autoderef(expr.id, i as u32);
818             match self.typer.node_method_ty(deref_id) {
819                 None => {}
820                 Some(method_ty) => {
821                     let cmt = return_if_err!(self.mc.cat_expr_autoderefd(expr, i));
822
823                     // the method call infrastructure should have
824                     // replaced all late-bound regions with variables:
825                     let self_ty = ty::ty_fn_sig(method_ty).input(0);
826                     let self_ty = ty::no_late_bound_regions(self.tcx(), &self_ty).unwrap();
827
828                     let (m, r) = match self_ty.sty {
829                         ty::ty_rptr(r, ref m) => (m.mutbl, r),
830                         _ => self.tcx().sess.span_bug(expr.span,
831                                 &format!("bad overloaded deref type {}",
832                                     method_ty.repr(self.tcx())))
833                     };
834                     let bk = ty::BorrowKind::from_mutbl(m);
835                     self.delegate.borrow(expr.id, expr.span, cmt,
836                                          *r, bk, AutoRef);
837                 }
838             }
839         }
840     }
841
842     fn walk_autoderefref(&mut self,
843                          expr: &ast::Expr,
844                          adj: &ty::AutoDerefRef<'tcx>) {
845         debug!("walk_autoderefref expr={} adj={}",
846                expr.repr(self.tcx()),
847                adj.repr(self.tcx()));
848
849         self.walk_autoderefs(expr, adj.autoderefs);
850
851         let cmt_derefd =
852             return_if_err!(self.mc.cat_expr_autoderefd(expr, adj.autoderefs));
853
854         let cmt_refd =
855             self.walk_autoref(expr, cmt_derefd, adj.autoref);
856
857         if adj.unsize.is_some() {
858             // Unsizing consumes the thin pointer and produces a fat one.
859             self.delegate_consume(expr.id, expr.span, cmt_refd);
860         }
861     }
862
863
864     /// Walks the autoref `opt_autoref` applied to the autoderef'd
865     /// `expr`. `cmt_derefd` is the mem-categorized form of `expr`
866     /// after all relevant autoderefs have occurred. Because AutoRefs
867     /// can be recursive, this function is recursive: it first walks
868     /// deeply all the way down the autoref chain, and then processes
869     /// the autorefs on the way out. At each point, it returns the
870     /// `cmt` for the rvalue that will be produced by introduced an
871     /// autoref.
872     fn walk_autoref(&mut self,
873                     expr: &ast::Expr,
874                     cmt_base: mc::cmt<'tcx>,
875                     opt_autoref: Option<ty::AutoRef<'tcx>>)
876                     -> mc::cmt<'tcx>
877     {
878         debug!("walk_autoref(expr.id={} cmt_derefd={} opt_autoref={:?})",
879                expr.id,
880                cmt_base.repr(self.tcx()),
881                opt_autoref);
882
883         let cmt_base_ty = cmt_base.ty;
884
885         let autoref = match opt_autoref {
886             Some(ref autoref) => autoref,
887             None => {
888                 // No AutoRef.
889                 return cmt_base;
890             }
891         };
892
893         debug!("walk_autoref: expr.id={} cmt_base={}",
894                expr.id,
895                cmt_base.repr(self.tcx()));
896
897         match *autoref {
898             ty::AutoPtr(r, m) => {
899                 self.delegate.borrow(expr.id,
900                                      expr.span,
901                                      cmt_base,
902                                      *r,
903                                      ty::BorrowKind::from_mutbl(m),
904                                      AutoRef);
905             }
906
907             ty::AutoUnsafe(m) => {
908                 debug!("walk_autoref: expr.id={} cmt_base={}",
909                        expr.id,
910                        cmt_base.repr(self.tcx()));
911
912                 // Converting from a &T to *T (or &mut T to *mut T) is
913                 // treated as borrowing it for the enclosing temporary
914                 // scope.
915                 let r = ty::ReScope(region::CodeExtent::from_node_id(expr.id));
916
917                 self.delegate.borrow(expr.id,
918                                      expr.span,
919                                      cmt_base,
920                                      r,
921                                      ty::BorrowKind::from_mutbl(m),
922                                      AutoUnsafe);
923             }
924         }
925
926         // Construct the categorization for the result of the autoref.
927         // This is always an rvalue, since we are producing a new
928         // (temporary) indirection.
929
930         let adj_ty =
931             ty::adjust_ty_for_autoref(self.tcx(),
932                                       cmt_base_ty,
933                                       opt_autoref);
934
935         self.mc.cat_rvalue_node(expr.id, expr.span, adj_ty)
936     }
937
938
939     // When this returns true, it means that the expression *is* a
940     // method-call (i.e. via the operator-overload).  This true result
941     // also implies that walk_overloaded_operator already took care of
942     // recursively processing the input arguments, and thus the caller
943     // should not do so.
944     fn walk_overloaded_operator(&mut self,
945                                 expr: &ast::Expr,
946                                 receiver: &ast::Expr,
947                                 rhs: Vec<&ast::Expr>,
948                                 pass_args: PassArgs)
949                                 -> bool
950     {
951         if !self.typer.is_method_call(expr.id) {
952             return false;
953         }
954
955         match pass_args {
956             PassArgs::ByValue => {
957                 self.consume_expr(receiver);
958                 for &arg in &rhs {
959                     self.consume_expr(arg);
960                 }
961
962                 return true;
963             },
964             PassArgs::ByRef => {},
965         }
966
967         self.walk_expr(receiver);
968
969         // Arguments (but not receivers) to overloaded operator
970         // methods are implicitly autoref'd which sadly does not use
971         // adjustments, so we must hardcode the borrow here.
972
973         let r = ty::ReScope(region::CodeExtent::from_node_id(expr.id));
974         let bk = ty::ImmBorrow;
975
976         for &arg in &rhs {
977             self.borrow_expr(arg, r, bk, OverloadedOperator);
978         }
979         return true;
980     }
981
982     fn arm_move_mode(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &ast::Arm) -> TrackMatchMode {
983         let mut mode = Unknown;
984         for pat in &arm.pats {
985             self.determine_pat_move_mode(discr_cmt.clone(), &**pat, &mut mode);
986         }
987         mode
988     }
989
990     fn walk_arm(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &ast::Arm, mode: MatchMode) {
991         for pat in &arm.pats {
992             self.walk_pat(discr_cmt.clone(), &**pat, mode);
993         }
994
995         if let Some(ref guard) = arm.guard {
996             self.consume_expr(&**guard);
997         }
998
999         self.consume_expr(&*arm.body);
1000     }
1001
1002     /// Walks an pat that occurs in isolation (i.e. top-level of fn
1003     /// arg or let binding.  *Not* a match arm or nested pat.)
1004     fn walk_irrefutable_pat(&mut self, cmt_discr: mc::cmt<'tcx>, pat: &ast::Pat) {
1005         let mut mode = Unknown;
1006         self.determine_pat_move_mode(cmt_discr.clone(), pat, &mut mode);
1007         let mode = mode.match_mode();
1008         self.walk_pat(cmt_discr, pat, mode);
1009     }
1010
1011     /// Identifies any bindings within `pat` and accumulates within
1012     /// `mode` whether the overall pattern/match structure is a move,
1013     /// copy, or borrow.
1014     fn determine_pat_move_mode(&mut self,
1015                                cmt_discr: mc::cmt<'tcx>,
1016                                pat: &ast::Pat,
1017                                mode: &mut TrackMatchMode) {
1018         debug!("determine_pat_move_mode cmt_discr={} pat={}", cmt_discr.repr(self.tcx()),
1019                pat.repr(self.tcx()));
1020         return_if_err!(self.mc.cat_pattern(cmt_discr, pat, |_mc, cmt_pat, pat| {
1021             let tcx = self.tcx();
1022             let def_map = &self.tcx().def_map;
1023             if pat_util::pat_is_binding(def_map, pat) {
1024                 match pat.node {
1025                     ast::PatIdent(ast::BindByRef(_), _, _) =>
1026                         mode.lub(BorrowingMatch),
1027                     ast::PatIdent(ast::BindByValue(_), _, _) => {
1028                         match copy_or_move(self.typer, &cmt_pat, PatBindingMove) {
1029                             Copy => mode.lub(CopyingMatch),
1030                             Move(_) => mode.lub(MovingMatch),
1031                         }
1032                     }
1033                     _ => {
1034                         tcx.sess.span_bug(
1035                             pat.span,
1036                             "binding pattern not an identifier");
1037                     }
1038                 }
1039             }
1040         }));
1041     }
1042
1043     /// The core driver for walking a pattern; `match_mode` must be
1044     /// established up front, e.g. via `determine_pat_move_mode` (see
1045     /// also `walk_irrefutable_pat` for patterns that stand alone).
1046     fn walk_pat(&mut self,
1047                 cmt_discr: mc::cmt<'tcx>,
1048                 pat: &ast::Pat,
1049                 match_mode: MatchMode) {
1050         debug!("walk_pat cmt_discr={} pat={}", cmt_discr.repr(self.tcx()),
1051                pat.repr(self.tcx()));
1052
1053         let mc = &self.mc;
1054         let typer = self.typer;
1055         let def_map = &self.tcx().def_map;
1056         let delegate = &mut self.delegate;
1057         return_if_err!(mc.cat_pattern(cmt_discr.clone(), pat, |mc, cmt_pat, pat| {
1058             if pat_util::pat_is_binding(def_map, pat) {
1059                 let tcx = typer.tcx();
1060
1061                 debug!("binding cmt_pat={} pat={} match_mode={:?}",
1062                        cmt_pat.repr(tcx),
1063                        pat.repr(tcx),
1064                        match_mode);
1065
1066                 // pat_ty: the type of the binding being produced.
1067                 let pat_ty = return_if_err!(typer.node_ty(pat.id));
1068
1069                 // Each match binding is effectively an assignment to the
1070                 // binding being produced.
1071                 let def = def_map.borrow().get(&pat.id).unwrap().full_def();
1072                 match mc.cat_def(pat.id, pat.span, pat_ty, def) {
1073                     Ok(binding_cmt) => {
1074                         delegate.mutate(pat.id, pat.span, binding_cmt, Init);
1075                     }
1076                     Err(_) => { }
1077                 }
1078
1079                 // It is also a borrow or copy/move of the value being matched.
1080                 match pat.node {
1081                     ast::PatIdent(ast::BindByRef(m), _, _) => {
1082                         let (r, bk) = {
1083                             (ty::ty_region(tcx, pat.span, pat_ty),
1084                              ty::BorrowKind::from_mutbl(m))
1085                         };
1086                         delegate.borrow(pat.id, pat.span, cmt_pat,
1087                                              r, bk, RefBinding);
1088                     }
1089                     ast::PatIdent(ast::BindByValue(_), _, _) => {
1090                         let mode = copy_or_move(typer, &cmt_pat, PatBindingMove);
1091                         debug!("walk_pat binding consuming pat");
1092                         delegate.consume_pat(pat, cmt_pat, mode);
1093                     }
1094                     _ => {
1095                         tcx.sess.span_bug(
1096                             pat.span,
1097                             "binding pattern not an identifier");
1098                     }
1099                 }
1100             } else {
1101                 match pat.node {
1102                     ast::PatVec(_, Some(ref slice_pat), _) => {
1103                         // The `slice_pat` here creates a slice into
1104                         // the original vector.  This is effectively a
1105                         // borrow of the elements of the vector being
1106                         // matched.
1107
1108                         let (slice_cmt, slice_mutbl, slice_r) =
1109                             return_if_err!(mc.cat_slice_pattern(cmt_pat, &**slice_pat));
1110
1111                         // Note: We declare here that the borrow
1112                         // occurs upon entering the `[...]`
1113                         // pattern. This implies that something like
1114                         // `[a; b]` where `a` is a move is illegal,
1115                         // because the borrow is already in effect.
1116                         // In fact such a move would be safe-ish, but
1117                         // it effectively *requires* that we use the
1118                         // nulling out semantics to indicate when a
1119                         // value has been moved, which we are trying
1120                         // to move away from.  Otherwise, how can we
1121                         // indicate that the first element in the
1122                         // vector has been moved?  Eventually, we
1123                         // could perhaps modify this rule to permit
1124                         // `[..a, b]` where `b` is a move, because in
1125                         // that case we can adjust the length of the
1126                         // original vec accordingly, but we'd have to
1127                         // make trans do the right thing, and it would
1128                         // only work for `~` vectors. It seems simpler
1129                         // to just require that people call
1130                         // `vec.pop()` or `vec.unshift()`.
1131                         let slice_bk = ty::BorrowKind::from_mutbl(slice_mutbl);
1132                         delegate.borrow(pat.id, pat.span,
1133                                         slice_cmt, slice_r,
1134                                         slice_bk, RefBinding);
1135                     }
1136                     _ => { }
1137                 }
1138             }
1139         }));
1140
1141         // Do a second pass over the pattern, calling `matched_pat` on
1142         // the interior nodes (enum variants and structs), as opposed
1143         // to the above loop's visit of than the bindings that form
1144         // the leaves of the pattern tree structure.
1145         return_if_err!(mc.cat_pattern(cmt_discr, pat, |mc, cmt_pat, pat| {
1146             let def_map = def_map.borrow();
1147             let tcx = typer.tcx();
1148
1149             match pat.node {
1150                 ast::PatEnum(_, _) | ast::PatQPath(..) |
1151                 ast::PatIdent(_, _, None) | ast::PatStruct(..) => {
1152                     match def_map.get(&pat.id).map(|d| d.full_def()) {
1153                         None => {
1154                             // no definition found: pat is not a
1155                             // struct or enum pattern.
1156                         }
1157
1158                         Some(def::DefVariant(enum_did, variant_did, _is_struct)) => {
1159                             let downcast_cmt =
1160                                 if ty::enum_is_univariant(tcx, enum_did) {
1161                                     cmt_pat
1162                                 } else {
1163                                     let cmt_pat_ty = cmt_pat.ty;
1164                                     mc.cat_downcast(pat, cmt_pat, cmt_pat_ty, variant_did)
1165                                 };
1166
1167                             debug!("variant downcast_cmt={} pat={}",
1168                                    downcast_cmt.repr(tcx),
1169                                    pat.repr(tcx));
1170
1171                             delegate.matched_pat(pat, downcast_cmt, match_mode);
1172                         }
1173
1174                         Some(def::DefStruct(..)) | Some(def::DefTy(_, false)) => {
1175                             // A struct (in either the value or type
1176                             // namespace; we encounter the former on
1177                             // e.g. patterns for unit structs).
1178
1179                             debug!("struct cmt_pat={} pat={}",
1180                                    cmt_pat.repr(tcx),
1181                                    pat.repr(tcx));
1182
1183                             delegate.matched_pat(pat, cmt_pat, match_mode);
1184                         }
1185
1186                         Some(def::DefConst(..)) |
1187                         Some(def::DefAssociatedConst(..)) |
1188                         Some(def::DefLocal(..)) => {
1189                             // This is a leaf (i.e. identifier binding
1190                             // or constant value to match); thus no
1191                             // `matched_pat` call.
1192                         }
1193
1194                         Some(def @ def::DefTy(_, true)) => {
1195                             // An enum's type -- should never be in a
1196                             // pattern.
1197
1198                             if !tcx.sess.has_errors() {
1199                                 let msg = format!("Pattern has unexpected type: {:?} and type {}",
1200                                                   def,
1201                                                   cmt_pat.ty.repr(tcx));
1202                                 tcx.sess.span_bug(pat.span, &msg)
1203                             }
1204                         }
1205
1206                         Some(def) => {
1207                             // Remaining cases are e.g. DefFn, to
1208                             // which identifiers within patterns
1209                             // should not resolve. However, we do
1210                             // encouter this when using the
1211                             // expr-use-visitor during typeck. So just
1212                             // ignore it, an error should have been
1213                             // reported.
1214
1215                             if !tcx.sess.has_errors() {
1216                                 let msg = format!("Pattern has unexpected def: {:?} and type {}",
1217                                                   def,
1218                                                   cmt_pat.ty.repr(tcx));
1219                                 tcx.sess.span_bug(pat.span, &msg[..])
1220                             }
1221                         }
1222                     }
1223                 }
1224
1225                 ast::PatIdent(_, _, Some(_)) => {
1226                     // Do nothing; this is a binding (not a enum
1227                     // variant or struct), and the cat_pattern call
1228                     // will visit the substructure recursively.
1229                 }
1230
1231                 ast::PatWild(_) | ast::PatTup(..) | ast::PatBox(..) |
1232                 ast::PatRegion(..) | ast::PatLit(..) | ast::PatRange(..) |
1233                 ast::PatVec(..) | ast::PatMac(..) => {
1234                     // Similarly, each of these cases does not
1235                     // correspond to a enum variant or struct, so we
1236                     // do not do any `matched_pat` calls for these
1237                     // cases either.
1238                 }
1239             }
1240         }));
1241     }
1242
1243     fn walk_captures(&mut self, closure_expr: &ast::Expr) {
1244         debug!("walk_captures({})", closure_expr.repr(self.tcx()));
1245
1246         ty::with_freevars(self.tcx(), closure_expr.id, |freevars| {
1247             for freevar in freevars {
1248                 let id_var = freevar.def.def_id().node;
1249                 let upvar_id = ty::UpvarId { var_id: id_var,
1250                                              closure_expr_id: closure_expr.id };
1251                 let upvar_capture = self.typer.upvar_capture(upvar_id).unwrap();
1252                 let cmt_var = return_if_err!(self.cat_captured_var(closure_expr.id,
1253                                                                    closure_expr.span,
1254                                                                    freevar.def));
1255                 match upvar_capture {
1256                     ty::UpvarCapture::ByValue => {
1257                         let mode = copy_or_move(self.typer, &cmt_var, CaptureMove);
1258                         self.delegate.consume(closure_expr.id, freevar.span, cmt_var, mode);
1259                     }
1260                     ty::UpvarCapture::ByRef(upvar_borrow) => {
1261                         self.delegate.borrow(closure_expr.id,
1262                                              closure_expr.span,
1263                                              cmt_var,
1264                                              upvar_borrow.region,
1265                                              upvar_borrow.kind,
1266                                              ClosureCapture(freevar.span));
1267                     }
1268                 }
1269             }
1270         });
1271     }
1272
1273     fn cat_captured_var(&mut self,
1274                         closure_id: ast::NodeId,
1275                         closure_span: Span,
1276                         upvar_def: def::Def)
1277                         -> mc::McResult<mc::cmt<'tcx>> {
1278         // Create the cmt for the variable being borrowed, from the
1279         // caller's perspective
1280         let var_id = upvar_def.def_id().node;
1281         let var_ty = try!(self.typer.node_ty(var_id));
1282         self.mc.cat_def(closure_id, closure_span, var_ty, upvar_def)
1283     }
1284 }
1285
1286 fn copy_or_move<'tcx>(typer: &mc::Typer<'tcx>,
1287                       cmt: &mc::cmt<'tcx>,
1288                       move_reason: MoveReason)
1289                       -> ConsumeMode
1290 {
1291     if typer.type_moves_by_default(cmt.span, cmt.ty) {
1292         Move(move_reason)
1293     } else {
1294         Copy
1295     }
1296 }