]> git.lizzy.rs Git - rust.git/blob - src/librustc/infer/combine.rs
Auto merge of #35856 - phimuemue:master, r=brson
[rust.git] / src / librustc / infer / combine.rs
1 // Copyright 2012 The Rust Project Developers. See the COPYRIGHT
2 // file at the top-level directory of this distribution and at
3 // http://rust-lang.org/COPYRIGHT.
4 //
5 // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6 // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7 // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8 // option. This file may not be copied, modified, or distributed
9 // except according to those terms.
10
11 ///////////////////////////////////////////////////////////////////////////
12 // # Type combining
13 //
14 // There are four type combiners: equate, sub, lub, and glb.  Each
15 // implements the trait `Combine` and contains methods for combining
16 // two instances of various things and yielding a new instance.  These
17 // combiner methods always yield a `Result<T>`.  There is a lot of
18 // common code for these operations, implemented as default methods on
19 // the `Combine` trait.
20 //
21 // Each operation may have side-effects on the inference context,
22 // though these can be unrolled using snapshots. On success, the
23 // LUB/GLB operations return the appropriate bound. The Eq and Sub
24 // operations generally return the first operand.
25 //
26 // ## Contravariance
27 //
28 // When you are relating two things which have a contravariant
29 // relationship, you should use `contratys()` or `contraregions()`,
30 // rather than inversing the order of arguments!  This is necessary
31 // because the order of arguments is not relevant for LUB and GLB.  It
32 // is also useful to track which value is the "expected" value in
33 // terms of error reporting.
34
35 use super::bivariate::Bivariate;
36 use super::equate::Equate;
37 use super::glb::Glb;
38 use super::lub::Lub;
39 use super::sub::Sub;
40 use super::InferCtxt;
41 use super::{MiscVariable, TypeTrace};
42 use super::type_variable::{RelationDir, BiTo, EqTo, SubtypeOf, SupertypeOf};
43
44 use ty::{IntType, UintType};
45 use ty::{self, Ty, TyCtxt};
46 use ty::error::TypeError;
47 use ty::fold::TypeFoldable;
48 use ty::relate::{RelateResult, TypeRelation};
49 use traits::PredicateObligations;
50
51 use syntax::ast;
52 use syntax_pos::Span;
53
54 #[derive(Clone)]
55 pub struct CombineFields<'infcx, 'gcx: 'infcx+'tcx, 'tcx: 'infcx> {
56     pub infcx: &'infcx InferCtxt<'infcx, 'gcx, 'tcx>,
57     pub trace: TypeTrace<'tcx>,
58     pub cause: Option<ty::relate::Cause>,
59     pub obligations: PredicateObligations<'tcx>,
60 }
61
62 impl<'infcx, 'gcx, 'tcx> InferCtxt<'infcx, 'gcx, 'tcx> {
63     pub fn super_combine_tys<R>(&self,
64                                 relation: &mut R,
65                                 a: Ty<'tcx>,
66                                 b: Ty<'tcx>)
67                                 -> RelateResult<'tcx, Ty<'tcx>>
68         where R: TypeRelation<'infcx, 'gcx, 'tcx>
69     {
70         let a_is_expected = relation.a_is_expected();
71
72         match (&a.sty, &b.sty) {
73             // Relate integral variables to other types
74             (&ty::TyInfer(ty::IntVar(a_id)), &ty::TyInfer(ty::IntVar(b_id))) => {
75                 self.int_unification_table
76                     .borrow_mut()
77                     .unify_var_var(a_id, b_id)
78                     .map_err(|e| int_unification_error(a_is_expected, e))?;
79                 Ok(a)
80             }
81             (&ty::TyInfer(ty::IntVar(v_id)), &ty::TyInt(v)) => {
82                 self.unify_integral_variable(a_is_expected, v_id, IntType(v))
83             }
84             (&ty::TyInt(v), &ty::TyInfer(ty::IntVar(v_id))) => {
85                 self.unify_integral_variable(!a_is_expected, v_id, IntType(v))
86             }
87             (&ty::TyInfer(ty::IntVar(v_id)), &ty::TyUint(v)) => {
88                 self.unify_integral_variable(a_is_expected, v_id, UintType(v))
89             }
90             (&ty::TyUint(v), &ty::TyInfer(ty::IntVar(v_id))) => {
91                 self.unify_integral_variable(!a_is_expected, v_id, UintType(v))
92             }
93
94             // Relate floating-point variables to other types
95             (&ty::TyInfer(ty::FloatVar(a_id)), &ty::TyInfer(ty::FloatVar(b_id))) => {
96                 self.float_unification_table
97                     .borrow_mut()
98                     .unify_var_var(a_id, b_id)
99                     .map_err(|e| float_unification_error(relation.a_is_expected(), e))?;
100                 Ok(a)
101             }
102             (&ty::TyInfer(ty::FloatVar(v_id)), &ty::TyFloat(v)) => {
103                 self.unify_float_variable(a_is_expected, v_id, v)
104             }
105             (&ty::TyFloat(v), &ty::TyInfer(ty::FloatVar(v_id))) => {
106                 self.unify_float_variable(!a_is_expected, v_id, v)
107             }
108
109             // All other cases of inference are errors
110             (&ty::TyInfer(_), _) |
111             (_, &ty::TyInfer(_)) => {
112                 Err(TypeError::Sorts(ty::relate::expected_found(relation, &a, &b)))
113             }
114
115
116             _ => {
117                 ty::relate::super_relate_tys(relation, a, b)
118             }
119         }
120     }
121
122     fn unify_integral_variable(&self,
123                                vid_is_expected: bool,
124                                vid: ty::IntVid,
125                                val: ty::IntVarValue)
126                                -> RelateResult<'tcx, Ty<'tcx>>
127     {
128         self.int_unification_table
129             .borrow_mut()
130             .unify_var_value(vid, val)
131             .map_err(|e| int_unification_error(vid_is_expected, e))?;
132         match val {
133             IntType(v) => Ok(self.tcx.mk_mach_int(v)),
134             UintType(v) => Ok(self.tcx.mk_mach_uint(v)),
135         }
136     }
137
138     fn unify_float_variable(&self,
139                             vid_is_expected: bool,
140                             vid: ty::FloatVid,
141                             val: ast::FloatTy)
142                             -> RelateResult<'tcx, Ty<'tcx>>
143     {
144         self.float_unification_table
145             .borrow_mut()
146             .unify_var_value(vid, val)
147             .map_err(|e| float_unification_error(vid_is_expected, e))?;
148         Ok(self.tcx.mk_mach_float(val))
149     }
150 }
151
152 impl<'infcx, 'gcx, 'tcx> CombineFields<'infcx, 'gcx, 'tcx> {
153     pub fn tcx(&self) -> TyCtxt<'infcx, 'gcx, 'tcx> {
154         self.infcx.tcx
155     }
156
157     pub fn equate<'a>(&'a mut self, a_is_expected: bool) -> Equate<'a, 'infcx, 'gcx, 'tcx> {
158         Equate::new(self, a_is_expected)
159     }
160
161     pub fn bivariate<'a>(&'a mut self, a_is_expected: bool) -> Bivariate<'a, 'infcx, 'gcx, 'tcx> {
162         Bivariate::new(self, a_is_expected)
163     }
164
165     pub fn sub<'a>(&'a mut self, a_is_expected: bool) -> Sub<'a, 'infcx, 'gcx, 'tcx> {
166         Sub::new(self, a_is_expected)
167     }
168
169     pub fn lub<'a>(&'a mut self, a_is_expected: bool) -> Lub<'a, 'infcx, 'gcx, 'tcx> {
170         Lub::new(self, a_is_expected)
171     }
172
173     pub fn glb<'a>(&'a mut self, a_is_expected: bool) -> Glb<'a, 'infcx, 'gcx, 'tcx> {
174         Glb::new(self, a_is_expected)
175     }
176
177     pub fn instantiate(&mut self,
178                        a_ty: Ty<'tcx>,
179                        dir: RelationDir,
180                        b_vid: ty::TyVid,
181                        a_is_expected: bool)
182                        -> RelateResult<'tcx, ()>
183     {
184         let mut stack = Vec::new();
185         stack.push((a_ty, dir, b_vid));
186         loop {
187             // For each turn of the loop, we extract a tuple
188             //
189             //     (a_ty, dir, b_vid)
190             //
191             // to relate. Here dir is either SubtypeOf or
192             // SupertypeOf. The idea is that we should ensure that
193             // the type `a_ty` is a subtype or supertype (respectively) of the
194             // type to which `b_vid` is bound.
195             //
196             // If `b_vid` has not yet been instantiated with a type
197             // (which is always true on the first iteration, but not
198             // necessarily true on later iterations), we will first
199             // instantiate `b_vid` with a *generalized* version of
200             // `a_ty`. Generalization introduces other inference
201             // variables wherever subtyping could occur (at time of
202             // this writing, this means replacing free regions with
203             // region variables).
204             let (a_ty, dir, b_vid) = match stack.pop() {
205                 None => break,
206                 Some(e) => e,
207             };
208             // Get the actual variable that b_vid has been inferred to
209             let (b_vid, b_ty) = {
210                 let mut variables = self.infcx.type_variables.borrow_mut();
211                 let b_vid = variables.root_var(b_vid);
212                 (b_vid, variables.probe_root(b_vid))
213             };
214
215             debug!("instantiate(a_ty={:?} dir={:?} b_vid={:?})",
216                    a_ty,
217                    dir,
218                    b_vid);
219
220             // Check whether `vid` has been instantiated yet.  If not,
221             // make a generalized form of `ty` and instantiate with
222             // that.
223             let b_ty = match b_ty {
224                 Some(t) => t, // ...already instantiated.
225                 None => {     // ...not yet instantiated:
226                     // Generalize type if necessary.
227                     let generalized_ty = match dir {
228                         EqTo => self.generalize(a_ty, b_vid, false),
229                         BiTo | SupertypeOf | SubtypeOf => self.generalize(a_ty, b_vid, true),
230                     }?;
231                     debug!("instantiate(a_ty={:?}, dir={:?}, \
232                                         b_vid={:?}, generalized_ty={:?})",
233                            a_ty, dir, b_vid,
234                            generalized_ty);
235                     self.infcx.type_variables
236                         .borrow_mut()
237                         .instantiate_and_push(
238                             b_vid, generalized_ty, &mut stack);
239                     generalized_ty
240                 }
241             };
242
243             // The original triple was `(a_ty, dir, b_vid)` -- now we have
244             // resolved `b_vid` to `b_ty`, so apply `(a_ty, dir, b_ty)`:
245             //
246             // FIXME(#16847): This code is non-ideal because all these subtype
247             // relations wind up attributed to the same spans. We need
248             // to associate causes/spans with each of the relations in
249             // the stack to get this right.
250             match dir {
251                 BiTo => self.bivariate(a_is_expected).relate(&a_ty, &b_ty),
252                 EqTo => self.equate(a_is_expected).relate(&a_ty, &b_ty),
253                 SubtypeOf => self.sub(a_is_expected).relate(&a_ty, &b_ty),
254                 SupertypeOf => self.sub(a_is_expected).relate_with_variance(
255                     ty::Contravariant, &a_ty, &b_ty),
256             }?;
257         }
258
259         Ok(())
260     }
261
262     /// Attempts to generalize `ty` for the type variable `for_vid`.  This checks for cycle -- that
263     /// is, whether the type `ty` references `for_vid`. If `make_region_vars` is true, it will also
264     /// replace all regions with fresh variables. Returns `TyError` in the case of a cycle, `Ok`
265     /// otherwise.
266     fn generalize(&self,
267                   ty: Ty<'tcx>,
268                   for_vid: ty::TyVid,
269                   make_region_vars: bool)
270                   -> RelateResult<'tcx, Ty<'tcx>>
271     {
272         let mut generalize = Generalizer {
273             infcx: self.infcx,
274             span: self.trace.origin.span(),
275             for_vid: for_vid,
276             make_region_vars: make_region_vars,
277             cycle_detected: false
278         };
279         let u = ty.fold_with(&mut generalize);
280         if generalize.cycle_detected {
281             Err(TypeError::CyclicTy)
282         } else {
283             Ok(u)
284         }
285     }
286 }
287
288 struct Generalizer<'cx, 'gcx: 'cx+'tcx, 'tcx: 'cx> {
289     infcx: &'cx InferCtxt<'cx, 'gcx, 'tcx>,
290     span: Span,
291     for_vid: ty::TyVid,
292     make_region_vars: bool,
293     cycle_detected: bool,
294 }
295
296 impl<'cx, 'gcx, 'tcx> ty::fold::TypeFolder<'gcx, 'tcx> for Generalizer<'cx, 'gcx, 'tcx> {
297     fn tcx<'a>(&'a self) -> TyCtxt<'a, 'gcx, 'tcx> {
298         self.infcx.tcx
299     }
300
301     fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
302         // Check to see whether the type we are genealizing references
303         // `vid`. At the same time, also update any type variables to
304         // the values that they are bound to. This is needed to truly
305         // check for cycles, but also just makes things readable.
306         //
307         // (In particular, you could have something like `$0 = Box<$1>`
308         //  where `$1` has already been instantiated with `Box<$0>`)
309         match t.sty {
310             ty::TyInfer(ty::TyVar(vid)) => {
311                 let mut variables = self.infcx.type_variables.borrow_mut();
312                 let vid = variables.root_var(vid);
313                 if vid == self.for_vid {
314                     self.cycle_detected = true;
315                     self.tcx().types.err
316                 } else {
317                     match variables.probe_root(vid) {
318                         Some(u) => {
319                             drop(variables);
320                             self.fold_ty(u)
321                         }
322                         None => t,
323                     }
324                 }
325             }
326             _ => {
327                 t.super_fold_with(self)
328             }
329         }
330     }
331
332     fn fold_region(&mut self, r: &'tcx ty::Region) -> &'tcx ty::Region {
333         match *r {
334             // Never make variables for regions bound within the type itself,
335             // nor for erased regions.
336             ty::ReLateBound(..) |
337             ty::ReErased => { return r; }
338
339             // Early-bound regions should really have been substituted away before
340             // we get to this point.
341             ty::ReEarlyBound(..) => {
342                 span_bug!(
343                     self.span,
344                     "Encountered early bound region when generalizing: {:?}",
345                     r);
346             }
347
348             // Always make a fresh region variable for skolemized regions;
349             // the higher-ranked decision procedures rely on this.
350             ty::ReSkolemized(..) => { }
351
352             // For anything else, we make a region variable, unless we
353             // are *equating*, in which case it's just wasteful.
354             ty::ReEmpty |
355             ty::ReStatic |
356             ty::ReScope(..) |
357             ty::ReVar(..) |
358             ty::ReFree(..) => {
359                 if !self.make_region_vars {
360                     return r;
361                 }
362             }
363         }
364
365         // FIXME: This is non-ideal because we don't give a
366         // very descriptive origin for this region variable.
367         self.infcx.next_region_var(MiscVariable(self.span))
368     }
369 }
370
371 pub trait RelateResultCompare<'tcx, T> {
372     fn compare<F>(&self, t: T, f: F) -> RelateResult<'tcx, T> where
373         F: FnOnce() -> TypeError<'tcx>;
374 }
375
376 impl<'tcx, T:Clone + PartialEq> RelateResultCompare<'tcx, T> for RelateResult<'tcx, T> {
377     fn compare<F>(&self, t: T, f: F) -> RelateResult<'tcx, T> where
378         F: FnOnce() -> TypeError<'tcx>,
379     {
380         self.clone().and_then(|s| {
381             if s == t {
382                 self.clone()
383             } else {
384                 Err(f())
385             }
386         })
387     }
388 }
389
390 fn int_unification_error<'tcx>(a_is_expected: bool, v: (ty::IntVarValue, ty::IntVarValue))
391                                -> TypeError<'tcx>
392 {
393     let (a, b) = v;
394     TypeError::IntMismatch(ty::relate::expected_found_bool(a_is_expected, &a, &b))
395 }
396
397 fn float_unification_error<'tcx>(a_is_expected: bool,
398                                  v: (ast::FloatTy, ast::FloatTy))
399                                  -> TypeError<'tcx>
400 {
401     let (a, b) = v;
402     TypeError::FloatMismatch(ty::relate::expected_found_bool(a_is_expected, &a, &b))
403 }