]> git.lizzy.rs Git - rust.git/blob - src/librustc/hir/lowering.rs
Rollup merge of #67148 - Centril:ty-polish, r=estebank
[rust.git] / src / librustc / hir / lowering.rs
1 // ignore-tidy-filelength
2
3 //! Lowers the AST to the HIR.
4 //!
5 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
6 //! much like a fold. Where lowering involves a bit more work things get more
7 //! interesting and there are some invariants you should know about. These mostly
8 //! concern spans and IDs.
9 //!
10 //! Spans are assigned to AST nodes during parsing and then are modified during
11 //! expansion to indicate the origin of a node and the process it went through
12 //! being expanded. IDs are assigned to AST nodes just before lowering.
13 //!
14 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
15 //! expansion we do not preserve the process of lowering in the spans, so spans
16 //! should not be modified here. When creating a new node (as opposed to
17 //! 'folding' an existing one), then you create a new ID using `next_id()`.
18 //!
19 //! You must ensure that IDs are unique. That means that you should only use the
20 //! ID from an AST node in a single HIR node (you can assume that AST node-IDs
21 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
22 //! If you do, you must then set the new node's ID to a fresh one.
23 //!
24 //! Spans are used for error messages and for tools to map semantics back to
25 //! source code. It is therefore not as important with spans as IDs to be strict
26 //! about use (you can't break the compiler by screwing up a span). Obviously, a
27 //! HIR node can only have a single span. But multiple nodes can have the same
28 //! span and spans don't need to be kept in order, etc. Where code is preserved
29 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
30 //! new it is probably best to give a span for the whole AST node being lowered.
31 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
32 //! get confused if the spans from leaf AST nodes occur in multiple places
33 //! in the HIR, especially for multiple identifiers.
34
35 mod expr;
36 mod item;
37
38 use crate::dep_graph::DepGraph;
39 use crate::hir::{self, ParamName};
40 use crate::hir::HirVec;
41 use crate::hir::map::{DefKey, DefPathData, Definitions};
42 use crate::hir::def_id::{DefId, DefIndex, CRATE_DEF_INDEX};
43 use crate::hir::def::{Namespace, Res, DefKind, PartialRes, PerNS};
44 use crate::hir::{GenericArg, ConstArg};
45 use crate::hir::ptr::P;
46 use crate::lint;
47 use crate::lint::builtin::{self, ELIDED_LIFETIMES_IN_PATHS};
48 use crate::middle::cstore::CrateStore;
49 use crate::session::Session;
50 use crate::session::config::nightly_options;
51 use crate::util::common::FN_OUTPUT_NAME;
52 use crate::util::nodemap::{DefIdMap, NodeMap};
53 use errors::Applicability;
54 use rustc_data_structures::fx::FxHashSet;
55 use rustc_index::vec::IndexVec;
56 use rustc_data_structures::sync::Lrc;
57
58 use std::collections::BTreeMap;
59 use std::mem;
60 use smallvec::SmallVec;
61 use syntax::attr;
62 use syntax::ast;
63 use syntax::ptr::P as AstP;
64 use syntax::ast::*;
65 use syntax::errors;
66 use syntax::print::pprust;
67 use syntax::token::{self, Nonterminal, Token};
68 use syntax::tokenstream::{TokenStream, TokenTree};
69 use syntax::sess::ParseSess;
70 use syntax::source_map::{respan, ExpnData, ExpnKind, DesugaringKind, Spanned};
71 use syntax::symbol::{kw, sym, Symbol};
72 use syntax::visit::{self, Visitor};
73 use syntax_pos::hygiene::ExpnId;
74 use syntax_pos::Span;
75
76 use rustc_error_codes::*;
77
78 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
79
80 pub struct LoweringContext<'a> {
81     crate_root: Option<Symbol>,
82
83     /// Used to assign IDs to HIR nodes that do not directly correspond to AST nodes.
84     sess: &'a Session,
85
86     resolver: &'a mut dyn Resolver,
87
88     /// HACK(Centril): there is a cyclic dependency between the parser and lowering
89     /// if we don't have this function pointer. To avoid that dependency so that
90     /// librustc is independent of the parser, we use dynamic dispatch here.
91     nt_to_tokenstream: NtToTokenstream,
92
93     /// The items being lowered are collected here.
94     items: BTreeMap<hir::HirId, hir::Item>,
95
96     trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem>,
97     impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem>,
98     bodies: BTreeMap<hir::BodyId, hir::Body>,
99     exported_macros: Vec<hir::MacroDef>,
100     non_exported_macro_attrs: Vec<ast::Attribute>,
101
102     trait_impls: BTreeMap<DefId, Vec<hir::HirId>>,
103
104     modules: BTreeMap<hir::HirId, hir::ModuleItems>,
105
106     generator_kind: Option<hir::GeneratorKind>,
107
108     /// Used to get the current `fn`'s def span to point to when using `await`
109     /// outside of an `async fn`.
110     current_item: Option<Span>,
111
112     catch_scopes: Vec<NodeId>,
113     loop_scopes: Vec<NodeId>,
114     is_in_loop_condition: bool,
115     is_in_trait_impl: bool,
116     is_in_dyn_type: bool,
117
118     /// What to do when we encounter either an "anonymous lifetime
119     /// reference". The term "anonymous" is meant to encompass both
120     /// `'_` lifetimes as well as fully elided cases where nothing is
121     /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
122     anonymous_lifetime_mode: AnonymousLifetimeMode,
123
124     /// Used to create lifetime definitions from in-band lifetime usages.
125     /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
126     /// When a named lifetime is encountered in a function or impl header and
127     /// has not been defined
128     /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
129     /// to this list. The results of this list are then added to the list of
130     /// lifetime definitions in the corresponding impl or function generics.
131     lifetimes_to_define: Vec<(Span, ParamName)>,
132
133     /// `true` if in-band lifetimes are being collected. This is used to
134     /// indicate whether or not we're in a place where new lifetimes will result
135     /// in in-band lifetime definitions, such a function or an impl header,
136     /// including implicit lifetimes from `impl_header_lifetime_elision`.
137     is_collecting_in_band_lifetimes: bool,
138
139     /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
140     /// When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
141     /// against this list to see if it is already in-scope, or if a definition
142     /// needs to be created for it.
143     ///
144     /// We always store a `modern()` version of the param-name in this
145     /// vector.
146     in_scope_lifetimes: Vec<ParamName>,
147
148     current_module: hir::HirId,
149
150     type_def_lifetime_params: DefIdMap<usize>,
151
152     current_hir_id_owner: Vec<(DefIndex, u32)>,
153     item_local_id_counters: NodeMap<u32>,
154     node_id_to_hir_id: IndexVec<NodeId, hir::HirId>,
155
156     allow_try_trait: Option<Lrc<[Symbol]>>,
157     allow_gen_future: Option<Lrc<[Symbol]>>,
158 }
159
160 pub trait Resolver {
161     fn cstore(&self) -> &dyn CrateStore;
162
163     /// Obtains resolution for a `NodeId` with a single resolution.
164     fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes>;
165
166     /// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
167     fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;
168
169     /// Obtains resolution for a label with the given `NodeId`.
170     fn get_label_res(&mut self, id: NodeId) -> Option<NodeId>;
171
172     /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
173     /// This should only return `None` during testing.
174     fn definitions(&mut self) -> &mut Definitions;
175
176     /// Given suffix `["b", "c", "d"]`, creates an AST path for `[::crate_root]::b::c::d` and
177     /// resolves it based on `is_value`.
178     fn resolve_str_path(
179         &mut self,
180         span: Span,
181         crate_root: Option<Symbol>,
182         components: &[Symbol],
183         ns: Namespace,
184     ) -> (ast::Path, Res<NodeId>);
185
186     fn lint_buffer(&mut self) -> &mut lint::LintBuffer;
187
188     fn next_node_id(&mut self) -> NodeId;
189 }
190
191 type NtToTokenstream = fn(&Nonterminal, &ParseSess, Span) -> TokenStream;
192
193 /// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
194 /// and if so, what meaning it has.
195 #[derive(Debug)]
196 enum ImplTraitContext<'a> {
197     /// Treat `impl Trait` as shorthand for a new universal generic parameter.
198     /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
199     /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
200     ///
201     /// Newly generated parameters should be inserted into the given `Vec`.
202     Universal(&'a mut Vec<hir::GenericParam>),
203
204     /// Treat `impl Trait` as shorthand for a new opaque type.
205     /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
206     /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
207     ///
208     /// We optionally store a `DefId` for the parent item here so we can look up necessary
209     /// information later. It is `None` when no information about the context should be stored
210     /// (e.g., for consts and statics).
211     OpaqueTy(Option<DefId> /* fn def-ID */),
212
213     /// `impl Trait` is not accepted in this position.
214     Disallowed(ImplTraitPosition),
215 }
216
217 /// Position in which `impl Trait` is disallowed.
218 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
219 enum ImplTraitPosition {
220     /// Disallowed in `let` / `const` / `static` bindings.
221     Binding,
222
223     /// All other posiitons.
224     Other,
225 }
226
227 impl<'a> ImplTraitContext<'a> {
228     #[inline]
229     fn disallowed() -> Self {
230         ImplTraitContext::Disallowed(ImplTraitPosition::Other)
231     }
232
233     fn reborrow(&'b mut self) -> ImplTraitContext<'b> {
234         use self::ImplTraitContext::*;
235         match self {
236             Universal(params) => Universal(params),
237             OpaqueTy(fn_def_id) => OpaqueTy(*fn_def_id),
238             Disallowed(pos) => Disallowed(*pos),
239         }
240     }
241 }
242
243 pub fn lower_crate(
244     sess: &Session,
245     dep_graph: &DepGraph,
246     krate: &Crate,
247     resolver: &mut dyn Resolver,
248     nt_to_tokenstream: NtToTokenstream,
249 ) -> hir::Crate {
250     // We're constructing the HIR here; we don't care what we will
251     // read, since we haven't even constructed the *input* to
252     // incr. comp. yet.
253     dep_graph.assert_ignored();
254
255     let _prof_timer = sess.prof.generic_activity("hir_lowering");
256
257     LoweringContext {
258         crate_root: sess.parse_sess.injected_crate_name.try_get().copied(),
259         sess,
260         resolver,
261         nt_to_tokenstream,
262         items: BTreeMap::new(),
263         trait_items: BTreeMap::new(),
264         impl_items: BTreeMap::new(),
265         bodies: BTreeMap::new(),
266         trait_impls: BTreeMap::new(),
267         modules: BTreeMap::new(),
268         exported_macros: Vec::new(),
269         non_exported_macro_attrs: Vec::new(),
270         catch_scopes: Vec::new(),
271         loop_scopes: Vec::new(),
272         is_in_loop_condition: false,
273         is_in_trait_impl: false,
274         is_in_dyn_type: false,
275         anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
276         type_def_lifetime_params: Default::default(),
277         current_module: hir::CRATE_HIR_ID,
278         current_hir_id_owner: vec![(CRATE_DEF_INDEX, 0)],
279         item_local_id_counters: Default::default(),
280         node_id_to_hir_id: IndexVec::new(),
281         generator_kind: None,
282         current_item: None,
283         lifetimes_to_define: Vec::new(),
284         is_collecting_in_band_lifetimes: false,
285         in_scope_lifetimes: Vec::new(),
286         allow_try_trait: Some([sym::try_trait][..].into()),
287         allow_gen_future: Some([sym::gen_future][..].into()),
288     }.lower_crate(krate)
289 }
290
291 #[derive(Copy, Clone, PartialEq)]
292 enum ParamMode {
293     /// Any path in a type context.
294     Explicit,
295     /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
296     ExplicitNamed,
297     /// The `module::Type` in `module::Type::method` in an expression.
298     Optional,
299 }
300
301 enum ParenthesizedGenericArgs {
302     Ok,
303     Err,
304 }
305
306 /// What to do when we encounter an **anonymous** lifetime
307 /// reference. Anonymous lifetime references come in two flavors. You
308 /// have implicit, or fully elided, references to lifetimes, like the
309 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
310 /// or `Ref<'_, T>`. These often behave the same, but not always:
311 ///
312 /// - certain usages of implicit references are deprecated, like
313 ///   `Ref<T>`, and we sometimes just give hard errors in those cases
314 ///   as well.
315 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
316 ///   the same as `Box<dyn Foo + '_>`.
317 ///
318 /// We describe the effects of the various modes in terms of three cases:
319 ///
320 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
321 ///   of a `&` (e.g., the missing lifetime in something like `&T`)
322 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
323 ///   there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
324 ///   elided bounds follow special rules. Note that this only covers
325 ///   cases where *nothing* is written; the `'_` in `Box<dyn Foo +
326 ///   '_>` is a case of "modern" elision.
327 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
328 ///   parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
329 ///   non-deprecated equivalent.
330 ///
331 /// Currently, the handling of lifetime elision is somewhat spread out
332 /// between HIR lowering and -- as described below -- the
333 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
334 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
335 /// everything into HIR lowering.
336 #[derive(Copy, Clone, Debug)]
337 enum AnonymousLifetimeMode {
338     /// For **Modern** cases, create a new anonymous region parameter
339     /// and reference that.
340     ///
341     /// For **Dyn Bound** cases, pass responsibility to
342     /// `resolve_lifetime` code.
343     ///
344     /// For **Deprecated** cases, report an error.
345     CreateParameter,
346
347     /// Give a hard error when either `&` or `'_` is written. Used to
348     /// rule out things like `where T: Foo<'_>`. Does not imply an
349     /// error on default object bounds (e.g., `Box<dyn Foo>`).
350     ReportError,
351
352     /// Pass responsibility to `resolve_lifetime` code for all cases.
353     PassThrough,
354 }
355
356 struct ImplTraitTypeIdVisitor<'a> { ids: &'a mut SmallVec<[NodeId; 1]> }
357
358 impl<'a, 'b> Visitor<'a> for ImplTraitTypeIdVisitor<'b> {
359     fn visit_ty(&mut self, ty: &'a Ty) {
360         match ty.kind {
361             | TyKind::Typeof(_)
362             | TyKind::BareFn(_)
363             => return,
364
365             TyKind::ImplTrait(id, _) => self.ids.push(id),
366             _ => {},
367         }
368         visit::walk_ty(self, ty);
369     }
370
371     fn visit_path_segment(
372         &mut self,
373         path_span: Span,
374         path_segment: &'v PathSegment,
375     ) {
376         if let Some(ref p) = path_segment.args {
377             if let GenericArgs::Parenthesized(_) = **p {
378                 return;
379             }
380         }
381         visit::walk_path_segment(self, path_span, path_segment)
382     }
383 }
384
385 impl<'a> LoweringContext<'a> {
386     fn lower_crate(mut self, c: &Crate) -> hir::Crate {
387         /// Full-crate AST visitor that inserts into a fresh
388         /// `LoweringContext` any information that may be
389         /// needed from arbitrary locations in the crate,
390         /// e.g., the number of lifetime generic parameters
391         /// declared for every type and trait definition.
392         struct MiscCollector<'tcx, 'interner> {
393             lctx: &'tcx mut LoweringContext<'interner>,
394             hir_id_owner: Option<NodeId>,
395         }
396
397         impl MiscCollector<'_, '_> {
398             fn allocate_use_tree_hir_id_counters(
399                 &mut self,
400                 tree: &UseTree,
401                 owner: DefIndex,
402             ) {
403                 match tree.kind {
404                     UseTreeKind::Simple(_, id1, id2) => {
405                         for &id in &[id1, id2] {
406                             self.lctx.resolver.definitions().create_def_with_parent(
407                                 owner,
408                                 id,
409                                 DefPathData::Misc,
410                                 ExpnId::root(),
411                                 tree.prefix.span,
412                             );
413                             self.lctx.allocate_hir_id_counter(id);
414                         }
415                     }
416                     UseTreeKind::Glob => (),
417                     UseTreeKind::Nested(ref trees) => {
418                         for &(ref use_tree, id) in trees {
419                             let hir_id = self.lctx.allocate_hir_id_counter(id);
420                             self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
421                         }
422                     }
423                 }
424             }
425
426             fn with_hir_id_owner<F, T>(&mut self, owner: Option<NodeId>, f: F) -> T
427             where
428                 F: FnOnce(&mut Self) -> T,
429             {
430                 let old = mem::replace(&mut self.hir_id_owner, owner);
431                 let r = f(self);
432                 self.hir_id_owner = old;
433                 r
434             }
435         }
436
437         impl<'tcx, 'interner> Visitor<'tcx> for MiscCollector<'tcx, 'interner> {
438             fn visit_pat(&mut self, p: &'tcx Pat) {
439                 if let PatKind::Paren(..) | PatKind::Rest = p.kind {
440                     // Doesn't generate a HIR node
441                 } else if let Some(owner) = self.hir_id_owner {
442                     self.lctx.lower_node_id_with_owner(p.id, owner);
443                 }
444
445                 visit::walk_pat(self, p)
446             }
447
448             fn visit_item(&mut self, item: &'tcx Item) {
449                 let hir_id = self.lctx.allocate_hir_id_counter(item.id);
450
451                 match item.kind {
452                     ItemKind::Struct(_, ref generics)
453                     | ItemKind::Union(_, ref generics)
454                     | ItemKind::Enum(_, ref generics)
455                     | ItemKind::TyAlias(_, ref generics)
456                     | ItemKind::Trait(_, _, ref generics, ..) => {
457                         let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
458                         let count = generics
459                             .params
460                             .iter()
461                             .filter(|param| match param.kind {
462                                 ast::GenericParamKind::Lifetime { .. } => true,
463                                 _ => false,
464                             })
465                             .count();
466                         self.lctx.type_def_lifetime_params.insert(def_id, count);
467                     }
468                     ItemKind::Use(ref use_tree) => {
469                         self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
470                     }
471                     _ => {}
472                 }
473
474                 self.with_hir_id_owner(Some(item.id), |this| {
475                     visit::walk_item(this, item);
476                 });
477             }
478
479             fn visit_trait_item(&mut self, item: &'tcx AssocItem) {
480                 self.lctx.allocate_hir_id_counter(item.id);
481
482                 match item.kind {
483                     AssocItemKind::Fn(_, None) => {
484                         // Ignore patterns in trait methods without bodies
485                         self.with_hir_id_owner(None, |this| {
486                             visit::walk_trait_item(this, item)
487                         });
488                     }
489                     _ => self.with_hir_id_owner(Some(item.id), |this| {
490                         visit::walk_trait_item(this, item);
491                     })
492                 }
493             }
494
495             fn visit_impl_item(&mut self, item: &'tcx AssocItem) {
496                 self.lctx.allocate_hir_id_counter(item.id);
497                 self.with_hir_id_owner(Some(item.id), |this| {
498                     visit::walk_impl_item(this, item);
499                 });
500             }
501
502             fn visit_foreign_item(&mut self, i: &'tcx ForeignItem) {
503                 // Ignore patterns in foreign items
504                 self.with_hir_id_owner(None, |this| {
505                     visit::walk_foreign_item(this, i)
506                 });
507             }
508
509             fn visit_ty(&mut self, t: &'tcx Ty) {
510                 match t.kind {
511                     // Mirrors the case in visit::walk_ty
512                     TyKind::BareFn(ref f) => {
513                         walk_list!(
514                             self,
515                             visit_generic_param,
516                             &f.generic_params
517                         );
518                         // Mirrors visit::walk_fn_decl
519                         for parameter in &f.decl.inputs {
520                             // We don't lower the ids of argument patterns
521                             self.with_hir_id_owner(None, |this| {
522                                 this.visit_pat(&parameter.pat);
523                             });
524                             self.visit_ty(&parameter.ty)
525                         }
526                         self.visit_fn_ret_ty(&f.decl.output)
527                     }
528                     _ => visit::walk_ty(self, t),
529                 }
530             }
531         }
532
533         self.lower_node_id(CRATE_NODE_ID);
534         debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == hir::CRATE_HIR_ID);
535
536         visit::walk_crate(&mut MiscCollector { lctx: &mut self, hir_id_owner: None }, c);
537         visit::walk_crate(&mut item::ItemLowerer { lctx: &mut self }, c);
538
539         let module = self.lower_mod(&c.module);
540         let attrs = self.lower_attrs(&c.attrs);
541         let body_ids = body_ids(&self.bodies);
542
543         self.resolver
544             .definitions()
545             .init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
546
547         hir::Crate {
548             module,
549             attrs,
550             span: c.span,
551             exported_macros: hir::HirVec::from(self.exported_macros),
552             non_exported_macro_attrs: hir::HirVec::from(self.non_exported_macro_attrs),
553             items: self.items,
554             trait_items: self.trait_items,
555             impl_items: self.impl_items,
556             bodies: self.bodies,
557             body_ids,
558             trait_impls: self.trait_impls,
559             modules: self.modules,
560         }
561     }
562
563     fn insert_item(&mut self, item: hir::Item) {
564         let id = item.hir_id;
565         // FIXME: Use `debug_asset-rt`.
566         assert_eq!(id.local_id, hir::ItemLocalId::from_u32(0));
567         self.items.insert(id, item);
568         self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
569     }
570
571     fn allocate_hir_id_counter(&mut self, owner: NodeId) -> hir::HirId {
572         // Set up the counter if needed.
573         self.item_local_id_counters.entry(owner).or_insert(0);
574         // Always allocate the first `HirId` for the owner itself.
575         let lowered = self.lower_node_id_with_owner(owner, owner);
576         debug_assert_eq!(lowered.local_id.as_u32(), 0);
577         lowered
578     }
579
580     fn lower_node_id_generic<F>(&mut self, ast_node_id: NodeId, alloc_hir_id: F) -> hir::HirId
581     where
582         F: FnOnce(&mut Self) -> hir::HirId,
583     {
584         if ast_node_id == DUMMY_NODE_ID {
585             return hir::DUMMY_HIR_ID;
586         }
587
588         let min_size = ast_node_id.as_usize() + 1;
589
590         if min_size > self.node_id_to_hir_id.len() {
591             self.node_id_to_hir_id.resize(min_size, hir::DUMMY_HIR_ID);
592         }
593
594         let existing_hir_id = self.node_id_to_hir_id[ast_node_id];
595
596         if existing_hir_id == hir::DUMMY_HIR_ID {
597             // Generate a new `HirId`.
598             let hir_id = alloc_hir_id(self);
599             self.node_id_to_hir_id[ast_node_id] = hir_id;
600
601             hir_id
602         } else {
603             existing_hir_id
604         }
605     }
606
607     fn with_hir_id_owner<F, T>(&mut self, owner: NodeId, f: F) -> T
608     where
609         F: FnOnce(&mut Self) -> T,
610     {
611         let counter = self.item_local_id_counters
612             .insert(owner, HIR_ID_COUNTER_LOCKED)
613             .unwrap_or_else(|| panic!("no `item_local_id_counters` entry for {:?}", owner));
614         let def_index = self.resolver.definitions().opt_def_index(owner).unwrap();
615         self.current_hir_id_owner.push((def_index, counter));
616         let ret = f(self);
617         let (new_def_index, new_counter) = self.current_hir_id_owner.pop().unwrap();
618
619         debug_assert!(def_index == new_def_index);
620         debug_assert!(new_counter >= counter);
621
622         let prev = self.item_local_id_counters
623             .insert(owner, new_counter)
624             .unwrap();
625         debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
626         ret
627     }
628
629     /// This method allocates a new `HirId` for the given `NodeId` and stores it in
630     /// the `LoweringContext`'s `NodeId => HirId` map.
631     /// Take care not to call this method if the resulting `HirId` is then not
632     /// actually used in the HIR, as that would trigger an assertion in the
633     /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
634     /// properly. Calling the method twice with the same `NodeId` is fine though.
635     fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
636         self.lower_node_id_generic(ast_node_id, |this| {
637             let &mut (def_index, ref mut local_id_counter) =
638                 this.current_hir_id_owner.last_mut().unwrap();
639             let local_id = *local_id_counter;
640             *local_id_counter += 1;
641             hir::HirId {
642                 owner: def_index,
643                 local_id: hir::ItemLocalId::from_u32(local_id),
644             }
645         })
646     }
647
648     fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> hir::HirId {
649         self.lower_node_id_generic(ast_node_id, |this| {
650             let local_id_counter = this
651                 .item_local_id_counters
652                 .get_mut(&owner)
653                 .expect("called `lower_node_id_with_owner` before `allocate_hir_id_counter`");
654             let local_id = *local_id_counter;
655
656             // We want to be sure not to modify the counter in the map while it
657             // is also on the stack. Otherwise we'll get lost updates when writing
658             // back from the stack to the map.
659             debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
660
661             *local_id_counter += 1;
662             let def_index = this
663                 .resolver
664                 .definitions()
665                 .opt_def_index(owner)
666                 .expect("you forgot to call `create_def_with_parent` or are lowering node-IDs \
667                          that do not belong to the current owner");
668
669             hir::HirId {
670                 owner: def_index,
671                 local_id: hir::ItemLocalId::from_u32(local_id),
672             }
673         })
674     }
675
676     fn next_id(&mut self) -> hir::HirId {
677         let node_id = self.resolver.next_node_id();
678         self.lower_node_id(node_id)
679     }
680
681     fn lower_res(&mut self, res: Res<NodeId>) -> Res {
682         res.map_id(|id| {
683             self.lower_node_id_generic(id, |_| {
684                 panic!("expected `NodeId` to be lowered already for res {:#?}", res);
685             })
686         })
687     }
688
689     fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
690         self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
691             if pr.unresolved_segments() != 0 {
692                 bug!("path not fully resolved: {:?}", pr);
693             }
694             pr.base_res()
695         })
696     }
697
698     fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
699         self.resolver.get_import_res(id).present_items()
700     }
701
702     fn diagnostic(&self) -> &errors::Handler {
703         self.sess.diagnostic()
704     }
705
706     /// Reuses the span but adds information like the kind of the desugaring and features that are
707     /// allowed inside this span.
708     fn mark_span_with_reason(
709         &self,
710         reason: DesugaringKind,
711         span: Span,
712         allow_internal_unstable: Option<Lrc<[Symbol]>>,
713     ) -> Span {
714         span.fresh_expansion(ExpnData {
715             allow_internal_unstable,
716             ..ExpnData::default(ExpnKind::Desugaring(reason), span, self.sess.edition())
717         })
718     }
719
720     fn with_anonymous_lifetime_mode<R>(
721         &mut self,
722         anonymous_lifetime_mode: AnonymousLifetimeMode,
723         op: impl FnOnce(&mut Self) -> R,
724     ) -> R {
725         debug!(
726             "with_anonymous_lifetime_mode(anonymous_lifetime_mode={:?})",
727             anonymous_lifetime_mode,
728         );
729         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
730         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
731         let result = op(self);
732         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
733         debug!("with_anonymous_lifetime_mode: restoring anonymous_lifetime_mode={:?}",
734                old_anonymous_lifetime_mode);
735         result
736     }
737
738     /// Creates a new `hir::GenericParam` for every new lifetime and
739     /// type parameter encountered while evaluating `f`. Definitions
740     /// are created with the parent provided. If no `parent_id` is
741     /// provided, no definitions will be returned.
742     ///
743     /// Presuming that in-band lifetimes are enabled, then
744     /// `self.anonymous_lifetime_mode` will be updated to match the
745     /// parameter while `f` is running (and restored afterwards).
746     fn collect_in_band_defs<T, F>(
747         &mut self,
748         parent_id: DefId,
749         anonymous_lifetime_mode: AnonymousLifetimeMode,
750         f: F,
751     ) -> (Vec<hir::GenericParam>, T)
752     where
753         F: FnOnce(&mut LoweringContext<'_>) -> (Vec<hir::GenericParam>, T),
754     {
755         assert!(!self.is_collecting_in_band_lifetimes);
756         assert!(self.lifetimes_to_define.is_empty());
757         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
758
759         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
760         self.is_collecting_in_band_lifetimes = true;
761
762         let (in_band_ty_params, res) = f(self);
763
764         self.is_collecting_in_band_lifetimes = false;
765         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
766
767         let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
768
769         let params = lifetimes_to_define
770             .into_iter()
771             .map(|(span, hir_name)| self.lifetime_to_generic_param(
772                 span, hir_name, parent_id.index,
773             ))
774             .chain(in_band_ty_params.into_iter())
775             .collect();
776
777         (params, res)
778     }
779
780     /// Converts a lifetime into a new generic parameter.
781     fn lifetime_to_generic_param(
782         &mut self,
783         span: Span,
784         hir_name: ParamName,
785         parent_index: DefIndex,
786     ) -> hir::GenericParam {
787         let node_id = self.resolver.next_node_id();
788
789         // Get the name we'll use to make the def-path. Note
790         // that collisions are ok here and this shouldn't
791         // really show up for end-user.
792         let (str_name, kind) = match hir_name {
793             ParamName::Plain(ident) => (
794                 ident.name,
795                 hir::LifetimeParamKind::InBand,
796             ),
797             ParamName::Fresh(_) => (
798                 kw::UnderscoreLifetime,
799                 hir::LifetimeParamKind::Elided,
800             ),
801             ParamName::Error => (
802                 kw::UnderscoreLifetime,
803                 hir::LifetimeParamKind::Error,
804             ),
805         };
806
807         // Add a definition for the in-band lifetime def.
808         self.resolver.definitions().create_def_with_parent(
809             parent_index,
810             node_id,
811             DefPathData::LifetimeNs(str_name),
812             ExpnId::root(),
813             span,
814         );
815
816         hir::GenericParam {
817             hir_id: self.lower_node_id(node_id),
818             name: hir_name,
819             attrs: hir_vec![],
820             bounds: hir_vec![],
821             span,
822             pure_wrt_drop: false,
823             kind: hir::GenericParamKind::Lifetime { kind }
824         }
825     }
826
827     /// When there is a reference to some lifetime `'a`, and in-band
828     /// lifetimes are enabled, then we want to push that lifetime into
829     /// the vector of names to define later. In that case, it will get
830     /// added to the appropriate generics.
831     fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
832         if !self.is_collecting_in_band_lifetimes {
833             return;
834         }
835
836         if !self.sess.features_untracked().in_band_lifetimes {
837             return;
838         }
839
840         if self.in_scope_lifetimes.contains(&ParamName::Plain(ident.modern())) {
841             return;
842         }
843
844         let hir_name = ParamName::Plain(ident);
845
846         if self.lifetimes_to_define.iter()
847                                    .any(|(_, lt_name)| lt_name.modern() == hir_name.modern()) {
848             return;
849         }
850
851         self.lifetimes_to_define.push((ident.span, hir_name));
852     }
853
854     /// When we have either an elided or `'_` lifetime in an impl
855     /// header, we convert it to an in-band lifetime.
856     fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
857         assert!(self.is_collecting_in_band_lifetimes);
858         let index = self.lifetimes_to_define.len() + self.in_scope_lifetimes.len();
859         let hir_name = ParamName::Fresh(index);
860         self.lifetimes_to_define.push((span, hir_name));
861         hir_name
862     }
863
864     // Evaluates `f` with the lifetimes in `params` in-scope.
865     // This is used to track which lifetimes have already been defined, and
866     // which are new in-band lifetimes that need to have a definition created
867     // for them.
868     fn with_in_scope_lifetime_defs<T, F>(&mut self, params: &[GenericParam], f: F) -> T
869     where
870         F: FnOnce(&mut LoweringContext<'_>) -> T,
871     {
872         let old_len = self.in_scope_lifetimes.len();
873         let lt_def_names = params.iter().filter_map(|param| match param.kind {
874             GenericParamKind::Lifetime { .. } => Some(ParamName::Plain(param.ident.modern())),
875             _ => None,
876         });
877         self.in_scope_lifetimes.extend(lt_def_names);
878
879         let res = f(self);
880
881         self.in_scope_lifetimes.truncate(old_len);
882         res
883     }
884
885     /// Appends in-band lifetime defs and argument-position `impl
886     /// Trait` defs to the existing set of generics.
887     ///
888     /// Presuming that in-band lifetimes are enabled, then
889     /// `self.anonymous_lifetime_mode` will be updated to match the
890     /// parameter while `f` is running (and restored afterwards).
891     fn add_in_band_defs<F, T>(
892         &mut self,
893         generics: &Generics,
894         parent_id: DefId,
895         anonymous_lifetime_mode: AnonymousLifetimeMode,
896         f: F,
897     ) -> (hir::Generics, T)
898     where
899         F: FnOnce(&mut LoweringContext<'_>, &mut Vec<hir::GenericParam>) -> T,
900     {
901         let (in_band_defs, (mut lowered_generics, res)) = self.with_in_scope_lifetime_defs(
902             &generics.params,
903             |this| {
904                 this.collect_in_band_defs(parent_id, anonymous_lifetime_mode, |this| {
905                     let mut params = Vec::new();
906                     // Note: it is necessary to lower generics *before* calling `f`.
907                     // When lowering `async fn`, there's a final step when lowering
908                     // the return type that assumes that all in-scope lifetimes have
909                     // already been added to either `in_scope_lifetimes` or
910                     // `lifetimes_to_define`. If we swapped the order of these two,
911                     // in-band-lifetimes introduced by generics or where-clauses
912                     // wouldn't have been added yet.
913                     let generics = this.lower_generics(
914                         generics,
915                         ImplTraitContext::Universal(&mut params),
916                     );
917                     let res = f(this, &mut params);
918                     (params, (generics, res))
919                 })
920             },
921         );
922
923         let mut lowered_params: Vec<_> = lowered_generics
924             .params
925             .into_iter()
926             .chain(in_band_defs)
927             .collect();
928
929         // FIXME(const_generics): the compiler doesn't always cope with
930         // unsorted generic parameters at the moment, so we make sure
931         // that they're ordered correctly here for now. (When we chain
932         // the `in_band_defs`, we might make the order unsorted.)
933         lowered_params.sort_by_key(|param| {
934             match param.kind {
935                 hir::GenericParamKind::Lifetime { .. } => ParamKindOrd::Lifetime,
936                 hir::GenericParamKind::Type { .. } => ParamKindOrd::Type,
937                 hir::GenericParamKind::Const { .. } => ParamKindOrd::Const,
938             }
939         });
940
941         lowered_generics.params = lowered_params.into();
942
943         (lowered_generics, res)
944     }
945
946     fn with_dyn_type_scope<T, F>(&mut self, in_scope: bool, f: F) -> T
947     where
948         F: FnOnce(&mut LoweringContext<'_>) -> T,
949     {
950         let was_in_dyn_type = self.is_in_dyn_type;
951         self.is_in_dyn_type = in_scope;
952
953         let result = f(self);
954
955         self.is_in_dyn_type = was_in_dyn_type;
956
957         result
958     }
959
960     fn with_new_scopes<T, F>(&mut self, f: F) -> T
961     where
962         F: FnOnce(&mut LoweringContext<'_>) -> T,
963     {
964         let was_in_loop_condition = self.is_in_loop_condition;
965         self.is_in_loop_condition = false;
966
967         let catch_scopes = mem::take(&mut self.catch_scopes);
968         let loop_scopes = mem::take(&mut self.loop_scopes);
969         let ret = f(self);
970         self.catch_scopes = catch_scopes;
971         self.loop_scopes = loop_scopes;
972
973         self.is_in_loop_condition = was_in_loop_condition;
974
975         ret
976     }
977
978     fn def_key(&mut self, id: DefId) -> DefKey {
979         if id.is_local() {
980             self.resolver.definitions().def_key(id.index)
981         } else {
982             self.resolver.cstore().def_key(id)
983         }
984     }
985
986     fn lower_attrs_extendable(&mut self, attrs: &[Attribute]) -> Vec<Attribute> {
987         attrs
988             .iter()
989             .map(|a| self.lower_attr(a))
990             .collect()
991     }
992
993     fn lower_attrs(&mut self, attrs: &[Attribute]) -> hir::HirVec<Attribute> {
994         self.lower_attrs_extendable(attrs).into()
995     }
996
997     fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
998         // Note that we explicitly do not walk the path. Since we don't really
999         // lower attributes (we use the AST version) there is nowhere to keep
1000         // the `HirId`s. We don't actually need HIR version of attributes anyway.
1001         let kind = match attr.kind {
1002             AttrKind::Normal(ref item) => {
1003                 AttrKind::Normal(AttrItem {
1004                     path: item.path.clone(),
1005                     args: self.lower_mac_args(&item.args),
1006                 })
1007             }
1008             AttrKind::DocComment(comment) => AttrKind::DocComment(comment)
1009         };
1010
1011         Attribute {
1012             kind,
1013             id: attr.id,
1014             style: attr.style,
1015             span: attr.span,
1016         }
1017     }
1018
1019     fn lower_mac_args(&mut self, args: &MacArgs) -> MacArgs {
1020         match *args {
1021             MacArgs::Empty => MacArgs::Empty,
1022             MacArgs::Delimited(dspan, delim, ref tokens) =>
1023                 MacArgs::Delimited(dspan, delim, self.lower_token_stream(tokens.clone())),
1024             MacArgs::Eq(eq_span, ref tokens) =>
1025                 MacArgs::Eq(eq_span, self.lower_token_stream(tokens.clone())),
1026         }
1027     }
1028
1029     fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
1030         tokens
1031             .into_trees()
1032             .flat_map(|tree| self.lower_token_tree(tree).into_trees())
1033             .collect()
1034     }
1035
1036     fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
1037         match tree {
1038             TokenTree::Token(token) => self.lower_token(token),
1039             TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
1040                 span,
1041                 delim,
1042                 self.lower_token_stream(tts),
1043             ).into(),
1044         }
1045     }
1046
1047     fn lower_token(&mut self, token: Token) -> TokenStream {
1048         match token.kind {
1049             token::Interpolated(nt) => {
1050                 let tts = (self.nt_to_tokenstream)(&nt, &self.sess.parse_sess, token.span);
1051                 self.lower_token_stream(tts)
1052             }
1053             _ => TokenTree::Token(token).into(),
1054         }
1055     }
1056
1057     /// Given an associated type constraint like one of these:
1058     ///
1059     /// ```
1060     /// T: Iterator<Item: Debug>
1061     ///             ^^^^^^^^^^^
1062     /// T: Iterator<Item = Debug>
1063     ///             ^^^^^^^^^^^^
1064     /// ```
1065     ///
1066     /// returns a `hir::TypeBinding` representing `Item`.
1067     fn lower_assoc_ty_constraint(
1068         &mut self,
1069         constraint: &AssocTyConstraint,
1070         itctx: ImplTraitContext<'_>,
1071     ) -> hir::TypeBinding {
1072         debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);
1073
1074         let kind = match constraint.kind {
1075             AssocTyConstraintKind::Equality { ref ty } => hir::TypeBindingKind::Equality {
1076                 ty: self.lower_ty(ty, itctx)
1077             },
1078             AssocTyConstraintKind::Bound { ref bounds } => {
1079                 // Piggy-back on the `impl Trait` context to figure out the correct behavior.
1080                 let (desugar_to_impl_trait, itctx) = match itctx {
1081                     // We are in the return position:
1082                     //
1083                     //     fn foo() -> impl Iterator<Item: Debug>
1084                     //
1085                     // so desugar to
1086                     //
1087                     //     fn foo() -> impl Iterator<Item = impl Debug>
1088                     ImplTraitContext::OpaqueTy(_) => (true, itctx),
1089
1090                     // We are in the argument position, but within a dyn type:
1091                     //
1092                     //     fn foo(x: dyn Iterator<Item: Debug>)
1093                     //
1094                     // so desugar to
1095                     //
1096                     //     fn foo(x: dyn Iterator<Item = impl Debug>)
1097                     ImplTraitContext::Universal(_) if self.is_in_dyn_type => (true, itctx),
1098
1099                     // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
1100                     // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
1101                     // "impl trait context" to permit `impl Debug` in this position (it desugars
1102                     // then to an opaque type).
1103                     //
1104                     // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
1105                     ImplTraitContext::Disallowed(_) if self.is_in_dyn_type =>
1106                         (true, ImplTraitContext::OpaqueTy(None)),
1107
1108                     // We are in the parameter position, but not within a dyn type:
1109                     //
1110                     //     fn foo(x: impl Iterator<Item: Debug>)
1111                     //
1112                     // so we leave it as is and this gets expanded in astconv to a bound like
1113                     // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
1114                     // `impl Iterator`.
1115                     _ => (false, itctx),
1116                 };
1117
1118                 if desugar_to_impl_trait {
1119                     // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
1120                     // constructing the HIR for `impl bounds...` and then lowering that.
1121
1122                     let impl_trait_node_id = self.resolver.next_node_id();
1123                     let parent_def_index = self.current_hir_id_owner.last().unwrap().0;
1124                     self.resolver.definitions().create_def_with_parent(
1125                         parent_def_index,
1126                         impl_trait_node_id,
1127                         DefPathData::ImplTrait,
1128                         ExpnId::root(),
1129                         constraint.span,
1130                     );
1131
1132                     self.with_dyn_type_scope(false, |this| {
1133                         let node_id = this.resolver.next_node_id();
1134                         let ty = this.lower_ty(
1135                             &Ty {
1136                                 id: node_id,
1137                                 kind: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
1138                                 span: constraint.span,
1139                             },
1140                             itctx,
1141                         );
1142
1143                         hir::TypeBindingKind::Equality {
1144                             ty
1145                         }
1146                     })
1147                 } else {
1148                     // Desugar `AssocTy: Bounds` into a type binding where the
1149                     // later desugars into a trait predicate.
1150                     let bounds = self.lower_param_bounds(bounds, itctx);
1151
1152                     hir::TypeBindingKind::Constraint {
1153                         bounds
1154                     }
1155                 }
1156             }
1157         };
1158
1159         hir::TypeBinding {
1160             hir_id: self.lower_node_id(constraint.id),
1161             ident: constraint.ident,
1162             kind,
1163             span: constraint.span,
1164         }
1165     }
1166
1167     fn lower_generic_arg(
1168         &mut self,
1169         arg: &ast::GenericArg,
1170         itctx: ImplTraitContext<'_>
1171     ) -> hir::GenericArg {
1172         match arg {
1173             ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1174             ast::GenericArg::Type(ty) => {
1175                 // We parse const arguments as path types as we cannot distiguish them durring
1176                 // parsing. We try to resolve that ambiguity by attempting resolution in both the
1177                 // type and value namespaces. If we resolved the path in the value namespace, we
1178                 // transform it into a generic const argument.
1179                 if let TyKind::Path(ref qself, ref path) = ty.kind {
1180                     if let Some(partial_res) = self.resolver.get_partial_res(ty.id) {
1181                         let res = partial_res.base_res();
1182                         if !res.matches_ns(Namespace::TypeNS) {
1183                             debug!(
1184                                 "lower_generic_arg: Lowering type argument as const argument: {:?}",
1185                                 ty,
1186                             );
1187
1188                             // Construct a AnonConst where the expr is the "ty"'s path.
1189
1190                             let parent_def_index =
1191                                 self.current_hir_id_owner.last().unwrap().0;
1192                             let node_id = self.resolver.next_node_id();
1193
1194                             // Add a definition for the in-band const def.
1195                             self.resolver.definitions().create_def_with_parent(
1196                                 parent_def_index,
1197                                 node_id,
1198                                 DefPathData::AnonConst,
1199                                 ExpnId::root(),
1200                                 ty.span,
1201                             );
1202
1203                             let path_expr = Expr {
1204                                 id: ty.id,
1205                                 kind: ExprKind::Path(qself.clone(), path.clone()),
1206                                 span: ty.span,
1207                                 attrs: AttrVec::new(),
1208                             };
1209
1210                             let ct = self.with_new_scopes(|this| {
1211                                 hir::AnonConst {
1212                                     hir_id: this.lower_node_id(node_id),
1213                                     body: this.lower_const_body(path_expr.span, Some(&path_expr)),
1214                                 }
1215                             });
1216                             return GenericArg::Const(ConstArg {
1217                                 value: ct,
1218                                 span: ty.span,
1219                             });
1220                         }
1221                     }
1222                 }
1223                 GenericArg::Type(self.lower_ty_direct(&ty, itctx))
1224             }
1225             ast::GenericArg::Const(ct) => {
1226                 GenericArg::Const(ConstArg {
1227                     value: self.lower_anon_const(&ct),
1228                     span: ct.value.span,
1229                 })
1230             }
1231         }
1232     }
1233
1234     fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_>) -> P<hir::Ty> {
1235         P(self.lower_ty_direct(t, itctx))
1236     }
1237
1238     fn lower_path_ty(
1239         &mut self,
1240         t: &Ty,
1241         qself: &Option<QSelf>,
1242         path: &Path,
1243         param_mode: ParamMode,
1244         itctx: ImplTraitContext<'_>
1245     ) -> hir::Ty {
1246         let id = self.lower_node_id(t.id);
1247         let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
1248         let ty = self.ty_path(id, t.span, qpath);
1249         if let hir::TyKind::TraitObject(..) = ty.kind {
1250             self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1251         }
1252         ty
1253     }
1254
1255     fn ty(&mut self, span: Span, kind: hir::TyKind) -> hir::Ty {
1256         hir::Ty { hir_id: self.next_id(), kind, span }
1257     }
1258
1259     fn ty_tup(&mut self, span: Span, tys: HirVec<hir::Ty>) -> hir::Ty {
1260         self.ty(span, hir::TyKind::Tup(tys))
1261     }
1262
1263     fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_>) -> hir::Ty {
1264         let kind = match t.kind {
1265             TyKind::Infer => hir::TyKind::Infer,
1266             TyKind::Err => hir::TyKind::Err,
1267             TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1268             TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1269             TyKind::Rptr(ref region, ref mt) => {
1270                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1271                 let lifetime = match *region {
1272                     Some(ref lt) => self.lower_lifetime(lt),
1273                     None => self.elided_ref_lifetime(span),
1274                 };
1275                 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1276             }
1277             TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(
1278                 &f.generic_params,
1279                 |this| {
1280                     this.with_anonymous_lifetime_mode(
1281                         AnonymousLifetimeMode::PassThrough,
1282                         |this| {
1283                             hir::TyKind::BareFn(P(hir::BareFnTy {
1284                                 generic_params: this.lower_generic_params(
1285                                     &f.generic_params,
1286                                     &NodeMap::default(),
1287                                     ImplTraitContext::disallowed(),
1288                                 ),
1289                                 unsafety: f.unsafety,
1290                                 abi: this.lower_extern(f.ext),
1291                                 decl: this.lower_fn_decl(&f.decl, None, false, None),
1292                                 param_names: this.lower_fn_params_to_names(&f.decl),
1293                             }))
1294                         },
1295                     )
1296                 },
1297             ),
1298             TyKind::Never => hir::TyKind::Never,
1299             TyKind::Tup(ref tys) => {
1300                 hir::TyKind::Tup(tys.iter().map(|ty| {
1301                     self.lower_ty_direct(ty, itctx.reborrow())
1302                 }).collect())
1303             }
1304             TyKind::Paren(ref ty) => {
1305                 return self.lower_ty_direct(ty, itctx);
1306             }
1307             TyKind::Path(ref qself, ref path) => {
1308                 return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
1309             }
1310             TyKind::ImplicitSelf => {
1311                 let res = self.expect_full_res(t.id);
1312                 let res = self.lower_res(res);
1313                 hir::TyKind::Path(hir::QPath::Resolved(
1314                     None,
1315                     P(hir::Path {
1316                         res,
1317                         segments: hir_vec![hir::PathSegment::from_ident(
1318                             Ident::with_dummy_span(kw::SelfUpper)
1319                         )],
1320                         span: t.span,
1321                     }),
1322                 ))
1323             },
1324             TyKind::Array(ref ty, ref length) => {
1325                 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1326             }
1327             TyKind::Typeof(ref expr) => {
1328                 hir::TyKind::Typeof(self.lower_anon_const(expr))
1329             }
1330             TyKind::TraitObject(ref bounds, kind) => {
1331                 let mut lifetime_bound = None;
1332                 let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
1333                     let bounds = bounds
1334                         .iter()
1335                         .filter_map(|bound| match *bound {
1336                             GenericBound::Trait(ref ty, TraitBoundModifier::None) => {
1337                                 Some(this.lower_poly_trait_ref(ty, itctx.reborrow()))
1338                             }
1339                             GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
1340                             GenericBound::Outlives(ref lifetime) => {
1341                                 if lifetime_bound.is_none() {
1342                                     lifetime_bound = Some(this.lower_lifetime(lifetime));
1343                                 }
1344                                 None
1345                             }
1346                         })
1347                         .collect();
1348                     let lifetime_bound =
1349                         lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
1350                     (bounds, lifetime_bound)
1351                 });
1352                 if kind != TraitObjectSyntax::Dyn {
1353                     self.maybe_lint_bare_trait(t.span, t.id, false);
1354                 }
1355                 hir::TyKind::TraitObject(bounds, lifetime_bound)
1356             }
1357             TyKind::ImplTrait(def_node_id, ref bounds) => {
1358                 let span = t.span;
1359                 match itctx {
1360                     ImplTraitContext::OpaqueTy(fn_def_id) => {
1361                         self.lower_opaque_impl_trait(
1362                             span, fn_def_id, def_node_id,
1363                             |this| this.lower_param_bounds(bounds, itctx),
1364                         )
1365                     }
1366                     ImplTraitContext::Universal(in_band_ty_params) => {
1367                         // Add a definition for the in-band `Param`.
1368                         let def_index = self
1369                             .resolver
1370                             .definitions()
1371                             .opt_def_index(def_node_id)
1372                             .unwrap();
1373
1374                         let hir_bounds = self.lower_param_bounds(
1375                             bounds,
1376                             ImplTraitContext::Universal(in_band_ty_params),
1377                         );
1378                         // Set the name to `impl Bound1 + Bound2`.
1379                         let ident = Ident::from_str_and_span(&pprust::ty_to_string(t), span);
1380                         in_band_ty_params.push(hir::GenericParam {
1381                             hir_id: self.lower_node_id(def_node_id),
1382                             name: ParamName::Plain(ident),
1383                             pure_wrt_drop: false,
1384                             attrs: hir_vec![],
1385                             bounds: hir_bounds,
1386                             span,
1387                             kind: hir::GenericParamKind::Type {
1388                                 default: None,
1389                                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1390                             }
1391                         });
1392
1393                         hir::TyKind::Path(hir::QPath::Resolved(
1394                             None,
1395                             P(hir::Path {
1396                                 span,
1397                                 res: Res::Def(DefKind::TyParam, DefId::local(def_index)),
1398                                 segments: hir_vec![hir::PathSegment::from_ident(ident)],
1399                             }),
1400                         ))
1401                     }
1402                     ImplTraitContext::Disallowed(pos) => {
1403                         let allowed_in = if self.sess.features_untracked()
1404                                                 .impl_trait_in_bindings {
1405                             "bindings or function and inherent method return types"
1406                         } else {
1407                             "function and inherent method return types"
1408                         };
1409                         let mut err = struct_span_err!(
1410                             self.sess,
1411                             t.span,
1412                             E0562,
1413                             "`impl Trait` not allowed outside of {}",
1414                             allowed_in,
1415                         );
1416                         if pos == ImplTraitPosition::Binding &&
1417                             nightly_options::is_nightly_build() {
1418                             help!(err,
1419                                   "add `#![feature(impl_trait_in_bindings)]` to the crate \
1420                                    attributes to enable");
1421                         }
1422                         err.emit();
1423                         hir::TyKind::Err
1424                     }
1425                 }
1426             }
1427             TyKind::Mac(_) => bug!("`TyKind::Mac` should have been expanded by now"),
1428             TyKind::CVarArgs => {
1429                 self.sess.delay_span_bug(
1430                     t.span,
1431                     "`TyKind::CVarArgs` should have been handled elsewhere",
1432                 );
1433                 hir::TyKind::Err
1434             }
1435         };
1436
1437         hir::Ty {
1438             kind,
1439             span: t.span,
1440             hir_id: self.lower_node_id(t.id),
1441         }
1442     }
1443
1444     fn lower_opaque_impl_trait(
1445         &mut self,
1446         span: Span,
1447         fn_def_id: Option<DefId>,
1448         opaque_ty_node_id: NodeId,
1449         lower_bounds: impl FnOnce(&mut LoweringContext<'_>) -> hir::GenericBounds,
1450     ) -> hir::TyKind {
1451         debug!(
1452             "lower_opaque_impl_trait(fn_def_id={:?}, opaque_ty_node_id={:?}, span={:?})",
1453             fn_def_id,
1454             opaque_ty_node_id,
1455             span,
1456         );
1457
1458         // Make sure we know that some funky desugaring has been going on here.
1459         // This is a first: there is code in other places like for loop
1460         // desugaring that explicitly states that we don't want to track that.
1461         // Not tracking it makes lints in rustc and clippy very fragile, as
1462         // frequently opened issues show.
1463         let opaque_ty_span = self.mark_span_with_reason(
1464             DesugaringKind::OpaqueTy,
1465             span,
1466             None,
1467         );
1468
1469         let opaque_ty_def_index = self
1470             .resolver
1471             .definitions()
1472             .opt_def_index(opaque_ty_node_id)
1473             .unwrap();
1474
1475         self.allocate_hir_id_counter(opaque_ty_node_id);
1476
1477         let hir_bounds = self.with_hir_id_owner(opaque_ty_node_id, lower_bounds);
1478
1479         let (lifetimes, lifetime_defs) = self.lifetimes_from_impl_trait_bounds(
1480             opaque_ty_node_id,
1481             opaque_ty_def_index,
1482             &hir_bounds,
1483         );
1484
1485         debug!(
1486             "lower_opaque_impl_trait: lifetimes={:#?}", lifetimes,
1487         );
1488
1489         debug!(
1490             "lower_opaque_impl_trait: lifetime_defs={:#?}", lifetime_defs,
1491         );
1492
1493         self.with_hir_id_owner(opaque_ty_node_id, |lctx| {
1494             let opaque_ty_item = hir::OpaqueTy {
1495                 generics: hir::Generics {
1496                     params: lifetime_defs,
1497                     where_clause: hir::WhereClause {
1498                         predicates: hir_vec![],
1499                         span,
1500                     },
1501                     span,
1502                 },
1503                 bounds: hir_bounds,
1504                 impl_trait_fn: fn_def_id,
1505                 origin: hir::OpaqueTyOrigin::FnReturn,
1506             };
1507
1508             trace!("lower_opaque_impl_trait: {:#?}", opaque_ty_def_index);
1509             let opaque_ty_id = lctx.generate_opaque_type(
1510                 opaque_ty_node_id,
1511                 opaque_ty_item,
1512                 span,
1513                 opaque_ty_span,
1514             );
1515
1516             // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1517             hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, lifetimes)
1518         })
1519     }
1520
1521     /// Registers a new opaque type with the proper `NodeId`s and
1522     /// returns the lowered node-ID for the opaque type.
1523     fn generate_opaque_type(
1524         &mut self,
1525         opaque_ty_node_id: NodeId,
1526         opaque_ty_item: hir::OpaqueTy,
1527         span: Span,
1528         opaque_ty_span: Span,
1529     ) -> hir::HirId {
1530         let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
1531         let opaque_ty_id = self.lower_node_id(opaque_ty_node_id);
1532         // Generate an `type Foo = impl Trait;` declaration.
1533         trace!("registering opaque type with id {:#?}", opaque_ty_id);
1534         let opaque_ty_item = hir::Item {
1535             hir_id: opaque_ty_id,
1536             ident: Ident::invalid(),
1537             attrs: Default::default(),
1538             kind: opaque_ty_item_kind,
1539             vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1540             span: opaque_ty_span,
1541         };
1542
1543         // Insert the item into the global item list. This usually happens
1544         // automatically for all AST items. But this opaque type item
1545         // does not actually exist in the AST.
1546         self.insert_item(opaque_ty_item);
1547         opaque_ty_id
1548     }
1549
1550     fn lifetimes_from_impl_trait_bounds(
1551         &mut self,
1552         opaque_ty_id: NodeId,
1553         parent_index: DefIndex,
1554         bounds: &hir::GenericBounds,
1555     ) -> (HirVec<hir::GenericArg>, HirVec<hir::GenericParam>) {
1556         debug!(
1557             "lifetimes_from_impl_trait_bounds(opaque_ty_id={:?}, \
1558              parent_index={:?}, \
1559              bounds={:#?})",
1560             opaque_ty_id, parent_index, bounds,
1561         );
1562
1563         // This visitor walks over `impl Trait` bounds and creates defs for all lifetimes that
1564         // appear in the bounds, excluding lifetimes that are created within the bounds.
1565         // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1566         struct ImplTraitLifetimeCollector<'r, 'a> {
1567             context: &'r mut LoweringContext<'a>,
1568             parent: DefIndex,
1569             opaque_ty_id: NodeId,
1570             collect_elided_lifetimes: bool,
1571             currently_bound_lifetimes: Vec<hir::LifetimeName>,
1572             already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1573             output_lifetimes: Vec<hir::GenericArg>,
1574             output_lifetime_params: Vec<hir::GenericParam>,
1575         }
1576
1577         impl<'r, 'a, 'v> hir::intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a> {
1578             fn nested_visit_map<'this>(
1579                 &'this mut self,
1580             ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
1581                 hir::intravisit::NestedVisitorMap::None
1582             }
1583
1584             fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
1585                 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1586                 if parameters.parenthesized {
1587                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1588                     self.collect_elided_lifetimes = false;
1589                     hir::intravisit::walk_generic_args(self, span, parameters);
1590                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1591                 } else {
1592                     hir::intravisit::walk_generic_args(self, span, parameters);
1593                 }
1594             }
1595
1596             fn visit_ty(&mut self, t: &'v hir::Ty) {
1597                 // Don't collect elided lifetimes used inside of `fn()` syntax.
1598                 if let hir::TyKind::BareFn(_) = t.kind {
1599                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1600                     self.collect_elided_lifetimes = false;
1601
1602                     // Record the "stack height" of `for<'a>` lifetime bindings
1603                     // to be able to later fully undo their introduction.
1604                     let old_len = self.currently_bound_lifetimes.len();
1605                     hir::intravisit::walk_ty(self, t);
1606                     self.currently_bound_lifetimes.truncate(old_len);
1607
1608                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1609                 } else {
1610                     hir::intravisit::walk_ty(self, t)
1611                 }
1612             }
1613
1614             fn visit_poly_trait_ref(
1615                 &mut self,
1616                 trait_ref: &'v hir::PolyTraitRef,
1617                 modifier: hir::TraitBoundModifier,
1618             ) {
1619                 // Record the "stack height" of `for<'a>` lifetime bindings
1620                 // to be able to later fully undo their introduction.
1621                 let old_len = self.currently_bound_lifetimes.len();
1622                 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1623                 self.currently_bound_lifetimes.truncate(old_len);
1624             }
1625
1626             fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
1627                 // Record the introduction of 'a in `for<'a> ...`.
1628                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1629                     // Introduce lifetimes one at a time so that we can handle
1630                     // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1631                     let lt_name = hir::LifetimeName::Param(param.name);
1632                     self.currently_bound_lifetimes.push(lt_name);
1633                 }
1634
1635                 hir::intravisit::walk_generic_param(self, param);
1636             }
1637
1638             fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1639                 let name = match lifetime.name {
1640                     hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1641                         if self.collect_elided_lifetimes {
1642                             // Use `'_` for both implicit and underscore lifetimes in
1643                             // `type Foo<'_> = impl SomeTrait<'_>;`.
1644                             hir::LifetimeName::Underscore
1645                         } else {
1646                             return;
1647                         }
1648                     }
1649                     hir::LifetimeName::Param(_) => lifetime.name,
1650
1651                     // Refers to some other lifetime that is "in
1652                     // scope" within the type.
1653                     hir::LifetimeName::ImplicitObjectLifetimeDefault => return,
1654
1655                     hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1656                 };
1657
1658                 if !self.currently_bound_lifetimes.contains(&name)
1659                     && !self.already_defined_lifetimes.contains(&name) {
1660                     self.already_defined_lifetimes.insert(name);
1661
1662                     self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1663                         hir_id: self.context.next_id(),
1664                         span: lifetime.span,
1665                         name,
1666                     }));
1667
1668                     let def_node_id = self.context.resolver.next_node_id();
1669                     let hir_id =
1670                         self.context.lower_node_id_with_owner(def_node_id, self.opaque_ty_id);
1671                     self.context.resolver.definitions().create_def_with_parent(
1672                         self.parent,
1673                         def_node_id,
1674                         DefPathData::LifetimeNs(name.ident().name),
1675                         ExpnId::root(),
1676                         lifetime.span);
1677
1678                     let (name, kind) = match name {
1679                         hir::LifetimeName::Underscore => (
1680                             hir::ParamName::Plain(Ident::with_dummy_span(kw::UnderscoreLifetime)),
1681                             hir::LifetimeParamKind::Elided,
1682                         ),
1683                         hir::LifetimeName::Param(param_name) => (
1684                             param_name,
1685                             hir::LifetimeParamKind::Explicit,
1686                         ),
1687                         _ => bug!("expected `LifetimeName::Param` or `ParamName::Plain`"),
1688                     };
1689
1690                     self.output_lifetime_params.push(hir::GenericParam {
1691                         hir_id,
1692                         name,
1693                         span: lifetime.span,
1694                         pure_wrt_drop: false,
1695                         attrs: hir_vec![],
1696                         bounds: hir_vec![],
1697                         kind: hir::GenericParamKind::Lifetime { kind }
1698                     });
1699                 }
1700             }
1701         }
1702
1703         let mut lifetime_collector = ImplTraitLifetimeCollector {
1704             context: self,
1705             parent: parent_index,
1706             opaque_ty_id,
1707             collect_elided_lifetimes: true,
1708             currently_bound_lifetimes: Vec::new(),
1709             already_defined_lifetimes: FxHashSet::default(),
1710             output_lifetimes: Vec::new(),
1711             output_lifetime_params: Vec::new(),
1712         };
1713
1714         for bound in bounds {
1715             hir::intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1716         }
1717
1718         (
1719             lifetime_collector.output_lifetimes.into(),
1720             lifetime_collector.output_lifetime_params.into(),
1721         )
1722     }
1723
1724     fn lower_qpath(
1725         &mut self,
1726         id: NodeId,
1727         qself: &Option<QSelf>,
1728         p: &Path,
1729         param_mode: ParamMode,
1730         mut itctx: ImplTraitContext<'_>,
1731     ) -> hir::QPath {
1732         let qself_position = qself.as_ref().map(|q| q.position);
1733         let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow()));
1734
1735         let partial_res = self.resolver
1736             .get_partial_res(id)
1737             .unwrap_or_else(|| PartialRes::new(Res::Err));
1738
1739         let proj_start = p.segments.len() - partial_res.unresolved_segments();
1740         let path = P(hir::Path {
1741             res: self.lower_res(partial_res.base_res()),
1742             segments: p.segments[..proj_start]
1743                 .iter()
1744                 .enumerate()
1745                 .map(|(i, segment)| {
1746                     let param_mode = match (qself_position, param_mode) {
1747                         (Some(j), ParamMode::Optional) if i < j => {
1748                             // This segment is part of the trait path in a
1749                             // qualified path - one of `a`, `b` or `Trait`
1750                             // in `<X as a::b::Trait>::T::U::method`.
1751                             ParamMode::Explicit
1752                         }
1753                         _ => param_mode,
1754                     };
1755
1756                     // Figure out if this is a type/trait segment,
1757                     // which may need lifetime elision performed.
1758                     let parent_def_id = |this: &mut Self, def_id: DefId| DefId {
1759                         krate: def_id.krate,
1760                         index: this.def_key(def_id).parent.expect("missing parent"),
1761                     };
1762                     let type_def_id = match partial_res.base_res() {
1763                         Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
1764                             Some(parent_def_id(self, def_id))
1765                         }
1766                         Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
1767                             Some(parent_def_id(self, def_id))
1768                         }
1769                         Res::Def(DefKind::Struct, def_id)
1770                         | Res::Def(DefKind::Union, def_id)
1771                         | Res::Def(DefKind::Enum, def_id)
1772                         | Res::Def(DefKind::TyAlias, def_id)
1773                         | Res::Def(DefKind::Trait, def_id) if i + 1 == proj_start =>
1774                         {
1775                             Some(def_id)
1776                         }
1777                         _ => None,
1778                     };
1779                     let parenthesized_generic_args = match partial_res.base_res() {
1780                         // `a::b::Trait(Args)`
1781                         Res::Def(DefKind::Trait, _) if i + 1 == proj_start => {
1782                             ParenthesizedGenericArgs::Ok
1783                         }
1784                         // `a::b::Trait(Args)::TraitItem`
1785                         Res::Def(DefKind::Method, _) |
1786                         Res::Def(DefKind::AssocConst, _) |
1787                         Res::Def(DefKind::AssocTy, _) if i + 2 == proj_start => {
1788                             ParenthesizedGenericArgs::Ok
1789                         }
1790                         // Avoid duplicated errors.
1791                         Res::Err => ParenthesizedGenericArgs::Ok,
1792                         // An error
1793                         _ => ParenthesizedGenericArgs::Err,
1794                     };
1795
1796                     let num_lifetimes = type_def_id.map_or(0, |def_id| {
1797                         if let Some(&n) = self.type_def_lifetime_params.get(&def_id) {
1798                             return n;
1799                         }
1800                         assert!(!def_id.is_local());
1801                         let item_generics = self.resolver.cstore()
1802                             .item_generics_cloned_untracked(def_id, self.sess);
1803                         let n = item_generics.own_counts().lifetimes;
1804                         self.type_def_lifetime_params.insert(def_id, n);
1805                         n
1806                     });
1807                     self.lower_path_segment(
1808                         p.span,
1809                         segment,
1810                         param_mode,
1811                         num_lifetimes,
1812                         parenthesized_generic_args,
1813                         itctx.reborrow(),
1814                         None,
1815                     )
1816                 })
1817                 .collect(),
1818             span: p.span,
1819         });
1820
1821         // Simple case, either no projections, or only fully-qualified.
1822         // E.g., `std::mem::size_of` or `<I as Iterator>::Item`.
1823         if partial_res.unresolved_segments() == 0 {
1824             return hir::QPath::Resolved(qself, path);
1825         }
1826
1827         // Create the innermost type that we're projecting from.
1828         let mut ty = if path.segments.is_empty() {
1829             // If the base path is empty that means there exists a
1830             // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`.
1831             qself.expect("missing QSelf for <T>::...")
1832         } else {
1833             // Otherwise, the base path is an implicit `Self` type path,
1834             // e.g., `Vec` in `Vec::new` or `<I as Iterator>::Item` in
1835             // `<I as Iterator>::Item::default`.
1836             let new_id = self.next_id();
1837             P(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path)))
1838         };
1839
1840         // Anything after the base path are associated "extensions",
1841         // out of which all but the last one are associated types,
1842         // e.g., for `std::vec::Vec::<T>::IntoIter::Item::clone`:
1843         // * base path is `std::vec::Vec<T>`
1844         // * "extensions" are `IntoIter`, `Item` and `clone`
1845         // * type nodes are:
1846         //   1. `std::vec::Vec<T>` (created above)
1847         //   2. `<std::vec::Vec<T>>::IntoIter`
1848         //   3. `<<std::vec::Vec<T>>::IntoIter>::Item`
1849         // * final path is `<<<std::vec::Vec<T>>::IntoIter>::Item>::clone`
1850         for (i, segment) in p.segments.iter().enumerate().skip(proj_start) {
1851             let segment = P(self.lower_path_segment(
1852                 p.span,
1853                 segment,
1854                 param_mode,
1855                 0,
1856                 ParenthesizedGenericArgs::Err,
1857                 itctx.reborrow(),
1858                 None,
1859             ));
1860             let qpath = hir::QPath::TypeRelative(ty, segment);
1861
1862             // It's finished, return the extension of the right node type.
1863             if i == p.segments.len() - 1 {
1864                 return qpath;
1865             }
1866
1867             // Wrap the associated extension in another type node.
1868             let new_id = self.next_id();
1869             ty = P(self.ty_path(new_id, p.span, qpath));
1870         }
1871
1872         // We should've returned in the for loop above.
1873         span_bug!(
1874             p.span,
1875             "lower_qpath: no final extension segment in {}..{}",
1876             proj_start,
1877             p.segments.len()
1878         )
1879     }
1880
1881     fn lower_path_extra(
1882         &mut self,
1883         res: Res,
1884         p: &Path,
1885         param_mode: ParamMode,
1886         explicit_owner: Option<NodeId>,
1887     ) -> hir::Path {
1888         hir::Path {
1889             res,
1890             segments: p.segments
1891                 .iter()
1892                 .map(|segment| {
1893                     self.lower_path_segment(
1894                         p.span,
1895                         segment,
1896                         param_mode,
1897                         0,
1898                         ParenthesizedGenericArgs::Err,
1899                         ImplTraitContext::disallowed(),
1900                         explicit_owner,
1901                     )
1902                 })
1903                 .collect(),
1904             span: p.span,
1905         }
1906     }
1907
1908     fn lower_path(&mut self, id: NodeId, p: &Path, param_mode: ParamMode) -> hir::Path {
1909         let res = self.expect_full_res(id);
1910         let res = self.lower_res(res);
1911         self.lower_path_extra(res, p, param_mode, None)
1912     }
1913
1914     fn lower_path_segment(
1915         &mut self,
1916         path_span: Span,
1917         segment: &PathSegment,
1918         param_mode: ParamMode,
1919         expected_lifetimes: usize,
1920         parenthesized_generic_args: ParenthesizedGenericArgs,
1921         itctx: ImplTraitContext<'_>,
1922         explicit_owner: Option<NodeId>,
1923     ) -> hir::PathSegment {
1924         let (mut generic_args, infer_args) = if let Some(ref generic_args) = segment.args {
1925             let msg = "parenthesized type parameters may only be used with a `Fn` trait";
1926             match **generic_args {
1927                 GenericArgs::AngleBracketed(ref data) => {
1928                     self.lower_angle_bracketed_parameter_data(data, param_mode, itctx)
1929                 }
1930                 GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args {
1931                     ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data),
1932                     ParenthesizedGenericArgs::Err => {
1933                         let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg);
1934                         err.span_label(data.span, "only `Fn` traits may use parentheses");
1935                         if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) {
1936                             // Do not suggest going from `Trait()` to `Trait<>`
1937                             if data.inputs.len() > 0 {
1938                                 if let Some(split) = snippet.find('(') {
1939                                     let trait_name = &snippet[0..split];
1940                                     let args = &snippet[split + 1 .. snippet.len() - 1];
1941                                     err.span_suggestion(
1942                                         data.span,
1943                                         "use angle brackets instead",
1944                                         format!("{}<{}>", trait_name, args),
1945                                         Applicability::MaybeIncorrect,
1946                                     );
1947                                 }
1948                             }
1949                         };
1950                         err.emit();
1951                         (
1952                             self.lower_angle_bracketed_parameter_data(
1953                                 &data.as_angle_bracketed_args(),
1954                                 param_mode,
1955                                 itctx
1956                             ).0,
1957                             false,
1958                         )
1959                     }
1960                 },
1961             }
1962         } else {
1963             self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx)
1964         };
1965
1966         let has_lifetimes = generic_args.args.iter().any(|arg| match arg {
1967             GenericArg::Lifetime(_) => true,
1968             _ => false,
1969         });
1970         let first_generic_span = generic_args.args.iter().map(|a| a.span())
1971             .chain(generic_args.bindings.iter().map(|b| b.span)).next();
1972         if !generic_args.parenthesized && !has_lifetimes {
1973             generic_args.args =
1974                 self.elided_path_lifetimes(path_span, expected_lifetimes)
1975                     .into_iter()
1976                     .map(|lt| GenericArg::Lifetime(lt))
1977                     .chain(generic_args.args.into_iter())
1978                 .collect();
1979             if expected_lifetimes > 0 && param_mode == ParamMode::Explicit {
1980                 let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", ");
1981                 let no_non_lt_args = generic_args.args.len() == expected_lifetimes;
1982                 let no_bindings = generic_args.bindings.is_empty();
1983                 let (incl_angl_brckt, insertion_sp, suggestion) = if no_non_lt_args && no_bindings {
1984                     // If there are no (non-implicit) generic args or associated type
1985                     // bindings, our suggestion includes the angle brackets.
1986                     (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion))
1987                 } else {
1988                     // Otherwise (sorry, this is kind of gross) we need to infer the
1989                     // place to splice in the `'_, ` from the generics that do exist.
1990                     let first_generic_span = first_generic_span
1991                         .expect("already checked that non-lifetime args or bindings exist");
1992                     (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion))
1993                 };
1994                 match self.anonymous_lifetime_mode {
1995                     // In create-parameter mode we error here because we don't want to support
1996                     // deprecated impl elision in new features like impl elision and `async fn`,
1997                     // both of which work using the `CreateParameter` mode:
1998                     //
1999                     //     impl Foo for std::cell::Ref<u32> // note lack of '_
2000                     //     async fn foo(_: std::cell::Ref<u32>) { ... }
2001                     AnonymousLifetimeMode::CreateParameter => {
2002                         let mut err = struct_span_err!(
2003                             self.sess,
2004                             path_span,
2005                             E0726,
2006                             "implicit elided lifetime not allowed here"
2007                         );
2008                         crate::lint::builtin::add_elided_lifetime_in_path_suggestion(
2009                             &self.sess,
2010                             &mut err,
2011                             expected_lifetimes,
2012                             path_span,
2013                             incl_angl_brckt,
2014                             insertion_sp,
2015                             suggestion,
2016                         );
2017                         err.emit();
2018                     }
2019                     AnonymousLifetimeMode::PassThrough |
2020                     AnonymousLifetimeMode::ReportError => {
2021                         self.resolver.lint_buffer().buffer_lint_with_diagnostic(
2022                             ELIDED_LIFETIMES_IN_PATHS,
2023                             CRATE_NODE_ID,
2024                             path_span,
2025                             "hidden lifetime parameters in types are deprecated",
2026                             builtin::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
2027                                 expected_lifetimes,
2028                                 path_span,
2029                                 incl_angl_brckt,
2030                                 insertion_sp,
2031                                 suggestion,
2032                             )
2033                         );
2034                     }
2035                 }
2036             }
2037         }
2038
2039         let res = self.expect_full_res(segment.id);
2040         let id = if let Some(owner) = explicit_owner {
2041             self.lower_node_id_with_owner(segment.id, owner)
2042         } else {
2043             self.lower_node_id(segment.id)
2044         };
2045         debug!(
2046             "lower_path_segment: ident={:?} original-id={:?} new-id={:?}",
2047             segment.ident, segment.id, id,
2048         );
2049
2050         hir::PathSegment::new(
2051             segment.ident,
2052             Some(id),
2053             Some(self.lower_res(res)),
2054             generic_args,
2055             infer_args,
2056         )
2057     }
2058
2059     fn lower_angle_bracketed_parameter_data(
2060         &mut self,
2061         data: &AngleBracketedArgs,
2062         param_mode: ParamMode,
2063         mut itctx: ImplTraitContext<'_>,
2064     ) -> (hir::GenericArgs, bool) {
2065         let &AngleBracketedArgs { ref args, ref constraints, .. } = data;
2066         let has_non_lt_args = args.iter().any(|arg| match arg {
2067             ast::GenericArg::Lifetime(_) => false,
2068             ast::GenericArg::Type(_) => true,
2069             ast::GenericArg::Const(_) => true,
2070         });
2071         (
2072             hir::GenericArgs {
2073                 args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(),
2074                 bindings: constraints.iter()
2075                     .map(|b| self.lower_assoc_ty_constraint(b, itctx.reborrow()))
2076                     .collect(),
2077                 parenthesized: false,
2078             },
2079             !has_non_lt_args && param_mode == ParamMode::Optional
2080         )
2081     }
2082
2083     fn lower_parenthesized_parameter_data(
2084         &mut self,
2085         data: &ParenthesizedArgs,
2086     ) -> (hir::GenericArgs, bool) {
2087         // Switch to `PassThrough` mode for anonymous lifetimes; this
2088         // means that we permit things like `&Ref<T>`, where `Ref` has
2089         // a hidden lifetime parameter. This is needed for backwards
2090         // compatibility, even in contexts like an impl header where
2091         // we generally don't permit such things (see #51008).
2092         self.with_anonymous_lifetime_mode(
2093             AnonymousLifetimeMode::PassThrough,
2094             |this| {
2095                 let &ParenthesizedArgs { ref inputs, ref output, span } = data;
2096                 let inputs = inputs
2097                     .iter()
2098                     .map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed()))
2099                     .collect();
2100                 let output_ty = match output {
2101                     FunctionRetTy::Ty(ty) => this.lower_ty(&ty, ImplTraitContext::disallowed()),
2102                     FunctionRetTy::Default(_) => P(this.ty_tup(span, hir::HirVec::new())),
2103                 };
2104                 let args = hir_vec![GenericArg::Type(this.ty_tup(span, inputs))];
2105                 let binding = hir::TypeBinding {
2106                     hir_id: this.next_id(),
2107                     ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2108                     span: output_ty.span,
2109                     kind: hir::TypeBindingKind::Equality { ty: output_ty },
2110                 };
2111                 (
2112                     hir::GenericArgs { args, bindings: hir_vec![binding], parenthesized: true },
2113                     false,
2114                 )
2115             }
2116         )
2117     }
2118
2119     fn lower_local(&mut self, l: &Local) -> (hir::Local, SmallVec<[NodeId; 1]>) {
2120         let mut ids = SmallVec::<[NodeId; 1]>::new();
2121         if self.sess.features_untracked().impl_trait_in_bindings {
2122             if let Some(ref ty) = l.ty {
2123                 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
2124                 visitor.visit_ty(ty);
2125             }
2126         }
2127         let parent_def_id = DefId::local(self.current_hir_id_owner.last().unwrap().0);
2128         (hir::Local {
2129             hir_id: self.lower_node_id(l.id),
2130             ty: l.ty
2131                 .as_ref()
2132                 .map(|t| self.lower_ty(t,
2133                     if self.sess.features_untracked().impl_trait_in_bindings {
2134                         ImplTraitContext::OpaqueTy(Some(parent_def_id))
2135                     } else {
2136                         ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2137                     }
2138                 )),
2139             pat: self.lower_pat(&l.pat),
2140             init: l.init.as_ref().map(|e| P(self.lower_expr(e))),
2141             span: l.span,
2142             attrs: l.attrs.clone(),
2143             source: hir::LocalSource::Normal,
2144         }, ids)
2145     }
2146
2147     fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> hir::HirVec<Ident> {
2148         // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
2149         // as they are not explicit in HIR/Ty function signatures.
2150         // (instead, the `c_variadic` flag is set to `true`)
2151         let mut inputs = &decl.inputs[..];
2152         if decl.c_variadic() {
2153             inputs = &inputs[..inputs.len() - 1];
2154         }
2155         inputs
2156             .iter()
2157             .map(|param| match param.pat.kind {
2158                 PatKind::Ident(_, ident, _) => ident,
2159                 _ => Ident::new(kw::Invalid, param.pat.span),
2160             })
2161             .collect()
2162     }
2163
2164     // Lowers a function declaration.
2165     //
2166     // `decl`: the unlowered (AST) function declaration.
2167     // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
2168     //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
2169     //      `make_ret_async` is also `Some`.
2170     // `impl_trait_return_allow`: determines whether `impl Trait` can be used in return position.
2171     //      This guards against trait declarations and implementations where `impl Trait` is
2172     //      disallowed.
2173     // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
2174     //      return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
2175     //      return type `impl Trait` item.
2176     fn lower_fn_decl(
2177         &mut self,
2178         decl: &FnDecl,
2179         mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam>)>,
2180         impl_trait_return_allow: bool,
2181         make_ret_async: Option<NodeId>,
2182     ) -> P<hir::FnDecl> {
2183         debug!("lower_fn_decl(\
2184             fn_decl: {:?}, \
2185             in_band_ty_params: {:?}, \
2186             impl_trait_return_allow: {}, \
2187             make_ret_async: {:?})",
2188             decl,
2189             in_band_ty_params,
2190             impl_trait_return_allow,
2191             make_ret_async,
2192         );
2193         let lt_mode = if make_ret_async.is_some() {
2194             // In `async fn`, argument-position elided lifetimes
2195             // must be transformed into fresh generic parameters so that
2196             // they can be applied to the opaque `impl Trait` return type.
2197             AnonymousLifetimeMode::CreateParameter
2198         } else {
2199             self.anonymous_lifetime_mode
2200         };
2201
2202         let c_variadic = decl.c_variadic();
2203
2204         // Remember how many lifetimes were already around so that we can
2205         // only look at the lifetime parameters introduced by the arguments.
2206         let inputs = self.with_anonymous_lifetime_mode(lt_mode, |this| {
2207             // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
2208             // as they are not explicit in HIR/Ty function signatures.
2209             // (instead, the `c_variadic` flag is set to `true`)
2210             let mut inputs = &decl.inputs[..];
2211             if c_variadic {
2212                 inputs = &inputs[..inputs.len() - 1];
2213             }
2214             inputs
2215                 .iter()
2216                 .map(|param| {
2217                     if let Some((_, ibty)) = &mut in_band_ty_params {
2218                         this.lower_ty_direct(&param.ty, ImplTraitContext::Universal(ibty))
2219                     } else {
2220                         this.lower_ty_direct(&param.ty, ImplTraitContext::disallowed())
2221                     }
2222                 })
2223                 .collect::<HirVec<_>>()
2224         });
2225
2226         let output = if let Some(ret_id) = make_ret_async {
2227             self.lower_async_fn_ret_ty(
2228                 &decl.output,
2229                 in_band_ty_params.expect("`make_ret_async` but no `fn_def_id`").0,
2230                 ret_id,
2231             )
2232         } else {
2233             match decl.output {
2234                 FunctionRetTy::Ty(ref ty) => match in_band_ty_params {
2235                     Some((def_id, _)) if impl_trait_return_allow => {
2236                         hir::Return(self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(def_id))))
2237                     }
2238                     _ => {
2239                         hir::Return(self.lower_ty(ty, ImplTraitContext::disallowed()))
2240                     }
2241                 },
2242                 FunctionRetTy::Default(span) => hir::DefaultReturn(span),
2243             }
2244         };
2245
2246         P(hir::FnDecl {
2247             inputs,
2248             output,
2249             c_variadic,
2250             implicit_self: decl.inputs.get(0).map_or(
2251                 hir::ImplicitSelfKind::None,
2252                 |arg| {
2253                     let is_mutable_pat = match arg.pat.kind {
2254                         PatKind::Ident(BindingMode::ByValue(mt), _, _) |
2255                         PatKind::Ident(BindingMode::ByRef(mt), _, _) =>
2256                             mt == Mutability::Mut,
2257                         _ => false,
2258                     };
2259
2260                     match arg.ty.kind {
2261                         TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
2262                         TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
2263                         // Given we are only considering `ImplicitSelf` types, we needn't consider
2264                         // the case where we have a mutable pattern to a reference as that would
2265                         // no longer be an `ImplicitSelf`.
2266                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() &&
2267                             mt.mutbl == ast::Mutability::Mut =>
2268                                 hir::ImplicitSelfKind::MutRef,
2269                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() =>
2270                             hir::ImplicitSelfKind::ImmRef,
2271                         _ => hir::ImplicitSelfKind::None,
2272                     }
2273                 },
2274             ),
2275         })
2276     }
2277
2278     // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
2279     // combined with the following definition of `OpaqueTy`:
2280     //
2281     //     type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
2282     //
2283     // `inputs`: lowered types of parameters to the function (used to collect lifetimes)
2284     // `output`: unlowered output type (`T` in `-> T`)
2285     // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
2286     // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
2287     // `elided_lt_replacement`: replacement for elided lifetimes in the return type
2288     fn lower_async_fn_ret_ty(
2289         &mut self,
2290         output: &FunctionRetTy,
2291         fn_def_id: DefId,
2292         opaque_ty_node_id: NodeId,
2293     ) -> hir::FunctionRetTy {
2294         debug!(
2295             "lower_async_fn_ret_ty(\
2296              output={:?}, \
2297              fn_def_id={:?}, \
2298              opaque_ty_node_id={:?})",
2299             output, fn_def_id, opaque_ty_node_id,
2300         );
2301
2302         let span = output.span();
2303
2304         let opaque_ty_span = self.mark_span_with_reason(
2305             DesugaringKind::Async,
2306             span,
2307             None,
2308         );
2309
2310         let opaque_ty_def_index = self
2311             .resolver
2312             .definitions()
2313             .opt_def_index(opaque_ty_node_id)
2314             .unwrap();
2315
2316         self.allocate_hir_id_counter(opaque_ty_node_id);
2317
2318         // When we create the opaque type for this async fn, it is going to have
2319         // to capture all the lifetimes involved in the signature (including in the
2320         // return type). This is done by introducing lifetime parameters for:
2321         //
2322         // - all the explicitly declared lifetimes from the impl and function itself;
2323         // - all the elided lifetimes in the fn arguments;
2324         // - all the elided lifetimes in the return type.
2325         //
2326         // So for example in this snippet:
2327         //
2328         // ```rust
2329         // impl<'a> Foo<'a> {
2330         //   async fn bar<'b>(&self, x: &'b Vec<f64>, y: &str) -> &u32 {
2331         //   //               ^ '0                       ^ '1     ^ '2
2332         //   // elided lifetimes used below
2333         //   }
2334         // }
2335         // ```
2336         //
2337         // we would create an opaque type like:
2338         //
2339         // ```
2340         // type Bar<'a, 'b, '0, '1, '2> = impl Future<Output = &'2 u32>;
2341         // ```
2342         //
2343         // and we would then desugar `bar` to the equivalent of:
2344         //
2345         // ```rust
2346         // impl<'a> Foo<'a> {
2347         //   fn bar<'b, '0, '1>(&'0 self, x: &'b Vec<f64>, y: &'1 str) -> Bar<'a, 'b, '0, '1, '_>
2348         // }
2349         // ```
2350         //
2351         // Note that the final parameter to `Bar` is `'_`, not `'2` --
2352         // this is because the elided lifetimes from the return type
2353         // should be figured out using the ordinary elision rules, and
2354         // this desugaring achieves that.
2355         //
2356         // The variable `input_lifetimes_count` tracks the number of
2357         // lifetime parameters to the opaque type *not counting* those
2358         // lifetimes elided in the return type. This includes those
2359         // that are explicitly declared (`in_scope_lifetimes`) and
2360         // those elided lifetimes we found in the arguments (current
2361         // content of `lifetimes_to_define`). Next, we will process
2362         // the return type, which will cause `lifetimes_to_define` to
2363         // grow.
2364         let input_lifetimes_count = self.in_scope_lifetimes.len() + self.lifetimes_to_define.len();
2365
2366         let (opaque_ty_id, lifetime_params) = self.with_hir_id_owner(opaque_ty_node_id, |this| {
2367             // We have to be careful to get elision right here. The
2368             // idea is that we create a lifetime parameter for each
2369             // lifetime in the return type.  So, given a return type
2370             // like `async fn foo(..) -> &[&u32]`, we lower to `impl
2371             // Future<Output = &'1 [ &'2 u32 ]>`.
2372             //
2373             // Then, we will create `fn foo(..) -> Foo<'_, '_>`, and
2374             // hence the elision takes place at the fn site.
2375             let future_bound = this.with_anonymous_lifetime_mode(
2376                 AnonymousLifetimeMode::CreateParameter,
2377                 |this| this.lower_async_fn_output_type_to_future_bound(
2378                     output,
2379                     fn_def_id,
2380                     span,
2381                 ),
2382             );
2383
2384             debug!("lower_async_fn_ret_ty: future_bound={:#?}", future_bound);
2385
2386             // Calculate all the lifetimes that should be captured
2387             // by the opaque type. This should include all in-scope
2388             // lifetime parameters, including those defined in-band.
2389             //
2390             // Note: this must be done after lowering the output type,
2391             // as the output type may introduce new in-band lifetimes.
2392             let lifetime_params: Vec<(Span, ParamName)> =
2393                 this.in_scope_lifetimes
2394                     .iter().cloned()
2395                     .map(|name| (name.ident().span, name))
2396                     .chain(this.lifetimes_to_define.iter().cloned())
2397                     .collect();
2398
2399             debug!("lower_async_fn_ret_ty: in_scope_lifetimes={:#?}", this.in_scope_lifetimes);
2400             debug!("lower_async_fn_ret_ty: lifetimes_to_define={:#?}", this.lifetimes_to_define);
2401             debug!("lower_async_fn_ret_ty: lifetime_params={:#?}", lifetime_params);
2402
2403             let generic_params =
2404                 lifetime_params
2405                     .iter().cloned()
2406                     .map(|(span, hir_name)| {
2407                         this.lifetime_to_generic_param(span, hir_name, opaque_ty_def_index)
2408                     })
2409                     .collect();
2410
2411             let opaque_ty_item = hir::OpaqueTy {
2412                 generics: hir::Generics {
2413                     params: generic_params,
2414                     where_clause: hir::WhereClause {
2415                         predicates: hir_vec![],
2416                         span,
2417                     },
2418                     span,
2419                 },
2420                 bounds: hir_vec![future_bound],
2421                 impl_trait_fn: Some(fn_def_id),
2422                 origin: hir::OpaqueTyOrigin::AsyncFn,
2423             };
2424
2425             trace!("exist ty from async fn def index: {:#?}", opaque_ty_def_index);
2426             let opaque_ty_id = this.generate_opaque_type(
2427                 opaque_ty_node_id,
2428                 opaque_ty_item,
2429                 span,
2430                 opaque_ty_span,
2431             );
2432
2433             (opaque_ty_id, lifetime_params)
2434         });
2435
2436         // As documented above on the variable
2437         // `input_lifetimes_count`, we need to create the lifetime
2438         // arguments to our opaque type. Continuing with our example,
2439         // we're creating the type arguments for the return type:
2440         //
2441         // ```
2442         // Bar<'a, 'b, '0, '1, '_>
2443         // ```
2444         //
2445         // For the "input" lifetime parameters, we wish to create
2446         // references to the parameters themselves, including the
2447         // "implicit" ones created from parameter types (`'a`, `'b`,
2448         // '`0`, `'1`).
2449         //
2450         // For the "output" lifetime parameters, we just want to
2451         // generate `'_`.
2452         let mut generic_args: Vec<_> =
2453             lifetime_params[..input_lifetimes_count]
2454             .iter()
2455             .map(|&(span, hir_name)| {
2456                 // Input lifetime like `'a` or `'1`:
2457                 GenericArg::Lifetime(hir::Lifetime {
2458                     hir_id: self.next_id(),
2459                     span,
2460                     name: hir::LifetimeName::Param(hir_name),
2461                 })
2462             })
2463             .collect();
2464         generic_args.extend(
2465             lifetime_params[input_lifetimes_count..]
2466             .iter()
2467             .map(|&(span, _)| {
2468                 // Output lifetime like `'_`.
2469                 GenericArg::Lifetime(hir::Lifetime {
2470                     hir_id: self.next_id(),
2471                     span,
2472                     name: hir::LifetimeName::Implicit,
2473                 })
2474             })
2475         );
2476
2477         // Create the `Foo<...>` reference itself. Note that the `type
2478         // Foo = impl Trait` is, internally, created as a child of the
2479         // async fn, so the *type parameters* are inherited.  It's
2480         // only the lifetime parameters that we must supply.
2481         let opaque_ty_ref = hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, generic_args.into());
2482         let opaque_ty = self.ty(opaque_ty_span, opaque_ty_ref);
2483         hir::FunctionRetTy::Return(P(opaque_ty))
2484     }
2485
2486     /// Transforms `-> T` into `Future<Output = T>`
2487     fn lower_async_fn_output_type_to_future_bound(
2488         &mut self,
2489         output: &FunctionRetTy,
2490         fn_def_id: DefId,
2491         span: Span,
2492     ) -> hir::GenericBound {
2493         // Compute the `T` in `Future<Output = T>` from the return type.
2494         let output_ty = match output {
2495             FunctionRetTy::Ty(ty) => self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(fn_def_id))),
2496             FunctionRetTy::Default(ret_ty_span) => P(self.ty_tup(*ret_ty_span, hir_vec![])),
2497         };
2498
2499         // "<Output = T>"
2500         let future_params = P(hir::GenericArgs {
2501             args: hir_vec![],
2502             bindings: hir_vec![hir::TypeBinding {
2503                 ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2504                 kind: hir::TypeBindingKind::Equality {
2505                     ty: output_ty,
2506                 },
2507                 hir_id: self.next_id(),
2508                 span,
2509             }],
2510             parenthesized: false,
2511         });
2512
2513         // ::std::future::Future<future_params>
2514         let future_path =
2515             P(self.std_path(span, &[sym::future, sym::Future], Some(future_params), false));
2516
2517         hir::GenericBound::Trait(
2518             hir::PolyTraitRef {
2519                 trait_ref: hir::TraitRef {
2520                     path: future_path,
2521                     hir_ref_id: self.next_id(),
2522                 },
2523                 bound_generic_params: hir_vec![],
2524                 span,
2525             },
2526             hir::TraitBoundModifier::None,
2527         )
2528     }
2529
2530     fn lower_param_bound(
2531         &mut self,
2532         tpb: &GenericBound,
2533         itctx: ImplTraitContext<'_>,
2534     ) -> hir::GenericBound {
2535         match *tpb {
2536             GenericBound::Trait(ref ty, modifier) => {
2537                 hir::GenericBound::Trait(
2538                     self.lower_poly_trait_ref(ty, itctx),
2539                     self.lower_trait_bound_modifier(modifier),
2540                 )
2541             }
2542             GenericBound::Outlives(ref lifetime) => {
2543                 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2544             }
2545         }
2546     }
2547
2548     fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2549         let span = l.ident.span;
2550         match l.ident {
2551             ident if ident.name == kw::StaticLifetime =>
2552                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static),
2553             ident if ident.name == kw::UnderscoreLifetime =>
2554                 match self.anonymous_lifetime_mode {
2555                     AnonymousLifetimeMode::CreateParameter => {
2556                         let fresh_name = self.collect_fresh_in_band_lifetime(span);
2557                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2558                     }
2559
2560                     AnonymousLifetimeMode::PassThrough => {
2561                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2562                     }
2563
2564                     AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2565                 },
2566             ident => {
2567                 self.maybe_collect_in_band_lifetime(ident);
2568                 let param_name = ParamName::Plain(ident);
2569                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2570             }
2571         }
2572     }
2573
2574     fn new_named_lifetime(
2575         &mut self,
2576         id: NodeId,
2577         span: Span,
2578         name: hir::LifetimeName,
2579     ) -> hir::Lifetime {
2580         hir::Lifetime {
2581             hir_id: self.lower_node_id(id),
2582             span,
2583             name,
2584         }
2585     }
2586
2587     fn lower_generic_params(
2588         &mut self,
2589         params: &[GenericParam],
2590         add_bounds: &NodeMap<Vec<GenericBound>>,
2591         mut itctx: ImplTraitContext<'_>,
2592     ) -> hir::HirVec<hir::GenericParam> {
2593         params.iter().map(|param| {
2594             self.lower_generic_param(param, add_bounds, itctx.reborrow())
2595         }).collect()
2596     }
2597
2598     fn lower_generic_param(&mut self,
2599                            param: &GenericParam,
2600                            add_bounds: &NodeMap<Vec<GenericBound>>,
2601                            mut itctx: ImplTraitContext<'_>)
2602                            -> hir::GenericParam {
2603         let mut bounds = self.with_anonymous_lifetime_mode(
2604             AnonymousLifetimeMode::ReportError,
2605             |this| this.lower_param_bounds(&param.bounds, itctx.reborrow()),
2606         );
2607
2608         let (name, kind) = match param.kind {
2609             GenericParamKind::Lifetime => {
2610                 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2611                 self.is_collecting_in_band_lifetimes = false;
2612
2613                 let lt = self.with_anonymous_lifetime_mode(
2614                     AnonymousLifetimeMode::ReportError,
2615                     |this| this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident }),
2616                 );
2617                 let param_name = match lt.name {
2618                     hir::LifetimeName::Param(param_name) => param_name,
2619                     hir::LifetimeName::Implicit
2620                         | hir::LifetimeName::Underscore
2621                         | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2622                     hir::LifetimeName::ImplicitObjectLifetimeDefault => {
2623                         span_bug!(
2624                             param.ident.span,
2625                             "object-lifetime-default should not occur here",
2626                         );
2627                     }
2628                     hir::LifetimeName::Error => ParamName::Error,
2629                 };
2630
2631                 let kind = hir::GenericParamKind::Lifetime {
2632                     kind: hir::LifetimeParamKind::Explicit
2633                 };
2634
2635                 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2636
2637                 (param_name, kind)
2638             }
2639             GenericParamKind::Type { ref default, .. } => {
2640                 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2641                 if !add_bounds.is_empty() {
2642                     let params = self.lower_param_bounds(add_bounds, itctx.reborrow()).into_iter();
2643                     bounds = bounds.into_iter()
2644                                    .chain(params)
2645                                    .collect();
2646                 }
2647
2648                 let kind = hir::GenericParamKind::Type {
2649                     default: default.as_ref().map(|x| {
2650                         self.lower_ty(x, ImplTraitContext::OpaqueTy(None))
2651                     }),
2652                     synthetic: param.attrs.iter()
2653                                           .filter(|attr| attr.check_name(sym::rustc_synthetic))
2654                                           .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2655                                           .next(),
2656                 };
2657
2658                 (hir::ParamName::Plain(param.ident), kind)
2659             }
2660             GenericParamKind::Const { ref ty } => {
2661                 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const {
2662                     ty: self.lower_ty(&ty, ImplTraitContext::disallowed()),
2663                 })
2664             }
2665         };
2666
2667         hir::GenericParam {
2668             hir_id: self.lower_node_id(param.id),
2669             name,
2670             span: param.ident.span,
2671             pure_wrt_drop: attr::contains_name(&param.attrs, sym::may_dangle),
2672             attrs: self.lower_attrs(&param.attrs),
2673             bounds,
2674             kind,
2675         }
2676     }
2677
2678     fn lower_trait_ref(&mut self, p: &TraitRef, itctx: ImplTraitContext<'_>) -> hir::TraitRef {
2679         let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2680             hir::QPath::Resolved(None, path) => path,
2681             qpath => bug!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2682         };
2683         hir::TraitRef {
2684             path,
2685             hir_ref_id: self.lower_node_id(p.ref_id),
2686         }
2687     }
2688
2689     fn lower_poly_trait_ref(
2690         &mut self,
2691         p: &PolyTraitRef,
2692         mut itctx: ImplTraitContext<'_>,
2693     ) -> hir::PolyTraitRef {
2694         let bound_generic_params = self.lower_generic_params(
2695             &p.bound_generic_params,
2696             &NodeMap::default(),
2697             itctx.reborrow(),
2698         );
2699         let trait_ref = self.with_in_scope_lifetime_defs(
2700             &p.bound_generic_params,
2701             |this| this.lower_trait_ref(&p.trait_ref, itctx),
2702         );
2703
2704         hir::PolyTraitRef {
2705             bound_generic_params,
2706             trait_ref,
2707             span: p.span,
2708         }
2709     }
2710
2711     fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_>) -> hir::MutTy {
2712         hir::MutTy {
2713             ty: self.lower_ty(&mt.ty, itctx),
2714             mutbl: mt.mutbl,
2715         }
2716     }
2717
2718     fn lower_param_bounds(&mut self, bounds: &[GenericBound], mut itctx: ImplTraitContext<'_>)
2719                           -> hir::GenericBounds {
2720         bounds.iter().map(|bound| self.lower_param_bound(bound, itctx.reborrow())).collect()
2721     }
2722
2723     fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> P<hir::Block> {
2724         let mut stmts = vec![];
2725         let mut expr = None;
2726
2727         for (index, stmt) in b.stmts.iter().enumerate() {
2728             if index == b.stmts.len() - 1 {
2729                 if let StmtKind::Expr(ref e) = stmt.kind {
2730                     expr = Some(P(self.lower_expr(e)));
2731                 } else {
2732                     stmts.extend(self.lower_stmt(stmt));
2733                 }
2734             } else {
2735                 stmts.extend(self.lower_stmt(stmt));
2736             }
2737         }
2738
2739         P(hir::Block {
2740             hir_id: self.lower_node_id(b.id),
2741             stmts: stmts.into(),
2742             expr,
2743             rules: self.lower_block_check_mode(&b.rules),
2744             span: b.span,
2745             targeted_by_break,
2746         })
2747     }
2748
2749     /// Lowers a block directly to an expression, presuming that it
2750     /// has no attributes and is not targeted by a `break`.
2751     fn lower_block_expr(&mut self, b: &Block) -> hir::Expr {
2752         let block = self.lower_block(b, false);
2753         self.expr_block(block, AttrVec::new())
2754     }
2755
2756     fn lower_pat(&mut self, p: &Pat) -> P<hir::Pat> {
2757         let node = match p.kind {
2758             PatKind::Wild => hir::PatKind::Wild,
2759             PatKind::Ident(ref binding_mode, ident, ref sub) => {
2760                 let lower_sub = |this: &mut Self| sub.as_ref().map(|x| this.lower_pat(x));
2761                 self.lower_pat_ident(p, binding_mode, ident, lower_sub)
2762             }
2763             PatKind::Lit(ref e) => hir::PatKind::Lit(P(self.lower_expr(e))),
2764             PatKind::TupleStruct(ref path, ref pats) => {
2765                 let qpath = self.lower_qpath(
2766                     p.id,
2767                     &None,
2768                     path,
2769                     ParamMode::Optional,
2770                     ImplTraitContext::disallowed(),
2771                 );
2772                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple struct");
2773                 hir::PatKind::TupleStruct(qpath, pats, ddpos)
2774             }
2775             PatKind::Or(ref pats) => {
2776                 hir::PatKind::Or(pats.iter().map(|x| self.lower_pat(x)).collect())
2777             }
2778             PatKind::Path(ref qself, ref path) => {
2779                 let qpath = self.lower_qpath(
2780                     p.id,
2781                     qself,
2782                     path,
2783                     ParamMode::Optional,
2784                     ImplTraitContext::disallowed(),
2785                 );
2786                 hir::PatKind::Path(qpath)
2787             }
2788             PatKind::Struct(ref path, ref fields, etc) => {
2789                 let qpath = self.lower_qpath(
2790                     p.id,
2791                     &None,
2792                     path,
2793                     ParamMode::Optional,
2794                     ImplTraitContext::disallowed(),
2795                 );
2796
2797                 let fs = fields
2798                     .iter()
2799                     .map(|f| hir::FieldPat {
2800                         hir_id: self.next_id(),
2801                         ident: f.ident,
2802                         pat: self.lower_pat(&f.pat),
2803                         is_shorthand: f.is_shorthand,
2804                         span: f.span,
2805                     })
2806                     .collect();
2807                 hir::PatKind::Struct(qpath, fs, etc)
2808             }
2809             PatKind::Tuple(ref pats) => {
2810                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple");
2811                 hir::PatKind::Tuple(pats, ddpos)
2812             }
2813             PatKind::Box(ref inner) => hir::PatKind::Box(self.lower_pat(inner)),
2814             PatKind::Ref(ref inner, mutbl) => {
2815                 hir::PatKind::Ref(self.lower_pat(inner), mutbl)
2816             }
2817             PatKind::Range(ref e1, ref e2, Spanned { node: ref end, .. }) => hir::PatKind::Range(
2818                 P(self.lower_expr(e1)),
2819                 P(self.lower_expr(e2)),
2820                 self.lower_range_end(end),
2821             ),
2822             PatKind::Slice(ref pats) => self.lower_pat_slice(pats),
2823             PatKind::Rest => {
2824                 // If we reach here the `..` pattern is not semantically allowed.
2825                 self.ban_illegal_rest_pat(p.span)
2826             }
2827             PatKind::Paren(ref inner) => return self.lower_pat(inner),
2828             PatKind::Mac(_) => panic!("Shouldn't exist here"),
2829         };
2830
2831         self.pat_with_node_id_of(p, node)
2832     }
2833
2834     fn lower_pat_tuple(
2835         &mut self,
2836         pats: &[AstP<Pat>],
2837         ctx: &str,
2838     ) -> (HirVec<P<hir::Pat>>, Option<usize>) {
2839         let mut elems = Vec::with_capacity(pats.len());
2840         let mut rest = None;
2841
2842         let mut iter = pats.iter().enumerate();
2843         for (idx, pat) in iter.by_ref() {
2844             // Interpret the first `..` pattern as a sub-tuple pattern.
2845             // Note that unlike for slice patterns,
2846             // where `xs @ ..` is a legal sub-slice pattern,
2847             // it is not a legal sub-tuple pattern.
2848             if pat.is_rest() {
2849                 rest = Some((idx, pat.span));
2850                 break;
2851             }
2852             // It was not a sub-tuple pattern so lower it normally.
2853             elems.push(self.lower_pat(pat));
2854         }
2855
2856         for (_, pat) in iter {
2857             // There was a previous sub-tuple pattern; make sure we don't allow more...
2858             if pat.is_rest() {
2859                 // ...but there was one again, so error.
2860                 self.ban_extra_rest_pat(pat.span, rest.unwrap().1, ctx);
2861             } else {
2862                 elems.push(self.lower_pat(pat));
2863             }
2864         }
2865
2866         (elems.into(), rest.map(|(ddpos, _)| ddpos))
2867     }
2868
2869     /// Lower a slice pattern of form `[pat_0, ..., pat_n]` into
2870     /// `hir::PatKind::Slice(before, slice, after)`.
2871     ///
2872     /// When encountering `($binding_mode $ident @)? ..` (`slice`),
2873     /// this is interpreted as a sub-slice pattern semantically.
2874     /// Patterns that follow, which are not like `slice` -- or an error occurs, are in `after`.
2875     fn lower_pat_slice(&mut self, pats: &[AstP<Pat>]) -> hir::PatKind {
2876         let mut before = Vec::new();
2877         let mut after = Vec::new();
2878         let mut slice = None;
2879         let mut prev_rest_span = None;
2880
2881         let mut iter = pats.iter();
2882         // Lower all the patterns until the first occurence of a sub-slice pattern.
2883         for pat in iter.by_ref() {
2884             match pat.kind {
2885                 // Found a sub-slice pattern `..`. Record, lower it to `_`, and stop here.
2886                 PatKind::Rest => {
2887                     prev_rest_span = Some(pat.span);
2888                     slice = Some(self.pat_wild_with_node_id_of(pat));
2889                     break;
2890                 },
2891                 // Found a sub-slice pattern `$binding_mode $ident @ ..`.
2892                 // Record, lower it to `$binding_mode $ident @ _`, and stop here.
2893                 PatKind::Ident(ref bm, ident, Some(ref sub)) if sub.is_rest() => {
2894                     prev_rest_span = Some(sub.span);
2895                     let lower_sub = |this: &mut Self| Some(this.pat_wild_with_node_id_of(sub));
2896                     let node = self.lower_pat_ident(pat, bm, ident, lower_sub);
2897                     slice = Some(self.pat_with_node_id_of(pat, node));
2898                     break;
2899                 },
2900                 // It was not a subslice pattern so lower it normally.
2901                 _ => before.push(self.lower_pat(pat)),
2902             }
2903         }
2904
2905         // Lower all the patterns after the first sub-slice pattern.
2906         for pat in iter {
2907             // There was a previous subslice pattern; make sure we don't allow more.
2908             let rest_span = match pat.kind {
2909                 PatKind::Rest => Some(pat.span),
2910                 PatKind::Ident(.., Some(ref sub)) if sub.is_rest() => {
2911                     // The `HirValidator` is merciless; add a `_` pattern to avoid ICEs.
2912                     after.push(self.pat_wild_with_node_id_of(pat));
2913                     Some(sub.span)
2914                 },
2915                 _ => None,
2916             };
2917             if let Some(rest_span) = rest_span {
2918                 // We have e.g., `[a, .., b, ..]`. That's no good, error!
2919                 self.ban_extra_rest_pat(rest_span, prev_rest_span.unwrap(), "slice");
2920             } else {
2921                 // Lower the pattern normally.
2922                 after.push(self.lower_pat(pat));
2923             }
2924         }
2925
2926         hir::PatKind::Slice(before.into(), slice, after.into())
2927     }
2928
2929     fn lower_pat_ident(
2930         &mut self,
2931         p: &Pat,
2932         binding_mode: &BindingMode,
2933         ident: Ident,
2934         lower_sub: impl FnOnce(&mut Self) -> Option<P<hir::Pat>>,
2935     ) -> hir::PatKind {
2936         match self.resolver.get_partial_res(p.id).map(|d| d.base_res()) {
2937             // `None` can occur in body-less function signatures
2938             res @ None | res @ Some(Res::Local(_)) => {
2939                 let canonical_id = match res {
2940                     Some(Res::Local(id)) => id,
2941                     _ => p.id,
2942                 };
2943
2944                 hir::PatKind::Binding(
2945                     self.lower_binding_mode(binding_mode),
2946                     self.lower_node_id(canonical_id),
2947                     ident,
2948                     lower_sub(self),
2949                 )
2950             }
2951             Some(res) => hir::PatKind::Path(hir::QPath::Resolved(
2952                 None,
2953                 P(hir::Path {
2954                     span: ident.span,
2955                     res: self.lower_res(res),
2956                     segments: hir_vec![hir::PathSegment::from_ident(ident)],
2957                 }),
2958             )),
2959         }
2960     }
2961
2962     fn pat_wild_with_node_id_of(&mut self, p: &Pat) -> P<hir::Pat> {
2963         self.pat_with_node_id_of(p, hir::PatKind::Wild)
2964     }
2965
2966     /// Construct a `Pat` with the `HirId` of `p.id` lowered.
2967     fn pat_with_node_id_of(&mut self, p: &Pat, kind: hir::PatKind) -> P<hir::Pat> {
2968         P(hir::Pat {
2969             hir_id: self.lower_node_id(p.id),
2970             kind,
2971             span: p.span,
2972         })
2973     }
2974
2975     /// Emit a friendly error for extra `..` patterns in a tuple/tuple struct/slice pattern.
2976     fn ban_extra_rest_pat(&self, sp: Span, prev_sp: Span, ctx: &str) {
2977         self.diagnostic()
2978             .struct_span_err(sp, &format!("`..` can only be used once per {} pattern", ctx))
2979             .span_label(sp, &format!("can only be used once per {} pattern", ctx))
2980             .span_label(prev_sp, "previously used here")
2981             .emit();
2982     }
2983
2984     /// Used to ban the `..` pattern in places it shouldn't be semantically.
2985     fn ban_illegal_rest_pat(&self, sp: Span) -> hir::PatKind {
2986         self.diagnostic()
2987             .struct_span_err(sp, "`..` patterns are not allowed here")
2988             .note("only allowed in tuple, tuple struct, and slice patterns")
2989             .emit();
2990
2991         // We're not in a list context so `..` can be reasonably treated
2992         // as `_` because it should always be valid and roughly matches the
2993         // intent of `..` (notice that the rest of a single slot is that slot).
2994         hir::PatKind::Wild
2995     }
2996
2997     fn lower_range_end(&mut self, e: &RangeEnd) -> hir::RangeEnd {
2998         match *e {
2999             RangeEnd::Included(_) => hir::RangeEnd::Included,
3000             RangeEnd::Excluded => hir::RangeEnd::Excluded,
3001         }
3002     }
3003
3004     fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
3005         self.with_new_scopes(|this| {
3006             hir::AnonConst {
3007                 hir_id: this.lower_node_id(c.id),
3008                 body: this.lower_const_body(c.value.span, Some(&c.value)),
3009             }
3010         })
3011     }
3012
3013     fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt; 1]> {
3014         let kind = match s.kind {
3015             StmtKind::Local(ref l) => {
3016                 let (l, item_ids) = self.lower_local(l);
3017                 let mut ids: SmallVec<[hir::Stmt; 1]> = item_ids
3018                     .into_iter()
3019                     .map(|item_id| {
3020                         let item_id = hir::ItemId { id: self.lower_node_id(item_id) };
3021                         self.stmt(s.span, hir::StmtKind::Item(item_id))
3022                     })
3023                     .collect();
3024                 ids.push({
3025                     hir::Stmt {
3026                         hir_id: self.lower_node_id(s.id),
3027                         kind: hir::StmtKind::Local(P(l)),
3028                         span: s.span,
3029                     }
3030                 });
3031                 return ids;
3032             },
3033             StmtKind::Item(ref it) => {
3034                 // Can only use the ID once.
3035                 let mut id = Some(s.id);
3036                 return self.lower_item_id(it)
3037                     .into_iter()
3038                     .map(|item_id| {
3039                         let hir_id = id.take()
3040                           .map(|id| self.lower_node_id(id))
3041                           .unwrap_or_else(|| self.next_id());
3042
3043                         hir::Stmt {
3044                             hir_id,
3045                             kind: hir::StmtKind::Item(item_id),
3046                             span: s.span,
3047                         }
3048                     })
3049                     .collect();
3050             }
3051             StmtKind::Expr(ref e) => hir::StmtKind::Expr(P(self.lower_expr(e))),
3052             StmtKind::Semi(ref e) => hir::StmtKind::Semi(P(self.lower_expr(e))),
3053             StmtKind::Mac(..) => panic!("shouldn't exist here"),
3054         };
3055         smallvec![hir::Stmt {
3056             hir_id: self.lower_node_id(s.id),
3057             kind,
3058             span: s.span,
3059         }]
3060     }
3061
3062     fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
3063         match *b {
3064             BlockCheckMode::Default => hir::DefaultBlock,
3065             BlockCheckMode::Unsafe(u) => hir::UnsafeBlock(self.lower_unsafe_source(u)),
3066         }
3067     }
3068
3069     fn lower_binding_mode(&mut self, b: &BindingMode) -> hir::BindingAnnotation {
3070         match *b {
3071             BindingMode::ByValue(Mutability::Not) => hir::BindingAnnotation::Unannotated,
3072             BindingMode::ByRef(Mutability::Not) => hir::BindingAnnotation::Ref,
3073             BindingMode::ByValue(Mutability::Mut) => hir::BindingAnnotation::Mutable,
3074             BindingMode::ByRef(Mutability::Mut) => hir::BindingAnnotation::RefMut,
3075         }
3076     }
3077
3078     fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
3079         match u {
3080             CompilerGenerated => hir::CompilerGenerated,
3081             UserProvided => hir::UserProvided,
3082         }
3083     }
3084
3085     fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
3086         match f {
3087             TraitBoundModifier::None => hir::TraitBoundModifier::None,
3088             TraitBoundModifier::Maybe => hir::TraitBoundModifier::Maybe,
3089         }
3090     }
3091
3092     // Helper methods for building HIR.
3093
3094     fn stmt(&mut self, span: Span, kind: hir::StmtKind) -> hir::Stmt {
3095         hir::Stmt { span, kind, hir_id: self.next_id() }
3096     }
3097
3098     fn stmt_expr(&mut self, span: Span, expr: hir::Expr) -> hir::Stmt {
3099         self.stmt(span, hir::StmtKind::Expr(P(expr)))
3100     }
3101
3102     fn stmt_let_pat(
3103         &mut self,
3104         attrs: AttrVec,
3105         span: Span,
3106         init: Option<P<hir::Expr>>,
3107         pat: P<hir::Pat>,
3108         source: hir::LocalSource,
3109     ) -> hir::Stmt {
3110         let local = hir::Local {
3111             attrs,
3112             hir_id: self.next_id(),
3113             init,
3114             pat,
3115             source,
3116             span,
3117             ty: None,
3118         };
3119         self.stmt(span, hir::StmtKind::Local(P(local)))
3120     }
3121
3122     fn block_expr(&mut self, expr: P<hir::Expr>) -> hir::Block {
3123         self.block_all(expr.span, hir::HirVec::new(), Some(expr))
3124     }
3125
3126     fn block_all(
3127         &mut self,
3128         span: Span,
3129         stmts: hir::HirVec<hir::Stmt>,
3130         expr: Option<P<hir::Expr>>,
3131     ) -> hir::Block {
3132         hir::Block {
3133             stmts,
3134             expr,
3135             hir_id: self.next_id(),
3136             rules: hir::DefaultBlock,
3137             span,
3138             targeted_by_break: false,
3139         }
3140     }
3141
3142     /// Constructs a `true` or `false` literal pattern.
3143     fn pat_bool(&mut self, span: Span, val: bool) -> P<hir::Pat> {
3144         let expr = self.expr_bool(span, val);
3145         self.pat(span, hir::PatKind::Lit(P(expr)))
3146     }
3147
3148     fn pat_ok(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3149         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Ok], hir_vec![pat])
3150     }
3151
3152     fn pat_err(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3153         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Err], hir_vec![pat])
3154     }
3155
3156     fn pat_some(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3157         self.pat_std_enum(span, &[sym::option, sym::Option, sym::Some], hir_vec![pat])
3158     }
3159
3160     fn pat_none(&mut self, span: Span) -> P<hir::Pat> {
3161         self.pat_std_enum(span, &[sym::option, sym::Option, sym::None], hir_vec![])
3162     }
3163
3164     fn pat_std_enum(
3165         &mut self,
3166         span: Span,
3167         components: &[Symbol],
3168         subpats: hir::HirVec<P<hir::Pat>>,
3169     ) -> P<hir::Pat> {
3170         let path = self.std_path(span, components, None, true);
3171         let qpath = hir::QPath::Resolved(None, P(path));
3172         let pt = if subpats.is_empty() {
3173             hir::PatKind::Path(qpath)
3174         } else {
3175             hir::PatKind::TupleStruct(qpath, subpats, None)
3176         };
3177         self.pat(span, pt)
3178     }
3179
3180     fn pat_ident(&mut self, span: Span, ident: Ident) -> (P<hir::Pat>, hir::HirId) {
3181         self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
3182     }
3183
3184     fn pat_ident_binding_mode(
3185         &mut self,
3186         span: Span,
3187         ident: Ident,
3188         bm: hir::BindingAnnotation,
3189     ) -> (P<hir::Pat>, hir::HirId) {
3190         let hir_id = self.next_id();
3191
3192         (
3193             P(hir::Pat {
3194                 hir_id,
3195                 kind: hir::PatKind::Binding(bm, hir_id, ident.with_span_pos(span), None),
3196                 span,
3197             }),
3198             hir_id
3199         )
3200     }
3201
3202     fn pat_wild(&mut self, span: Span) -> P<hir::Pat> {
3203         self.pat(span, hir::PatKind::Wild)
3204     }
3205
3206     fn pat(&mut self, span: Span, kind: hir::PatKind) -> P<hir::Pat> {
3207         P(hir::Pat {
3208             hir_id: self.next_id(),
3209             kind,
3210             span,
3211         })
3212     }
3213
3214     /// Given a suffix `["b", "c", "d"]`, returns path `::std::b::c::d` when
3215     /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
3216     /// The path is also resolved according to `is_value`.
3217     fn std_path(
3218         &mut self,
3219         span: Span,
3220         components: &[Symbol],
3221         params: Option<P<hir::GenericArgs>>,
3222         is_value: bool,
3223     ) -> hir::Path {
3224         let ns = if is_value { Namespace::ValueNS } else { Namespace::TypeNS };
3225         let (path, res) = self.resolver.resolve_str_path(span, self.crate_root, components, ns);
3226
3227         let mut segments: Vec<_> = path.segments.iter().map(|segment| {
3228             let res = self.expect_full_res(segment.id);
3229             hir::PathSegment {
3230                 ident: segment.ident,
3231                 hir_id: Some(self.lower_node_id(segment.id)),
3232                 res: Some(self.lower_res(res)),
3233                 infer_args: true,
3234                 args: None,
3235             }
3236         }).collect();
3237         segments.last_mut().unwrap().args = params;
3238
3239         hir::Path {
3240             span,
3241             res: res.map_id(|_| panic!("unexpected `NodeId`")),
3242             segments: segments.into(),
3243         }
3244     }
3245
3246     fn ty_path(&mut self, mut hir_id: hir::HirId, span: Span, qpath: hir::QPath) -> hir::Ty {
3247         let kind = match qpath {
3248             hir::QPath::Resolved(None, path) => {
3249                 // Turn trait object paths into `TyKind::TraitObject` instead.
3250                 match path.res {
3251                     Res::Def(DefKind::Trait, _) | Res::Def(DefKind::TraitAlias, _) => {
3252                         let principal = hir::PolyTraitRef {
3253                             bound_generic_params: hir::HirVec::new(),
3254                             trait_ref: hir::TraitRef {
3255                                 path,
3256                                 hir_ref_id: hir_id,
3257                             },
3258                             span,
3259                         };
3260
3261                         // The original ID is taken by the `PolyTraitRef`,
3262                         // so the `Ty` itself needs a different one.
3263                         hir_id = self.next_id();
3264                         hir::TyKind::TraitObject(hir_vec![principal], self.elided_dyn_bound(span))
3265                     }
3266                     _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
3267                 }
3268             }
3269             _ => hir::TyKind::Path(qpath),
3270         };
3271
3272         hir::Ty {
3273             hir_id,
3274             kind,
3275             span,
3276         }
3277     }
3278
3279     /// Invoked to create the lifetime argument for a type `&T`
3280     /// with no explicit lifetime.
3281     fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
3282         match self.anonymous_lifetime_mode {
3283             // Intercept when we are in an impl header or async fn and introduce an in-band
3284             // lifetime.
3285             // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
3286             // `'f`.
3287             AnonymousLifetimeMode::CreateParameter => {
3288                 let fresh_name = self.collect_fresh_in_band_lifetime(span);
3289                 hir::Lifetime {
3290                     hir_id: self.next_id(),
3291                     span,
3292                     name: hir::LifetimeName::Param(fresh_name),
3293                 }
3294             }
3295
3296             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
3297
3298             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
3299         }
3300     }
3301
3302     /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
3303     /// return a "error lifetime".
3304     fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
3305         let (id, msg, label) = match id {
3306             Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
3307
3308             None => (
3309                 self.resolver.next_node_id(),
3310                 "`&` without an explicit lifetime name cannot be used here",
3311                 "explicit lifetime name needed here",
3312             ),
3313         };
3314
3315         let mut err = struct_span_err!(
3316             self.sess,
3317             span,
3318             E0637,
3319             "{}",
3320             msg,
3321         );
3322         err.span_label(span, label);
3323         err.emit();
3324
3325         self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3326     }
3327
3328     /// Invoked to create the lifetime argument(s) for a path like
3329     /// `std::cell::Ref<T>`; note that implicit lifetimes in these
3330     /// sorts of cases are deprecated. This may therefore report a warning or an
3331     /// error, depending on the mode.
3332     fn elided_path_lifetimes(&mut self, span: Span, count: usize) -> P<[hir::Lifetime]> {
3333         (0..count)
3334             .map(|_| self.elided_path_lifetime(span))
3335             .collect()
3336     }
3337
3338     fn elided_path_lifetime(&mut self, span: Span) -> hir::Lifetime {
3339         match self.anonymous_lifetime_mode {
3340             AnonymousLifetimeMode::CreateParameter => {
3341                 // We should have emitted E0726 when processing this path above
3342                 self.sess.delay_span_bug(
3343                     span,
3344                     "expected 'implicit elided lifetime not allowed' error",
3345                 );
3346                 let id = self.resolver.next_node_id();
3347                 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3348             }
3349             // `PassThrough` is the normal case.
3350             // `new_error_lifetime`, which would usually be used in the case of `ReportError`,
3351             // is unsuitable here, as these can occur from missing lifetime parameters in a
3352             // `PathSegment`, for which there is no associated `'_` or `&T` with no explicit
3353             // lifetime. Instead, we simply create an implicit lifetime, which will be checked
3354             // later, at which point a suitable error will be emitted.
3355           | AnonymousLifetimeMode::PassThrough
3356           | AnonymousLifetimeMode::ReportError => self.new_implicit_lifetime(span),
3357         }
3358     }
3359
3360     /// Invoked to create the lifetime argument(s) for an elided trait object
3361     /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
3362     /// when the bound is written, even if it is written with `'_` like in
3363     /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
3364     fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
3365         match self.anonymous_lifetime_mode {
3366             // NB. We intentionally ignore the create-parameter mode here.
3367             // and instead "pass through" to resolve-lifetimes, which will apply
3368             // the object-lifetime-defaulting rules. Elided object lifetime defaults
3369             // do not act like other elided lifetimes. In other words, given this:
3370             //
3371             //     impl Foo for Box<dyn Debug>
3372             //
3373             // we do not introduce a fresh `'_` to serve as the bound, but instead
3374             // ultimately translate to the equivalent of:
3375             //
3376             //     impl Foo for Box<dyn Debug + 'static>
3377             //
3378             // `resolve_lifetime` has the code to make that happen.
3379             AnonymousLifetimeMode::CreateParameter => {}
3380
3381             AnonymousLifetimeMode::ReportError => {
3382                 // ReportError applies to explicit use of `'_`.
3383             }
3384
3385             // This is the normal case.
3386             AnonymousLifetimeMode::PassThrough => {}
3387         }
3388
3389         let r = hir::Lifetime {
3390             hir_id: self.next_id(),
3391             span,
3392             name: hir::LifetimeName::ImplicitObjectLifetimeDefault,
3393         };
3394         debug!("elided_dyn_bound: r={:?}", r);
3395         r
3396     }
3397
3398     fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
3399         hir::Lifetime {
3400             hir_id: self.next_id(),
3401             span,
3402             name: hir::LifetimeName::Implicit,
3403         }
3404     }
3405
3406     fn maybe_lint_bare_trait(&mut self, span: Span, id: NodeId, is_global: bool) {
3407         // FIXME(davidtwco): This is a hack to detect macros which produce spans of the
3408         // call site which do not have a macro backtrace. See #61963.
3409         let is_macro_callsite = self.sess.source_map()
3410             .span_to_snippet(span)
3411             .map(|snippet| snippet.starts_with("#["))
3412             .unwrap_or(true);
3413         if !is_macro_callsite {
3414             self.resolver.lint_buffer().buffer_lint_with_diagnostic(
3415                 builtin::BARE_TRAIT_OBJECTS,
3416                 id,
3417                 span,
3418                 "trait objects without an explicit `dyn` are deprecated",
3419                 builtin::BuiltinLintDiagnostics::BareTraitObject(span, is_global),
3420             )
3421         }
3422     }
3423 }
3424
3425 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body>) -> Vec<hir::BodyId> {
3426     // Sorting by span ensures that we get things in order within a
3427     // file, and also puts the files in a sensible order.
3428     let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
3429     body_ids.sort_by_key(|b| bodies[b].value.span);
3430     body_ids
3431 }
3432
3433 /// Checks if the specified expression is a built-in range literal.
3434 /// (See: `LoweringContext::lower_expr()`).
3435 pub fn is_range_literal(sess: &Session, expr: &hir::Expr) -> bool {
3436     use hir::{Path, QPath, ExprKind, TyKind};
3437
3438     // Returns whether the given path represents a (desugared) range,
3439     // either in std or core, i.e. has either a `::std::ops::Range` or
3440     // `::core::ops::Range` prefix.
3441     fn is_range_path(path: &Path) -> bool {
3442         let segs: Vec<_> = path.segments.iter().map(|seg| seg.ident.to_string()).collect();
3443         let segs: Vec<_> = segs.iter().map(|seg| &**seg).collect();
3444
3445         // "{{root}}" is the equivalent of `::` prefix in `Path`.
3446         if let ["{{root}}", std_core, "ops", range] = segs.as_slice() {
3447             (*std_core == "std" || *std_core == "core") && range.starts_with("Range")
3448         } else {
3449             false
3450         }
3451     };
3452
3453     // Check whether a span corresponding to a range expression is a
3454     // range literal, rather than an explicit struct or `new()` call.
3455     fn is_lit(sess: &Session, span: &Span) -> bool {
3456         let source_map = sess.source_map();
3457         let end_point = source_map.end_point(*span);
3458
3459         if let Ok(end_string) = source_map.span_to_snippet(end_point) {
3460             !(end_string.ends_with("}") || end_string.ends_with(")"))
3461         } else {
3462             false
3463         }
3464     };
3465
3466     match expr.kind {
3467         // All built-in range literals but `..=` and `..` desugar to `Struct`s.
3468         ExprKind::Struct(ref qpath, _, _) => {
3469             if let QPath::Resolved(None, ref path) = **qpath {
3470                 return is_range_path(&path) && is_lit(sess, &expr.span);
3471             }
3472         }
3473
3474         // `..` desugars to its struct path.
3475         ExprKind::Path(QPath::Resolved(None, ref path)) => {
3476             return is_range_path(&path) && is_lit(sess, &expr.span);
3477         }
3478
3479         // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
3480         ExprKind::Call(ref func, _) => {
3481             if let ExprKind::Path(QPath::TypeRelative(ref ty, ref segment)) = func.kind {
3482                 if let TyKind::Path(QPath::Resolved(None, ref path)) = ty.kind {
3483                     let new_call = segment.ident.name == sym::new;
3484                     return is_range_path(&path) && is_lit(sess, &expr.span) && new_call;
3485                 }
3486             }
3487         }
3488
3489         _ => {}
3490     }
3491
3492     false
3493 }