]> git.lizzy.rs Git - rust.git/blob - src/librustc/middle/expr_use_visitor.rs
fallout from removing hir::ExprRange
[rust.git] / src / librustc / middle / expr_use_visitor.rs
1 // Copyright 2014 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 //! A different sort of visitor for walking fn bodies.  Unlike the
12 //! normal visitor, which just walks the entire body in one shot, the
13 //! `ExprUseVisitor` determines how expressions are being used.
14
15 pub use self::LoanCause::*;
16 pub use self::ConsumeMode::*;
17 pub use self::MoveReason::*;
18 pub use self::MatchMode::*;
19 use self::TrackMatchMode::*;
20 use self::OverloadedCallType::*;
21
22 use middle::pat_util;
23 use middle::def::Def;
24 use middle::def_id::{DefId};
25 use middle::infer;
26 use middle::mem_categorization as mc;
27 use middle::ty;
28 use middle::ty::adjustment;
29
30 use rustc_front::hir::{self, PatKind};
31
32 use syntax::ast;
33 use syntax::ptr::P;
34 use syntax::codemap::Span;
35
36 ///////////////////////////////////////////////////////////////////////////
37 // The Delegate trait
38
39 /// This trait defines the callbacks you can expect to receive when
40 /// employing the ExprUseVisitor.
41 pub trait Delegate<'tcx> {
42     // The value found at `cmt` is either copied or moved, depending
43     // on mode.
44     fn consume(&mut self,
45                consume_id: ast::NodeId,
46                consume_span: Span,
47                cmt: mc::cmt<'tcx>,
48                mode: ConsumeMode);
49
50     // The value found at `cmt` has been determined to match the
51     // pattern binding `matched_pat`, and its subparts are being
52     // copied or moved depending on `mode`.  Note that `matched_pat`
53     // is called on all variant/structs in the pattern (i.e., the
54     // interior nodes of the pattern's tree structure) while
55     // consume_pat is called on the binding identifiers in the pattern
56     // (which are leaves of the pattern's tree structure).
57     //
58     // Note that variants/structs and identifiers are disjoint; thus
59     // `matched_pat` and `consume_pat` are never both called on the
60     // same input pattern structure (though of `consume_pat` can be
61     // called on a subpart of an input passed to `matched_pat).
62     fn matched_pat(&mut self,
63                    matched_pat: &hir::Pat,
64                    cmt: mc::cmt<'tcx>,
65                    mode: MatchMode);
66
67     // The value found at `cmt` is either copied or moved via the
68     // pattern binding `consume_pat`, depending on mode.
69     fn consume_pat(&mut self,
70                    consume_pat: &hir::Pat,
71                    cmt: mc::cmt<'tcx>,
72                    mode: ConsumeMode);
73
74     // The value found at `borrow` is being borrowed at the point
75     // `borrow_id` for the region `loan_region` with kind `bk`.
76     fn borrow(&mut self,
77               borrow_id: ast::NodeId,
78               borrow_span: Span,
79               cmt: mc::cmt<'tcx>,
80               loan_region: ty::Region,
81               bk: ty::BorrowKind,
82               loan_cause: LoanCause);
83
84     // The local variable `id` is declared but not initialized.
85     fn decl_without_init(&mut self,
86                          id: ast::NodeId,
87                          span: Span);
88
89     // The path at `cmt` is being assigned to.
90     fn mutate(&mut self,
91               assignment_id: ast::NodeId,
92               assignment_span: Span,
93               assignee_cmt: mc::cmt<'tcx>,
94               mode: MutateMode);
95 }
96
97 #[derive(Copy, Clone, PartialEq, Debug)]
98 pub enum LoanCause {
99     ClosureCapture(Span),
100     AddrOf,
101     AutoRef,
102     AutoUnsafe,
103     RefBinding,
104     OverloadedOperator,
105     ClosureInvocation,
106     ForLoop,
107     MatchDiscriminant
108 }
109
110 #[derive(Copy, Clone, PartialEq, Debug)]
111 pub enum ConsumeMode {
112     Copy,                // reference to x where x has a type that copies
113     Move(MoveReason),    // reference to x where x has a type that moves
114 }
115
116 #[derive(Copy, Clone, PartialEq, Debug)]
117 pub enum MoveReason {
118     DirectRefMove,
119     PatBindingMove,
120     CaptureMove,
121 }
122
123 #[derive(Copy, Clone, PartialEq, Debug)]
124 pub enum MatchMode {
125     NonBindingMatch,
126     BorrowingMatch,
127     CopyingMatch,
128     MovingMatch,
129 }
130
131 #[derive(Copy, Clone, PartialEq, Debug)]
132 enum TrackMatchMode {
133     Unknown,
134     Definite(MatchMode),
135     Conflicting,
136 }
137
138 impl TrackMatchMode {
139     // Builds up the whole match mode for a pattern from its constituent
140     // parts.  The lattice looks like this:
141     //
142     //          Conflicting
143     //            /     \
144     //           /       \
145     //      Borrowing   Moving
146     //           \       /
147     //            \     /
148     //            Copying
149     //               |
150     //          NonBinding
151     //               |
152     //            Unknown
153     //
154     // examples:
155     //
156     // * `(_, some_int)` pattern is Copying, since
157     //   NonBinding + Copying => Copying
158     //
159     // * `(some_int, some_box)` pattern is Moving, since
160     //   Copying + Moving => Moving
161     //
162     // * `(ref x, some_box)` pattern is Conflicting, since
163     //   Borrowing + Moving => Conflicting
164     //
165     // Note that the `Unknown` and `Conflicting` states are
166     // represented separately from the other more interesting
167     // `Definite` states, which simplifies logic here somewhat.
168     fn lub(&mut self, mode: MatchMode) {
169         *self = match (*self, mode) {
170             // Note that clause order below is very significant.
171             (Unknown, new) => Definite(new),
172             (Definite(old), new) if old == new => Definite(old),
173
174             (Definite(old), NonBindingMatch) => Definite(old),
175             (Definite(NonBindingMatch), new) => Definite(new),
176
177             (Definite(old), CopyingMatch) => Definite(old),
178             (Definite(CopyingMatch), new) => Definite(new),
179
180             (Definite(_), _) => Conflicting,
181             (Conflicting, _) => *self,
182         };
183     }
184
185     fn match_mode(&self) -> MatchMode {
186         match *self {
187             Unknown => NonBindingMatch,
188             Definite(mode) => mode,
189             Conflicting => {
190                 // Conservatively return MovingMatch to let the
191                 // compiler continue to make progress.
192                 MovingMatch
193             }
194         }
195     }
196 }
197
198 #[derive(Copy, Clone, PartialEq, Debug)]
199 pub enum MutateMode {
200     Init,
201     JustWrite,    // x = y
202     WriteAndRead, // x += y
203 }
204
205 #[derive(Copy, Clone)]
206 enum OverloadedCallType {
207     FnOverloadedCall,
208     FnMutOverloadedCall,
209     FnOnceOverloadedCall,
210 }
211
212 impl OverloadedCallType {
213     fn from_trait_id(tcx: &ty::ctxt, trait_id: DefId)
214                      -> OverloadedCallType {
215         for &(maybe_function_trait, overloaded_call_type) in &[
216             (tcx.lang_items.fn_once_trait(), FnOnceOverloadedCall),
217             (tcx.lang_items.fn_mut_trait(), FnMutOverloadedCall),
218             (tcx.lang_items.fn_trait(), FnOverloadedCall)
219         ] {
220             match maybe_function_trait {
221                 Some(function_trait) if function_trait == trait_id => {
222                     return overloaded_call_type
223                 }
224                 _ => continue,
225             }
226         }
227
228         tcx.sess.bug("overloaded call didn't map to known function trait")
229     }
230
231     fn from_method_id(tcx: &ty::ctxt, method_id: DefId)
232                       -> OverloadedCallType {
233         let method = tcx.impl_or_trait_item(method_id);
234         OverloadedCallType::from_trait_id(tcx, method.container().id())
235     }
236 }
237
238 ///////////////////////////////////////////////////////////////////////////
239 // The ExprUseVisitor type
240 //
241 // This is the code that actually walks the tree. Like
242 // mem_categorization, it requires a TYPER, which is a type that
243 // supplies types from the tree. After type checking is complete, you
244 // can just use the tcx as the typer.
245 pub struct ExprUseVisitor<'d, 't, 'a: 't, 'tcx:'a+'d> {
246     typer: &'t infer::InferCtxt<'a, 'tcx>,
247     mc: mc::MemCategorizationContext<'t, 'a, 'tcx>,
248     delegate: &'d mut Delegate<'tcx>,
249 }
250
251 // If the TYPER results in an error, it's because the type check
252 // failed (or will fail, when the error is uncovered and reported
253 // during writeback). In this case, we just ignore this part of the
254 // code.
255 //
256 // Note that this macro appears similar to try!(), but, unlike try!(),
257 // it does not propagate the error.
258 macro_rules! return_if_err {
259     ($inp: expr) => (
260         match $inp {
261             Ok(v) => v,
262             Err(()) => {
263                 debug!("mc reported err");
264                 return
265             }
266         }
267     )
268 }
269
270 /// Whether the elements of an overloaded operation are passed by value or by reference
271 enum PassArgs {
272     ByValue,
273     ByRef,
274 }
275
276 impl<'d,'t,'a,'tcx> ExprUseVisitor<'d,'t,'a,'tcx> {
277     pub fn new(delegate: &'d mut (Delegate<'tcx>+'d),
278                typer: &'t infer::InferCtxt<'a, 'tcx>)
279                -> ExprUseVisitor<'d,'t,'a,'tcx> where 'tcx:'a+'d
280     {
281         let mc: mc::MemCategorizationContext<'t, 'a, 'tcx> =
282             mc::MemCategorizationContext::new(typer);
283         ExprUseVisitor { typer: typer, mc: mc, delegate: delegate }
284     }
285
286     pub fn walk_fn(&mut self,
287                    decl: &hir::FnDecl,
288                    body: &hir::Block) {
289         self.walk_arg_patterns(decl, body);
290         self.walk_block(body);
291     }
292
293     fn walk_arg_patterns(&mut self,
294                          decl: &hir::FnDecl,
295                          body: &hir::Block) {
296         for arg in &decl.inputs {
297             let arg_ty = return_if_err!(self.typer.node_ty(arg.pat.id));
298
299             let fn_body_scope = self.tcx().region_maps.node_extent(body.id);
300             let arg_cmt = self.mc.cat_rvalue(
301                 arg.id,
302                 arg.pat.span,
303                 ty::ReScope(fn_body_scope), // Args live only as long as the fn body.
304                 arg_ty);
305
306             self.walk_irrefutable_pat(arg_cmt, &arg.pat);
307         }
308     }
309
310     fn tcx(&self) -> &'t ty::ctxt<'tcx> {
311         self.typer.tcx
312     }
313
314     fn delegate_consume(&mut self,
315                         consume_id: ast::NodeId,
316                         consume_span: Span,
317                         cmt: mc::cmt<'tcx>) {
318         debug!("delegate_consume(consume_id={}, cmt={:?})",
319                consume_id, cmt);
320
321         let mode = copy_or_move(self.typer, &cmt, DirectRefMove);
322         self.delegate.consume(consume_id, consume_span, cmt, mode);
323     }
324
325     fn consume_exprs(&mut self, exprs: &[P<hir::Expr>]) {
326         for expr in exprs {
327             self.consume_expr(&expr);
328         }
329     }
330
331     pub fn consume_expr(&mut self, expr: &hir::Expr) {
332         debug!("consume_expr(expr={:?})", expr);
333
334         let cmt = return_if_err!(self.mc.cat_expr(expr));
335         self.delegate_consume(expr.id, expr.span, cmt);
336         self.walk_expr(expr);
337     }
338
339     fn mutate_expr(&mut self,
340                    assignment_expr: &hir::Expr,
341                    expr: &hir::Expr,
342                    mode: MutateMode) {
343         let cmt = return_if_err!(self.mc.cat_expr(expr));
344         self.delegate.mutate(assignment_expr.id, assignment_expr.span, cmt, mode);
345         self.walk_expr(expr);
346     }
347
348     fn borrow_expr(&mut self,
349                    expr: &hir::Expr,
350                    r: ty::Region,
351                    bk: ty::BorrowKind,
352                    cause: LoanCause) {
353         debug!("borrow_expr(expr={:?}, r={:?}, bk={:?})",
354                expr, r, bk);
355
356         let cmt = return_if_err!(self.mc.cat_expr(expr));
357         self.delegate.borrow(expr.id, expr.span, cmt, r, bk, cause);
358
359         self.walk_expr(expr)
360     }
361
362     fn select_from_expr(&mut self, expr: &hir::Expr) {
363         self.walk_expr(expr)
364     }
365
366     pub fn walk_expr(&mut self, expr: &hir::Expr) {
367         debug!("walk_expr(expr={:?})", expr);
368
369         self.walk_adjustment(expr);
370
371         match expr.node {
372             hir::ExprPath(..) => { }
373
374             hir::ExprType(ref subexpr, _) => {
375                 self.walk_expr(&subexpr)
376             }
377
378             hir::ExprUnary(hir::UnDeref, ref base) => {      // *base
379                 if !self.walk_overloaded_operator(expr, &base, Vec::new(), PassArgs::ByRef) {
380                     self.select_from_expr(&base);
381                 }
382             }
383
384             hir::ExprField(ref base, _) => {         // base.f
385                 self.select_from_expr(&base);
386             }
387
388             hir::ExprTupField(ref base, _) => {         // base.<n>
389                 self.select_from_expr(&base);
390             }
391
392             hir::ExprIndex(ref lhs, ref rhs) => {       // lhs[rhs]
393                 if !self.walk_overloaded_operator(expr,
394                                                   &lhs,
395                                                   vec![&rhs],
396                                                   PassArgs::ByValue) {
397                     self.select_from_expr(&lhs);
398                     self.consume_expr(&rhs);
399                 }
400             }
401
402             hir::ExprCall(ref callee, ref args) => {    // callee(args)
403                 self.walk_callee(expr, &callee);
404                 self.consume_exprs(args);
405             }
406
407             hir::ExprMethodCall(_, _, ref args) => { // callee.m(args)
408                 self.consume_exprs(args);
409             }
410
411             hir::ExprStruct(_, ref fields, ref opt_with) => {
412                 self.walk_struct_expr(expr, fields, opt_with);
413             }
414
415             hir::ExprTup(ref exprs) => {
416                 self.consume_exprs(exprs);
417             }
418
419             hir::ExprIf(ref cond_expr, ref then_blk, ref opt_else_expr) => {
420                 self.consume_expr(&cond_expr);
421                 self.walk_block(&then_blk);
422                 if let Some(ref else_expr) = *opt_else_expr {
423                     self.consume_expr(&else_expr);
424                 }
425             }
426
427             hir::ExprMatch(ref discr, ref arms, _) => {
428                 let discr_cmt = return_if_err!(self.mc.cat_expr(&discr));
429                 self.borrow_expr(&discr, ty::ReEmpty, ty::ImmBorrow, MatchDiscriminant);
430
431                 // treatment of the discriminant is handled while walking the arms.
432                 for arm in arms {
433                     let mode = self.arm_move_mode(discr_cmt.clone(), arm);
434                     let mode = mode.match_mode();
435                     self.walk_arm(discr_cmt.clone(), arm, mode);
436                 }
437             }
438
439             hir::ExprVec(ref exprs) => {
440                 self.consume_exprs(exprs);
441             }
442
443             hir::ExprAddrOf(m, ref base) => {   // &base
444                 // make sure that the thing we are pointing out stays valid
445                 // for the lifetime `scope_r` of the resulting ptr:
446                 let expr_ty = return_if_err!(self.typer.node_ty(expr.id));
447                 if let ty::TyRef(&r, _) = expr_ty.sty {
448                     let bk = ty::BorrowKind::from_mutbl(m);
449                     self.borrow_expr(&base, r, bk, AddrOf);
450                 }
451             }
452
453             hir::ExprInlineAsm(ref ia) => {
454                 for &(_, ref input) in &ia.inputs {
455                     self.consume_expr(&input);
456                 }
457
458                 for output in &ia.outputs {
459                     if output.is_indirect {
460                         self.consume_expr(&output.expr);
461                     } else {
462                         self.mutate_expr(expr, &output.expr,
463                                          if output.is_rw {
464                                              MutateMode::WriteAndRead
465                                          } else {
466                                              MutateMode::JustWrite
467                                          });
468                     }
469                 }
470             }
471
472             hir::ExprBreak(..) |
473             hir::ExprAgain(..) |
474             hir::ExprLit(..) => {}
475
476             hir::ExprLoop(ref blk, _) => {
477                 self.walk_block(&blk);
478             }
479
480             hir::ExprWhile(ref cond_expr, ref blk, _) => {
481                 self.consume_expr(&cond_expr);
482                 self.walk_block(&blk);
483             }
484
485             hir::ExprUnary(op, ref lhs) => {
486                 let pass_args = if ::rustc_front::util::is_by_value_unop(op) {
487                     PassArgs::ByValue
488                 } else {
489                     PassArgs::ByRef
490                 };
491
492                 if !self.walk_overloaded_operator(expr, &lhs, Vec::new(), pass_args) {
493                     self.consume_expr(&lhs);
494                 }
495             }
496
497             hir::ExprBinary(op, ref lhs, ref rhs) => {
498                 let pass_args = if ::rustc_front::util::is_by_value_binop(op.node) {
499                     PassArgs::ByValue
500                 } else {
501                     PassArgs::ByRef
502                 };
503
504                 if !self.walk_overloaded_operator(expr, &lhs, vec![&rhs], pass_args) {
505                     self.consume_expr(&lhs);
506                     self.consume_expr(&rhs);
507                 }
508             }
509
510             hir::ExprBlock(ref blk) => {
511                 self.walk_block(&blk);
512             }
513
514             hir::ExprRet(ref opt_expr) => {
515                 if let Some(ref expr) = *opt_expr {
516                     self.consume_expr(&expr);
517                 }
518             }
519
520             hir::ExprAssign(ref lhs, ref rhs) => {
521                 self.mutate_expr(expr, &lhs, MutateMode::JustWrite);
522                 self.consume_expr(&rhs);
523             }
524
525             hir::ExprCast(ref base, _) => {
526                 self.consume_expr(&base);
527             }
528
529             hir::ExprAssignOp(op, ref lhs, ref rhs) => {
530                 // NB All our assignment operations take the RHS by value
531                 assert!(::rustc_front::util::is_by_value_binop(op.node));
532
533                 if !self.walk_overloaded_operator(expr, lhs, vec![rhs], PassArgs::ByValue) {
534                     self.mutate_expr(expr, &lhs, MutateMode::WriteAndRead);
535                     self.consume_expr(&rhs);
536                 }
537             }
538
539             hir::ExprRepeat(ref base, ref count) => {
540                 self.consume_expr(&base);
541                 self.consume_expr(&count);
542             }
543
544             hir::ExprClosure(..) => {
545                 self.walk_captures(expr)
546             }
547
548             hir::ExprBox(ref base) => {
549                 self.consume_expr(&base);
550             }
551         }
552     }
553
554     fn walk_callee(&mut self, call: &hir::Expr, callee: &hir::Expr) {
555         let callee_ty = return_if_err!(self.typer.expr_ty_adjusted(callee));
556         debug!("walk_callee: callee={:?} callee_ty={:?}",
557                callee, callee_ty);
558         let call_scope = self.tcx().region_maps.node_extent(call.id);
559         match callee_ty.sty {
560             ty::TyBareFn(..) => {
561                 self.consume_expr(callee);
562             }
563             ty::TyError => { }
564             _ => {
565                 let overloaded_call_type =
566                     match self.typer.node_method_id(ty::MethodCall::expr(call.id)) {
567                         Some(method_id) => {
568                             OverloadedCallType::from_method_id(self.tcx(), method_id)
569                         }
570                         None => {
571                             self.tcx().sess.span_bug(
572                                 callee.span,
573                                 &format!("unexpected callee type {}", callee_ty))
574                         }
575                     };
576                 match overloaded_call_type {
577                     FnMutOverloadedCall => {
578                         self.borrow_expr(callee,
579                                          ty::ReScope(call_scope),
580                                          ty::MutBorrow,
581                                          ClosureInvocation);
582                     }
583                     FnOverloadedCall => {
584                         self.borrow_expr(callee,
585                                          ty::ReScope(call_scope),
586                                          ty::ImmBorrow,
587                                          ClosureInvocation);
588                     }
589                     FnOnceOverloadedCall => self.consume_expr(callee),
590                 }
591             }
592         }
593     }
594
595     fn walk_stmt(&mut self, stmt: &hir::Stmt) {
596         match stmt.node {
597             hir::StmtDecl(ref decl, _) => {
598                 match decl.node {
599                     hir::DeclLocal(ref local) => {
600                         self.walk_local(&local);
601                     }
602
603                     hir::DeclItem(_) => {
604                         // we don't visit nested items in this visitor,
605                         // only the fn body we were given.
606                     }
607                 }
608             }
609
610             hir::StmtExpr(ref expr, _) |
611             hir::StmtSemi(ref expr, _) => {
612                 self.consume_expr(&expr);
613             }
614         }
615     }
616
617     fn walk_local(&mut self, local: &hir::Local) {
618         match local.init {
619             None => {
620                 let delegate = &mut self.delegate;
621                 pat_util::pat_bindings(&self.typer.tcx.def_map, &local.pat,
622                                        |_, id, span, _| {
623                     delegate.decl_without_init(id, span);
624                 })
625             }
626
627             Some(ref expr) => {
628                 // Variable declarations with
629                 // initializers are considered
630                 // "assigns", which is handled by
631                 // `walk_pat`:
632                 self.walk_expr(&expr);
633                 let init_cmt = return_if_err!(self.mc.cat_expr(&expr));
634                 self.walk_irrefutable_pat(init_cmt, &local.pat);
635             }
636         }
637     }
638
639     /// Indicates that the value of `blk` will be consumed, meaning either copied or moved
640     /// depending on its type.
641     fn walk_block(&mut self, blk: &hir::Block) {
642         debug!("walk_block(blk.id={})", blk.id);
643
644         for stmt in &blk.stmts {
645             self.walk_stmt(stmt);
646         }
647
648         if let Some(ref tail_expr) = blk.expr {
649             self.consume_expr(&tail_expr);
650         }
651     }
652
653     fn walk_struct_expr(&mut self,
654                         _expr: &hir::Expr,
655                         fields: &[hir::Field],
656                         opt_with: &Option<P<hir::Expr>>) {
657         // Consume the expressions supplying values for each field.
658         for field in fields {
659             self.consume_expr(&field.expr);
660         }
661
662         let with_expr = match *opt_with {
663             Some(ref w) => &**w,
664             None => { return; }
665         };
666
667         let with_cmt = return_if_err!(self.mc.cat_expr(&with_expr));
668
669         // Select just those fields of the `with`
670         // expression that will actually be used
671         if let ty::TyStruct(def, substs) = with_cmt.ty.sty {
672             // Consume those fields of the with expression that are needed.
673             for with_field in &def.struct_variant().fields {
674                 if !contains_field_named(with_field, fields) {
675                     let cmt_field = self.mc.cat_field(
676                         &*with_expr,
677                         with_cmt.clone(),
678                         with_field.name,
679                         with_field.ty(self.tcx(), substs)
680                     );
681                     self.delegate_consume(with_expr.id, with_expr.span, cmt_field);
682                 }
683             }
684         } else {
685             // the base expression should always evaluate to a
686             // struct; however, when EUV is run during typeck, it
687             // may not. This will generate an error earlier in typeck,
688             // so we can just ignore it.
689             if !self.tcx().sess.has_errors() {
690                 self.tcx().sess.span_bug(
691                     with_expr.span,
692                     "with expression doesn't evaluate to a struct");
693             }
694         };
695
696         // walk the with expression so that complex expressions
697         // are properly handled.
698         self.walk_expr(with_expr);
699
700         fn contains_field_named(field: ty::FieldDef,
701                                 fields: &[hir::Field])
702                                 -> bool
703         {
704             fields.iter().any(
705                 |f| f.name.node == field.name)
706         }
707     }
708
709     // Invoke the appropriate delegate calls for anything that gets
710     // consumed or borrowed as part of the automatic adjustment
711     // process.
712     fn walk_adjustment(&mut self, expr: &hir::Expr) {
713         let typer = self.typer;
714         //NOTE(@jroesch): mixed RefCell borrow causes crash
715         let adj = typer.adjustments().get(&expr.id).map(|x| x.clone());
716         if let Some(adjustment) = adj {
717             match adjustment {
718                 adjustment::AdjustReifyFnPointer |
719                 adjustment::AdjustUnsafeFnPointer |
720                 adjustment::AdjustMutToConstPointer => {
721                     // Creating a closure/fn-pointer or unsizing consumes
722                     // the input and stores it into the resulting rvalue.
723                     debug!("walk_adjustment: trivial adjustment");
724                     let cmt_unadjusted =
725                         return_if_err!(self.mc.cat_expr_unadjusted(expr));
726                     self.delegate_consume(expr.id, expr.span, cmt_unadjusted);
727                 }
728                 adjustment::AdjustDerefRef(ref adj) => {
729                     self.walk_autoderefref(expr, adj);
730                 }
731             }
732         }
733     }
734
735     /// Autoderefs for overloaded Deref calls in fact reference their receiver. That is, if we have
736     /// `(*x)` where `x` is of type `Rc<T>`, then this in fact is equivalent to `x.deref()`. Since
737     /// `deref()` is declared with `&self`, this is an autoref of `x`.
738     fn walk_autoderefs(&mut self,
739                        expr: &hir::Expr,
740                        autoderefs: usize) {
741         debug!("walk_autoderefs expr={:?} autoderefs={}", expr, autoderefs);
742
743         for i in 0..autoderefs {
744             let deref_id = ty::MethodCall::autoderef(expr.id, i as u32);
745             match self.typer.node_method_ty(deref_id) {
746                 None => {}
747                 Some(method_ty) => {
748                     let cmt = return_if_err!(self.mc.cat_expr_autoderefd(expr, i));
749
750                     // the method call infrastructure should have
751                     // replaced all late-bound regions with variables:
752                     let self_ty = method_ty.fn_sig().input(0);
753                     let self_ty = self.tcx().no_late_bound_regions(&self_ty).unwrap();
754
755                     let (m, r) = match self_ty.sty {
756                         ty::TyRef(r, ref m) => (m.mutbl, r),
757                         _ => self.tcx().sess.span_bug(expr.span,
758                                 &format!("bad overloaded deref type {:?}",
759                                     method_ty))
760                     };
761                     let bk = ty::BorrowKind::from_mutbl(m);
762                     self.delegate.borrow(expr.id, expr.span, cmt,
763                                          *r, bk, AutoRef);
764                 }
765             }
766         }
767     }
768
769     fn walk_autoderefref(&mut self,
770                          expr: &hir::Expr,
771                          adj: &adjustment::AutoDerefRef<'tcx>) {
772         debug!("walk_autoderefref expr={:?} adj={:?}",
773                expr,
774                adj);
775
776         self.walk_autoderefs(expr, adj.autoderefs);
777
778         let cmt_derefd =
779             return_if_err!(self.mc.cat_expr_autoderefd(expr, adj.autoderefs));
780
781         let cmt_refd =
782             self.walk_autoref(expr, cmt_derefd, adj.autoref);
783
784         if adj.unsize.is_some() {
785             // Unsizing consumes the thin pointer and produces a fat one.
786             self.delegate_consume(expr.id, expr.span, cmt_refd);
787         }
788     }
789
790
791     /// Walks the autoref `opt_autoref` applied to the autoderef'd
792     /// `expr`. `cmt_derefd` is the mem-categorized form of `expr`
793     /// after all relevant autoderefs have occurred. Because AutoRefs
794     /// can be recursive, this function is recursive: it first walks
795     /// deeply all the way down the autoref chain, and then processes
796     /// the autorefs on the way out. At each point, it returns the
797     /// `cmt` for the rvalue that will be produced by introduced an
798     /// autoref.
799     fn walk_autoref(&mut self,
800                     expr: &hir::Expr,
801                     cmt_base: mc::cmt<'tcx>,
802                     opt_autoref: Option<adjustment::AutoRef<'tcx>>)
803                     -> mc::cmt<'tcx>
804     {
805         debug!("walk_autoref(expr.id={} cmt_derefd={:?} opt_autoref={:?})",
806                expr.id,
807                cmt_base,
808                opt_autoref);
809
810         let cmt_base_ty = cmt_base.ty;
811
812         let autoref = match opt_autoref {
813             Some(ref autoref) => autoref,
814             None => {
815                 // No AutoRef.
816                 return cmt_base;
817             }
818         };
819
820         match *autoref {
821             adjustment::AutoPtr(r, m) => {
822                 self.delegate.borrow(expr.id,
823                                      expr.span,
824                                      cmt_base,
825                                      *r,
826                                      ty::BorrowKind::from_mutbl(m),
827                                      AutoRef);
828             }
829
830             adjustment::AutoUnsafe(m) => {
831                 debug!("walk_autoref: expr.id={} cmt_base={:?}",
832                        expr.id,
833                        cmt_base);
834
835                 // Converting from a &T to *T (or &mut T to *mut T) is
836                 // treated as borrowing it for the enclosing temporary
837                 // scope.
838                 let r = ty::ReScope(self.tcx().region_maps.node_extent(expr.id));
839
840                 self.delegate.borrow(expr.id,
841                                      expr.span,
842                                      cmt_base,
843                                      r,
844                                      ty::BorrowKind::from_mutbl(m),
845                                      AutoUnsafe);
846             }
847         }
848
849         // Construct the categorization for the result of the autoref.
850         // This is always an rvalue, since we are producing a new
851         // (temporary) indirection.
852
853         let adj_ty = cmt_base_ty.adjust_for_autoref(self.tcx(), opt_autoref);
854
855         self.mc.cat_rvalue_node(expr.id, expr.span, adj_ty)
856     }
857
858
859     // When this returns true, it means that the expression *is* a
860     // method-call (i.e. via the operator-overload).  This true result
861     // also implies that walk_overloaded_operator already took care of
862     // recursively processing the input arguments, and thus the caller
863     // should not do so.
864     fn walk_overloaded_operator(&mut self,
865                                 expr: &hir::Expr,
866                                 receiver: &hir::Expr,
867                                 rhs: Vec<&hir::Expr>,
868                                 pass_args: PassArgs)
869                                 -> bool
870     {
871         if !self.typer.is_method_call(expr.id) {
872             return false;
873         }
874
875         match pass_args {
876             PassArgs::ByValue => {
877                 self.consume_expr(receiver);
878                 for &arg in &rhs {
879                     self.consume_expr(arg);
880                 }
881
882                 return true;
883             },
884             PassArgs::ByRef => {},
885         }
886
887         self.walk_expr(receiver);
888
889         // Arguments (but not receivers) to overloaded operator
890         // methods are implicitly autoref'd which sadly does not use
891         // adjustments, so we must hardcode the borrow here.
892
893         let r = ty::ReScope(self.tcx().region_maps.node_extent(expr.id));
894         let bk = ty::ImmBorrow;
895
896         for &arg in &rhs {
897             self.borrow_expr(arg, r, bk, OverloadedOperator);
898         }
899         return true;
900     }
901
902     fn arm_move_mode(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &hir::Arm) -> TrackMatchMode {
903         let mut mode = Unknown;
904         for pat in &arm.pats {
905             self.determine_pat_move_mode(discr_cmt.clone(), &pat, &mut mode);
906         }
907         mode
908     }
909
910     fn walk_arm(&mut self, discr_cmt: mc::cmt<'tcx>, arm: &hir::Arm, mode: MatchMode) {
911         for pat in &arm.pats {
912             self.walk_pat(discr_cmt.clone(), &pat, mode);
913         }
914
915         if let Some(ref guard) = arm.guard {
916             self.consume_expr(&guard);
917         }
918
919         self.consume_expr(&arm.body);
920     }
921
922     /// Walks a pat that occurs in isolation (i.e. top-level of fn
923     /// arg or let binding.  *Not* a match arm or nested pat.)
924     fn walk_irrefutable_pat(&mut self, cmt_discr: mc::cmt<'tcx>, pat: &hir::Pat) {
925         let mut mode = Unknown;
926         self.determine_pat_move_mode(cmt_discr.clone(), pat, &mut mode);
927         let mode = mode.match_mode();
928         self.walk_pat(cmt_discr, pat, mode);
929     }
930
931     /// Identifies any bindings within `pat` and accumulates within
932     /// `mode` whether the overall pattern/match structure is a move,
933     /// copy, or borrow.
934     fn determine_pat_move_mode(&mut self,
935                                cmt_discr: mc::cmt<'tcx>,
936                                pat: &hir::Pat,
937                                mode: &mut TrackMatchMode) {
938         debug!("determine_pat_move_mode cmt_discr={:?} pat={:?}", cmt_discr,
939                pat);
940         return_if_err!(self.mc.cat_pattern(cmt_discr, pat, |_mc, cmt_pat, pat| {
941             let tcx = self.tcx();
942             let def_map = &self.tcx().def_map;
943             if pat_util::pat_is_binding(&def_map.borrow(), pat) {
944                 match pat.node {
945                     PatKind::Ident(hir::BindByRef(_), _, _) =>
946                         mode.lub(BorrowingMatch),
947                     PatKind::Ident(hir::BindByValue(_), _, _) => {
948                         match copy_or_move(self.typer, &cmt_pat, PatBindingMove) {
949                             Copy => mode.lub(CopyingMatch),
950                             Move(_) => mode.lub(MovingMatch),
951                         }
952                     }
953                     _ => {
954                         tcx.sess.span_bug(
955                             pat.span,
956                             "binding pattern not an identifier");
957                     }
958                 }
959             }
960         }));
961     }
962
963     /// The core driver for walking a pattern; `match_mode` must be
964     /// established up front, e.g. via `determine_pat_move_mode` (see
965     /// also `walk_irrefutable_pat` for patterns that stand alone).
966     fn walk_pat(&mut self,
967                 cmt_discr: mc::cmt<'tcx>,
968                 pat: &hir::Pat,
969                 match_mode: MatchMode) {
970         debug!("walk_pat cmt_discr={:?} pat={:?}", cmt_discr,
971                pat);
972
973         let mc = &self.mc;
974         let typer = self.typer;
975         let def_map = &self.tcx().def_map;
976         let delegate = &mut self.delegate;
977         return_if_err!(mc.cat_pattern(cmt_discr.clone(), pat, |mc, cmt_pat, pat| {
978             if pat_util::pat_is_binding(&def_map.borrow(), pat) {
979                 let tcx = typer.tcx;
980
981                 debug!("binding cmt_pat={:?} pat={:?} match_mode={:?}",
982                        cmt_pat,
983                        pat,
984                        match_mode);
985
986                 // pat_ty: the type of the binding being produced.
987                 let pat_ty = return_if_err!(typer.node_ty(pat.id));
988
989                 // Each match binding is effectively an assignment to the
990                 // binding being produced.
991                 let def = def_map.borrow().get(&pat.id).unwrap().full_def();
992                 match mc.cat_def(pat.id, pat.span, pat_ty, def) {
993                     Ok(binding_cmt) => {
994                         delegate.mutate(pat.id, pat.span, binding_cmt, MutateMode::Init);
995                     }
996                     Err(_) => { }
997                 }
998
999                 // It is also a borrow or copy/move of the value being matched.
1000                 match pat.node {
1001                     PatKind::Ident(hir::BindByRef(m), _, _) => {
1002                         if let ty::TyRef(&r, _) = pat_ty.sty {
1003                             let bk = ty::BorrowKind::from_mutbl(m);
1004                             delegate.borrow(pat.id, pat.span, cmt_pat,
1005                                             r, bk, RefBinding);
1006                         }
1007                     }
1008                     PatKind::Ident(hir::BindByValue(_), _, _) => {
1009                         let mode = copy_or_move(typer, &cmt_pat, PatBindingMove);
1010                         debug!("walk_pat binding consuming pat");
1011                         delegate.consume_pat(pat, cmt_pat, mode);
1012                     }
1013                     _ => {
1014                         tcx.sess.span_bug(
1015                             pat.span,
1016                             "binding pattern not an identifier");
1017                     }
1018                 }
1019             } else {
1020                 match pat.node {
1021                     PatKind::Vec(_, Some(ref slice_pat), _) => {
1022                         // The `slice_pat` here creates a slice into
1023                         // the original vector.  This is effectively a
1024                         // borrow of the elements of the vector being
1025                         // matched.
1026
1027                         let (slice_cmt, slice_mutbl, slice_r) =
1028                             return_if_err!(mc.cat_slice_pattern(cmt_pat, &slice_pat));
1029
1030                         // Note: We declare here that the borrow
1031                         // occurs upon entering the `[...]`
1032                         // pattern. This implies that something like
1033                         // `[a; b]` where `a` is a move is illegal,
1034                         // because the borrow is already in effect.
1035                         // In fact such a move would be safe-ish, but
1036                         // it effectively *requires* that we use the
1037                         // nulling out semantics to indicate when a
1038                         // value has been moved, which we are trying
1039                         // to move away from.  Otherwise, how can we
1040                         // indicate that the first element in the
1041                         // vector has been moved?  Eventually, we
1042                         // could perhaps modify this rule to permit
1043                         // `[..a, b]` where `b` is a move, because in
1044                         // that case we can adjust the length of the
1045                         // original vec accordingly, but we'd have to
1046                         // make trans do the right thing, and it would
1047                         // only work for `Box<[T]>`s. It seems simpler
1048                         // to just require that people call
1049                         // `vec.pop()` or `vec.unshift()`.
1050                         let slice_bk = ty::BorrowKind::from_mutbl(slice_mutbl);
1051                         delegate.borrow(pat.id, pat.span,
1052                                         slice_cmt, slice_r,
1053                                         slice_bk, RefBinding);
1054                     }
1055                     _ => { }
1056                 }
1057             }
1058         }));
1059
1060         // Do a second pass over the pattern, calling `matched_pat` on
1061         // the interior nodes (enum variants and structs), as opposed
1062         // to the above loop's visit of than the bindings that form
1063         // the leaves of the pattern tree structure.
1064         return_if_err!(mc.cat_pattern(cmt_discr, pat, |mc, cmt_pat, pat| {
1065             let def_map = def_map.borrow();
1066             let tcx = typer.tcx;
1067
1068             match pat.node {
1069                 PatKind::TupleStruct(..) | PatKind::Path(..) | PatKind::QPath(..) |
1070                 PatKind::Ident(_, _, None) | PatKind::Struct(..) => {
1071                     match def_map.get(&pat.id).map(|d| d.full_def()) {
1072                         None => {
1073                             // no definition found: pat is not a
1074                             // struct or enum pattern.
1075                         }
1076
1077                         Some(Def::Variant(enum_did, variant_did)) => {
1078                             let downcast_cmt =
1079                                 if tcx.lookup_adt_def(enum_did).is_univariant() {
1080                                     cmt_pat
1081                                 } else {
1082                                     let cmt_pat_ty = cmt_pat.ty;
1083                                     mc.cat_downcast(pat, cmt_pat, cmt_pat_ty, variant_did)
1084                                 };
1085
1086                             debug!("variant downcast_cmt={:?} pat={:?}",
1087                                    downcast_cmt,
1088                                    pat);
1089
1090                             delegate.matched_pat(pat, downcast_cmt, match_mode);
1091                         }
1092
1093                         Some(Def::Struct(..)) | Some(Def::TyAlias(..)) => {
1094                             // A struct (in either the value or type
1095                             // namespace; we encounter the former on
1096                             // e.g. patterns for unit structs).
1097
1098                             debug!("struct cmt_pat={:?} pat={:?}",
1099                                    cmt_pat,
1100                                    pat);
1101
1102                             delegate.matched_pat(pat, cmt_pat, match_mode);
1103                         }
1104
1105                         Some(Def::Const(..)) |
1106                         Some(Def::AssociatedConst(..)) |
1107                         Some(Def::Local(..)) => {
1108                             // This is a leaf (i.e. identifier binding
1109                             // or constant value to match); thus no
1110                             // `matched_pat` call.
1111                         }
1112
1113                         Some(def) => {
1114                             // An enum type should never be in a pattern.
1115                             // Remaining cases are e.g. Def::Fn, to
1116                             // which identifiers within patterns
1117                             // should not resolve. However, we do
1118                             // encouter this when using the
1119                             // expr-use-visitor during typeck. So just
1120                             // ignore it, an error should have been
1121                             // reported.
1122
1123                             if !tcx.sess.has_errors() {
1124                                 let msg = format!("Pattern has unexpected def: {:?} and type {:?}",
1125                                                   def,
1126                                                   cmt_pat.ty);
1127                                 tcx.sess.span_bug(pat.span, &msg[..])
1128                             }
1129                         }
1130                     }
1131                 }
1132
1133                 PatKind::Ident(_, _, Some(_)) => {
1134                     // Do nothing; this is a binding (not an enum
1135                     // variant or struct), and the cat_pattern call
1136                     // will visit the substructure recursively.
1137                 }
1138
1139                 PatKind::Wild | PatKind::Tup(..) | PatKind::Box(..) |
1140                 PatKind::Ref(..) | PatKind::Lit(..) | PatKind::Range(..) |
1141                 PatKind::Vec(..) => {
1142                     // Similarly, each of these cases does not
1143                     // correspond to an enum variant or struct, so we
1144                     // do not do any `matched_pat` calls for these
1145                     // cases either.
1146                 }
1147             }
1148         }));
1149     }
1150
1151     fn walk_captures(&mut self, closure_expr: &hir::Expr) {
1152         debug!("walk_captures({:?})", closure_expr);
1153
1154         self.tcx().with_freevars(closure_expr.id, |freevars| {
1155             for freevar in freevars {
1156                 let id_var = freevar.def.var_id();
1157                 let upvar_id = ty::UpvarId { var_id: id_var,
1158                                              closure_expr_id: closure_expr.id };
1159                 let upvar_capture = self.typer.upvar_capture(upvar_id).unwrap();
1160                 let cmt_var = return_if_err!(self.cat_captured_var(closure_expr.id,
1161                                                                    closure_expr.span,
1162                                                                    freevar.def));
1163                 match upvar_capture {
1164                     ty::UpvarCapture::ByValue => {
1165                         let mode = copy_or_move(self.typer, &cmt_var, CaptureMove);
1166                         self.delegate.consume(closure_expr.id, freevar.span, cmt_var, mode);
1167                     }
1168                     ty::UpvarCapture::ByRef(upvar_borrow) => {
1169                         self.delegate.borrow(closure_expr.id,
1170                                              closure_expr.span,
1171                                              cmt_var,
1172                                              upvar_borrow.region,
1173                                              upvar_borrow.kind,
1174                                              ClosureCapture(freevar.span));
1175                     }
1176                 }
1177             }
1178         });
1179     }
1180
1181     fn cat_captured_var(&mut self,
1182                         closure_id: ast::NodeId,
1183                         closure_span: Span,
1184                         upvar_def: Def)
1185                         -> mc::McResult<mc::cmt<'tcx>> {
1186         // Create the cmt for the variable being borrowed, from the
1187         // caller's perspective
1188         let var_id = upvar_def.var_id();
1189         let var_ty = try!(self.typer.node_ty(var_id));
1190         self.mc.cat_def(closure_id, closure_span, var_ty, upvar_def)
1191     }
1192 }
1193
1194 fn copy_or_move<'a, 'tcx>(typer: &infer::InferCtxt<'a, 'tcx>,
1195                       cmt: &mc::cmt<'tcx>,
1196                       move_reason: MoveReason)
1197                       -> ConsumeMode
1198 {
1199     if typer.type_moves_by_default(cmt.ty, cmt.span) {
1200         Move(move_reason)
1201     } else {
1202         Copy
1203     }
1204 }