]> git.lizzy.rs Git - rust.git/blob - src/librustc/hir/lowering.rs
hir: remove NodeId from AnonConst
[rust.git] / src / librustc / hir / lowering.rs
1 //! Lowers the AST to the HIR.
2 //!
3 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
4 //! much like a fold. Where lowering involves a bit more work things get more
5 //! interesting and there are some invariants you should know about. These mostly
6 //! concern spans and IDs.
7 //!
8 //! Spans are assigned to AST nodes during parsing and then are modified during
9 //! expansion to indicate the origin of a node and the process it went through
10 //! being expanded. IDs are assigned to AST nodes just before lowering.
11 //!
12 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
13 //! expansion we do not preserve the process of lowering in the spans, so spans
14 //! should not be modified here. When creating a new node (as opposed to
15 //! 'folding' an existing one), then you create a new ID using `next_id()`.
16 //!
17 //! You must ensure that IDs are unique. That means that you should only use the
18 //! ID from an AST node in a single HIR node (you can assume that AST node IDs
19 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
20 //! If you do, you must then set the new node's ID to a fresh one.
21 //!
22 //! Spans are used for error messages and for tools to map semantics back to
23 //! source code. It is therefore not as important with spans as IDs to be strict
24 //! about use (you can't break the compiler by screwing up a span). Obviously, a
25 //! HIR node can only have a single span. But multiple nodes can have the same
26 //! span and spans don't need to be kept in order, etc. Where code is preserved
27 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
28 //! new it is probably best to give a span for the whole AST node being lowered.
29 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
30 //! get confused if the spans from leaf AST nodes occur in multiple places
31 //! in the HIR, especially for multiple identifiers.
32
33 use crate::dep_graph::DepGraph;
34 use crate::hir::{self, ParamName};
35 use crate::hir::HirVec;
36 use crate::hir::map::{DefKey, DefPathData, Definitions};
37 use crate::hir::def_id::{DefId, DefIndex, DefIndexAddressSpace, CRATE_DEF_INDEX};
38 use crate::hir::def::{Def, PathResolution, PerNS};
39 use crate::hir::{GenericArg, ConstArg};
40 use crate::lint::builtin::{self, PARENTHESIZED_PARAMS_IN_TYPES_AND_MODULES,
41                     ELIDED_LIFETIMES_IN_PATHS};
42 use crate::middle::cstore::CrateStore;
43 use crate::session::Session;
44 use crate::session::config::nightly_options;
45 use crate::util::common::FN_OUTPUT_NAME;
46 use crate::util::nodemap::{DefIdMap, NodeMap};
47 use errors::Applicability;
48 use rustc_data_structures::fx::FxHashSet;
49 use rustc_data_structures::indexed_vec::IndexVec;
50 use rustc_data_structures::thin_vec::ThinVec;
51 use rustc_data_structures::sync::Lrc;
52
53 use std::collections::{BTreeSet, BTreeMap};
54 use std::fmt::Debug;
55 use std::mem;
56 use smallvec::SmallVec;
57 use syntax::attr;
58 use syntax::ast;
59 use syntax::ast::*;
60 use syntax::errors;
61 use syntax::ext::hygiene::{Mark, SyntaxContext};
62 use syntax::print::pprust;
63 use syntax::ptr::P;
64 use syntax::source_map::{self, respan, CompilerDesugaringKind, Spanned};
65 use syntax::std_inject;
66 use syntax::symbol::{keywords, Symbol};
67 use syntax::tokenstream::{TokenStream, TokenTree};
68 use syntax::parse::token::Token;
69 use syntax::visit::{self, Visitor};
70 use syntax_pos::{Span, MultiSpan};
71
72 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
73
74 pub struct LoweringContext<'a> {
75     crate_root: Option<&'static str>,
76
77     /// Used to assign ids to HIR nodes that do not directly correspond to an AST node.
78     sess: &'a Session,
79
80     cstore: &'a dyn CrateStore,
81
82     resolver: &'a mut dyn Resolver,
83
84     /// The items being lowered are collected here.
85     items: BTreeMap<NodeId, hir::Item>,
86
87     trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem>,
88     impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem>,
89     bodies: BTreeMap<hir::BodyId, hir::Body>,
90     exported_macros: Vec<hir::MacroDef>,
91
92     trait_impls: BTreeMap<DefId, Vec<NodeId>>,
93     trait_auto_impl: BTreeMap<DefId, NodeId>,
94
95     modules: BTreeMap<NodeId, hir::ModuleItems>,
96
97     is_generator: bool,
98
99     catch_scopes: Vec<NodeId>,
100     loop_scopes: Vec<NodeId>,
101     is_in_loop_condition: bool,
102     is_in_trait_impl: bool,
103
104     /// What to do when we encounter either an "anonymous lifetime
105     /// reference". The term "anonymous" is meant to encompass both
106     /// `'_` lifetimes as well as fully elided cases where nothing is
107     /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
108     anonymous_lifetime_mode: AnonymousLifetimeMode,
109
110     /// Used to create lifetime definitions from in-band lifetime usages.
111     /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
112     /// When a named lifetime is encountered in a function or impl header and
113     /// has not been defined
114     /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
115     /// to this list. The results of this list are then added to the list of
116     /// lifetime definitions in the corresponding impl or function generics.
117     lifetimes_to_define: Vec<(Span, ParamName)>,
118
119     /// Whether or not in-band lifetimes are being collected. This is used to
120     /// indicate whether or not we're in a place where new lifetimes will result
121     /// in in-band lifetime definitions, such a function or an impl header,
122     /// including implicit lifetimes from `impl_header_lifetime_elision`.
123     is_collecting_in_band_lifetimes: bool,
124
125     /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
126     /// When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
127     /// against this list to see if it is already in-scope, or if a definition
128     /// needs to be created for it.
129     in_scope_lifetimes: Vec<Ident>,
130
131     current_module: NodeId,
132
133     type_def_lifetime_params: DefIdMap<usize>,
134
135     current_hir_id_owner: Vec<(DefIndex, u32)>,
136     item_local_id_counters: NodeMap<u32>,
137     node_id_to_hir_id: IndexVec<NodeId, hir::HirId>,
138 }
139
140 pub trait Resolver {
141     /// Resolve a path generated by the lowerer when expanding `for`, `if let`, etc.
142     fn resolve_hir_path(
143         &mut self,
144         path: &ast::Path,
145         is_value: bool,
146     ) -> hir::Path;
147
148     /// Obtain the resolution for a `NodeId`.
149     fn get_resolution(&mut self, id: NodeId) -> Option<PathResolution>;
150
151     /// Obtain the possible resolutions for the given `use` statement.
152     fn get_import(&mut self, id: NodeId) -> PerNS<Option<PathResolution>>;
153
154     /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
155     /// This should only return `None` during testing.
156     fn definitions(&mut self) -> &mut Definitions;
157
158     /// Given suffix `["b", "c", "d"]`, creates a HIR path for `[::crate_root]::b::c::d` and
159     /// resolves it based on `is_value`.
160     fn resolve_str_path(
161         &mut self,
162         span: Span,
163         crate_root: Option<&str>,
164         components: &[&str],
165         is_value: bool,
166     ) -> hir::Path;
167 }
168
169 #[derive(Debug)]
170 enum ImplTraitContext<'a> {
171     /// Treat `impl Trait` as shorthand for a new universal generic parameter.
172     /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
173     /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
174     ///
175     /// Newly generated parameters should be inserted into the given `Vec`.
176     Universal(&'a mut Vec<hir::GenericParam>),
177
178     /// Treat `impl Trait` as shorthand for a new existential parameter.
179     /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
180     /// equivalent to a fresh existential parameter like `existential type T; fn foo() -> T`.
181     ///
182     /// We optionally store a `DefId` for the parent item here so we can look up necessary
183     /// information later. It is `None` when no information about the context should be stored,
184     /// e.g., for consts and statics.
185     Existential(Option<DefId>),
186
187     /// `impl Trait` is not accepted in this position.
188     Disallowed(ImplTraitPosition),
189 }
190
191 /// Position in which `impl Trait` is disallowed. Used for error reporting.
192 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
193 enum ImplTraitPosition {
194     Binding,
195     Other,
196 }
197
198 impl<'a> ImplTraitContext<'a> {
199     #[inline]
200     fn disallowed() -> Self {
201         ImplTraitContext::Disallowed(ImplTraitPosition::Other)
202     }
203
204     fn reborrow(&'b mut self) -> ImplTraitContext<'b> {
205         use self::ImplTraitContext::*;
206         match self {
207             Universal(params) => Universal(params),
208             Existential(did) => Existential(*did),
209             Disallowed(pos) => Disallowed(*pos),
210         }
211     }
212 }
213
214 pub fn lower_crate(
215     sess: &Session,
216     cstore: &dyn CrateStore,
217     dep_graph: &DepGraph,
218     krate: &Crate,
219     resolver: &mut dyn Resolver,
220 ) -> hir::Crate {
221     // We're constructing the HIR here; we don't care what we will
222     // read, since we haven't even constructed the *input* to
223     // incr. comp. yet.
224     dep_graph.assert_ignored();
225
226     LoweringContext {
227         crate_root: std_inject::injected_crate_name(),
228         sess,
229         cstore,
230         resolver,
231         items: BTreeMap::new(),
232         trait_items: BTreeMap::new(),
233         impl_items: BTreeMap::new(),
234         bodies: BTreeMap::new(),
235         trait_impls: BTreeMap::new(),
236         trait_auto_impl: BTreeMap::new(),
237         modules: BTreeMap::new(),
238         exported_macros: Vec::new(),
239         catch_scopes: Vec::new(),
240         loop_scopes: Vec::new(),
241         is_in_loop_condition: false,
242         anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
243         type_def_lifetime_params: Default::default(),
244         current_module: CRATE_NODE_ID,
245         current_hir_id_owner: vec![(CRATE_DEF_INDEX, 0)],
246         item_local_id_counters: Default::default(),
247         node_id_to_hir_id: IndexVec::new(),
248         is_generator: false,
249         is_in_trait_impl: false,
250         lifetimes_to_define: Vec::new(),
251         is_collecting_in_band_lifetimes: false,
252         in_scope_lifetimes: Vec::new(),
253     }.lower_crate(krate)
254 }
255
256 #[derive(Copy, Clone, PartialEq)]
257 enum ParamMode {
258     /// Any path in a type context.
259     Explicit,
260     /// The `module::Type` in `module::Type::method` in an expression.
261     Optional,
262 }
263
264 #[derive(Debug)]
265 struct LoweredNodeId {
266     node_id: NodeId,
267     hir_id: hir::HirId,
268 }
269
270 enum ParenthesizedGenericArgs {
271     Ok,
272     Warn,
273     Err,
274 }
275
276 /// What to do when we encounter an **anonymous** lifetime
277 /// reference. Anonymous lifetime references come in two flavors. You
278 /// have implicit, or fully elided, references to lifetimes, like the
279 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
280 /// or `Ref<'_, T>`. These often behave the same, but not always:
281 ///
282 /// - certain usages of implicit references are deprecated, like
283 ///   `Ref<T>`, and we sometimes just give hard errors in those cases
284 ///   as well.
285 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
286 ///   the same as `Box<dyn Foo + '_>`.
287 ///
288 /// We describe the effects of the various modes in terms of three cases:
289 ///
290 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
291 ///   of a `&` (e.g., the missing lifetime in something like `&T`)
292 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
293 ///   there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
294 ///   elided bounds follow special rules. Note that this only covers
295 ///   cases where *nothing* is written; the `'_` in `Box<dyn Foo +
296 ///   '_>` is a case of "modern" elision.
297 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
298 ///   parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
299 ///   non-deprecated equivalent.
300 ///
301 /// Currently, the handling of lifetime elision is somewhat spread out
302 /// between HIR lowering and -- as described below -- the
303 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
304 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
305 /// everything into HIR lowering.
306 #[derive(Copy, Clone)]
307 enum AnonymousLifetimeMode {
308     /// For **Modern** cases, create a new anonymous region parameter
309     /// and reference that.
310     ///
311     /// For **Dyn Bound** cases, pass responsibility to
312     /// `resolve_lifetime` code.
313     ///
314     /// For **Deprecated** cases, report an error.
315     CreateParameter,
316
317     /// Give a hard error when either `&` or `'_` is written. Used to
318     /// rule out things like `where T: Foo<'_>`. Does not imply an
319     /// error on default object bounds (e.g., `Box<dyn Foo>`).
320     ReportError,
321
322     /// Pass responsibility to `resolve_lifetime` code for all cases.
323     PassThrough,
324 }
325
326 struct ImplTraitTypeIdVisitor<'a> { ids: &'a mut SmallVec<[hir::ItemId; 1]> }
327
328 impl<'a, 'b> Visitor<'a> for ImplTraitTypeIdVisitor<'b> {
329     fn visit_ty(&mut self, ty: &'a Ty) {
330         match ty.node {
331             | TyKind::Typeof(_)
332             | TyKind::BareFn(_)
333             => return,
334
335             TyKind::ImplTrait(id, _) => self.ids.push(hir::ItemId { id }),
336             _ => {},
337         }
338         visit::walk_ty(self, ty);
339     }
340
341     fn visit_path_segment(
342         &mut self,
343         path_span: Span,
344         path_segment: &'v PathSegment,
345     ) {
346         if let Some(ref p) = path_segment.args {
347             if let GenericArgs::Parenthesized(_) = **p {
348                 return;
349             }
350         }
351         visit::walk_path_segment(self, path_span, path_segment)
352     }
353 }
354
355 impl<'a> LoweringContext<'a> {
356     fn lower_crate(mut self, c: &Crate) -> hir::Crate {
357         /// Full-crate AST visitor that inserts into a fresh
358         /// `LoweringContext` any information that may be
359         /// needed from arbitrary locations in the crate,
360         /// e.g., the number of lifetime generic parameters
361         /// declared for every type and trait definition.
362         struct MiscCollector<'lcx, 'interner: 'lcx> {
363             lctx: &'lcx mut LoweringContext<'interner>,
364         }
365
366         impl<'lcx, 'interner> Visitor<'lcx> for MiscCollector<'lcx, 'interner> {
367             fn visit_item(&mut self, item: &'lcx Item) {
368                 self.lctx.allocate_hir_id_counter(item.id, item);
369
370                 match item.node {
371                     ItemKind::Struct(_, ref generics)
372                     | ItemKind::Union(_, ref generics)
373                     | ItemKind::Enum(_, ref generics)
374                     | ItemKind::Ty(_, ref generics)
375                     | ItemKind::Existential(_, ref generics)
376                     | ItemKind::Trait(_, _, ref generics, ..) => {
377                         let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
378                         let count = generics
379                             .params
380                             .iter()
381                             .filter(|param| match param.kind {
382                                 ast::GenericParamKind::Lifetime { .. } => true,
383                                 _ => false,
384                             })
385                             .count();
386                         self.lctx.type_def_lifetime_params.insert(def_id, count);
387                     }
388                     _ => {}
389                 }
390                 visit::walk_item(self, item);
391             }
392
393             fn visit_trait_item(&mut self, item: &'lcx TraitItem) {
394                 self.lctx.allocate_hir_id_counter(item.id, item);
395                 visit::walk_trait_item(self, item);
396             }
397
398             fn visit_impl_item(&mut self, item: &'lcx ImplItem) {
399                 self.lctx.allocate_hir_id_counter(item.id, item);
400                 visit::walk_impl_item(self, item);
401             }
402         }
403
404         struct ItemLowerer<'lcx, 'interner: 'lcx> {
405             lctx: &'lcx mut LoweringContext<'interner>,
406         }
407
408         impl<'lcx, 'interner> ItemLowerer<'lcx, 'interner> {
409             fn with_trait_impl_ref<F>(&mut self, trait_impl_ref: &Option<TraitRef>, f: F)
410             where
411                 F: FnOnce(&mut Self),
412             {
413                 let old = self.lctx.is_in_trait_impl;
414                 self.lctx.is_in_trait_impl = if let &None = trait_impl_ref {
415                     false
416                 } else {
417                     true
418                 };
419                 f(self);
420                 self.lctx.is_in_trait_impl = old;
421             }
422         }
423
424         impl<'lcx, 'interner> Visitor<'lcx> for ItemLowerer<'lcx, 'interner> {
425             fn visit_mod(&mut self, m: &'lcx Mod, _s: Span, _attrs: &[Attribute], n: NodeId) {
426                 self.lctx.modules.insert(n, hir::ModuleItems {
427                     items: BTreeSet::new(),
428                     trait_items: BTreeSet::new(),
429                     impl_items: BTreeSet::new(),
430                 });
431
432                 let old = self.lctx.current_module;
433                 self.lctx.current_module = n;
434                 visit::walk_mod(self, m);
435                 self.lctx.current_module = old;
436             }
437
438             fn visit_item(&mut self, item: &'lcx Item) {
439                 let mut item_lowered = true;
440                 self.lctx.with_hir_id_owner(item.id, |lctx| {
441                     if let Some(hir_item) = lctx.lower_item(item) {
442                         lctx.insert_item(item.id, hir_item);
443                     } else {
444                         item_lowered = false;
445                     }
446                 });
447
448                 if item_lowered {
449                     let item_generics = match self.lctx.items.get(&item.id).unwrap().node {
450                         hir::ItemKind::Impl(_, _, _, ref generics, ..)
451                         | hir::ItemKind::Trait(_, _, ref generics, ..) => {
452                             generics.params.clone()
453                         }
454                         _ => HirVec::new(),
455                     };
456
457                     self.lctx.with_parent_impl_lifetime_defs(&item_generics, |this| {
458                         let this = &mut ItemLowerer { lctx: this };
459                         if let ItemKind::Impl(.., ref opt_trait_ref, _, _) = item.node {
460                             this.with_trait_impl_ref(opt_trait_ref, |this| {
461                                 visit::walk_item(this, item)
462                             });
463                         } else {
464                             visit::walk_item(this, item);
465                         }
466                     });
467                 }
468             }
469
470             fn visit_trait_item(&mut self, item: &'lcx TraitItem) {
471                 self.lctx.with_hir_id_owner(item.id, |lctx| {
472                     let id = hir::TraitItemId { node_id: item.id };
473                     let hir_item = lctx.lower_trait_item(item);
474                     lctx.trait_items.insert(id, hir_item);
475                     lctx.modules.get_mut(&lctx.current_module).unwrap().trait_items.insert(id);
476                 });
477
478                 visit::walk_trait_item(self, item);
479             }
480
481             fn visit_impl_item(&mut self, item: &'lcx ImplItem) {
482                 self.lctx.with_hir_id_owner(item.id, |lctx| {
483                     let id = hir::ImplItemId { node_id: item.id };
484                     let hir_item = lctx.lower_impl_item(item);
485                     lctx.impl_items.insert(id, hir_item);
486                     lctx.modules.get_mut(&lctx.current_module).unwrap().impl_items.insert(id);
487                 });
488                 visit::walk_impl_item(self, item);
489             }
490         }
491
492         self.lower_node_id(CRATE_NODE_ID);
493         debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == hir::CRATE_HIR_ID);
494
495         visit::walk_crate(&mut MiscCollector { lctx: &mut self }, c);
496         visit::walk_crate(&mut ItemLowerer { lctx: &mut self }, c);
497
498         let module = self.lower_mod(&c.module);
499         let attrs = self.lower_attrs(&c.attrs);
500         let body_ids = body_ids(&self.bodies);
501
502         self.resolver
503             .definitions()
504             .init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
505
506         hir::Crate {
507             module,
508             attrs,
509             span: c.span,
510             exported_macros: hir::HirVec::from(self.exported_macros),
511             items: self.items,
512             trait_items: self.trait_items,
513             impl_items: self.impl_items,
514             bodies: self.bodies,
515             body_ids,
516             trait_impls: self.trait_impls,
517             trait_auto_impl: self.trait_auto_impl,
518             modules: self.modules,
519         }
520     }
521
522     fn insert_item(&mut self, id: NodeId, item: hir::Item) {
523         self.items.insert(id, item);
524         self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
525     }
526
527     fn allocate_hir_id_counter<T: Debug>(&mut self, owner: NodeId, debug: &T) -> LoweredNodeId {
528         if self.item_local_id_counters.insert(owner, 0).is_some() {
529             bug!(
530                 "Tried to allocate item_local_id_counter for {:?} twice",
531                 debug
532             );
533         }
534         // Always allocate the first `HirId` for the owner itself.
535         self.lower_node_id_with_owner(owner, owner)
536     }
537
538     fn lower_node_id_generic<F>(&mut self, ast_node_id: NodeId, alloc_hir_id: F) -> LoweredNodeId
539     where
540         F: FnOnce(&mut Self) -> hir::HirId,
541     {
542         if ast_node_id == DUMMY_NODE_ID {
543             return LoweredNodeId {
544                 node_id: DUMMY_NODE_ID,
545                 hir_id: hir::DUMMY_HIR_ID,
546             };
547         }
548
549         let min_size = ast_node_id.as_usize() + 1;
550
551         if min_size > self.node_id_to_hir_id.len() {
552             self.node_id_to_hir_id.resize(min_size, hir::DUMMY_HIR_ID);
553         }
554
555         let existing_hir_id = self.node_id_to_hir_id[ast_node_id];
556
557         if existing_hir_id == hir::DUMMY_HIR_ID {
558             // Generate a new `HirId`.
559             let hir_id = alloc_hir_id(self);
560             self.node_id_to_hir_id[ast_node_id] = hir_id;
561             LoweredNodeId {
562                 node_id: ast_node_id,
563                 hir_id,
564             }
565         } else {
566             LoweredNodeId {
567                 node_id: ast_node_id,
568                 hir_id: existing_hir_id,
569             }
570         }
571     }
572
573     fn with_hir_id_owner<F, T>(&mut self, owner: NodeId, f: F) -> T
574     where
575         F: FnOnce(&mut Self) -> T,
576     {
577         let counter = self.item_local_id_counters
578             .insert(owner, HIR_ID_COUNTER_LOCKED)
579             .unwrap_or_else(|| panic!("No item_local_id_counters entry for {:?}", owner));
580         let def_index = self.resolver.definitions().opt_def_index(owner).unwrap();
581         self.current_hir_id_owner.push((def_index, counter));
582         let ret = f(self);
583         let (new_def_index, new_counter) = self.current_hir_id_owner.pop().unwrap();
584
585         debug_assert!(def_index == new_def_index);
586         debug_assert!(new_counter >= counter);
587
588         let prev = self.item_local_id_counters
589             .insert(owner, new_counter)
590             .unwrap();
591         debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
592         ret
593     }
594
595     /// This method allocates a new `HirId` for the given `NodeId` and stores it in
596     /// the `LoweringContext`'s `NodeId => HirId` map.
597     /// Take care not to call this method if the resulting `HirId` is then not
598     /// actually used in the HIR, as that would trigger an assertion in the
599     /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
600     /// properly. Calling the method twice with the same `NodeId` is fine though.
601     fn lower_node_id(&mut self, ast_node_id: NodeId) -> LoweredNodeId {
602         self.lower_node_id_generic(ast_node_id, |this| {
603             let &mut (def_index, ref mut local_id_counter) =
604                 this.current_hir_id_owner.last_mut().unwrap();
605             let local_id = *local_id_counter;
606             *local_id_counter += 1;
607             hir::HirId {
608                 owner: def_index,
609                 local_id: hir::ItemLocalId::from_u32(local_id),
610             }
611         })
612     }
613
614     fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> LoweredNodeId {
615         self.lower_node_id_generic(ast_node_id, |this| {
616             let local_id_counter = this
617                 .item_local_id_counters
618                 .get_mut(&owner)
619                 .expect("called lower_node_id_with_owner before allocate_hir_id_counter");
620             let local_id = *local_id_counter;
621
622             // We want to be sure not to modify the counter in the map while it
623             // is also on the stack. Otherwise we'll get lost updates when writing
624             // back from the stack to the map.
625             debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
626
627             *local_id_counter += 1;
628             let def_index = this
629                 .resolver
630                 .definitions()
631                 .opt_def_index(owner)
632                 .expect("You forgot to call `create_def_with_parent` or are lowering node ids \
633                          that do not belong to the current owner");
634
635             hir::HirId {
636                 owner: def_index,
637                 local_id: hir::ItemLocalId::from_u32(local_id),
638             }
639         })
640     }
641
642     fn record_body(&mut self, value: hir::Expr, decl: Option<&FnDecl>) -> hir::BodyId {
643         let body = hir::Body {
644             arguments: decl.map_or(hir_vec![], |decl| {
645                 decl.inputs.iter().map(|x| self.lower_arg(x)).collect()
646             }),
647             is_generator: self.is_generator,
648             value,
649         };
650         let id = body.id();
651         self.bodies.insert(id, body);
652         id
653     }
654
655     fn next_id(&mut self) -> LoweredNodeId {
656         self.lower_node_id(self.sess.next_node_id())
657     }
658
659     fn expect_full_def(&mut self, id: NodeId) -> Def {
660         self.resolver.get_resolution(id).map_or(Def::Err, |pr| {
661             if pr.unresolved_segments() != 0 {
662                 bug!("path not fully resolved: {:?}", pr);
663             }
664             pr.base_def()
665         })
666     }
667
668     fn expect_full_def_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Def> {
669         self.resolver.get_import(id).present_items().map(|pr| {
670             if pr.unresolved_segments() != 0 {
671                 bug!("path not fully resolved: {:?}", pr);
672             }
673             pr.base_def()
674         })
675     }
676
677     fn diagnostic(&self) -> &errors::Handler {
678         self.sess.diagnostic()
679     }
680
681     fn str_to_ident(&self, s: &'static str) -> Ident {
682         Ident::with_empty_ctxt(Symbol::gensym(s))
683     }
684
685     /// Reuses the span but adds information like the kind of the desugaring and features that are
686     /// allowed inside this span.
687     fn mark_span_with_reason(
688         &self,
689         reason: CompilerDesugaringKind,
690         span: Span,
691         allow_internal_unstable: Option<Lrc<[Symbol]>>,
692     ) -> Span {
693         let mark = Mark::fresh(Mark::root());
694         mark.set_expn_info(source_map::ExpnInfo {
695             call_site: span,
696             def_site: Some(span),
697             format: source_map::CompilerDesugaring(reason),
698             allow_internal_unstable,
699             allow_internal_unsafe: false,
700             local_inner_macros: false,
701             edition: source_map::hygiene::default_edition(),
702         });
703         span.with_ctxt(SyntaxContext::empty().apply_mark(mark))
704     }
705
706     fn with_anonymous_lifetime_mode<R>(
707         &mut self,
708         anonymous_lifetime_mode: AnonymousLifetimeMode,
709         op: impl FnOnce(&mut Self) -> R,
710     ) -> R {
711         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
712         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
713         let result = op(self);
714         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
715         result
716     }
717
718     /// Creates a new hir::GenericParam for every new lifetime and
719     /// type parameter encountered while evaluating `f`. Definitions
720     /// are created with the parent provided. If no `parent_id` is
721     /// provided, no definitions will be returned.
722     ///
723     /// Presuming that in-band lifetimes are enabled, then
724     /// `self.anonymous_lifetime_mode` will be updated to match the
725     /// argument while `f` is running (and restored afterwards).
726     fn collect_in_band_defs<T, F>(
727         &mut self,
728         parent_id: DefId,
729         anonymous_lifetime_mode: AnonymousLifetimeMode,
730         f: F,
731     ) -> (Vec<hir::GenericParam>, T)
732     where
733         F: FnOnce(&mut LoweringContext<'_>) -> (Vec<hir::GenericParam>, T),
734     {
735         assert!(!self.is_collecting_in_band_lifetimes);
736         assert!(self.lifetimes_to_define.is_empty());
737         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
738
739         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
740         self.is_collecting_in_band_lifetimes = true;
741
742         let (in_band_ty_params, res) = f(self);
743
744         self.is_collecting_in_band_lifetimes = false;
745         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
746
747         let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
748
749         let params = lifetimes_to_define
750             .into_iter()
751             .map(|(span, hir_name)| {
752                 let LoweredNodeId { node_id, hir_id } = self.next_id();
753
754                 // Get the name we'll use to make the def-path. Note
755                 // that collisions are ok here and this shouldn't
756                 // really show up for end-user.
757                 let (str_name, kind) = match hir_name {
758                     ParamName::Plain(ident) => (
759                         ident.as_interned_str(),
760                         hir::LifetimeParamKind::InBand,
761                     ),
762                     ParamName::Fresh(_) => (
763                         keywords::UnderscoreLifetime.name().as_interned_str(),
764                         hir::LifetimeParamKind::Elided,
765                     ),
766                     ParamName::Error => (
767                         keywords::UnderscoreLifetime.name().as_interned_str(),
768                         hir::LifetimeParamKind::Error,
769                     ),
770                 };
771
772                 // Add a definition for the in-band lifetime def.
773                 self.resolver.definitions().create_def_with_parent(
774                     parent_id.index,
775                     node_id,
776                     DefPathData::LifetimeParam(str_name),
777                     DefIndexAddressSpace::High,
778                     Mark::root(),
779                     span,
780                 );
781
782                 hir::GenericParam {
783                     hir_id,
784                     name: hir_name,
785                     attrs: hir_vec![],
786                     bounds: hir_vec![],
787                     span,
788                     pure_wrt_drop: false,
789                     kind: hir::GenericParamKind::Lifetime { kind }
790                 }
791             })
792             .chain(in_band_ty_params.into_iter())
793             .collect();
794
795         (params, res)
796     }
797
798     /// When there is a reference to some lifetime `'a`, and in-band
799     /// lifetimes are enabled, then we want to push that lifetime into
800     /// the vector of names to define later. In that case, it will get
801     /// added to the appropriate generics.
802     fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
803         if !self.is_collecting_in_band_lifetimes {
804             return;
805         }
806
807         if !self.sess.features_untracked().in_band_lifetimes {
808             return;
809         }
810
811         if self.in_scope_lifetimes.contains(&ident.modern()) {
812             return;
813         }
814
815         let hir_name = ParamName::Plain(ident);
816
817         if self.lifetimes_to_define.iter()
818                                    .any(|(_, lt_name)| lt_name.modern() == hir_name.modern()) {
819             return;
820         }
821
822         self.lifetimes_to_define.push((ident.span, hir_name));
823     }
824
825     /// When we have either an elided or `'_` lifetime in an impl
826     /// header, we convert it to an in-band lifetime.
827     fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
828         assert!(self.is_collecting_in_band_lifetimes);
829         let index = self.lifetimes_to_define.len();
830         let hir_name = ParamName::Fresh(index);
831         self.lifetimes_to_define.push((span, hir_name));
832         hir_name
833     }
834
835     // Evaluates `f` with the lifetimes in `params` in-scope.
836     // This is used to track which lifetimes have already been defined, and
837     // which are new in-band lifetimes that need to have a definition created
838     // for them.
839     fn with_in_scope_lifetime_defs<T, F>(&mut self, params: &[GenericParam], f: F) -> T
840     where
841         F: FnOnce(&mut LoweringContext<'_>) -> T,
842     {
843         let old_len = self.in_scope_lifetimes.len();
844         let lt_def_names = params.iter().filter_map(|param| match param.kind {
845             GenericParamKind::Lifetime { .. } => Some(param.ident.modern()),
846             _ => None,
847         });
848         self.in_scope_lifetimes.extend(lt_def_names);
849
850         let res = f(self);
851
852         self.in_scope_lifetimes.truncate(old_len);
853         res
854     }
855
856     // Same as the method above, but accepts `hir::GenericParam`s
857     // instead of `ast::GenericParam`s.
858     // This should only be used with generics that have already had their
859     // in-band lifetimes added. In practice, this means that this function is
860     // only used when lowering a child item of a trait or impl.
861     fn with_parent_impl_lifetime_defs<T, F>(&mut self,
862         params: &HirVec<hir::GenericParam>,
863         f: F
864     ) -> T where
865         F: FnOnce(&mut LoweringContext<'_>) -> T,
866     {
867         let old_len = self.in_scope_lifetimes.len();
868         let lt_def_names = params.iter().filter_map(|param| match param.kind {
869             hir::GenericParamKind::Lifetime { .. } => Some(param.name.ident().modern()),
870             _ => None,
871         });
872         self.in_scope_lifetimes.extend(lt_def_names);
873
874         let res = f(self);
875
876         self.in_scope_lifetimes.truncate(old_len);
877         res
878     }
879
880     /// Appends in-band lifetime defs and argument-position `impl
881     /// Trait` defs to the existing set of generics.
882     ///
883     /// Presuming that in-band lifetimes are enabled, then
884     /// `self.anonymous_lifetime_mode` will be updated to match the
885     /// argument while `f` is running (and restored afterwards).
886     fn add_in_band_defs<F, T>(
887         &mut self,
888         generics: &Generics,
889         parent_id: DefId,
890         anonymous_lifetime_mode: AnonymousLifetimeMode,
891         f: F,
892     ) -> (hir::Generics, T)
893     where
894         F: FnOnce(&mut LoweringContext<'_>, &mut Vec<hir::GenericParam>) -> T,
895     {
896         let (in_band_defs, (mut lowered_generics, res)) = self.with_in_scope_lifetime_defs(
897             &generics.params,
898             |this| {
899                 this.collect_in_band_defs(parent_id, anonymous_lifetime_mode, |this| {
900                     let mut params = Vec::new();
901                     let generics = this.lower_generics(
902                         generics,
903                         ImplTraitContext::Universal(&mut params),
904                     );
905                     let res = f(this, &mut params);
906                     (params, (generics, res))
907                 })
908             },
909         );
910
911         lowered_generics.params = lowered_generics
912             .params
913             .iter()
914             .cloned()
915             .chain(in_band_defs)
916             .collect();
917
918         (lowered_generics, res)
919     }
920
921     fn with_catch_scope<T, F>(&mut self, catch_id: NodeId, f: F) -> T
922     where
923         F: FnOnce(&mut LoweringContext<'_>) -> T,
924     {
925         let len = self.catch_scopes.len();
926         self.catch_scopes.push(catch_id);
927
928         let result = f(self);
929         assert_eq!(
930             len + 1,
931             self.catch_scopes.len(),
932             "catch scopes should be added and removed in stack order"
933         );
934
935         self.catch_scopes.pop().unwrap();
936
937         result
938     }
939
940     fn make_async_expr(
941         &mut self,
942         capture_clause: CaptureBy,
943         closure_node_id: NodeId,
944         ret_ty: Option<&Ty>,
945         body: impl FnOnce(&mut LoweringContext<'_>) -> hir::Expr,
946     ) -> hir::ExprKind {
947         let prev_is_generator = mem::replace(&mut self.is_generator, true);
948         let body_expr = body(self);
949         let span = body_expr.span;
950         let output = match ret_ty {
951             Some(ty) => FunctionRetTy::Ty(P(ty.clone())),
952             None => FunctionRetTy::Default(span),
953         };
954         let decl = FnDecl {
955             inputs: vec![],
956             output,
957             c_variadic: false
958         };
959         let body_id = self.record_body(body_expr, Some(&decl));
960         self.is_generator = prev_is_generator;
961
962         let capture_clause = self.lower_capture_clause(capture_clause);
963         let closure_hir_id = self.lower_node_id(closure_node_id).hir_id;
964         let decl = self.lower_fn_decl(&decl, None, /* impl trait allowed */ false, None);
965         let generator = hir::Expr {
966             hir_id: closure_hir_id,
967             node: hir::ExprKind::Closure(capture_clause, decl, body_id, span,
968                 Some(hir::GeneratorMovability::Static)),
969             span,
970             attrs: ThinVec::new(),
971         };
972
973         let unstable_span = self.mark_span_with_reason(
974             CompilerDesugaringKind::Async,
975             span,
976             Some(vec![
977                 Symbol::intern("gen_future"),
978             ].into()),
979         );
980         let gen_future = self.expr_std_path(
981             unstable_span, &["future", "from_generator"], None, ThinVec::new());
982         hir::ExprKind::Call(P(gen_future), hir_vec![generator])
983     }
984
985     fn lower_body<F>(&mut self, decl: Option<&FnDecl>, f: F) -> hir::BodyId
986     where
987         F: FnOnce(&mut LoweringContext<'_>) -> hir::Expr,
988     {
989         let prev = mem::replace(&mut self.is_generator, false);
990         let result = f(self);
991         let r = self.record_body(result, decl);
992         self.is_generator = prev;
993         return r;
994     }
995
996     fn with_loop_scope<T, F>(&mut self, loop_id: NodeId, f: F) -> T
997     where
998         F: FnOnce(&mut LoweringContext<'_>) -> T,
999     {
1000         // We're no longer in the base loop's condition; we're in another loop.
1001         let was_in_loop_condition = self.is_in_loop_condition;
1002         self.is_in_loop_condition = false;
1003
1004         let len = self.loop_scopes.len();
1005         self.loop_scopes.push(loop_id);
1006
1007         let result = f(self);
1008         assert_eq!(
1009             len + 1,
1010             self.loop_scopes.len(),
1011             "Loop scopes should be added and removed in stack order"
1012         );
1013
1014         self.loop_scopes.pop().unwrap();
1015
1016         self.is_in_loop_condition = was_in_loop_condition;
1017
1018         result
1019     }
1020
1021     fn with_loop_condition_scope<T, F>(&mut self, f: F) -> T
1022     where
1023         F: FnOnce(&mut LoweringContext<'_>) -> T,
1024     {
1025         let was_in_loop_condition = self.is_in_loop_condition;
1026         self.is_in_loop_condition = true;
1027
1028         let result = f(self);
1029
1030         self.is_in_loop_condition = was_in_loop_condition;
1031
1032         result
1033     }
1034
1035     fn with_new_scopes<T, F>(&mut self, f: F) -> T
1036     where
1037         F: FnOnce(&mut LoweringContext<'_>) -> T,
1038     {
1039         let was_in_loop_condition = self.is_in_loop_condition;
1040         self.is_in_loop_condition = false;
1041
1042         let catch_scopes = mem::replace(&mut self.catch_scopes, Vec::new());
1043         let loop_scopes = mem::replace(&mut self.loop_scopes, Vec::new());
1044         let ret = f(self);
1045         self.catch_scopes = catch_scopes;
1046         self.loop_scopes = loop_scopes;
1047
1048         self.is_in_loop_condition = was_in_loop_condition;
1049
1050         ret
1051     }
1052
1053     fn def_key(&mut self, id: DefId) -> DefKey {
1054         if id.is_local() {
1055             self.resolver.definitions().def_key(id.index)
1056         } else {
1057             self.cstore.def_key(id)
1058         }
1059     }
1060
1061     fn lower_label(&mut self, label: Option<Label>) -> Option<hir::Label> {
1062         label.map(|label| hir::Label {
1063             ident: label.ident,
1064         })
1065     }
1066
1067     fn lower_loop_destination(&mut self, destination: Option<(NodeId, Label)>) -> hir::Destination {
1068         let target_id = match destination {
1069             Some((id, _)) => {
1070                 if let Def::Label(loop_id) = self.expect_full_def(id) {
1071                     Ok(self.lower_node_id(loop_id).node_id)
1072                 } else {
1073                     Err(hir::LoopIdError::UnresolvedLabel)
1074                 }
1075             }
1076             None => {
1077                 self.loop_scopes
1078                     .last()
1079                     .cloned()
1080                     .map(|id| Ok(self.lower_node_id(id).node_id))
1081                     .unwrap_or(Err(hir::LoopIdError::OutsideLoopScope))
1082                     .into()
1083             }
1084         };
1085         hir::Destination {
1086             label: self.lower_label(destination.map(|(_, label)| label)),
1087             target_id,
1088         }
1089     }
1090
1091     fn lower_attrs(&mut self, attrs: &[Attribute]) -> hir::HirVec<Attribute> {
1092         attrs
1093             .iter()
1094             .map(|a| self.lower_attr(a))
1095             .collect()
1096     }
1097
1098     fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
1099         // Note that we explicitly do not walk the path. Since we don't really
1100         // lower attributes (we use the AST version) there is nowhere to keep
1101         // the `HirId`s. We don't actually need HIR version of attributes anyway.
1102         Attribute {
1103             id: attr.id,
1104             style: attr.style,
1105             path: attr.path.clone(),
1106             tokens: self.lower_token_stream(attr.tokens.clone()),
1107             is_sugared_doc: attr.is_sugared_doc,
1108             span: attr.span,
1109         }
1110     }
1111
1112     fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
1113         tokens
1114             .into_trees()
1115             .flat_map(|tree| self.lower_token_tree(tree).into_trees())
1116             .collect()
1117     }
1118
1119     fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
1120         match tree {
1121             TokenTree::Token(span, token) => self.lower_token(token, span),
1122             TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
1123                 span,
1124                 delim,
1125                 self.lower_token_stream(tts),
1126             ).into(),
1127         }
1128     }
1129
1130     fn lower_token(&mut self, token: Token, span: Span) -> TokenStream {
1131         match token {
1132             Token::Interpolated(nt) => {
1133                 let tts = nt.to_tokenstream(&self.sess.parse_sess, span);
1134                 self.lower_token_stream(tts)
1135             }
1136             other => TokenTree::Token(span, other).into(),
1137         }
1138     }
1139
1140     fn lower_arm(&mut self, arm: &Arm) -> hir::Arm {
1141         hir::Arm {
1142             attrs: self.lower_attrs(&arm.attrs),
1143             pats: arm.pats.iter().map(|x| self.lower_pat(x)).collect(),
1144             guard: match arm.guard {
1145                 Some(Guard::If(ref x)) => Some(hir::Guard::If(P(self.lower_expr(x)))),
1146                 _ => None,
1147             },
1148             body: P(self.lower_expr(&arm.body)),
1149         }
1150     }
1151
1152     fn lower_ty_binding(&mut self, b: &TypeBinding,
1153                         itctx: ImplTraitContext<'_>) -> hir::TypeBinding {
1154         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(b.id);
1155
1156         hir::TypeBinding {
1157             id: node_id,
1158             hir_id,
1159             ident: b.ident,
1160             ty: self.lower_ty(&b.ty, itctx),
1161             span: b.span,
1162         }
1163     }
1164
1165     fn lower_generic_arg(&mut self,
1166                         arg: &ast::GenericArg,
1167                         itctx: ImplTraitContext<'_>)
1168                         -> hir::GenericArg {
1169         match arg {
1170             ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1171             ast::GenericArg::Type(ty) => GenericArg::Type(self.lower_ty_direct(&ty, itctx)),
1172             ast::GenericArg::Const(ct) => {
1173                 GenericArg::Const(ConstArg {
1174                     value: self.lower_anon_const(&ct),
1175                     span: ct.value.span,
1176                 })
1177             }
1178         }
1179     }
1180
1181     fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_>) -> P<hir::Ty> {
1182         P(self.lower_ty_direct(t, itctx))
1183     }
1184
1185     fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_>) -> hir::Ty {
1186         let kind = match t.node {
1187             TyKind::Infer => hir::TyKind::Infer,
1188             TyKind::Err => hir::TyKind::Err,
1189             TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1190             TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1191             TyKind::Rptr(ref region, ref mt) => {
1192                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1193                 let lifetime = match *region {
1194                     Some(ref lt) => self.lower_lifetime(lt),
1195                     None => self.elided_ref_lifetime(span),
1196                 };
1197                 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1198             }
1199             TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(
1200                 &f.generic_params,
1201                 |this| {
1202                     this.with_anonymous_lifetime_mode(
1203                         AnonymousLifetimeMode::PassThrough,
1204                         |this| {
1205                             hir::TyKind::BareFn(P(hir::BareFnTy {
1206                                 generic_params: this.lower_generic_params(
1207                                     &f.generic_params,
1208                                     &NodeMap::default(),
1209                                     ImplTraitContext::disallowed(),
1210                                 ),
1211                                 unsafety: this.lower_unsafety(f.unsafety),
1212                                 abi: f.abi,
1213                                 decl: this.lower_fn_decl(&f.decl, None, false, None),
1214                                 arg_names: this.lower_fn_args_to_names(&f.decl),
1215                             }))
1216                         },
1217                     )
1218                 },
1219             ),
1220             TyKind::Never => hir::TyKind::Never,
1221             TyKind::Tup(ref tys) => {
1222                 hir::TyKind::Tup(tys.iter().map(|ty| {
1223                     self.lower_ty_direct(ty, itctx.reborrow())
1224                 }).collect())
1225             }
1226             TyKind::Paren(ref ty) => {
1227                 return self.lower_ty_direct(ty, itctx);
1228             }
1229             TyKind::Path(ref qself, ref path) => {
1230                 let id = self.lower_node_id(t.id);
1231                 let qpath = self.lower_qpath(t.id, qself, path, ParamMode::Explicit, itctx);
1232                 let ty = self.ty_path(id, t.span, qpath);
1233                 if let hir::TyKind::TraitObject(..) = ty.node {
1234                     self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1235                 }
1236                 return ty;
1237             }
1238             TyKind::ImplicitSelf => hir::TyKind::Path(hir::QPath::Resolved(
1239                 None,
1240                 P(hir::Path {
1241                     def: self.expect_full_def(t.id),
1242                     segments: hir_vec![hir::PathSegment::from_ident(keywords::SelfUpper.ident())],
1243                     span: t.span,
1244                 }),
1245             )),
1246             TyKind::Array(ref ty, ref length) => {
1247                 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1248             }
1249             TyKind::Typeof(ref expr) => {
1250                 hir::TyKind::Typeof(self.lower_anon_const(expr))
1251             }
1252             TyKind::TraitObject(ref bounds, kind) => {
1253                 let mut lifetime_bound = None;
1254                 let bounds = bounds
1255                     .iter()
1256                     .filter_map(|bound| match *bound {
1257                         GenericBound::Trait(ref ty, TraitBoundModifier::None) => {
1258                             Some(self.lower_poly_trait_ref(ty, itctx.reborrow()))
1259                         }
1260                         GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
1261                         GenericBound::Outlives(ref lifetime) => {
1262                             if lifetime_bound.is_none() {
1263                                 lifetime_bound = Some(self.lower_lifetime(lifetime));
1264                             }
1265                             None
1266                         }
1267                     })
1268                     .collect();
1269                 let lifetime_bound =
1270                     lifetime_bound.unwrap_or_else(|| self.elided_dyn_bound(t.span));
1271                 if kind != TraitObjectSyntax::Dyn {
1272                     self.maybe_lint_bare_trait(t.span, t.id, false);
1273                 }
1274                 hir::TyKind::TraitObject(bounds, lifetime_bound)
1275             }
1276             TyKind::ImplTrait(def_node_id, ref bounds) => {
1277                 let span = t.span;
1278                 match itctx {
1279                     ImplTraitContext::Existential(fn_def_id) => {
1280                         self.lower_existential_impl_trait(
1281                             span, fn_def_id, def_node_id,
1282                             |this| this.lower_param_bounds(bounds, itctx),
1283                         )
1284                     }
1285                     ImplTraitContext::Universal(in_band_ty_params) => {
1286                         let LoweredNodeId { node_id: _, hir_id } =  self.lower_node_id(def_node_id);
1287                         // Add a definition for the in-band `Param`.
1288                         let def_index = self
1289                             .resolver
1290                             .definitions()
1291                             .opt_def_index(def_node_id)
1292                             .unwrap();
1293
1294                         let hir_bounds = self.lower_param_bounds(
1295                             bounds,
1296                             ImplTraitContext::Universal(in_band_ty_params),
1297                         );
1298                         // Set the name to `impl Bound1 + Bound2`.
1299                         let ident = Ident::from_str(&pprust::ty_to_string(t)).with_span_pos(span);
1300                         in_band_ty_params.push(hir::GenericParam {
1301                             hir_id,
1302                             name: ParamName::Plain(ident),
1303                             pure_wrt_drop: false,
1304                             attrs: hir_vec![],
1305                             bounds: hir_bounds,
1306                             span,
1307                             kind: hir::GenericParamKind::Type {
1308                                 default: None,
1309                                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1310                             }
1311                         });
1312
1313                         hir::TyKind::Path(hir::QPath::Resolved(
1314                             None,
1315                             P(hir::Path {
1316                                 span,
1317                                 def: Def::TyParam(DefId::local(def_index)),
1318                                 segments: hir_vec![hir::PathSegment::from_ident(ident)],
1319                             }),
1320                         ))
1321                     }
1322                     ImplTraitContext::Disallowed(pos) => {
1323                         let allowed_in = if self.sess.features_untracked()
1324                                                 .impl_trait_in_bindings {
1325                             "bindings or function and inherent method return types"
1326                         } else {
1327                             "function and inherent method return types"
1328                         };
1329                         let mut err = struct_span_err!(
1330                             self.sess,
1331                             t.span,
1332                             E0562,
1333                             "`impl Trait` not allowed outside of {}",
1334                             allowed_in,
1335                         );
1336                         if pos == ImplTraitPosition::Binding &&
1337                             nightly_options::is_nightly_build() {
1338                             help!(err,
1339                                   "add #![feature(impl_trait_in_bindings)] to the crate attributes \
1340                                    to enable");
1341                         }
1342                         err.emit();
1343                         hir::TyKind::Err
1344                     }
1345                 }
1346             }
1347             TyKind::Mac(_) => panic!("TyMac should have been expanded by now."),
1348             TyKind::CVarArgs => {
1349                 // Create the implicit lifetime of the "spoofed" `VaList`.
1350                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1351                 let lt = self.new_implicit_lifetime(span);
1352                 hir::TyKind::CVarArgs(lt)
1353             },
1354         };
1355
1356         let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(t.id);
1357         hir::Ty {
1358             node: kind,
1359             span: t.span,
1360             hir_id,
1361         }
1362     }
1363
1364     fn lower_existential_impl_trait(
1365         &mut self,
1366         span: Span,
1367         fn_def_id: Option<DefId>,
1368         exist_ty_node_id: NodeId,
1369         lower_bounds: impl FnOnce(&mut LoweringContext<'_>) -> hir::GenericBounds,
1370     ) -> hir::TyKind {
1371         // Make sure we know that some funky desugaring has been going on here.
1372         // This is a first: there is code in other places like for loop
1373         // desugaring that explicitly states that we don't want to track that.
1374         // Not tracking it makes lints in rustc and clippy very fragile as
1375         // frequently opened issues show.
1376         let exist_ty_span = self.mark_span_with_reason(
1377             CompilerDesugaringKind::ExistentialReturnType,
1378             span,
1379             None,
1380         );
1381
1382         let exist_ty_def_index = self
1383             .resolver
1384             .definitions()
1385             .opt_def_index(exist_ty_node_id)
1386             .unwrap();
1387
1388         self.allocate_hir_id_counter(exist_ty_node_id, &"existential impl trait");
1389
1390         let hir_bounds = self.with_hir_id_owner(exist_ty_node_id, lower_bounds);
1391
1392         let (lifetimes, lifetime_defs) = self.lifetimes_from_impl_trait_bounds(
1393             exist_ty_node_id,
1394             exist_ty_def_index,
1395             &hir_bounds,
1396         );
1397
1398         self.with_hir_id_owner(exist_ty_node_id, |lctx| {
1399             let LoweredNodeId { node_id: _, hir_id } = lctx.next_id();
1400             let exist_ty_item_kind = hir::ItemKind::Existential(hir::ExistTy {
1401                 generics: hir::Generics {
1402                     params: lifetime_defs,
1403                     where_clause: hir::WhereClause {
1404                         hir_id,
1405                         predicates: Vec::new().into(),
1406                     },
1407                     span,
1408                 },
1409                 bounds: hir_bounds,
1410                 impl_trait_fn: fn_def_id,
1411             });
1412             let exist_ty_id = lctx.lower_node_id(exist_ty_node_id);
1413             // Generate an `existential type Foo: Trait;` declaration.
1414             trace!("creating existential type with id {:#?}", exist_ty_id);
1415
1416             trace!("exist ty def index: {:#?}", exist_ty_def_index);
1417             let exist_ty_item = hir::Item {
1418                 id: exist_ty_id.node_id,
1419                 hir_id: exist_ty_id.hir_id,
1420                 ident: keywords::Invalid.ident(),
1421                 attrs: Default::default(),
1422                 node: exist_ty_item_kind,
1423                 vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1424                 span: exist_ty_span,
1425             };
1426
1427             // Insert the item into the global list. This usually happens
1428             // automatically for all AST items. But this existential type item
1429             // does not actually exist in the AST.
1430             lctx.insert_item(exist_ty_id.node_id, exist_ty_item);
1431
1432             // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1433             hir::TyKind::Def(hir::ItemId { id: exist_ty_id.node_id }, lifetimes)
1434         })
1435     }
1436
1437     fn lifetimes_from_impl_trait_bounds(
1438         &mut self,
1439         exist_ty_id: NodeId,
1440         parent_index: DefIndex,
1441         bounds: &hir::GenericBounds,
1442     ) -> (HirVec<hir::GenericArg>, HirVec<hir::GenericParam>) {
1443         // This visitor walks over impl trait bounds and creates defs for all lifetimes which
1444         // appear in the bounds, excluding lifetimes that are created within the bounds.
1445         // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1446         struct ImplTraitLifetimeCollector<'r, 'a: 'r> {
1447             context: &'r mut LoweringContext<'a>,
1448             parent: DefIndex,
1449             exist_ty_id: NodeId,
1450             collect_elided_lifetimes: bool,
1451             currently_bound_lifetimes: Vec<hir::LifetimeName>,
1452             already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1453             output_lifetimes: Vec<hir::GenericArg>,
1454             output_lifetime_params: Vec<hir::GenericParam>,
1455         }
1456
1457         impl<'r, 'a: 'r, 'v> hir::intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a> {
1458             fn nested_visit_map<'this>(
1459                 &'this mut self,
1460             ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
1461                 hir::intravisit::NestedVisitorMap::None
1462             }
1463
1464             fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
1465                 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1466                 if parameters.parenthesized {
1467                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1468                     self.collect_elided_lifetimes = false;
1469                     hir::intravisit::walk_generic_args(self, span, parameters);
1470                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1471                 } else {
1472                     hir::intravisit::walk_generic_args(self, span, parameters);
1473                 }
1474             }
1475
1476             fn visit_ty(&mut self, t: &'v hir::Ty) {
1477                 // Don't collect elided lifetimes used inside of `fn()` syntax.
1478                 if let hir::TyKind::BareFn(_) = t.node {
1479                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1480                     self.collect_elided_lifetimes = false;
1481
1482                     // Record the "stack height" of `for<'a>` lifetime bindings
1483                     // to be able to later fully undo their introduction.
1484                     let old_len = self.currently_bound_lifetimes.len();
1485                     hir::intravisit::walk_ty(self, t);
1486                     self.currently_bound_lifetimes.truncate(old_len);
1487
1488                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1489                 } else {
1490                     hir::intravisit::walk_ty(self, t)
1491                 }
1492             }
1493
1494             fn visit_poly_trait_ref(
1495                 &mut self,
1496                 trait_ref: &'v hir::PolyTraitRef,
1497                 modifier: hir::TraitBoundModifier,
1498             ) {
1499                 // Record the "stack height" of `for<'a>` lifetime bindings
1500                 // to be able to later fully undo their introduction.
1501                 let old_len = self.currently_bound_lifetimes.len();
1502                 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1503                 self.currently_bound_lifetimes.truncate(old_len);
1504             }
1505
1506             fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
1507                 // Record the introduction of 'a in `for<'a> ...`.
1508                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1509                     // Introduce lifetimes one at a time so that we can handle
1510                     // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1511                     let lt_name = hir::LifetimeName::Param(param.name);
1512                     self.currently_bound_lifetimes.push(lt_name);
1513                 }
1514
1515                 hir::intravisit::walk_generic_param(self, param);
1516             }
1517
1518             fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1519                 let name = match lifetime.name {
1520                     hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1521                         if self.collect_elided_lifetimes {
1522                             // Use `'_` for both implicit and underscore lifetimes in
1523                             // `abstract type Foo<'_>: SomeTrait<'_>;`.
1524                             hir::LifetimeName::Underscore
1525                         } else {
1526                             return;
1527                         }
1528                     }
1529                     hir::LifetimeName::Param(_) => lifetime.name,
1530                     hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1531                 };
1532
1533                 if !self.currently_bound_lifetimes.contains(&name)
1534                     && !self.already_defined_lifetimes.contains(&name) {
1535                     self.already_defined_lifetimes.insert(name);
1536
1537                     let LoweredNodeId { node_id: _, hir_id } = self.context.next_id();
1538                     self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1539                         hir_id,
1540                         span: lifetime.span,
1541                         name,
1542                     }));
1543
1544                     // We need to manually create the ids here, because the
1545                     // definitions will go into the explicit `existential type`
1546                     // declaration and thus need to have their owner set to that item
1547                     let def_node_id = self.context.sess.next_node_id();
1548                     let LoweredNodeId { node_id: _, hir_id } =
1549                         self.context.lower_node_id_with_owner(def_node_id, self.exist_ty_id);
1550                     self.context.resolver.definitions().create_def_with_parent(
1551                         self.parent,
1552                         def_node_id,
1553                         DefPathData::LifetimeParam(name.ident().as_interned_str()),
1554                         DefIndexAddressSpace::High,
1555                         Mark::root(),
1556                         lifetime.span,
1557                     );
1558
1559                     let (name, kind) = match name {
1560                         hir::LifetimeName::Underscore => (
1561                             hir::ParamName::Plain(keywords::UnderscoreLifetime.ident()),
1562                             hir::LifetimeParamKind::Elided,
1563                         ),
1564                         hir::LifetimeName::Param(param_name) => (
1565                             param_name,
1566                             hir::LifetimeParamKind::Explicit,
1567                         ),
1568                         _ => bug!("expected LifetimeName::Param or ParamName::Plain"),
1569                     };
1570
1571                     self.output_lifetime_params.push(hir::GenericParam {
1572                         hir_id,
1573                         name,
1574                         span: lifetime.span,
1575                         pure_wrt_drop: false,
1576                         attrs: hir_vec![],
1577                         bounds: hir_vec![],
1578                         kind: hir::GenericParamKind::Lifetime { kind }
1579                     });
1580                 }
1581             }
1582         }
1583
1584         let mut lifetime_collector = ImplTraitLifetimeCollector {
1585             context: self,
1586             parent: parent_index,
1587             exist_ty_id,
1588             collect_elided_lifetimes: true,
1589             currently_bound_lifetimes: Vec::new(),
1590             already_defined_lifetimes: FxHashSet::default(),
1591             output_lifetimes: Vec::new(),
1592             output_lifetime_params: Vec::new(),
1593         };
1594
1595         for bound in bounds {
1596             hir::intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1597         }
1598
1599         (
1600             lifetime_collector.output_lifetimes.into(),
1601             lifetime_collector.output_lifetime_params.into(),
1602         )
1603     }
1604
1605     fn lower_foreign_mod(&mut self, fm: &ForeignMod) -> hir::ForeignMod {
1606         hir::ForeignMod {
1607             abi: fm.abi,
1608             items: fm.items
1609                 .iter()
1610                 .map(|x| self.lower_foreign_item(x))
1611                 .collect(),
1612         }
1613     }
1614
1615     fn lower_global_asm(&mut self, ga: &GlobalAsm) -> P<hir::GlobalAsm> {
1616         P(hir::GlobalAsm {
1617             asm: ga.asm,
1618             ctxt: ga.ctxt,
1619         })
1620     }
1621
1622     fn lower_variant(&mut self, v: &Variant) -> hir::Variant {
1623         Spanned {
1624             node: hir::VariantKind {
1625                 ident: v.node.ident,
1626                 attrs: self.lower_attrs(&v.node.attrs),
1627                 data: self.lower_variant_data(&v.node.data),
1628                 disr_expr: v.node.disr_expr.as_ref().map(|e| self.lower_anon_const(e)),
1629             },
1630             span: v.span,
1631         }
1632     }
1633
1634     fn lower_qpath(
1635         &mut self,
1636         id: NodeId,
1637         qself: &Option<QSelf>,
1638         p: &Path,
1639         param_mode: ParamMode,
1640         mut itctx: ImplTraitContext<'_>,
1641     ) -> hir::QPath {
1642         let qself_position = qself.as_ref().map(|q| q.position);
1643         let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow()));
1644
1645         let resolution = self.resolver
1646             .get_resolution(id)
1647             .unwrap_or_else(|| PathResolution::new(Def::Err));
1648
1649         let proj_start = p.segments.len() - resolution.unresolved_segments();
1650         let path = P(hir::Path {
1651             def: resolution.base_def(),
1652             segments: p.segments[..proj_start]
1653                 .iter()
1654                 .enumerate()
1655                 .map(|(i, segment)| {
1656                     let param_mode = match (qself_position, param_mode) {
1657                         (Some(j), ParamMode::Optional) if i < j => {
1658                             // This segment is part of the trait path in a
1659                             // qualified path - one of `a`, `b` or `Trait`
1660                             // in `<X as a::b::Trait>::T::U::method`.
1661                             ParamMode::Explicit
1662                         }
1663                         _ => param_mode,
1664                     };
1665
1666                     // Figure out if this is a type/trait segment,
1667                     // which may need lifetime elision performed.
1668                     let parent_def_id = |this: &mut Self, def_id: DefId| DefId {
1669                         krate: def_id.krate,
1670                         index: this.def_key(def_id).parent.expect("missing parent"),
1671                     };
1672                     let type_def_id = match resolution.base_def() {
1673                         Def::AssociatedTy(def_id) if i + 2 == proj_start => {
1674                             Some(parent_def_id(self, def_id))
1675                         }
1676                         Def::Variant(def_id) if i + 1 == proj_start => {
1677                             Some(parent_def_id(self, def_id))
1678                         }
1679                         Def::Struct(def_id)
1680                         | Def::Union(def_id)
1681                         | Def::Enum(def_id)
1682                         | Def::TyAlias(def_id)
1683                         | Def::Trait(def_id) if i + 1 == proj_start =>
1684                         {
1685                             Some(def_id)
1686                         }
1687                         _ => None,
1688                     };
1689                     let parenthesized_generic_args = match resolution.base_def() {
1690                         // `a::b::Trait(Args)`
1691                         Def::Trait(..) if i + 1 == proj_start => ParenthesizedGenericArgs::Ok,
1692                         // `a::b::Trait(Args)::TraitItem`
1693                         Def::Method(..) | Def::AssociatedConst(..) | Def::AssociatedTy(..)
1694                             if i + 2 == proj_start =>
1695                         {
1696                             ParenthesizedGenericArgs::Ok
1697                         }
1698                         // Avoid duplicated errors.
1699                         Def::Err => ParenthesizedGenericArgs::Ok,
1700                         // An error
1701                         Def::Struct(..)
1702                         | Def::Enum(..)
1703                         | Def::Union(..)
1704                         | Def::TyAlias(..)
1705                         | Def::Variant(..) if i + 1 == proj_start =>
1706                         {
1707                             ParenthesizedGenericArgs::Err
1708                         }
1709                         // A warning for now, for compatibility reasons
1710                         _ => ParenthesizedGenericArgs::Warn,
1711                     };
1712
1713                     let num_lifetimes = type_def_id.map_or(0, |def_id| {
1714                         if let Some(&n) = self.type_def_lifetime_params.get(&def_id) {
1715                             return n;
1716                         }
1717                         assert!(!def_id.is_local());
1718                         let item_generics =
1719                             self.cstore.item_generics_cloned_untracked(def_id, self.sess);
1720                         let n = item_generics.own_counts().lifetimes;
1721                         self.type_def_lifetime_params.insert(def_id, n);
1722                         n
1723                     });
1724                     self.lower_path_segment(
1725                         p.span,
1726                         segment,
1727                         param_mode,
1728                         num_lifetimes,
1729                         parenthesized_generic_args,
1730                         itctx.reborrow(),
1731                         None,
1732                     )
1733                 })
1734                 .collect(),
1735             span: p.span,
1736         });
1737
1738         // Simple case, either no projections, or only fully-qualified.
1739         // E.g., `std::mem::size_of` or `<I as Iterator>::Item`.
1740         if resolution.unresolved_segments() == 0 {
1741             return hir::QPath::Resolved(qself, path);
1742         }
1743
1744         // Create the innermost type that we're projecting from.
1745         let mut ty = if path.segments.is_empty() {
1746             // If the base path is empty that means there exists a
1747             // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`.
1748             qself.expect("missing QSelf for <T>::...")
1749         } else {
1750             // Otherwise, the base path is an implicit `Self` type path,
1751             // e.g., `Vec` in `Vec::new` or `<I as Iterator>::Item` in
1752             // `<I as Iterator>::Item::default`.
1753             let new_id = self.next_id();
1754             P(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path)))
1755         };
1756
1757         // Anything after the base path are associated "extensions",
1758         // out of which all but the last one are associated types,
1759         // e.g., for `std::vec::Vec::<T>::IntoIter::Item::clone`:
1760         // * base path is `std::vec::Vec<T>`
1761         // * "extensions" are `IntoIter`, `Item` and `clone`
1762         // * type nodes are:
1763         //   1. `std::vec::Vec<T>` (created above)
1764         //   2. `<std::vec::Vec<T>>::IntoIter`
1765         //   3. `<<std::vec::Vec<T>>::IntoIter>::Item`
1766         // * final path is `<<<std::vec::Vec<T>>::IntoIter>::Item>::clone`
1767         for (i, segment) in p.segments.iter().enumerate().skip(proj_start) {
1768             let segment = P(self.lower_path_segment(
1769                 p.span,
1770                 segment,
1771                 param_mode,
1772                 0,
1773                 ParenthesizedGenericArgs::Warn,
1774                 itctx.reborrow(),
1775                 None,
1776             ));
1777             let qpath = hir::QPath::TypeRelative(ty, segment);
1778
1779             // It's finished, return the extension of the right node type.
1780             if i == p.segments.len() - 1 {
1781                 return qpath;
1782             }
1783
1784             // Wrap the associated extension in another type node.
1785             let new_id = self.next_id();
1786             ty = P(self.ty_path(new_id, p.span, qpath));
1787         }
1788
1789         // We should've returned in the for loop above.
1790         span_bug!(
1791             p.span,
1792             "lower_qpath: no final extension segment in {}..{}",
1793             proj_start,
1794             p.segments.len()
1795         )
1796     }
1797
1798     fn lower_path_extra(
1799         &mut self,
1800         def: Def,
1801         p: &Path,
1802         param_mode: ParamMode,
1803         explicit_owner: Option<NodeId>,
1804     ) -> hir::Path {
1805         hir::Path {
1806             def,
1807             segments: p.segments
1808                 .iter()
1809                 .map(|segment| {
1810                     self.lower_path_segment(
1811                         p.span,
1812                         segment,
1813                         param_mode,
1814                         0,
1815                         ParenthesizedGenericArgs::Err,
1816                         ImplTraitContext::disallowed(),
1817                         explicit_owner,
1818                     )
1819                 })
1820                 .collect(),
1821             span: p.span,
1822         }
1823     }
1824
1825     fn lower_path(&mut self, id: NodeId, p: &Path, param_mode: ParamMode) -> hir::Path {
1826         let def = self.expect_full_def(id);
1827         self.lower_path_extra(def, p, param_mode, None)
1828     }
1829
1830     fn lower_path_segment(
1831         &mut self,
1832         path_span: Span,
1833         segment: &PathSegment,
1834         param_mode: ParamMode,
1835         expected_lifetimes: usize,
1836         parenthesized_generic_args: ParenthesizedGenericArgs,
1837         itctx: ImplTraitContext<'_>,
1838         explicit_owner: Option<NodeId>,
1839     ) -> hir::PathSegment {
1840         let (mut generic_args, infer_types) = if let Some(ref generic_args) = segment.args {
1841             let msg = "parenthesized type parameters may only be used with a `Fn` trait";
1842             match **generic_args {
1843                 GenericArgs::AngleBracketed(ref data) => {
1844                     self.lower_angle_bracketed_parameter_data(data, param_mode, itctx)
1845                 }
1846                 GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args {
1847                     ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data),
1848                     ParenthesizedGenericArgs::Warn => {
1849                         self.sess.buffer_lint(
1850                             PARENTHESIZED_PARAMS_IN_TYPES_AND_MODULES,
1851                             CRATE_NODE_ID,
1852                             data.span,
1853                             msg.into(),
1854                         );
1855                         (hir::GenericArgs::none(), true)
1856                     }
1857                     ParenthesizedGenericArgs::Err => {
1858                         let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg);
1859                         err.span_label(data.span, "only `Fn` traits may use parentheses");
1860                         if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) {
1861                             // Do not suggest going from `Trait()` to `Trait<>`
1862                             if data.inputs.len() > 0 {
1863                                 err.span_suggestion(
1864                                     data.span,
1865                                     "use angle brackets instead",
1866                                     format!("<{}>", &snippet[1..snippet.len() - 1]),
1867                                     Applicability::MaybeIncorrect,
1868                                 );
1869                             }
1870                         };
1871                         err.emit();
1872                         (self.lower_angle_bracketed_parameter_data(
1873                             &data.as_angle_bracketed_args(),
1874                             param_mode,
1875                             itctx).0,
1876                          false)
1877                     }
1878                 },
1879             }
1880         } else {
1881             self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx)
1882         };
1883
1884         let has_lifetimes = generic_args.args.iter().any(|arg| match arg {
1885             GenericArg::Lifetime(_) => true,
1886             _ => false,
1887         });
1888         let first_generic_span = generic_args.args.iter().map(|a| a.span())
1889             .chain(generic_args.bindings.iter().map(|b| b.span)).next();
1890         if !generic_args.parenthesized && !has_lifetimes {
1891             generic_args.args =
1892                 self.elided_path_lifetimes(path_span, expected_lifetimes)
1893                     .into_iter()
1894                     .map(|lt| GenericArg::Lifetime(lt))
1895                     .chain(generic_args.args.into_iter())
1896                 .collect();
1897             if expected_lifetimes > 0 && param_mode == ParamMode::Explicit {
1898                 let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", ");
1899                 let no_ty_args = generic_args.args.len() == expected_lifetimes;
1900                 let no_bindings = generic_args.bindings.is_empty();
1901                 let (incl_angl_brckt, insertion_span, suggestion) = if no_ty_args && no_bindings {
1902                     // If there are no (non-implicit) generic args or associated-type
1903                     // bindings, our suggestion includes the angle brackets.
1904                     (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion))
1905                 } else {
1906                     // Otherwise—sorry, this is kind of gross—we need to infer the
1907                     // place to splice in the `'_, ` from the generics that do exist.
1908                     let first_generic_span = first_generic_span
1909                         .expect("already checked that type args or bindings exist");
1910                     (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion))
1911                 };
1912                 self.sess.buffer_lint_with_diagnostic(
1913                     ELIDED_LIFETIMES_IN_PATHS,
1914                     CRATE_NODE_ID,
1915                     path_span,
1916                     "hidden lifetime parameters in types are deprecated",
1917                     builtin::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
1918                         expected_lifetimes, path_span, incl_angl_brckt, insertion_span, suggestion
1919                     )
1920                 );
1921             }
1922         }
1923
1924         let def = self.expect_full_def(segment.id);
1925         let id = if let Some(owner) = explicit_owner {
1926             self.lower_node_id_with_owner(segment.id, owner)
1927         } else {
1928             self.lower_node_id(segment.id)
1929         };
1930         debug!(
1931             "lower_path_segment: ident={:?} original-id={:?} new-id={:?}",
1932             segment.ident, segment.id, id,
1933         );
1934
1935         hir::PathSegment::new(
1936             segment.ident,
1937             Some(id.node_id),
1938             Some(id.hir_id),
1939             Some(def),
1940             generic_args,
1941             infer_types,
1942         )
1943     }
1944
1945     fn lower_angle_bracketed_parameter_data(
1946         &mut self,
1947         data: &AngleBracketedArgs,
1948         param_mode: ParamMode,
1949         mut itctx: ImplTraitContext<'_>,
1950     ) -> (hir::GenericArgs, bool) {
1951         let &AngleBracketedArgs { ref args, ref bindings, .. } = data;
1952         let has_types = args.iter().any(|arg| match arg {
1953             ast::GenericArg::Type(_) => true,
1954             _ => false,
1955         });
1956         (hir::GenericArgs {
1957             args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(),
1958             bindings: bindings.iter().map(|b| self.lower_ty_binding(b, itctx.reborrow())).collect(),
1959             parenthesized: false,
1960         },
1961         !has_types && param_mode == ParamMode::Optional)
1962     }
1963
1964     fn lower_parenthesized_parameter_data(
1965         &mut self,
1966         data: &ParenthesizedArgs,
1967     ) -> (hir::GenericArgs, bool) {
1968         // Switch to `PassThrough` mode for anonymous lifetimes: this
1969         // means that we permit things like `&Ref<T>`, where `Ref` has
1970         // a hidden lifetime parameter. This is needed for backwards
1971         // compatibility, even in contexts like an impl header where
1972         // we generally don't permit such things (see #51008).
1973         self.with_anonymous_lifetime_mode(
1974             AnonymousLifetimeMode::PassThrough,
1975             |this| {
1976                 let &ParenthesizedArgs { ref inputs, ref output, span } = data;
1977                 let inputs = inputs
1978                     .iter()
1979                     .map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed()))
1980                     .collect();
1981                 let mk_tup = |this: &mut Self, tys, span| {
1982                     let LoweredNodeId { node_id: _, hir_id } = this.next_id();
1983                     hir::Ty { node: hir::TyKind::Tup(tys), hir_id, span }
1984                 };
1985                 let LoweredNodeId { node_id, hir_id } = this.next_id();
1986
1987                 (
1988                     hir::GenericArgs {
1989                         args: hir_vec![GenericArg::Type(mk_tup(this, inputs, span))],
1990                         bindings: hir_vec![
1991                             hir::TypeBinding {
1992                                 id: node_id,
1993                                 hir_id,
1994                                 ident: Ident::from_str(FN_OUTPUT_NAME),
1995                                 ty: output
1996                                     .as_ref()
1997                                     .map(|ty| this.lower_ty(&ty, ImplTraitContext::disallowed()))
1998                                     .unwrap_or_else(|| P(mk_tup(this, hir::HirVec::new(), span))),
1999                                 span: output.as_ref().map_or(span, |ty| ty.span),
2000                             }
2001                         ],
2002                         parenthesized: true,
2003                     },
2004                     false,
2005                 )
2006             }
2007         )
2008     }
2009
2010     fn lower_local(&mut self, l: &Local) -> (hir::Local, SmallVec<[hir::ItemId; 1]>) {
2011         let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(l.id);
2012         let mut ids = SmallVec::<[hir::ItemId; 1]>::new();
2013         if self.sess.features_untracked().impl_trait_in_bindings {
2014             if let Some(ref ty) = l.ty {
2015                 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
2016                 visitor.visit_ty(ty);
2017             }
2018         }
2019         let parent_def_id = DefId::local(self.current_hir_id_owner.last().unwrap().0);
2020         (hir::Local {
2021             hir_id,
2022             ty: l.ty
2023                 .as_ref()
2024                 .map(|t| self.lower_ty(t,
2025                     if self.sess.features_untracked().impl_trait_in_bindings {
2026                         ImplTraitContext::Existential(Some(parent_def_id))
2027                     } else {
2028                         ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2029                     }
2030                 )),
2031             pat: self.lower_pat(&l.pat),
2032             init: l.init.as_ref().map(|e| P(self.lower_expr(e))),
2033             span: l.span,
2034             attrs: l.attrs.clone(),
2035             source: hir::LocalSource::Normal,
2036         }, ids)
2037     }
2038
2039     fn lower_mutability(&mut self, m: Mutability) -> hir::Mutability {
2040         match m {
2041             Mutability::Mutable => hir::MutMutable,
2042             Mutability::Immutable => hir::MutImmutable,
2043         }
2044     }
2045
2046     fn lower_arg(&mut self, arg: &Arg) -> hir::Arg {
2047         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(arg.id);
2048         hir::Arg {
2049             id: node_id,
2050             hir_id,
2051             pat: self.lower_pat(&arg.pat),
2052         }
2053     }
2054
2055     fn lower_fn_args_to_names(&mut self, decl: &FnDecl) -> hir::HirVec<Ident> {
2056         decl.inputs
2057             .iter()
2058             .map(|arg| match arg.pat.node {
2059                 PatKind::Ident(_, ident, _) => ident,
2060                 _ => Ident::new(keywords::Invalid.name(), arg.pat.span),
2061             })
2062             .collect()
2063     }
2064
2065     // Lowers a function declaration.
2066     //
2067     // decl: the unlowered (ast) function declaration.
2068     // fn_def_id: if `Some`, impl Trait arguments are lowered into generic parameters on the
2069     //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
2070     //      make_ret_async is also `Some`.
2071     // impl_trait_return_allow: determines whether impl Trait can be used in return position.
2072     //      This guards against trait declarations and implementations where impl Trait is
2073     //      disallowed.
2074     // make_ret_async: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
2075     //      return type. This is used for `async fn` declarations. The `NodeId` is the id of the
2076     //      return type impl Trait item.
2077     fn lower_fn_decl(
2078         &mut self,
2079         decl: &FnDecl,
2080         mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam>)>,
2081         impl_trait_return_allow: bool,
2082         make_ret_async: Option<NodeId>,
2083     ) -> P<hir::FnDecl> {
2084         let inputs = decl.inputs
2085             .iter()
2086             .map(|arg| {
2087                 if let Some((_, ref mut ibty)) = in_band_ty_params {
2088                     self.lower_ty_direct(&arg.ty, ImplTraitContext::Universal(ibty))
2089                 } else {
2090                     self.lower_ty_direct(&arg.ty, ImplTraitContext::disallowed())
2091                 }
2092             })
2093             .collect::<HirVec<_>>();
2094
2095         let output = if let Some(ret_id) = make_ret_async {
2096             self.lower_async_fn_ret_ty(
2097                 &inputs,
2098                 &decl.output,
2099                 in_band_ty_params.expect("make_ret_async but no fn_def_id").0,
2100                 ret_id,
2101             )
2102         } else {
2103             match decl.output {
2104                 FunctionRetTy::Ty(ref ty) => match in_band_ty_params {
2105                     Some((def_id, _)) if impl_trait_return_allow => {
2106                         hir::Return(self.lower_ty(ty,
2107                             ImplTraitContext::Existential(Some(def_id))))
2108                     }
2109                     _ => {
2110                         hir::Return(self.lower_ty(ty, ImplTraitContext::disallowed()))
2111                     }
2112                 },
2113                 FunctionRetTy::Default(span) => hir::DefaultReturn(span),
2114             }
2115         };
2116
2117         P(hir::FnDecl {
2118             inputs,
2119             output,
2120             c_variadic: decl.c_variadic,
2121             implicit_self: decl.inputs.get(0).map_or(
2122                 hir::ImplicitSelfKind::None,
2123                 |arg| {
2124                     let is_mutable_pat = match arg.pat.node {
2125                         PatKind::Ident(BindingMode::ByValue(mt), _, _) |
2126                         PatKind::Ident(BindingMode::ByRef(mt), _, _) =>
2127                             mt == Mutability::Mutable,
2128                         _ => false,
2129                     };
2130
2131                     match arg.ty.node {
2132                         TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
2133                         TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
2134                         // Given we are only considering `ImplicitSelf` types, we needn't consider
2135                         // the case where we have a mutable pattern to a reference as that would
2136                         // no longer be an `ImplicitSelf`.
2137                         TyKind::Rptr(_, ref mt) if mt.ty.node.is_implicit_self() &&
2138                             mt.mutbl == ast::Mutability::Mutable =>
2139                                 hir::ImplicitSelfKind::MutRef,
2140                         TyKind::Rptr(_, ref mt) if mt.ty.node.is_implicit_self() =>
2141                             hir::ImplicitSelfKind::ImmRef,
2142                         _ => hir::ImplicitSelfKind::None,
2143                     }
2144                 },
2145             ),
2146         })
2147     }
2148
2149     // Transform `-> T` into `-> impl Future<Output = T>` for `async fn`
2150     //
2151     // fn_span: the span of the async function declaration. Used for error reporting.
2152     // inputs: lowered types of arguments to the function. Used to collect lifetimes.
2153     // output: unlowered output type (`T` in `-> T`)
2154     // fn_def_id: DefId of the parent function. Used to create child impl trait definition.
2155     fn lower_async_fn_ret_ty(
2156         &mut self,
2157         inputs: &[hir::Ty],
2158         output: &FunctionRetTy,
2159         fn_def_id: DefId,
2160         return_impl_trait_id: NodeId,
2161     ) -> hir::FunctionRetTy {
2162         // Get lifetimes used in the input arguments to the function. Our output type must also
2163         // have the same lifetime.
2164         // FIXME(cramertj): multiple different lifetimes are not allowed because
2165         // `impl Trait + 'a + 'b` doesn't allow for capture `'a` and `'b` where neither is a subset
2166         // of the other. We really want some new lifetime that is a subset of all input lifetimes,
2167         // but that doesn't exist at the moment.
2168
2169         struct AsyncFnLifetimeCollector<'r, 'a: 'r> {
2170             context: &'r mut LoweringContext<'a>,
2171             // Lifetimes bound by HRTB.
2172             currently_bound_lifetimes: Vec<hir::LifetimeName>,
2173             // Whether to count elided lifetimes.
2174             // Disabled inside of `Fn` or `fn` syntax.
2175             collect_elided_lifetimes: bool,
2176             // The lifetime found.
2177             // Multiple different or elided lifetimes cannot appear in async fn for now.
2178             output_lifetime: Option<(hir::LifetimeName, Span)>,
2179         }
2180
2181         impl<'r, 'a: 'r, 'v> hir::intravisit::Visitor<'v> for AsyncFnLifetimeCollector<'r, 'a> {
2182             fn nested_visit_map<'this>(
2183                 &'this mut self,
2184             ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
2185                 hir::intravisit::NestedVisitorMap::None
2186             }
2187
2188             fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
2189                 // Don't collect elided lifetimes used inside of `Fn()` syntax.
2190                 if parameters.parenthesized {
2191                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
2192                     self.collect_elided_lifetimes = false;
2193                     hir::intravisit::walk_generic_args(self, span, parameters);
2194                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
2195                 } else {
2196                     hir::intravisit::walk_generic_args(self, span, parameters);
2197                 }
2198             }
2199
2200             fn visit_ty(&mut self, t: &'v hir::Ty) {
2201                 // Don't collect elided lifetimes used inside of `fn()` syntax.
2202                 if let &hir::TyKind::BareFn(_) = &t.node {
2203                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
2204                     self.collect_elided_lifetimes = false;
2205
2206                     // Record the "stack height" of `for<'a>` lifetime bindings
2207                     // to be able to later fully undo their introduction.
2208                     let old_len = self.currently_bound_lifetimes.len();
2209                     hir::intravisit::walk_ty(self, t);
2210                     self.currently_bound_lifetimes.truncate(old_len);
2211
2212                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
2213                 } else {
2214                     hir::intravisit::walk_ty(self, t);
2215                 }
2216             }
2217
2218             fn visit_poly_trait_ref(
2219                 &mut self,
2220                 trait_ref: &'v hir::PolyTraitRef,
2221                 modifier: hir::TraitBoundModifier,
2222             ) {
2223                 // Record the "stack height" of `for<'a>` lifetime bindings
2224                 // to be able to later fully undo their introduction.
2225                 let old_len = self.currently_bound_lifetimes.len();
2226                 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
2227                 self.currently_bound_lifetimes.truncate(old_len);
2228             }
2229
2230             fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
2231                  // Record the introduction of 'a in `for<'a> ...`
2232                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
2233                     // Introduce lifetimes one at a time so that we can handle
2234                     // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`
2235                     let lt_name = hir::LifetimeName::Param(param.name);
2236                     self.currently_bound_lifetimes.push(lt_name);
2237                 }
2238
2239                 hir::intravisit::walk_generic_param(self, param);
2240             }
2241
2242             fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
2243                 let name = match lifetime.name {
2244                     hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
2245                         if self.collect_elided_lifetimes {
2246                             // Use `'_` for both implicit and underscore lifetimes in
2247                             // `abstract type Foo<'_>: SomeTrait<'_>;`
2248                             hir::LifetimeName::Underscore
2249                         } else {
2250                             return;
2251                         }
2252                     }
2253                     hir::LifetimeName::Param(_) => lifetime.name,
2254                     hir::LifetimeName::Error | hir::LifetimeName::Static => return,
2255                 };
2256
2257                 if !self.currently_bound_lifetimes.contains(&name) {
2258                     if let Some((current_lt_name, current_lt_span)) = self.output_lifetime {
2259                         // We don't currently have a reliable way to desugar `async fn` with
2260                         // multiple potentially unrelated input lifetimes into
2261                         // `-> impl Trait + 'lt`, so we report an error in this case.
2262                         if current_lt_name != name {
2263                             struct_span_err!(
2264                                 self.context.sess,
2265                                 MultiSpan::from_spans(vec![current_lt_span, lifetime.span]),
2266                                 E0709,
2267                                 "multiple different lifetimes used in arguments of `async fn`",
2268                             )
2269                                 .span_label(current_lt_span, "first lifetime here")
2270                                 .span_label(lifetime.span, "different lifetime here")
2271                                 .help("`async fn` can only accept borrowed values \
2272                                       with identical lifetimes")
2273                                 .emit()
2274                         } else if current_lt_name.is_elided() && name.is_elided() {
2275                             struct_span_err!(
2276                                 self.context.sess,
2277                                 MultiSpan::from_spans(vec![current_lt_span, lifetime.span]),
2278                                 E0707,
2279                                 "multiple elided lifetimes used in arguments of `async fn`",
2280                             )
2281                                 .span_label(current_lt_span, "first lifetime here")
2282                                 .span_label(lifetime.span, "different lifetime here")
2283                                 .help("consider giving these arguments named lifetimes")
2284                                 .emit()
2285                         }
2286                     } else {
2287                         self.output_lifetime = Some((name, lifetime.span));
2288                     }
2289                 }
2290             }
2291         }
2292
2293         let bound_lifetime = {
2294             let mut lifetime_collector = AsyncFnLifetimeCollector {
2295                 context: self,
2296                 currently_bound_lifetimes: Vec::new(),
2297                 collect_elided_lifetimes: true,
2298                 output_lifetime: None,
2299             };
2300
2301             for arg in inputs {
2302                 hir::intravisit::walk_ty(&mut lifetime_collector, arg);
2303             }
2304             lifetime_collector.output_lifetime
2305         };
2306
2307         let span = match output {
2308             FunctionRetTy::Ty(ty) => ty.span,
2309             FunctionRetTy::Default(span) => *span,
2310         };
2311
2312         let impl_trait_ty = self.lower_existential_impl_trait(
2313             span, Some(fn_def_id), return_impl_trait_id, |this| {
2314             let output_ty = match output {
2315                 FunctionRetTy::Ty(ty) => {
2316                     this.lower_ty(ty, ImplTraitContext::Existential(Some(fn_def_id)))
2317                 }
2318                 FunctionRetTy::Default(span) => {
2319                     let LoweredNodeId { node_id: _, hir_id } = this.next_id();
2320                     P(hir::Ty {
2321                         hir_id,
2322                         node: hir::TyKind::Tup(hir_vec![]),
2323                         span: *span,
2324                     })
2325                 }
2326             };
2327
2328             // "<Output = T>"
2329             let LoweredNodeId { node_id, hir_id } = this.next_id();
2330             let future_params = P(hir::GenericArgs {
2331                 args: hir_vec![],
2332                 bindings: hir_vec![hir::TypeBinding {
2333                     ident: Ident::from_str(FN_OUTPUT_NAME),
2334                     ty: output_ty,
2335                     id: node_id,
2336                     hir_id,
2337                     span,
2338                 }],
2339                 parenthesized: false,
2340             });
2341
2342             let future_path =
2343                 this.std_path(span, &["future", "Future"], Some(future_params), false);
2344
2345             let LoweredNodeId { node_id, hir_id } = this.next_id();
2346             let mut bounds = vec![
2347                 hir::GenericBound::Trait(
2348                     hir::PolyTraitRef {
2349                         trait_ref: hir::TraitRef {
2350                             path: future_path,
2351                             ref_id: node_id,
2352                             hir_ref_id: hir_id,
2353                         },
2354                         bound_generic_params: hir_vec![],
2355                         span,
2356                     },
2357                     hir::TraitBoundModifier::None
2358                 ),
2359             ];
2360
2361             if let Some((name, span)) = bound_lifetime {
2362                 let LoweredNodeId { node_id: _, hir_id } = this.next_id();
2363                 bounds.push(hir::GenericBound::Outlives(
2364                     hir::Lifetime { hir_id, name, span }));
2365             }
2366
2367             hir::HirVec::from(bounds)
2368         });
2369
2370         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
2371         let impl_trait_ty = P(hir::Ty {
2372             node: impl_trait_ty,
2373             span,
2374             hir_id,
2375         });
2376
2377         hir::FunctionRetTy::Return(impl_trait_ty)
2378     }
2379
2380     fn lower_param_bound(
2381         &mut self,
2382         tpb: &GenericBound,
2383         itctx: ImplTraitContext<'_>,
2384     ) -> hir::GenericBound {
2385         match *tpb {
2386             GenericBound::Trait(ref ty, modifier) => {
2387                 hir::GenericBound::Trait(
2388                     self.lower_poly_trait_ref(ty, itctx),
2389                     self.lower_trait_bound_modifier(modifier),
2390                 )
2391             }
2392             GenericBound::Outlives(ref lifetime) => {
2393                 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2394             }
2395         }
2396     }
2397
2398     fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2399         let span = l.ident.span;
2400         match l.ident {
2401             ident if ident.name == keywords::StaticLifetime.name() =>
2402                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static),
2403             ident if ident.name == keywords::UnderscoreLifetime.name() =>
2404                 match self.anonymous_lifetime_mode {
2405                     AnonymousLifetimeMode::CreateParameter => {
2406                         let fresh_name = self.collect_fresh_in_band_lifetime(span);
2407                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2408                     }
2409
2410                     AnonymousLifetimeMode::PassThrough => {
2411                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2412                     }
2413
2414                     AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2415                 },
2416             ident => {
2417                 self.maybe_collect_in_band_lifetime(ident);
2418                 let param_name = ParamName::Plain(ident);
2419                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2420             }
2421         }
2422     }
2423
2424     fn new_named_lifetime(
2425         &mut self,
2426         id: NodeId,
2427         span: Span,
2428         name: hir::LifetimeName,
2429     ) -> hir::Lifetime {
2430         let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(id);
2431
2432         hir::Lifetime {
2433             hir_id,
2434             span,
2435             name: name,
2436         }
2437     }
2438
2439     fn lower_generic_params(
2440         &mut self,
2441         params: &[GenericParam],
2442         add_bounds: &NodeMap<Vec<GenericBound>>,
2443         mut itctx: ImplTraitContext<'_>,
2444     ) -> hir::HirVec<hir::GenericParam> {
2445         params.iter().map(|param| {
2446             self.lower_generic_param(param, add_bounds, itctx.reborrow())
2447         }).collect()
2448     }
2449
2450     fn lower_generic_param(&mut self,
2451                            param: &GenericParam,
2452                            add_bounds: &NodeMap<Vec<GenericBound>>,
2453                            mut itctx: ImplTraitContext<'_>)
2454                            -> hir::GenericParam {
2455         let mut bounds = self.with_anonymous_lifetime_mode(
2456             AnonymousLifetimeMode::ReportError,
2457             |this| this.lower_param_bounds(&param.bounds, itctx.reborrow()),
2458         );
2459
2460         let (name, kind) = match param.kind {
2461             GenericParamKind::Lifetime => {
2462                 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2463                 self.is_collecting_in_band_lifetimes = false;
2464
2465                 let lt = self.with_anonymous_lifetime_mode(
2466                     AnonymousLifetimeMode::ReportError,
2467                     |this| this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident }),
2468                 );
2469                 let param_name = match lt.name {
2470                     hir::LifetimeName::Param(param_name) => param_name,
2471                     hir::LifetimeName::Implicit
2472                         | hir::LifetimeName::Underscore
2473                         | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2474                     hir::LifetimeName::Error => ParamName::Error,
2475                 };
2476
2477                 let kind = hir::GenericParamKind::Lifetime {
2478                     kind: hir::LifetimeParamKind::Explicit
2479                 };
2480
2481                 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2482
2483                 (param_name, kind)
2484             }
2485             GenericParamKind::Type { ref default, .. } => {
2486                 // Don't expose `Self` (recovered "keyword used as ident" parse error).
2487                 // `rustc::ty` expects `Self` to be only used for a trait's `Self`.
2488                 // Instead, use `gensym("Self")` to create a distinct name that looks the same.
2489                 let ident = if param.ident.name == keywords::SelfUpper.name() {
2490                     param.ident.gensym()
2491                 } else {
2492                     param.ident
2493                 };
2494
2495                 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2496                 if !add_bounds.is_empty() {
2497                     let params = self.lower_param_bounds(add_bounds, itctx.reborrow()).into_iter();
2498                     bounds = bounds.into_iter()
2499                                    .chain(params)
2500                                    .collect();
2501                 }
2502
2503                 let kind = hir::GenericParamKind::Type {
2504                     default: default.as_ref().map(|x| {
2505                         self.lower_ty(x, ImplTraitContext::disallowed())
2506                     }),
2507                     synthetic: param.attrs.iter()
2508                                           .filter(|attr| attr.check_name("rustc_synthetic"))
2509                                           .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2510                                           .next(),
2511                 };
2512
2513                 (hir::ParamName::Plain(ident), kind)
2514             }
2515             GenericParamKind::Const { ref ty } => {
2516                 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const {
2517                     ty: self.lower_ty(&ty, ImplTraitContext::disallowed()),
2518                 })
2519             }
2520         };
2521
2522         let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(param.id);
2523
2524         hir::GenericParam {
2525             hir_id,
2526             name,
2527             span: param.ident.span,
2528             pure_wrt_drop: attr::contains_name(&param.attrs, "may_dangle"),
2529             attrs: self.lower_attrs(&param.attrs),
2530             bounds,
2531             kind,
2532         }
2533     }
2534
2535     fn lower_generics(
2536         &mut self,
2537         generics: &Generics,
2538         itctx: ImplTraitContext<'_>)
2539         -> hir::Generics
2540     {
2541         // Collect `?Trait` bounds in where clause and move them to parameter definitions.
2542         // FIXME: this could probably be done with less rightward drift. Also looks like two control
2543         //        paths where report_error is called are also the only paths that advance to after
2544         //        the match statement, so the error reporting could probably just be moved there.
2545         let mut add_bounds: NodeMap<Vec<_>> = Default::default();
2546         for pred in &generics.where_clause.predicates {
2547             if let WherePredicate::BoundPredicate(ref bound_pred) = *pred {
2548                 'next_bound: for bound in &bound_pred.bounds {
2549                     if let GenericBound::Trait(_, TraitBoundModifier::Maybe) = *bound {
2550                         let report_error = |this: &mut Self| {
2551                             this.diagnostic().span_err(
2552                                 bound_pred.bounded_ty.span,
2553                                 "`?Trait` bounds are only permitted at the \
2554                                  point where a type parameter is declared",
2555                             );
2556                         };
2557                         // Check if the where clause type is a plain type parameter.
2558                         match bound_pred.bounded_ty.node {
2559                             TyKind::Path(None, ref path)
2560                                 if path.segments.len() == 1
2561                                     && bound_pred.bound_generic_params.is_empty() =>
2562                             {
2563                                 if let Some(Def::TyParam(def_id)) = self.resolver
2564                                     .get_resolution(bound_pred.bounded_ty.id)
2565                                     .map(|d| d.base_def())
2566                                 {
2567                                     if let Some(node_id) =
2568                                         self.resolver.definitions().as_local_node_id(def_id)
2569                                     {
2570                                         for param in &generics.params {
2571                                             match param.kind {
2572                                                 GenericParamKind::Type { .. } => {
2573                                                     if node_id == param.id {
2574                                                         add_bounds.entry(param.id)
2575                                                             .or_default()
2576                                                             .push(bound.clone());
2577                                                         continue 'next_bound;
2578                                                     }
2579                                                 }
2580                                                 _ => {}
2581                                             }
2582                                         }
2583                                     }
2584                                 }
2585                                 report_error(self)
2586                             }
2587                             _ => report_error(self),
2588                         }
2589                     }
2590                 }
2591             }
2592         }
2593
2594         hir::Generics {
2595             params: self.lower_generic_params(&generics.params, &add_bounds, itctx),
2596             where_clause: self.lower_where_clause(&generics.where_clause),
2597             span: generics.span,
2598         }
2599     }
2600
2601     fn lower_where_clause(&mut self, wc: &WhereClause) -> hir::WhereClause {
2602         self.with_anonymous_lifetime_mode(
2603             AnonymousLifetimeMode::ReportError,
2604             |this| {
2605                 let LoweredNodeId { node_id: _, hir_id } = this.lower_node_id(wc.id);
2606
2607                 hir::WhereClause {
2608                     hir_id,
2609                     predicates: wc.predicates
2610                         .iter()
2611                         .map(|predicate| this.lower_where_predicate(predicate))
2612                         .collect(),
2613                 }
2614             },
2615         )
2616     }
2617
2618     fn lower_where_predicate(&mut self, pred: &WherePredicate) -> hir::WherePredicate {
2619         match *pred {
2620             WherePredicate::BoundPredicate(WhereBoundPredicate {
2621                 ref bound_generic_params,
2622                 ref bounded_ty,
2623                 ref bounds,
2624                 span,
2625             }) => {
2626                 self.with_in_scope_lifetime_defs(
2627                     &bound_generic_params,
2628                     |this| {
2629                         hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
2630                             bound_generic_params: this.lower_generic_params(
2631                                 bound_generic_params,
2632                                 &NodeMap::default(),
2633                                 ImplTraitContext::disallowed(),
2634                             ),
2635                             bounded_ty: this.lower_ty(bounded_ty, ImplTraitContext::disallowed()),
2636                             bounds: bounds
2637                                 .iter()
2638                                 .filter_map(|bound| match *bound {
2639                                     // Ignore `?Trait` bounds.
2640                                     // They were copied into type parameters already.
2641                                     GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
2642                                     _ => Some(this.lower_param_bound(
2643                                         bound,
2644                                         ImplTraitContext::disallowed(),
2645                                     )),
2646                                 })
2647                                 .collect(),
2648                             span,
2649                         })
2650                     },
2651                 )
2652             }
2653             WherePredicate::RegionPredicate(WhereRegionPredicate {
2654                 ref lifetime,
2655                 ref bounds,
2656                 span,
2657             }) => hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
2658                 span,
2659                 lifetime: self.lower_lifetime(lifetime),
2660                 bounds: self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
2661             }),
2662             WherePredicate::EqPredicate(WhereEqPredicate {
2663                 id,
2664                 ref lhs_ty,
2665                 ref rhs_ty,
2666                 span,
2667             }) => {
2668                 let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(id);
2669
2670                 hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
2671                     hir_id,
2672                     lhs_ty: self.lower_ty(lhs_ty, ImplTraitContext::disallowed()),
2673                     rhs_ty: self.lower_ty(rhs_ty, ImplTraitContext::disallowed()),
2674                     span,
2675                 })
2676             },
2677         }
2678     }
2679
2680     fn lower_variant_data(&mut self, vdata: &VariantData) -> hir::VariantData {
2681         match *vdata {
2682             VariantData::Struct(ref fields, id) => {
2683                 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(id);
2684
2685                 hir::VariantData::Struct(
2686                     fields
2687                         .iter()
2688                         .enumerate()
2689                         .map(|f| self.lower_struct_field(f))
2690                         .collect(),
2691                     node_id,
2692                     hir_id,
2693                 )
2694             },
2695             VariantData::Tuple(ref fields, id) => {
2696                 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(id);
2697
2698                 hir::VariantData::Tuple(
2699                     fields
2700                         .iter()
2701                         .enumerate()
2702                         .map(|f| self.lower_struct_field(f))
2703                         .collect(),
2704                     node_id,
2705                     hir_id,
2706                 )
2707             },
2708             VariantData::Unit(id) => {
2709                 let LoweredNodeId { node_id, hir_id } = self.lower_node_id(id);
2710
2711                 hir::VariantData::Unit(node_id, hir_id)
2712             },
2713         }
2714     }
2715
2716     fn lower_trait_ref(&mut self, p: &TraitRef, itctx: ImplTraitContext<'_>) -> hir::TraitRef {
2717         let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2718             hir::QPath::Resolved(None, path) => path.and_then(|path| path),
2719             qpath => bug!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2720         };
2721         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(p.ref_id);
2722         hir::TraitRef {
2723             path,
2724             ref_id: node_id,
2725             hir_ref_id: hir_id,
2726         }
2727     }
2728
2729     fn lower_poly_trait_ref(
2730         &mut self,
2731         p: &PolyTraitRef,
2732         mut itctx: ImplTraitContext<'_>,
2733     ) -> hir::PolyTraitRef {
2734         let bound_generic_params = self.lower_generic_params(
2735             &p.bound_generic_params,
2736             &NodeMap::default(),
2737             itctx.reborrow(),
2738         );
2739         let trait_ref = self.with_parent_impl_lifetime_defs(
2740             &bound_generic_params,
2741             |this| this.lower_trait_ref(&p.trait_ref, itctx),
2742         );
2743
2744         hir::PolyTraitRef {
2745             bound_generic_params,
2746             trait_ref,
2747             span: p.span,
2748         }
2749     }
2750
2751     fn lower_struct_field(&mut self, (index, f): (usize, &StructField)) -> hir::StructField {
2752         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(f.id);
2753
2754         hir::StructField {
2755             span: f.span,
2756             id: node_id,
2757             hir_id,
2758             ident: match f.ident {
2759                 Some(ident) => ident,
2760                 // FIXME(jseyfried): positional field hygiene
2761                 None => Ident::new(Symbol::intern(&index.to_string()), f.span),
2762             },
2763             vis: self.lower_visibility(&f.vis, None),
2764             ty: self.lower_ty(&f.ty, ImplTraitContext::disallowed()),
2765             attrs: self.lower_attrs(&f.attrs),
2766         }
2767     }
2768
2769     fn lower_field(&mut self, f: &Field) -> hir::Field {
2770         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
2771
2772         hir::Field {
2773             hir_id,
2774             ident: f.ident,
2775             expr: P(self.lower_expr(&f.expr)),
2776             span: f.span,
2777             is_shorthand: f.is_shorthand,
2778         }
2779     }
2780
2781     fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_>) -> hir::MutTy {
2782         hir::MutTy {
2783             ty: self.lower_ty(&mt.ty, itctx),
2784             mutbl: self.lower_mutability(mt.mutbl),
2785         }
2786     }
2787
2788     fn lower_param_bounds(&mut self, bounds: &[GenericBound], mut itctx: ImplTraitContext<'_>)
2789         -> hir::GenericBounds {
2790         bounds.iter().map(|bound| self.lower_param_bound(bound, itctx.reborrow())).collect()
2791     }
2792
2793     fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> P<hir::Block> {
2794         let mut expr = None;
2795
2796         let mut stmts = vec![];
2797
2798         for (index, stmt) in b.stmts.iter().enumerate() {
2799             if index == b.stmts.len() - 1 {
2800                 if let StmtKind::Expr(ref e) = stmt.node {
2801                     expr = Some(P(self.lower_expr(e)));
2802                 } else {
2803                     stmts.extend(self.lower_stmt(stmt));
2804                 }
2805             } else {
2806                 stmts.extend(self.lower_stmt(stmt));
2807             }
2808         }
2809
2810         let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(b.id);
2811
2812         P(hir::Block {
2813             hir_id,
2814             stmts: stmts.into(),
2815             expr,
2816             rules: self.lower_block_check_mode(&b.rules),
2817             span: b.span,
2818             targeted_by_break,
2819         })
2820     }
2821
2822     fn lower_async_body(
2823         &mut self,
2824         decl: &FnDecl,
2825         asyncness: IsAsync,
2826         body: &Block,
2827     ) -> hir::BodyId {
2828         self.lower_body(Some(decl), |this| {
2829             if let IsAsync::Async { closure_id, .. } = asyncness {
2830                 let async_expr = this.make_async_expr(
2831                     CaptureBy::Value, closure_id, None,
2832                     |this| {
2833                         let body = this.lower_block(body, false);
2834                         this.expr_block(body, ThinVec::new())
2835                     });
2836                 this.expr(body.span, async_expr, ThinVec::new())
2837             } else {
2838                 let body = this.lower_block(body, false);
2839                 this.expr_block(body, ThinVec::new())
2840             }
2841         })
2842     }
2843
2844     fn lower_item_kind(
2845         &mut self,
2846         id: NodeId,
2847         ident: &mut Ident,
2848         attrs: &hir::HirVec<Attribute>,
2849         vis: &mut hir::Visibility,
2850         i: &ItemKind,
2851     ) -> hir::ItemKind {
2852         match *i {
2853             ItemKind::ExternCrate(orig_name) => hir::ItemKind::ExternCrate(orig_name),
2854             ItemKind::Use(ref use_tree) => {
2855                 // Start with an empty prefix
2856                 let prefix = Path {
2857                     segments: vec![],
2858                     span: use_tree.span,
2859                 };
2860
2861                 self.lower_use_tree(use_tree, &prefix, id, vis, ident, attrs)
2862             }
2863             ItemKind::Static(ref t, m, ref e) => {
2864                 let value = self.lower_body(None, |this| this.lower_expr(e));
2865                 hir::ItemKind::Static(
2866                     self.lower_ty(
2867                         t,
2868                         if self.sess.features_untracked().impl_trait_in_bindings {
2869                             ImplTraitContext::Existential(None)
2870                         } else {
2871                             ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2872                         }
2873                     ),
2874                     self.lower_mutability(m),
2875                     value,
2876                 )
2877             }
2878             ItemKind::Const(ref t, ref e) => {
2879                 let value = self.lower_body(None, |this| this.lower_expr(e));
2880                 hir::ItemKind::Const(
2881                     self.lower_ty(
2882                         t,
2883                         if self.sess.features_untracked().impl_trait_in_bindings {
2884                             ImplTraitContext::Existential(None)
2885                         } else {
2886                             ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2887                         }
2888                     ),
2889                     value
2890                 )
2891             }
2892             ItemKind::Fn(ref decl, header, ref generics, ref body) => {
2893                 let fn_def_id = self.resolver.definitions().local_def_id(id);
2894                 self.with_new_scopes(|this| {
2895                     // Note: we don't need to change the return type from `T` to
2896                     // `impl Future<Output = T>` here because lower_body
2897                     // only cares about the input argument patterns in the function
2898                     // declaration (decl), not the return types.
2899                     let body_id = this.lower_async_body(decl, header.asyncness.node, body);
2900
2901                     let (generics, fn_decl) = this.add_in_band_defs(
2902                         generics,
2903                         fn_def_id,
2904                         AnonymousLifetimeMode::PassThrough,
2905                         |this, idty| this.lower_fn_decl(
2906                             decl,
2907                             Some((fn_def_id, idty)),
2908                             true,
2909                             header.asyncness.node.opt_return_id()
2910                         ),
2911                     );
2912
2913                     hir::ItemKind::Fn(
2914                         fn_decl,
2915                         this.lower_fn_header(header),
2916                         generics,
2917                         body_id,
2918                     )
2919                 })
2920             }
2921             ItemKind::Mod(ref m) => hir::ItemKind::Mod(self.lower_mod(m)),
2922             ItemKind::ForeignMod(ref nm) => hir::ItemKind::ForeignMod(self.lower_foreign_mod(nm)),
2923             ItemKind::GlobalAsm(ref ga) => hir::ItemKind::GlobalAsm(self.lower_global_asm(ga)),
2924             ItemKind::Ty(ref t, ref generics) => hir::ItemKind::Ty(
2925                 self.lower_ty(t, ImplTraitContext::disallowed()),
2926                 self.lower_generics(generics, ImplTraitContext::disallowed()),
2927             ),
2928             ItemKind::Existential(ref b, ref generics) => hir::ItemKind::Existential(hir::ExistTy {
2929                 generics: self.lower_generics(generics, ImplTraitContext::disallowed()),
2930                 bounds: self.lower_param_bounds(b, ImplTraitContext::disallowed()),
2931                 impl_trait_fn: None,
2932             }),
2933             ItemKind::Enum(ref enum_definition, ref generics) => hir::ItemKind::Enum(
2934                 hir::EnumDef {
2935                     variants: enum_definition
2936                         .variants
2937                         .iter()
2938                         .map(|x| self.lower_variant(x))
2939                         .collect(),
2940                 },
2941                 self.lower_generics(generics, ImplTraitContext::disallowed()),
2942             ),
2943             ItemKind::Struct(ref struct_def, ref generics) => {
2944                 let struct_def = self.lower_variant_data(struct_def);
2945                 hir::ItemKind::Struct(
2946                     struct_def,
2947                     self.lower_generics(generics, ImplTraitContext::disallowed()),
2948                 )
2949             }
2950             ItemKind::Union(ref vdata, ref generics) => {
2951                 let vdata = self.lower_variant_data(vdata);
2952                 hir::ItemKind::Union(
2953                     vdata,
2954                     self.lower_generics(generics, ImplTraitContext::disallowed()),
2955                 )
2956             }
2957             ItemKind::Impl(
2958                 unsafety,
2959                 polarity,
2960                 defaultness,
2961                 ref ast_generics,
2962                 ref trait_ref,
2963                 ref ty,
2964                 ref impl_items,
2965             ) => {
2966                 let def_id = self.resolver.definitions().local_def_id(id);
2967
2968                 // Lower the "impl header" first. This ordering is important
2969                 // for in-band lifetimes! Consider `'a` here:
2970                 //
2971                 //     impl Foo<'a> for u32 {
2972                 //         fn method(&'a self) { .. }
2973                 //     }
2974                 //
2975                 // Because we start by lowering the `Foo<'a> for u32`
2976                 // part, we will add `'a` to the list of generics on
2977                 // the impl. When we then encounter it later in the
2978                 // method, it will not be considered an in-band
2979                 // lifetime to be added, but rather a reference to a
2980                 // parent lifetime.
2981                 let (generics, (trait_ref, lowered_ty)) = self.add_in_band_defs(
2982                     ast_generics,
2983                     def_id,
2984                     AnonymousLifetimeMode::CreateParameter,
2985                     |this, _| {
2986                         let trait_ref = trait_ref.as_ref().map(|trait_ref| {
2987                             this.lower_trait_ref(trait_ref, ImplTraitContext::disallowed())
2988                         });
2989
2990                         if let Some(ref trait_ref) = trait_ref {
2991                             if let Def::Trait(def_id) = trait_ref.path.def {
2992                                 this.trait_impls.entry(def_id).or_default().push(id);
2993                             }
2994                         }
2995
2996                         let lowered_ty = this.lower_ty(ty, ImplTraitContext::disallowed());
2997
2998                         (trait_ref, lowered_ty)
2999                     },
3000                 );
3001
3002                 let new_impl_items = self.with_in_scope_lifetime_defs(
3003                     &ast_generics.params,
3004                     |this| {
3005                         impl_items
3006                             .iter()
3007                             .map(|item| this.lower_impl_item_ref(item))
3008                             .collect()
3009                     },
3010                 );
3011
3012                 hir::ItemKind::Impl(
3013                     self.lower_unsafety(unsafety),
3014                     self.lower_impl_polarity(polarity),
3015                     self.lower_defaultness(defaultness, true /* [1] */),
3016                     generics,
3017                     trait_ref,
3018                     lowered_ty,
3019                     new_impl_items,
3020                 )
3021             }
3022             ItemKind::Trait(is_auto, unsafety, ref generics, ref bounds, ref items) => {
3023                 let bounds = self.lower_param_bounds(bounds, ImplTraitContext::disallowed());
3024                 let items = items
3025                     .iter()
3026                     .map(|item| self.lower_trait_item_ref(item))
3027                     .collect();
3028                 hir::ItemKind::Trait(
3029                     self.lower_is_auto(is_auto),
3030                     self.lower_unsafety(unsafety),
3031                     self.lower_generics(generics, ImplTraitContext::disallowed()),
3032                     bounds,
3033                     items,
3034                 )
3035             }
3036             ItemKind::TraitAlias(ref generics, ref bounds) => hir::ItemKind::TraitAlias(
3037                 self.lower_generics(generics, ImplTraitContext::disallowed()),
3038                 self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
3039             ),
3040             ItemKind::MacroDef(..) | ItemKind::Mac(..) => panic!("Shouldn't still be around"),
3041         }
3042
3043         // [1] `defaultness.has_value()` is never called for an `impl`, always `true` in order to
3044         //     not cause an assertion failure inside the `lower_defaultness` function.
3045     }
3046
3047     fn lower_use_tree(
3048         &mut self,
3049         tree: &UseTree,
3050         prefix: &Path,
3051         id: NodeId,
3052         vis: &mut hir::Visibility,
3053         ident: &mut Ident,
3054         attrs: &hir::HirVec<Attribute>,
3055     ) -> hir::ItemKind {
3056         debug!("lower_use_tree(tree={:?})", tree);
3057         debug!("lower_use_tree: vis = {:?}", vis);
3058
3059         let path = &tree.prefix;
3060         let segments = prefix
3061             .segments
3062             .iter()
3063             .chain(path.segments.iter())
3064             .cloned()
3065             .collect();
3066
3067         match tree.kind {
3068             UseTreeKind::Simple(rename, id1, id2) => {
3069                 *ident = tree.ident();
3070
3071                 // First, apply the prefix to the path.
3072                 let mut path = Path {
3073                     segments,
3074                     span: path.span,
3075                 };
3076
3077                 // Correctly resolve `self` imports.
3078                 if path.segments.len() > 1
3079                     && path.segments.last().unwrap().ident.name == keywords::SelfLower.name()
3080                 {
3081                     let _ = path.segments.pop();
3082                     if rename.is_none() {
3083                         *ident = path.segments.last().unwrap().ident;
3084                     }
3085                 }
3086
3087                 let parent_def_index = self.current_hir_id_owner.last().unwrap().0;
3088                 let mut defs = self.expect_full_def_from_use(id);
3089                 // We want to return *something* from this function, so hold onto the first item
3090                 // for later.
3091                 let ret_def = defs.next().unwrap_or(Def::Err);
3092
3093                 // Here, we are looping over namespaces, if they exist for the definition
3094                 // being imported. We only handle type and value namespaces because we
3095                 // won't be dealing with macros in the rest of the compiler.
3096                 // Essentially a single `use` which imports two names is desugared into
3097                 // two imports.
3098                 for (def, &new_node_id) in defs.zip([id1, id2].iter()) {
3099                     let vis = vis.clone();
3100                     let ident = ident.clone();
3101                     let mut path = path.clone();
3102                     for seg in &mut path.segments {
3103                         seg.id = self.sess.next_node_id();
3104                     }
3105                     let span = path.span;
3106                     self.resolver.definitions().create_def_with_parent(
3107                         parent_def_index,
3108                         new_node_id,
3109                         DefPathData::Misc,
3110                         DefIndexAddressSpace::High,
3111                         Mark::root(),
3112                         span);
3113                     self.allocate_hir_id_counter(new_node_id, &path);
3114
3115                     self.with_hir_id_owner(new_node_id, |this| {
3116                         let new_id = this.lower_node_id(new_node_id);
3117                         let path =
3118                             this.lower_path_extra(def, &path, ParamMode::Explicit, None);
3119                         let item = hir::ItemKind::Use(P(path), hir::UseKind::Single);
3120                         let vis_kind = match vis.node {
3121                             hir::VisibilityKind::Public => hir::VisibilityKind::Public,
3122                             hir::VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
3123                             hir::VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
3124                             hir::VisibilityKind::Restricted { ref path, id: _, hir_id: _ } => {
3125                                 let id = this.next_id();
3126                                 let path = this.renumber_segment_ids(path);
3127                                 hir::VisibilityKind::Restricted {
3128                                     path,
3129                                     id: id.node_id,
3130                                     hir_id: id.hir_id,
3131                                 }
3132                             }
3133                         };
3134                         let vis = respan(vis.span, vis_kind);
3135
3136                         this.insert_item(
3137                             new_id.node_id,
3138                             hir::Item {
3139                                 id: new_id.node_id,
3140                                 hir_id: new_id.hir_id,
3141                                 ident,
3142                                 attrs: attrs.clone(),
3143                                 node: item,
3144                                 vis,
3145                                 span,
3146                             },
3147                         );
3148                     });
3149                 }
3150
3151                 let path =
3152                     P(self.lower_path_extra(ret_def, &path, ParamMode::Explicit, None));
3153                 hir::ItemKind::Use(path, hir::UseKind::Single)
3154             }
3155             UseTreeKind::Glob => {
3156                 let path = P(self.lower_path(
3157                     id,
3158                     &Path {
3159                         segments,
3160                         span: path.span,
3161                     },
3162                     ParamMode::Explicit,
3163                 ));
3164                 hir::ItemKind::Use(path, hir::UseKind::Glob)
3165             }
3166             UseTreeKind::Nested(ref trees) => {
3167                 // Nested imports are desugared into simple imports.
3168                 // So, if we start with
3169                 //
3170                 // ```
3171                 // pub(x) use foo::{a, b};
3172                 // ```
3173                 //
3174                 // we will create three items:
3175                 //
3176                 // ```
3177                 // pub(x) use foo::a;
3178                 // pub(x) use foo::b;
3179                 // pub(x) use foo::{}; // <-- this is called the `ListStem`
3180                 // ```
3181                 //
3182                 // The first two are produced by recursively invoking
3183                 // `lower_use_tree` (and indeed there may be things
3184                 // like `use foo::{a::{b, c}}` and so forth).  They
3185                 // wind up being directly added to
3186                 // `self.items`. However, the structure of this
3187                 // function also requires us to return one item, and
3188                 // for that we return the `{}` import (called the
3189                 // `ListStem`).
3190
3191                 let prefix = Path {
3192                     segments,
3193                     span: prefix.span.to(path.span),
3194                 };
3195
3196                 // Add all the nested `PathListItem`s to the HIR.
3197                 for &(ref use_tree, id) in trees {
3198                     self.allocate_hir_id_counter(id, &use_tree);
3199
3200                     let LoweredNodeId {
3201                         node_id: new_id,
3202                         hir_id: new_hir_id,
3203                     } = self.lower_node_id(id);
3204
3205                     let mut vis = vis.clone();
3206                     let mut ident = ident.clone();
3207                     let mut prefix = prefix.clone();
3208
3209                     // Give the segments new node-ids since they are being cloned.
3210                     for seg in &mut prefix.segments {
3211                         seg.id = self.sess.next_node_id();
3212                     }
3213
3214                     // Each `use` import is an item and thus are owners of the
3215                     // names in the path. Up to this point the nested import is
3216                     // the current owner, since we want each desugared import to
3217                     // own its own names, we have to adjust the owner before
3218                     // lowering the rest of the import.
3219                     self.with_hir_id_owner(new_id, |this| {
3220                         let item = this.lower_use_tree(use_tree,
3221                                                        &prefix,
3222                                                        new_id,
3223                                                        &mut vis,
3224                                                        &mut ident,
3225                                                        attrs);
3226
3227                         let vis_kind = match vis.node {
3228                             hir::VisibilityKind::Public => hir::VisibilityKind::Public,
3229                             hir::VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
3230                             hir::VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
3231                             hir::VisibilityKind::Restricted { ref path, id: _, hir_id: _ } => {
3232                                 let id = this.next_id();
3233                                 let path = this.renumber_segment_ids(path);
3234                                 hir::VisibilityKind::Restricted {
3235                                     path: path,
3236                                     id: id.node_id,
3237                                     hir_id: id.hir_id,
3238                                 }
3239                             }
3240                         };
3241                         let vis = respan(vis.span, vis_kind);
3242
3243                         this.insert_item(
3244                             new_id,
3245                             hir::Item {
3246                                 id: new_id,
3247                                 hir_id: new_hir_id,
3248                                 ident,
3249                                 attrs: attrs.clone(),
3250                                 node: item,
3251                                 vis,
3252                                 span: use_tree.span,
3253                             },
3254                         );
3255                     });
3256                 }
3257
3258                 // Subtle and a bit hacky: we lower the privacy level
3259                 // of the list stem to "private" most of the time, but
3260                 // not for "restricted" paths. The key thing is that
3261                 // we don't want it to stay as `pub` (with no caveats)
3262                 // because that affects rustdoc and also the lints
3263                 // about `pub` items. But we can't *always* make it
3264                 // private -- particularly not for restricted paths --
3265                 // because it contains node-ids that would then be
3266                 // unused, failing the check that HirIds are "densely
3267                 // assigned".
3268                 match vis.node {
3269                     hir::VisibilityKind::Public |
3270                     hir::VisibilityKind::Crate(_) |
3271                     hir::VisibilityKind::Inherited => {
3272                         *vis = respan(prefix.span.shrink_to_lo(), hir::VisibilityKind::Inherited);
3273                     }
3274                     hir::VisibilityKind::Restricted { .. } => {
3275                         // Do nothing here, as described in the comment on the match.
3276                     }
3277                 }
3278
3279                 let def = self.expect_full_def_from_use(id).next().unwrap_or(Def::Err);
3280                 let path = P(self.lower_path_extra(def, &prefix, ParamMode::Explicit, None));
3281                 hir::ItemKind::Use(path, hir::UseKind::ListStem)
3282             }
3283         }
3284     }
3285
3286     /// Paths like the visibility path in `pub(super) use foo::{bar, baz}` are repeated
3287     /// many times in the HIR tree; for each occurrence, we need to assign distinct
3288     /// `NodeId`s. (See, e.g., #56128.)
3289     fn renumber_segment_ids(&mut self, path: &P<hir::Path>) -> P<hir::Path> {
3290         debug!("renumber_segment_ids(path = {:?})", path);
3291         let mut path = path.clone();
3292         for seg in path.segments.iter_mut() {
3293             if seg.id.is_some() {
3294                 let next_id = self.next_id();
3295                 seg.id = Some(next_id.node_id);
3296                 seg.hir_id = Some(next_id.hir_id);
3297             }
3298         }
3299         path
3300     }
3301
3302     fn lower_trait_item(&mut self, i: &TraitItem) -> hir::TraitItem {
3303         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(i.id);
3304         let trait_item_def_id = self.resolver.definitions().local_def_id(node_id);
3305
3306         let (generics, node) = match i.node {
3307             TraitItemKind::Const(ref ty, ref default) => (
3308                 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3309                 hir::TraitItemKind::Const(
3310                     self.lower_ty(ty, ImplTraitContext::disallowed()),
3311                     default
3312                         .as_ref()
3313                         .map(|x| self.lower_body(None, |this| this.lower_expr(x))),
3314                 ),
3315             ),
3316             TraitItemKind::Method(ref sig, None) => {
3317                 let names = self.lower_fn_args_to_names(&sig.decl);
3318                 let (generics, sig) = self.lower_method_sig(
3319                     &i.generics,
3320                     sig,
3321                     trait_item_def_id,
3322                     false,
3323                     None,
3324                 );
3325                 (generics, hir::TraitItemKind::Method(sig, hir::TraitMethod::Required(names)))
3326             }
3327             TraitItemKind::Method(ref sig, Some(ref body)) => {
3328                 let body_id = self.lower_body(Some(&sig.decl), |this| {
3329                     let body = this.lower_block(body, false);
3330                     this.expr_block(body, ThinVec::new())
3331                 });
3332                 let (generics, sig) = self.lower_method_sig(
3333                     &i.generics,
3334                     sig,
3335                     trait_item_def_id,
3336                     false,
3337                     None,
3338                 );
3339                 (generics, hir::TraitItemKind::Method(sig, hir::TraitMethod::Provided(body_id)))
3340             }
3341             TraitItemKind::Type(ref bounds, ref default) => (
3342                 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3343                 hir::TraitItemKind::Type(
3344                     self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
3345                     default
3346                         .as_ref()
3347                         .map(|x| self.lower_ty(x, ImplTraitContext::disallowed())),
3348                 ),
3349             ),
3350             TraitItemKind::Macro(..) => panic!("Shouldn't exist any more"),
3351         };
3352
3353         hir::TraitItem {
3354             id: node_id,
3355             hir_id,
3356             ident: i.ident,
3357             attrs: self.lower_attrs(&i.attrs),
3358             generics,
3359             node,
3360             span: i.span,
3361         }
3362     }
3363
3364     fn lower_trait_item_ref(&mut self, i: &TraitItem) -> hir::TraitItemRef {
3365         let (kind, has_default) = match i.node {
3366             TraitItemKind::Const(_, ref default) => {
3367                 (hir::AssociatedItemKind::Const, default.is_some())
3368             }
3369             TraitItemKind::Type(_, ref default) => {
3370                 (hir::AssociatedItemKind::Type, default.is_some())
3371             }
3372             TraitItemKind::Method(ref sig, ref default) => (
3373                 hir::AssociatedItemKind::Method {
3374                     has_self: sig.decl.has_self(),
3375                 },
3376                 default.is_some(),
3377             ),
3378             TraitItemKind::Macro(..) => unimplemented!(),
3379         };
3380         hir::TraitItemRef {
3381             id: hir::TraitItemId { node_id: i.id },
3382             ident: i.ident,
3383             span: i.span,
3384             defaultness: self.lower_defaultness(Defaultness::Default, has_default),
3385             kind,
3386         }
3387     }
3388
3389     fn lower_impl_item(&mut self, i: &ImplItem) -> hir::ImplItem {
3390         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(i.id);
3391         let impl_item_def_id = self.resolver.definitions().local_def_id(node_id);
3392
3393         let (generics, node) = match i.node {
3394             ImplItemKind::Const(ref ty, ref expr) => {
3395                 let body_id = self.lower_body(None, |this| this.lower_expr(expr));
3396                 (
3397                     self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3398                     hir::ImplItemKind::Const(
3399                         self.lower_ty(ty, ImplTraitContext::disallowed()),
3400                         body_id,
3401                     ),
3402                 )
3403             }
3404             ImplItemKind::Method(ref sig, ref body) => {
3405                 let body_id = self.lower_async_body(&sig.decl, sig.header.asyncness.node, body);
3406                 let impl_trait_return_allow = !self.is_in_trait_impl;
3407                 let (generics, sig) = self.lower_method_sig(
3408                     &i.generics,
3409                     sig,
3410                     impl_item_def_id,
3411                     impl_trait_return_allow,
3412                     sig.header.asyncness.node.opt_return_id(),
3413                 );
3414                 (generics, hir::ImplItemKind::Method(sig, body_id))
3415             }
3416             ImplItemKind::Type(ref ty) => (
3417                 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3418                 hir::ImplItemKind::Type(self.lower_ty(ty, ImplTraitContext::disallowed())),
3419             ),
3420             ImplItemKind::Existential(ref bounds) => (
3421                 self.lower_generics(&i.generics, ImplTraitContext::disallowed()),
3422                 hir::ImplItemKind::Existential(
3423                     self.lower_param_bounds(bounds, ImplTraitContext::disallowed()),
3424                 ),
3425             ),
3426             ImplItemKind::Macro(..) => panic!("Shouldn't exist any more"),
3427         };
3428
3429         hir::ImplItem {
3430             id: node_id,
3431             hir_id,
3432             ident: i.ident,
3433             attrs: self.lower_attrs(&i.attrs),
3434             generics,
3435             vis: self.lower_visibility(&i.vis, None),
3436             defaultness: self.lower_defaultness(i.defaultness, true /* [1] */),
3437             node,
3438             span: i.span,
3439         }
3440
3441         // [1] since `default impl` is not yet implemented, this is always true in impls
3442     }
3443
3444     fn lower_impl_item_ref(&mut self, i: &ImplItem) -> hir::ImplItemRef {
3445         hir::ImplItemRef {
3446             id: hir::ImplItemId { node_id: i.id },
3447             ident: i.ident,
3448             span: i.span,
3449             vis: self.lower_visibility(&i.vis, Some(i.id)),
3450             defaultness: self.lower_defaultness(i.defaultness, true /* [1] */),
3451             kind: match i.node {
3452                 ImplItemKind::Const(..) => hir::AssociatedItemKind::Const,
3453                 ImplItemKind::Type(..) => hir::AssociatedItemKind::Type,
3454                 ImplItemKind::Existential(..) => hir::AssociatedItemKind::Existential,
3455                 ImplItemKind::Method(ref sig, _) => hir::AssociatedItemKind::Method {
3456                     has_self: sig.decl.has_self(),
3457                 },
3458                 ImplItemKind::Macro(..) => unimplemented!(),
3459             },
3460         }
3461
3462         // [1] since `default impl` is not yet implemented, this is always true in impls
3463     }
3464
3465     fn lower_mod(&mut self, m: &Mod) -> hir::Mod {
3466         hir::Mod {
3467             inner: m.inner,
3468             item_ids: m.items.iter().flat_map(|x| self.lower_item_id(x)).collect(),
3469         }
3470     }
3471
3472     fn lower_item_id(&mut self, i: &Item) -> SmallVec<[hir::ItemId; 1]> {
3473         match i.node {
3474             ItemKind::Use(ref use_tree) => {
3475                 let mut vec = smallvec![hir::ItemId { id: i.id }];
3476                 self.lower_item_id_use_tree(use_tree, i.id, &mut vec);
3477                 vec
3478             }
3479             ItemKind::MacroDef(..) => SmallVec::new(),
3480             ItemKind::Fn(..) |
3481             ItemKind::Impl(.., None, _, _) => smallvec![hir::ItemId { id: i.id }],
3482             ItemKind::Static(ref ty, ..) => {
3483                 let mut ids = smallvec![hir::ItemId { id: i.id }];
3484                 if self.sess.features_untracked().impl_trait_in_bindings {
3485                     let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
3486                     visitor.visit_ty(ty);
3487                 }
3488                 ids
3489             },
3490             ItemKind::Const(ref ty, ..) => {
3491                 let mut ids = smallvec![hir::ItemId { id: i.id }];
3492                 if self.sess.features_untracked().impl_trait_in_bindings {
3493                     let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
3494                     visitor.visit_ty(ty);
3495                 }
3496                 ids
3497             },
3498             _ => smallvec![hir::ItemId { id: i.id }],
3499         }
3500     }
3501
3502     fn lower_item_id_use_tree(&mut self,
3503                               tree: &UseTree,
3504                               base_id: NodeId,
3505                               vec: &mut SmallVec<[hir::ItemId; 1]>)
3506     {
3507         match tree.kind {
3508             UseTreeKind::Nested(ref nested_vec) => for &(ref nested, id) in nested_vec {
3509                 vec.push(hir::ItemId { id });
3510                 self.lower_item_id_use_tree(nested, id, vec);
3511             },
3512             UseTreeKind::Glob => {}
3513             UseTreeKind::Simple(_, id1, id2) => {
3514                 for (_, &id) in self.expect_full_def_from_use(base_id)
3515                                     .skip(1)
3516                                     .zip([id1, id2].iter())
3517                 {
3518                     vec.push(hir::ItemId { id });
3519                 }
3520             },
3521         }
3522     }
3523
3524     pub fn lower_item(&mut self, i: &Item) -> Option<hir::Item> {
3525         let mut ident = i.ident;
3526         let mut vis = self.lower_visibility(&i.vis, None);
3527         let attrs = self.lower_attrs(&i.attrs);
3528         if let ItemKind::MacroDef(ref def) = i.node {
3529             if !def.legacy || attr::contains_name(&i.attrs, "macro_export") ||
3530                               attr::contains_name(&i.attrs, "rustc_doc_only_macro") {
3531                 let body = self.lower_token_stream(def.stream());
3532                 let hir_id = self.lower_node_id(i.id).hir_id;
3533                 self.exported_macros.push(hir::MacroDef {
3534                     name: ident.name,
3535                     vis,
3536                     attrs,
3537                     hir_id,
3538                     span: i.span,
3539                     body,
3540                     legacy: def.legacy,
3541                 });
3542             }
3543             return None;
3544         }
3545
3546         let node = self.lower_item_kind(i.id, &mut ident, &attrs, &mut vis, &i.node);
3547
3548         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(i.id);
3549
3550         Some(hir::Item {
3551             id: node_id,
3552             hir_id,
3553             ident,
3554             attrs,
3555             node,
3556             vis,
3557             span: i.span,
3558         })
3559     }
3560
3561     fn lower_foreign_item(&mut self, i: &ForeignItem) -> hir::ForeignItem {
3562         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(i.id);
3563         let def_id = self.resolver.definitions().local_def_id(node_id);
3564         hir::ForeignItem {
3565             id: node_id,
3566             hir_id,
3567             ident: i.ident,
3568             attrs: self.lower_attrs(&i.attrs),
3569             node: match i.node {
3570                 ForeignItemKind::Fn(ref fdec, ref generics) => {
3571                     let (generics, (fn_dec, fn_args)) = self.add_in_band_defs(
3572                         generics,
3573                         def_id,
3574                         AnonymousLifetimeMode::PassThrough,
3575                         |this, _| {
3576                             (
3577                                 // Disallow impl Trait in foreign items
3578                                 this.lower_fn_decl(fdec, None, false, None),
3579                                 this.lower_fn_args_to_names(fdec),
3580                             )
3581                         },
3582                     );
3583
3584                     hir::ForeignItemKind::Fn(fn_dec, fn_args, generics)
3585                 }
3586                 ForeignItemKind::Static(ref t, m) => {
3587                     hir::ForeignItemKind::Static(
3588                         self.lower_ty(t, ImplTraitContext::disallowed()), m)
3589                 }
3590                 ForeignItemKind::Ty => hir::ForeignItemKind::Type,
3591                 ForeignItemKind::Macro(_) => panic!("shouldn't exist here"),
3592             },
3593             vis: self.lower_visibility(&i.vis, None),
3594             span: i.span,
3595         }
3596     }
3597
3598     fn lower_method_sig(
3599         &mut self,
3600         generics: &Generics,
3601         sig: &MethodSig,
3602         fn_def_id: DefId,
3603         impl_trait_return_allow: bool,
3604         is_async: Option<NodeId>,
3605     ) -> (hir::Generics, hir::MethodSig) {
3606         let header = self.lower_fn_header(sig.header);
3607         let (generics, decl) = self.add_in_band_defs(
3608             generics,
3609             fn_def_id,
3610             AnonymousLifetimeMode::PassThrough,
3611             |this, idty| this.lower_fn_decl(
3612                 &sig.decl,
3613                 Some((fn_def_id, idty)),
3614                 impl_trait_return_allow,
3615                 is_async,
3616             ),
3617         );
3618         (generics, hir::MethodSig { header, decl })
3619     }
3620
3621     fn lower_is_auto(&mut self, a: IsAuto) -> hir::IsAuto {
3622         match a {
3623             IsAuto::Yes => hir::IsAuto::Yes,
3624             IsAuto::No => hir::IsAuto::No,
3625         }
3626     }
3627
3628     fn lower_fn_header(&mut self, h: FnHeader) -> hir::FnHeader {
3629         hir::FnHeader {
3630             unsafety: self.lower_unsafety(h.unsafety),
3631             asyncness: self.lower_asyncness(h.asyncness.node),
3632             constness: self.lower_constness(h.constness),
3633             abi: h.abi,
3634         }
3635     }
3636
3637     fn lower_unsafety(&mut self, u: Unsafety) -> hir::Unsafety {
3638         match u {
3639             Unsafety::Unsafe => hir::Unsafety::Unsafe,
3640             Unsafety::Normal => hir::Unsafety::Normal,
3641         }
3642     }
3643
3644     fn lower_constness(&mut self, c: Spanned<Constness>) -> hir::Constness {
3645         match c.node {
3646             Constness::Const => hir::Constness::Const,
3647             Constness::NotConst => hir::Constness::NotConst,
3648         }
3649     }
3650
3651     fn lower_asyncness(&mut self, a: IsAsync) -> hir::IsAsync {
3652         match a {
3653             IsAsync::Async { .. } => hir::IsAsync::Async,
3654             IsAsync::NotAsync => hir::IsAsync::NotAsync,
3655         }
3656     }
3657
3658     fn lower_unop(&mut self, u: UnOp) -> hir::UnOp {
3659         match u {
3660             UnOp::Deref => hir::UnDeref,
3661             UnOp::Not => hir::UnNot,
3662             UnOp::Neg => hir::UnNeg,
3663         }
3664     }
3665
3666     fn lower_binop(&mut self, b: BinOp) -> hir::BinOp {
3667         Spanned {
3668             node: match b.node {
3669                 BinOpKind::Add => hir::BinOpKind::Add,
3670                 BinOpKind::Sub => hir::BinOpKind::Sub,
3671                 BinOpKind::Mul => hir::BinOpKind::Mul,
3672                 BinOpKind::Div => hir::BinOpKind::Div,
3673                 BinOpKind::Rem => hir::BinOpKind::Rem,
3674                 BinOpKind::And => hir::BinOpKind::And,
3675                 BinOpKind::Or => hir::BinOpKind::Or,
3676                 BinOpKind::BitXor => hir::BinOpKind::BitXor,
3677                 BinOpKind::BitAnd => hir::BinOpKind::BitAnd,
3678                 BinOpKind::BitOr => hir::BinOpKind::BitOr,
3679                 BinOpKind::Shl => hir::BinOpKind::Shl,
3680                 BinOpKind::Shr => hir::BinOpKind::Shr,
3681                 BinOpKind::Eq => hir::BinOpKind::Eq,
3682                 BinOpKind::Lt => hir::BinOpKind::Lt,
3683                 BinOpKind::Le => hir::BinOpKind::Le,
3684                 BinOpKind::Ne => hir::BinOpKind::Ne,
3685                 BinOpKind::Ge => hir::BinOpKind::Ge,
3686                 BinOpKind::Gt => hir::BinOpKind::Gt,
3687             },
3688             span: b.span,
3689         }
3690     }
3691
3692     fn lower_pat(&mut self, p: &Pat) -> P<hir::Pat> {
3693         let node = match p.node {
3694             PatKind::Wild => hir::PatKind::Wild,
3695             PatKind::Ident(ref binding_mode, ident, ref sub) => {
3696                 match self.resolver.get_resolution(p.id).map(|d| d.base_def()) {
3697                     // `None` can occur in body-less function signatures
3698                     def @ None | def @ Some(Def::Local(_)) => {
3699                         let canonical_id = match def {
3700                             Some(Def::Local(id)) => id,
3701                             _ => p.id,
3702                         };
3703                         let hir_id = self.lower_node_id(canonical_id).hir_id;
3704                         hir::PatKind::Binding(
3705                             self.lower_binding_mode(binding_mode),
3706                             canonical_id,
3707                             hir_id,
3708                             ident,
3709                             sub.as_ref().map(|x| self.lower_pat(x)),
3710                         )
3711                     }
3712                     Some(def) => hir::PatKind::Path(hir::QPath::Resolved(
3713                         None,
3714                         P(hir::Path {
3715                             span: ident.span,
3716                             def,
3717                             segments: hir_vec![hir::PathSegment::from_ident(ident)],
3718                         }),
3719                     )),
3720                 }
3721             }
3722             PatKind::Lit(ref e) => hir::PatKind::Lit(P(self.lower_expr(e))),
3723             PatKind::TupleStruct(ref path, ref pats, ddpos) => {
3724                 let qpath = self.lower_qpath(
3725                     p.id,
3726                     &None,
3727                     path,
3728                     ParamMode::Optional,
3729                     ImplTraitContext::disallowed(),
3730                 );
3731                 hir::PatKind::TupleStruct(
3732                     qpath,
3733                     pats.iter().map(|x| self.lower_pat(x)).collect(),
3734                     ddpos,
3735                 )
3736             }
3737             PatKind::Path(ref qself, ref path) => {
3738                 let qpath = self.lower_qpath(
3739                     p.id,
3740                     qself,
3741                     path,
3742                     ParamMode::Optional,
3743                     ImplTraitContext::disallowed(),
3744                 );
3745                 hir::PatKind::Path(qpath)
3746             }
3747             PatKind::Struct(ref path, ref fields, etc) => {
3748                 let qpath = self.lower_qpath(
3749                     p.id,
3750                     &None,
3751                     path,
3752                     ParamMode::Optional,
3753                     ImplTraitContext::disallowed(),
3754                 );
3755
3756                 let fs = fields
3757                     .iter()
3758                     .map(|f| {
3759                         let LoweredNodeId { node_id, hir_id } = self.next_id();
3760
3761                         Spanned {
3762                             span: f.span,
3763                             node: hir::FieldPat {
3764                                 id: node_id,
3765                                 hir_id,
3766                                 ident: f.node.ident,
3767                                 pat: self.lower_pat(&f.node.pat),
3768                                 is_shorthand: f.node.is_shorthand,
3769                             },
3770                         }
3771                     })
3772                     .collect();
3773                 hir::PatKind::Struct(qpath, fs, etc)
3774             }
3775             PatKind::Tuple(ref elts, ddpos) => {
3776                 hir::PatKind::Tuple(elts.iter().map(|x| self.lower_pat(x)).collect(), ddpos)
3777             }
3778             PatKind::Box(ref inner) => hir::PatKind::Box(self.lower_pat(inner)),
3779             PatKind::Ref(ref inner, mutbl) => {
3780                 hir::PatKind::Ref(self.lower_pat(inner), self.lower_mutability(mutbl))
3781             }
3782             PatKind::Range(ref e1, ref e2, Spanned { node: ref end, .. }) => hir::PatKind::Range(
3783                 P(self.lower_expr(e1)),
3784                 P(self.lower_expr(e2)),
3785                 self.lower_range_end(end),
3786             ),
3787             PatKind::Slice(ref before, ref slice, ref after) => hir::PatKind::Slice(
3788                 before.iter().map(|x| self.lower_pat(x)).collect(),
3789                 slice.as_ref().map(|x| self.lower_pat(x)),
3790                 after.iter().map(|x| self.lower_pat(x)).collect(),
3791             ),
3792             PatKind::Paren(ref inner) => return self.lower_pat(inner),
3793             PatKind::Mac(_) => panic!("Shouldn't exist here"),
3794         };
3795
3796         let LoweredNodeId { node_id, hir_id } = self.lower_node_id(p.id);
3797         P(hir::Pat {
3798             id: node_id,
3799             hir_id,
3800             node,
3801             span: p.span,
3802         })
3803     }
3804
3805     fn lower_range_end(&mut self, e: &RangeEnd) -> hir::RangeEnd {
3806         match *e {
3807             RangeEnd::Included(_) => hir::RangeEnd::Included,
3808             RangeEnd::Excluded => hir::RangeEnd::Excluded,
3809         }
3810     }
3811
3812     fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
3813         self.with_new_scopes(|this| {
3814             let LoweredNodeId { node_id: _, hir_id } = this.lower_node_id(c.id);
3815             hir::AnonConst {
3816                 hir_id,
3817                 body: this.lower_body(None, |this| this.lower_expr(&c.value)),
3818             }
3819         })
3820     }
3821
3822     fn lower_expr(&mut self, e: &Expr) -> hir::Expr {
3823         let kind = match e.node {
3824             ExprKind::Box(ref inner) => hir::ExprKind::Box(P(self.lower_expr(inner))),
3825             ExprKind::ObsoleteInPlace(..) => {
3826                 self.sess.abort_if_errors();
3827                 span_bug!(e.span, "encountered ObsoleteInPlace expr during lowering");
3828             }
3829             ExprKind::Array(ref exprs) => {
3830                 hir::ExprKind::Array(exprs.iter().map(|x| self.lower_expr(x)).collect())
3831             }
3832             ExprKind::Repeat(ref expr, ref count) => {
3833                 let expr = P(self.lower_expr(expr));
3834                 let count = self.lower_anon_const(count);
3835                 hir::ExprKind::Repeat(expr, count)
3836             }
3837             ExprKind::Tup(ref elts) => {
3838                 hir::ExprKind::Tup(elts.iter().map(|x| self.lower_expr(x)).collect())
3839             }
3840             ExprKind::Call(ref f, ref args) => {
3841                 let f = P(self.lower_expr(f));
3842                 hir::ExprKind::Call(f, args.iter().map(|x| self.lower_expr(x)).collect())
3843             }
3844             ExprKind::MethodCall(ref seg, ref args) => {
3845                 let hir_seg = P(self.lower_path_segment(
3846                     e.span,
3847                     seg,
3848                     ParamMode::Optional,
3849                     0,
3850                     ParenthesizedGenericArgs::Err,
3851                     ImplTraitContext::disallowed(),
3852                     None,
3853                 ));
3854                 let args = args.iter().map(|x| self.lower_expr(x)).collect();
3855                 hir::ExprKind::MethodCall(hir_seg, seg.ident.span, args)
3856             }
3857             ExprKind::Binary(binop, ref lhs, ref rhs) => {
3858                 let binop = self.lower_binop(binop);
3859                 let lhs = P(self.lower_expr(lhs));
3860                 let rhs = P(self.lower_expr(rhs));
3861                 hir::ExprKind::Binary(binop, lhs, rhs)
3862             }
3863             ExprKind::Unary(op, ref ohs) => {
3864                 let op = self.lower_unop(op);
3865                 let ohs = P(self.lower_expr(ohs));
3866                 hir::ExprKind::Unary(op, ohs)
3867             }
3868             ExprKind::Lit(ref l) => hir::ExprKind::Lit((*l).clone()),
3869             ExprKind::Cast(ref expr, ref ty) => {
3870                 let expr = P(self.lower_expr(expr));
3871                 hir::ExprKind::Cast(expr, self.lower_ty(ty, ImplTraitContext::disallowed()))
3872             }
3873             ExprKind::Type(ref expr, ref ty) => {
3874                 let expr = P(self.lower_expr(expr));
3875                 hir::ExprKind::Type(expr, self.lower_ty(ty, ImplTraitContext::disallowed()))
3876             }
3877             ExprKind::AddrOf(m, ref ohs) => {
3878                 let m = self.lower_mutability(m);
3879                 let ohs = P(self.lower_expr(ohs));
3880                 hir::ExprKind::AddrOf(m, ohs)
3881             }
3882             // More complicated than you might expect because the else branch
3883             // might be `if let`.
3884             ExprKind::If(ref cond, ref blk, ref else_opt) => {
3885                 let else_opt = else_opt.as_ref().map(|els| {
3886                     match els.node {
3887                         ExprKind::IfLet(..) => {
3888                             // Wrap the `if let` expr in a block.
3889                             let span = els.span;
3890                             let els = P(self.lower_expr(els));
3891                             let LoweredNodeId { node_id: _, hir_id } = self.next_id();
3892                             let blk = P(hir::Block {
3893                                 stmts: hir_vec![],
3894                                 expr: Some(els),
3895                                 hir_id,
3896                                 rules: hir::DefaultBlock,
3897                                 span,
3898                                 targeted_by_break: false,
3899                             });
3900                             P(self.expr_block(blk, ThinVec::new()))
3901                         }
3902                         _ => P(self.lower_expr(els)),
3903                     }
3904                 });
3905
3906                 let then_blk = self.lower_block(blk, false);
3907                 let then_expr = self.expr_block(then_blk, ThinVec::new());
3908
3909                 hir::ExprKind::If(P(self.lower_expr(cond)), P(then_expr), else_opt)
3910             }
3911             ExprKind::While(ref cond, ref body, opt_label) => self.with_loop_scope(e.id, |this| {
3912                 hir::ExprKind::While(
3913                     this.with_loop_condition_scope(|this| P(this.lower_expr(cond))),
3914                     this.lower_block(body, false),
3915                     this.lower_label(opt_label),
3916                 )
3917             }),
3918             ExprKind::Loop(ref body, opt_label) => self.with_loop_scope(e.id, |this| {
3919                 hir::ExprKind::Loop(
3920                     this.lower_block(body, false),
3921                     this.lower_label(opt_label),
3922                     hir::LoopSource::Loop,
3923                 )
3924             }),
3925             ExprKind::TryBlock(ref body) => {
3926                 self.with_catch_scope(body.id, |this| {
3927                     let unstable_span = this.mark_span_with_reason(
3928                         CompilerDesugaringKind::TryBlock,
3929                         body.span,
3930                         Some(vec![
3931                             Symbol::intern("try_trait"),
3932                         ].into()),
3933                     );
3934                     let mut block = this.lower_block(body, true).into_inner();
3935                     let tail = block.expr.take().map_or_else(
3936                         || {
3937                             let LoweredNodeId { node_id: _, hir_id } = this.next_id();
3938                             let span = this.sess.source_map().end_point(unstable_span);
3939                             hir::Expr {
3940                                 span,
3941                                 node: hir::ExprKind::Tup(hir_vec![]),
3942                                 attrs: ThinVec::new(),
3943                                 hir_id,
3944                             }
3945                         },
3946                         |x: P<hir::Expr>| x.into_inner(),
3947                     );
3948                     block.expr = Some(this.wrap_in_try_constructor(
3949                         "from_ok", tail, unstable_span));
3950                     hir::ExprKind::Block(P(block), None)
3951                 })
3952             }
3953             ExprKind::Match(ref expr, ref arms) => hir::ExprKind::Match(
3954                 P(self.lower_expr(expr)),
3955                 arms.iter().map(|x| self.lower_arm(x)).collect(),
3956                 hir::MatchSource::Normal,
3957             ),
3958             ExprKind::Async(capture_clause, closure_node_id, ref block) => {
3959                 self.make_async_expr(capture_clause, closure_node_id, None, |this| {
3960                     this.with_new_scopes(|this| {
3961                         let block = this.lower_block(block, false);
3962                         this.expr_block(block, ThinVec::new())
3963                     })
3964                 })
3965             }
3966             ExprKind::Closure(
3967                 capture_clause, asyncness, movability, ref decl, ref body, fn_decl_span
3968             ) => {
3969                 if let IsAsync::Async { closure_id, .. } = asyncness {
3970                     let outer_decl = FnDecl {
3971                         inputs: decl.inputs.clone(),
3972                         output: FunctionRetTy::Default(fn_decl_span),
3973                         c_variadic: false,
3974                     };
3975                     // We need to lower the declaration outside the new scope, because we
3976                     // have to conserve the state of being inside a loop condition for the
3977                     // closure argument types.
3978                     let fn_decl = self.lower_fn_decl(&outer_decl, None, false, None);
3979
3980                     self.with_new_scopes(|this| {
3981                         // FIXME(cramertj): allow `async` non-`move` closures with arguments.
3982                         if capture_clause == CaptureBy::Ref &&
3983                             !decl.inputs.is_empty()
3984                         {
3985                             struct_span_err!(
3986                                 this.sess,
3987                                 fn_decl_span,
3988                                 E0708,
3989                                 "`async` non-`move` closures with arguments \
3990                                 are not currently supported",
3991                             )
3992                                 .help("consider using `let` statements to manually capture \
3993                                        variables by reference before entering an \
3994                                        `async move` closure")
3995                                 .emit();
3996                         }
3997
3998                         // Transform `async |x: u8| -> X { ... }` into
3999                         // `|x: u8| future_from_generator(|| -> X { ... })`.
4000                         let body_id = this.lower_body(Some(&outer_decl), |this| {
4001                             let async_ret_ty = if let FunctionRetTy::Ty(ty) = &decl.output {
4002                                 Some(&**ty)
4003                             } else { None };
4004                             let async_body = this.make_async_expr(
4005                                 capture_clause, closure_id, async_ret_ty,
4006                                 |this| {
4007                                     this.with_new_scopes(|this| this.lower_expr(body))
4008                                 });
4009                             this.expr(fn_decl_span, async_body, ThinVec::new())
4010                         });
4011                         hir::ExprKind::Closure(
4012                             this.lower_capture_clause(capture_clause),
4013                             fn_decl,
4014                             body_id,
4015                             fn_decl_span,
4016                             None,
4017                         )
4018                     })
4019                 } else {
4020                     // Lower outside new scope to preserve `is_in_loop_condition`.
4021                     let fn_decl = self.lower_fn_decl(decl, None, false, None);
4022
4023                     self.with_new_scopes(|this| {
4024                         let mut is_generator = false;
4025                         let body_id = this.lower_body(Some(decl), |this| {
4026                             let e = this.lower_expr(body);
4027                             is_generator = this.is_generator;
4028                             e
4029                         });
4030                         let generator_option = if is_generator {
4031                             if !decl.inputs.is_empty() {
4032                                 span_err!(
4033                                     this.sess,
4034                                     fn_decl_span,
4035                                     E0628,
4036                                     "generators cannot have explicit arguments"
4037                                 );
4038                                 this.sess.abort_if_errors();
4039                             }
4040                             Some(match movability {
4041                                 Movability::Movable => hir::GeneratorMovability::Movable,
4042                                 Movability::Static => hir::GeneratorMovability::Static,
4043                             })
4044                         } else {
4045                             if movability == Movability::Static {
4046                                 span_err!(
4047                                     this.sess,
4048                                     fn_decl_span,
4049                                     E0697,
4050                                     "closures cannot be static"
4051                                 );
4052                             }
4053                             None
4054                         };
4055                         hir::ExprKind::Closure(
4056                             this.lower_capture_clause(capture_clause),
4057                             fn_decl,
4058                             body_id,
4059                             fn_decl_span,
4060                             generator_option,
4061                         )
4062                     })
4063                 }
4064             }
4065             ExprKind::Block(ref blk, opt_label) => {
4066                 hir::ExprKind::Block(self.lower_block(blk,
4067                                                       opt_label.is_some()),
4068                                                       self.lower_label(opt_label))
4069             }
4070             ExprKind::Assign(ref el, ref er) => {
4071                 hir::ExprKind::Assign(P(self.lower_expr(el)), P(self.lower_expr(er)))
4072             }
4073             ExprKind::AssignOp(op, ref el, ref er) => hir::ExprKind::AssignOp(
4074                 self.lower_binop(op),
4075                 P(self.lower_expr(el)),
4076                 P(self.lower_expr(er)),
4077             ),
4078             ExprKind::Field(ref el, ident) => hir::ExprKind::Field(P(self.lower_expr(el)), ident),
4079             ExprKind::Index(ref el, ref er) => {
4080                 hir::ExprKind::Index(P(self.lower_expr(el)), P(self.lower_expr(er)))
4081             }
4082             // Desugar `<start>..=<end>` into `std::ops::RangeInclusive::new(<start>, <end>)`.
4083             ExprKind::Range(Some(ref e1), Some(ref e2), RangeLimits::Closed) => {
4084                 let id = self.next_id();
4085                 let e1 = self.lower_expr(e1);
4086                 let e2 = self.lower_expr(e2);
4087                 let ty_path = P(self.std_path(e.span, &["ops", "RangeInclusive"], None, false));
4088                 let ty = P(self.ty_path(id, e.span, hir::QPath::Resolved(None, ty_path)));
4089                 let new_seg = P(hir::PathSegment::from_ident(Ident::from_str("new")));
4090                 let new_path = hir::QPath::TypeRelative(ty, new_seg);
4091                 let new = P(self.expr(e.span, hir::ExprKind::Path(new_path), ThinVec::new()));
4092                 hir::ExprKind::Call(new, hir_vec![e1, e2])
4093             }
4094             ExprKind::Range(ref e1, ref e2, lims) => {
4095                 use syntax::ast::RangeLimits::*;
4096
4097                 let path = match (e1, e2, lims) {
4098                     (&None, &None, HalfOpen) => "RangeFull",
4099                     (&Some(..), &None, HalfOpen) => "RangeFrom",
4100                     (&None, &Some(..), HalfOpen) => "RangeTo",
4101                     (&Some(..), &Some(..), HalfOpen) => "Range",
4102                     (&None, &Some(..), Closed) => "RangeToInclusive",
4103                     (&Some(..), &Some(..), Closed) => unreachable!(),
4104                     (_, &None, Closed) => self.diagnostic()
4105                         .span_fatal(e.span, "inclusive range with no end")
4106                         .raise(),
4107                 };
4108
4109                 let fields = e1.iter()
4110                     .map(|e| ("start", e))
4111                     .chain(e2.iter().map(|e| ("end", e)))
4112                     .map(|(s, e)| {
4113                         let expr = P(self.lower_expr(&e));
4114                         let ident = Ident::new(Symbol::intern(s), e.span);
4115                         self.field(ident, expr, e.span)
4116                     })
4117                     .collect::<P<[hir::Field]>>();
4118
4119                 let is_unit = fields.is_empty();
4120                 let struct_path = ["ops", path];
4121                 let struct_path = self.std_path(e.span, &struct_path, None, is_unit);
4122                 let struct_path = hir::QPath::Resolved(None, P(struct_path));
4123
4124                 let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(e.id);
4125
4126                 return hir::Expr {
4127                     hir_id,
4128                     node: if is_unit {
4129                         hir::ExprKind::Path(struct_path)
4130                     } else {
4131                         hir::ExprKind::Struct(P(struct_path), fields, None)
4132                     },
4133                     span: e.span,
4134                     attrs: e.attrs.clone(),
4135                 };
4136             }
4137             ExprKind::Path(ref qself, ref path) => {
4138                 let qpath = self.lower_qpath(
4139                     e.id,
4140                     qself,
4141                     path,
4142                     ParamMode::Optional,
4143                     ImplTraitContext::disallowed(),
4144                 );
4145                 hir::ExprKind::Path(qpath)
4146             }
4147             ExprKind::Break(opt_label, ref opt_expr) => {
4148                 let destination = if self.is_in_loop_condition && opt_label.is_none() {
4149                     hir::Destination {
4150                         label: None,
4151                         target_id: Err(hir::LoopIdError::UnlabeledCfInWhileCondition).into(),
4152                     }
4153                 } else {
4154                     self.lower_loop_destination(opt_label.map(|label| (e.id, label)))
4155                 };
4156                 hir::ExprKind::Break(
4157                     destination,
4158                     opt_expr.as_ref().map(|x| P(self.lower_expr(x))),
4159                 )
4160             }
4161             ExprKind::Continue(opt_label) => {
4162                 hir::ExprKind::Continue(if self.is_in_loop_condition && opt_label.is_none() {
4163                     hir::Destination {
4164                         label: None,
4165                         target_id: Err(hir::LoopIdError::UnlabeledCfInWhileCondition).into(),
4166                     }
4167                 } else {
4168                     self.lower_loop_destination(opt_label.map(|label| (e.id, label)))
4169                 })
4170             }
4171             ExprKind::Ret(ref e) => hir::ExprKind::Ret(e.as_ref().map(|x| P(self.lower_expr(x)))),
4172             ExprKind::InlineAsm(ref asm) => {
4173                 let hir_asm = hir::InlineAsm {
4174                     inputs: asm.inputs.iter().map(|&(ref c, _)| c.clone()).collect(),
4175                     outputs: asm.outputs
4176                         .iter()
4177                         .map(|out| hir::InlineAsmOutput {
4178                             constraint: out.constraint.clone(),
4179                             is_rw: out.is_rw,
4180                             is_indirect: out.is_indirect,
4181                             span: out.expr.span,
4182                         })
4183                         .collect(),
4184                     asm: asm.asm.clone(),
4185                     asm_str_style: asm.asm_str_style,
4186                     clobbers: asm.clobbers.clone().into(),
4187                     volatile: asm.volatile,
4188                     alignstack: asm.alignstack,
4189                     dialect: asm.dialect,
4190                     ctxt: asm.ctxt,
4191                 };
4192                 let outputs = asm.outputs
4193                     .iter()
4194                     .map(|out| self.lower_expr(&out.expr))
4195                     .collect();
4196                 let inputs = asm.inputs
4197                     .iter()
4198                     .map(|&(_, ref input)| self.lower_expr(input))
4199                     .collect();
4200                 hir::ExprKind::InlineAsm(P(hir_asm), outputs, inputs)
4201             }
4202             ExprKind::Struct(ref path, ref fields, ref maybe_expr) => hir::ExprKind::Struct(
4203                 P(self.lower_qpath(
4204                     e.id,
4205                     &None,
4206                     path,
4207                     ParamMode::Optional,
4208                     ImplTraitContext::disallowed(),
4209                 )),
4210                 fields.iter().map(|x| self.lower_field(x)).collect(),
4211                 maybe_expr.as_ref().map(|x| P(self.lower_expr(x))),
4212             ),
4213             ExprKind::Paren(ref ex) => {
4214                 let mut ex = self.lower_expr(ex);
4215                 // Include parens in span, but only if it is a super-span.
4216                 if e.span.contains(ex.span) {
4217                     ex.span = e.span;
4218                 }
4219                 // Merge attributes into the inner expression.
4220                 let mut attrs = e.attrs.clone();
4221                 attrs.extend::<Vec<_>>(ex.attrs.into());
4222                 ex.attrs = attrs;
4223                 return ex;
4224             }
4225
4226             ExprKind::Yield(ref opt_expr) => {
4227                 self.is_generator = true;
4228                 let expr = opt_expr
4229                     .as_ref()
4230                     .map(|x| self.lower_expr(x))
4231                     .unwrap_or_else(||
4232                     self.expr(e.span, hir::ExprKind::Tup(hir_vec![]), ThinVec::new())
4233                 );
4234                 hir::ExprKind::Yield(P(expr))
4235             }
4236
4237             ExprKind::Err => hir::ExprKind::Err,
4238
4239             // Desugar `ExprIfLet`
4240             // from: `if let <pat> = <sub_expr> <body> [<else_opt>]`
4241             ExprKind::IfLet(ref pats, ref sub_expr, ref body, ref else_opt) => {
4242                 // to:
4243                 //
4244                 //   match <sub_expr> {
4245                 //     <pat> => <body>,
4246                 //     _ => [<else_opt> | ()]
4247                 //   }
4248
4249                 let mut arms = vec![];
4250
4251                 // `<pat> => <body>`
4252                 {
4253                     let body = self.lower_block(body, false);
4254                     let body_expr = P(self.expr_block(body, ThinVec::new()));
4255                     let pats = pats.iter().map(|pat| self.lower_pat(pat)).collect();
4256                     arms.push(self.arm(pats, body_expr));
4257                 }
4258
4259                 // _ => [<else_opt>|()]
4260                 {
4261                     let wildcard_arm: Option<&Expr> = else_opt.as_ref().map(|p| &**p);
4262                     let wildcard_pattern = self.pat_wild(e.span);
4263                     let body = if let Some(else_expr) = wildcard_arm {
4264                         P(self.lower_expr(else_expr))
4265                     } else {
4266                         self.expr_tuple(e.span, hir_vec![])
4267                     };
4268                     arms.push(self.arm(hir_vec![wildcard_pattern], body));
4269                 }
4270
4271                 let contains_else_clause = else_opt.is_some();
4272
4273                 let sub_expr = P(self.lower_expr(sub_expr));
4274
4275                 hir::ExprKind::Match(
4276                     sub_expr,
4277                     arms.into(),
4278                     hir::MatchSource::IfLetDesugar {
4279                         contains_else_clause,
4280                     },
4281                 )
4282             }
4283
4284             // Desugar `ExprWhileLet`
4285             // from: `[opt_ident]: while let <pat> = <sub_expr> <body>`
4286             ExprKind::WhileLet(ref pats, ref sub_expr, ref body, opt_label) => {
4287                 // to:
4288                 //
4289                 //   [opt_ident]: loop {
4290                 //     match <sub_expr> {
4291                 //       <pat> => <body>,
4292                 //       _ => break
4293                 //     }
4294                 //   }
4295
4296                 // Note that the block AND the condition are evaluated in the loop scope.
4297                 // This is done to allow `break` from inside the condition of the loop.
4298                 let (body, break_expr, sub_expr) = self.with_loop_scope(e.id, |this| {
4299                     (
4300                         this.lower_block(body, false),
4301                         this.expr_break(e.span, ThinVec::new()),
4302                         this.with_loop_condition_scope(|this| P(this.lower_expr(sub_expr))),
4303                     )
4304                 });
4305
4306                 // `<pat> => <body>`
4307                 let pat_arm = {
4308                     let body_expr = P(self.expr_block(body, ThinVec::new()));
4309                     let pats = pats.iter().map(|pat| self.lower_pat(pat)).collect();
4310                     self.arm(pats, body_expr)
4311                 };
4312
4313                 // `_ => break`
4314                 let break_arm = {
4315                     let pat_under = self.pat_wild(e.span);
4316                     self.arm(hir_vec![pat_under], break_expr)
4317                 };
4318
4319                 // `match <sub_expr> { ... }`
4320                 let arms = hir_vec![pat_arm, break_arm];
4321                 let match_expr = self.expr(
4322                     sub_expr.span,
4323                     hir::ExprKind::Match(sub_expr, arms, hir::MatchSource::WhileLetDesugar),
4324                     ThinVec::new(),
4325                 );
4326
4327                 // `[opt_ident]: loop { ... }`
4328                 let loop_block = P(self.block_expr(P(match_expr)));
4329                 let loop_expr = hir::ExprKind::Loop(
4330                     loop_block,
4331                     self.lower_label(opt_label),
4332                     hir::LoopSource::WhileLet,
4333                 );
4334                 // Add attributes to the outer returned expr node.
4335                 loop_expr
4336             }
4337
4338             // Desugar `ExprForLoop`
4339             // from: `[opt_ident]: for <pat> in <head> <body>`
4340             ExprKind::ForLoop(ref pat, ref head, ref body, opt_label) => {
4341                 // to:
4342                 //
4343                 //   {
4344                 //     let result = match ::std::iter::IntoIterator::into_iter(<head>) {
4345                 //       mut iter => {
4346                 //         [opt_ident]: loop {
4347                 //           let mut __next;
4348                 //           match ::std::iter::Iterator::next(&mut iter) {
4349                 //             ::std::option::Option::Some(val) => __next = val,
4350                 //             ::std::option::Option::None => break
4351                 //           };
4352                 //           let <pat> = __next;
4353                 //           StmtKind::Expr(<body>);
4354                 //         }
4355                 //       }
4356                 //     };
4357                 //     result
4358                 //   }
4359
4360                 // expand <head>
4361                 let head = self.lower_expr(head);
4362                 let head_sp = head.span;
4363                 let desugared_span = self.mark_span_with_reason(
4364                     CompilerDesugaringKind::ForLoop,
4365                     head_sp,
4366                     None,
4367                 );
4368
4369                 let iter = self.str_to_ident("iter");
4370
4371                 let next_ident = self.str_to_ident("__next");
4372                 let next_pat = self.pat_ident_binding_mode(
4373                     desugared_span,
4374                     next_ident,
4375                     hir::BindingAnnotation::Mutable,
4376                 );
4377
4378                 // `::std::option::Option::Some(val) => next = val`
4379                 let pat_arm = {
4380                     let val_ident = self.str_to_ident("val");
4381                     let val_pat = self.pat_ident(pat.span, val_ident);
4382                     let val_expr = P(self.expr_ident(pat.span, val_ident, val_pat.id));
4383                     let next_expr = P(self.expr_ident(pat.span, next_ident, next_pat.id));
4384                     let assign = P(self.expr(
4385                         pat.span,
4386                         hir::ExprKind::Assign(next_expr, val_expr),
4387                         ThinVec::new(),
4388                     ));
4389                     let some_pat = self.pat_some(pat.span, val_pat);
4390                     self.arm(hir_vec![some_pat], assign)
4391                 };
4392
4393                 // `::std::option::Option::None => break`
4394                 let break_arm = {
4395                     let break_expr =
4396                         self.with_loop_scope(e.id, |this| this.expr_break(e.span, ThinVec::new()));
4397                     let pat = self.pat_none(e.span);
4398                     self.arm(hir_vec![pat], break_expr)
4399                 };
4400
4401                 // `mut iter`
4402                 let iter_pat = self.pat_ident_binding_mode(
4403                     desugared_span,
4404                     iter,
4405                     hir::BindingAnnotation::Mutable
4406                 );
4407
4408                 // `match ::std::iter::Iterator::next(&mut iter) { ... }`
4409                 let match_expr = {
4410                     let iter = P(self.expr_ident(head_sp, iter, iter_pat.id));
4411                     let ref_mut_iter = self.expr_mut_addr_of(head_sp, iter);
4412                     let next_path = &["iter", "Iterator", "next"];
4413                     let next_path = P(self.expr_std_path(head_sp, next_path, None, ThinVec::new()));
4414                     let next_expr = P(self.expr_call(head_sp, next_path, hir_vec![ref_mut_iter]));
4415                     let arms = hir_vec![pat_arm, break_arm];
4416
4417                     P(self.expr(
4418                         head_sp,
4419                         hir::ExprKind::Match(
4420                             next_expr,
4421                             arms,
4422                             hir::MatchSource::ForLoopDesugar
4423                         ),
4424                         ThinVec::new(),
4425                     ))
4426                 };
4427                 let LoweredNodeId { node_id: _, hir_id } = self.next_id();
4428                 let match_stmt = hir::Stmt {
4429                     hir_id,
4430                     node: hir::StmtKind::Expr(match_expr),
4431                     span: head_sp,
4432                 };
4433
4434                 let next_expr = P(self.expr_ident(head_sp, next_ident, next_pat.id));
4435
4436                 // `let mut __next`
4437                 let next_let = self.stmt_let_pat(
4438                     desugared_span,
4439                     None,
4440                     next_pat,
4441                     hir::LocalSource::ForLoopDesugar,
4442                 );
4443
4444                 // `let <pat> = __next`
4445                 let pat = self.lower_pat(pat);
4446                 let pat_let = self.stmt_let_pat(
4447                     head_sp,
4448                     Some(next_expr),
4449                     pat,
4450                     hir::LocalSource::ForLoopDesugar,
4451                 );
4452
4453                 let body_block = self.with_loop_scope(e.id, |this| this.lower_block(body, false));
4454                 let body_expr = P(self.expr_block(body_block, ThinVec::new()));
4455                 let LoweredNodeId { node_id: _, hir_id } = self.next_id();
4456                 let body_stmt = hir::Stmt {
4457                     hir_id,
4458                     node: hir::StmtKind::Expr(body_expr),
4459                     span: body.span,
4460                 };
4461
4462                 let loop_block = P(self.block_all(
4463                     e.span,
4464                     hir_vec![next_let, match_stmt, pat_let, body_stmt],
4465                     None,
4466                 ));
4467
4468                 // `[opt_ident]: loop { ... }`
4469                 let loop_expr = hir::ExprKind::Loop(
4470                     loop_block,
4471                     self.lower_label(opt_label),
4472                     hir::LoopSource::ForLoop,
4473                 );
4474                 let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(e.id);
4475                 let loop_expr = P(hir::Expr {
4476                     hir_id,
4477                     node: loop_expr,
4478                     span: e.span,
4479                     attrs: ThinVec::new(),
4480                 });
4481
4482                 // `mut iter => { ... }`
4483                 let iter_arm = self.arm(hir_vec![iter_pat], loop_expr);
4484
4485                 // `match ::std::iter::IntoIterator::into_iter(<head>) { ... }`
4486                 let into_iter_expr = {
4487                     let into_iter_path = &["iter", "IntoIterator", "into_iter"];
4488                     let into_iter = P(self.expr_std_path(
4489                             head_sp, into_iter_path, None, ThinVec::new()));
4490                     P(self.expr_call(head_sp, into_iter, hir_vec![head]))
4491                 };
4492
4493                 let match_expr = P(self.expr_match(
4494                     head_sp,
4495                     into_iter_expr,
4496                     hir_vec![iter_arm],
4497                     hir::MatchSource::ForLoopDesugar,
4498                 ));
4499
4500                 // `{ let _result = ...; _result }`
4501                 // Underscore prevents an `unused_variables` lint if the head diverges.
4502                 let result_ident = self.str_to_ident("_result");
4503                 let (let_stmt, let_stmt_binding) =
4504                     self.stmt_let(e.span, false, result_ident, match_expr);
4505
4506                 let result = P(self.expr_ident(e.span, result_ident, let_stmt_binding));
4507                 let block = P(self.block_all(e.span, hir_vec![let_stmt], Some(result)));
4508                 // Add the attributes to the outer returned expr node.
4509                 return self.expr_block(block, e.attrs.clone());
4510             }
4511
4512             // Desugar `ExprKind::Try`
4513             // from: `<expr>?`
4514             ExprKind::Try(ref sub_expr) => {
4515                 // into:
4516                 //
4517                 // match Try::into_result(<expr>) {
4518                 //     Ok(val) => #[allow(unreachable_code)] val,
4519                 //     Err(err) => #[allow(unreachable_code)]
4520                 //                 // If there is an enclosing `catch {...}`
4521                 //                 break 'catch_target Try::from_error(From::from(err)),
4522                 //                 // Otherwise
4523                 //                 return Try::from_error(From::from(err)),
4524                 // }
4525
4526                 let unstable_span = self.mark_span_with_reason(
4527                     CompilerDesugaringKind::QuestionMark,
4528                     e.span,
4529                     Some(vec![
4530                         Symbol::intern("try_trait")
4531                     ].into()),
4532                 );
4533
4534                 // `Try::into_result(<expr>)`
4535                 let discr = {
4536                     // expand <expr>
4537                     let sub_expr = self.lower_expr(sub_expr);
4538
4539                     let path = &["ops", "Try", "into_result"];
4540                     let path = P(self.expr_std_path(
4541                             unstable_span, path, None, ThinVec::new()));
4542                     P(self.expr_call(e.span, path, hir_vec![sub_expr]))
4543                 };
4544
4545                 // `#[allow(unreachable_code)]`
4546                 let attr = {
4547                     // `allow(unreachable_code)`
4548                     let allow = {
4549                         let allow_ident = Ident::from_str("allow").with_span_pos(e.span);
4550                         let uc_ident = Ident::from_str("unreachable_code").with_span_pos(e.span);
4551                         let uc_nested = attr::mk_nested_word_item(uc_ident);
4552                         attr::mk_list_item(e.span, allow_ident, vec![uc_nested])
4553                     };
4554                     attr::mk_spanned_attr_outer(e.span, attr::mk_attr_id(), allow)
4555                 };
4556                 let attrs = vec![attr];
4557
4558                 // `Ok(val) => #[allow(unreachable_code)] val,`
4559                 let ok_arm = {
4560                     let val_ident = self.str_to_ident("val");
4561                     let val_pat = self.pat_ident(e.span, val_ident);
4562                     let val_expr = P(self.expr_ident_with_attrs(
4563                         e.span,
4564                         val_ident,
4565                         val_pat.id,
4566                         ThinVec::from(attrs.clone()),
4567                     ));
4568                     let ok_pat = self.pat_ok(e.span, val_pat);
4569
4570                     self.arm(hir_vec![ok_pat], val_expr)
4571                 };
4572
4573                 // `Err(err) => #[allow(unreachable_code)]
4574                 //              return Try::from_error(From::from(err)),`
4575                 let err_arm = {
4576                     let err_ident = self.str_to_ident("err");
4577                     let err_local = self.pat_ident(e.span, err_ident);
4578                     let from_expr = {
4579                         let path = &["convert", "From", "from"];
4580                         let from = P(self.expr_std_path(
4581                                 e.span, path, None, ThinVec::new()));
4582                         let err_expr = self.expr_ident(e.span, err_ident, err_local.id);
4583
4584                         self.expr_call(e.span, from, hir_vec![err_expr])
4585                     };
4586                     let from_err_expr =
4587                         self.wrap_in_try_constructor("from_error", from_expr, unstable_span);
4588                     let thin_attrs = ThinVec::from(attrs);
4589                     let catch_scope = self.catch_scopes.last().map(|x| *x);
4590                     let ret_expr = if let Some(catch_node) = catch_scope {
4591                         P(self.expr(
4592                             e.span,
4593                             hir::ExprKind::Break(
4594                                 hir::Destination {
4595                                     label: None,
4596                                     target_id: Ok(catch_node),
4597                                 },
4598                                 Some(from_err_expr),
4599                             ),
4600                             thin_attrs,
4601                         ))
4602                     } else {
4603                         P(self.expr(e.span, hir::ExprKind::Ret(Some(from_err_expr)), thin_attrs))
4604                     };
4605
4606                     let err_pat = self.pat_err(e.span, err_local);
4607                     self.arm(hir_vec![err_pat], ret_expr)
4608                 };
4609
4610                 hir::ExprKind::Match(
4611                     discr,
4612                     hir_vec![err_arm, ok_arm],
4613                     hir::MatchSource::TryDesugar,
4614                 )
4615             }
4616
4617             ExprKind::Mac(_) => panic!("Shouldn't exist here"),
4618         };
4619
4620         let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(e.id);
4621
4622         hir::Expr {
4623             hir_id,
4624             node: kind,
4625             span: e.span,
4626             attrs: e.attrs.clone(),
4627         }
4628     }
4629
4630     fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt; 1]> {
4631         smallvec![match s.node {
4632             StmtKind::Local(ref l) => {
4633                 let (l, item_ids) = self.lower_local(l);
4634                 let mut ids: SmallVec<[hir::Stmt; 1]> = item_ids
4635                     .into_iter()
4636                     .map(|item_id| {
4637                         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
4638
4639                         hir::Stmt {
4640                             hir_id,
4641                             node: hir::StmtKind::Item(item_id),
4642                             span: s.span,
4643                         }
4644                     })
4645                     .collect();
4646                 ids.push({
4647                     let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(s.id);
4648
4649                     hir::Stmt {
4650                         hir_id,
4651                         node: hir::StmtKind::Local(P(l)),
4652                         span: s.span,
4653                     }
4654                 });
4655                 return ids;
4656             },
4657             StmtKind::Item(ref it) => {
4658                 // Can only use the ID once.
4659                 let mut id = Some(s.id);
4660                 return self.lower_item_id(it)
4661                     .into_iter()
4662                     .map(|item_id| {
4663                         let LoweredNodeId { node_id: _, hir_id } = id.take()
4664                           .map(|id| self.lower_node_id(id))
4665                           .unwrap_or_else(|| self.next_id());
4666
4667                         hir::Stmt {
4668                             hir_id,
4669                             node: hir::StmtKind::Item(item_id),
4670                             span: s.span,
4671                         }
4672                     })
4673                     .collect();
4674             }
4675             StmtKind::Expr(ref e) => {
4676                 let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(s.id);
4677
4678                 hir::Stmt {
4679                     hir_id,
4680                     node: hir::StmtKind::Expr(P(self.lower_expr(e))),
4681                     span: s.span,
4682                 }
4683             },
4684             StmtKind::Semi(ref e) => {
4685                 let LoweredNodeId { node_id: _, hir_id } = self.lower_node_id(s.id);
4686
4687                 hir::Stmt {
4688                     hir_id,
4689                     node: hir::StmtKind::Semi(P(self.lower_expr(e))),
4690                     span: s.span,
4691                 }
4692             },
4693             StmtKind::Mac(..) => panic!("Shouldn't exist here"),
4694         }]
4695     }
4696
4697     fn lower_capture_clause(&mut self, c: CaptureBy) -> hir::CaptureClause {
4698         match c {
4699             CaptureBy::Value => hir::CaptureByValue,
4700             CaptureBy::Ref => hir::CaptureByRef,
4701         }
4702     }
4703
4704     /// If an `explicit_owner` is given, this method allocates the `HirId` in
4705     /// the address space of that item instead of the item currently being
4706     /// lowered. This can happen during `lower_impl_item_ref()` where we need to
4707     /// lower a `Visibility` value although we haven't lowered the owning
4708     /// `ImplItem` in question yet.
4709     fn lower_visibility(
4710         &mut self,
4711         v: &Visibility,
4712         explicit_owner: Option<NodeId>,
4713     ) -> hir::Visibility {
4714         let node = match v.node {
4715             VisibilityKind::Public => hir::VisibilityKind::Public,
4716             VisibilityKind::Crate(sugar) => hir::VisibilityKind::Crate(sugar),
4717             VisibilityKind::Restricted { ref path, id } => {
4718                 debug!("lower_visibility: restricted path id = {:?}", id);
4719                 let lowered_id = if let Some(owner) = explicit_owner {
4720                     self.lower_node_id_with_owner(id, owner)
4721                 } else {
4722                     self.lower_node_id(id)
4723                 };
4724                 let def = self.expect_full_def(id);
4725                 hir::VisibilityKind::Restricted {
4726                     path: P(self.lower_path_extra(
4727                         def,
4728                         path,
4729                         ParamMode::Explicit,
4730                         explicit_owner,
4731                     )),
4732                     id: lowered_id.node_id,
4733                     hir_id: lowered_id.hir_id,
4734                 }
4735             },
4736             VisibilityKind::Inherited => hir::VisibilityKind::Inherited,
4737         };
4738         respan(v.span, node)
4739     }
4740
4741     fn lower_defaultness(&self, d: Defaultness, has_value: bool) -> hir::Defaultness {
4742         match d {
4743             Defaultness::Default => hir::Defaultness::Default {
4744                 has_value: has_value,
4745             },
4746             Defaultness::Final => {
4747                 assert!(has_value);
4748                 hir::Defaultness::Final
4749             }
4750         }
4751     }
4752
4753     fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
4754         match *b {
4755             BlockCheckMode::Default => hir::DefaultBlock,
4756             BlockCheckMode::Unsafe(u) => hir::UnsafeBlock(self.lower_unsafe_source(u)),
4757         }
4758     }
4759
4760     fn lower_binding_mode(&mut self, b: &BindingMode) -> hir::BindingAnnotation {
4761         match *b {
4762             BindingMode::ByValue(Mutability::Immutable) => hir::BindingAnnotation::Unannotated,
4763             BindingMode::ByRef(Mutability::Immutable) => hir::BindingAnnotation::Ref,
4764             BindingMode::ByValue(Mutability::Mutable) => hir::BindingAnnotation::Mutable,
4765             BindingMode::ByRef(Mutability::Mutable) => hir::BindingAnnotation::RefMut,
4766         }
4767     }
4768
4769     fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
4770         match u {
4771             CompilerGenerated => hir::CompilerGenerated,
4772             UserProvided => hir::UserProvided,
4773         }
4774     }
4775
4776     fn lower_impl_polarity(&mut self, i: ImplPolarity) -> hir::ImplPolarity {
4777         match i {
4778             ImplPolarity::Positive => hir::ImplPolarity::Positive,
4779             ImplPolarity::Negative => hir::ImplPolarity::Negative,
4780         }
4781     }
4782
4783     fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
4784         match f {
4785             TraitBoundModifier::None => hir::TraitBoundModifier::None,
4786             TraitBoundModifier::Maybe => hir::TraitBoundModifier::Maybe,
4787         }
4788     }
4789
4790     // Helper methods for building HIR.
4791
4792     fn arm(&mut self, pats: hir::HirVec<P<hir::Pat>>, expr: P<hir::Expr>) -> hir::Arm {
4793         hir::Arm {
4794             attrs: hir_vec![],
4795             pats,
4796             guard: None,
4797             body: expr,
4798         }
4799     }
4800
4801     fn field(&mut self, ident: Ident, expr: P<hir::Expr>, span: Span) -> hir::Field {
4802         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
4803
4804         hir::Field {
4805             hir_id,
4806             ident,
4807             span,
4808             expr,
4809             is_shorthand: false,
4810         }
4811     }
4812
4813     fn expr_break(&mut self, span: Span, attrs: ThinVec<Attribute>) -> P<hir::Expr> {
4814         let expr_break = hir::ExprKind::Break(self.lower_loop_destination(None), None);
4815         P(self.expr(span, expr_break, attrs))
4816     }
4817
4818     fn expr_call(
4819         &mut self,
4820         span: Span,
4821         e: P<hir::Expr>,
4822         args: hir::HirVec<hir::Expr>,
4823     ) -> hir::Expr {
4824         self.expr(span, hir::ExprKind::Call(e, args), ThinVec::new())
4825     }
4826
4827     fn expr_ident(&mut self, span: Span, ident: Ident, binding: NodeId) -> hir::Expr {
4828         self.expr_ident_with_attrs(span, ident, binding, ThinVec::new())
4829     }
4830
4831     fn expr_ident_with_attrs(
4832         &mut self,
4833         span: Span,
4834         ident: Ident,
4835         binding: NodeId,
4836         attrs: ThinVec<Attribute>,
4837     ) -> hir::Expr {
4838         let expr_path = hir::ExprKind::Path(hir::QPath::Resolved(
4839             None,
4840             P(hir::Path {
4841                 span,
4842                 def: Def::Local(binding),
4843                 segments: hir_vec![hir::PathSegment::from_ident(ident)],
4844             }),
4845         ));
4846
4847         self.expr(span, expr_path, attrs)
4848     }
4849
4850     fn expr_mut_addr_of(&mut self, span: Span, e: P<hir::Expr>) -> hir::Expr {
4851         self.expr(span, hir::ExprKind::AddrOf(hir::MutMutable, e), ThinVec::new())
4852     }
4853
4854     fn expr_std_path(
4855         &mut self,
4856         span: Span,
4857         components: &[&str],
4858         params: Option<P<hir::GenericArgs>>,
4859         attrs: ThinVec<Attribute>,
4860     ) -> hir::Expr {
4861         let path = self.std_path(span, components, params, true);
4862         self.expr(
4863             span,
4864             hir::ExprKind::Path(hir::QPath::Resolved(None, P(path))),
4865             attrs,
4866         )
4867     }
4868
4869     fn expr_match(
4870         &mut self,
4871         span: Span,
4872         arg: P<hir::Expr>,
4873         arms: hir::HirVec<hir::Arm>,
4874         source: hir::MatchSource,
4875     ) -> hir::Expr {
4876         self.expr(span, hir::ExprKind::Match(arg, arms, source), ThinVec::new())
4877     }
4878
4879     fn expr_block(&mut self, b: P<hir::Block>, attrs: ThinVec<Attribute>) -> hir::Expr {
4880         self.expr(b.span, hir::ExprKind::Block(b, None), attrs)
4881     }
4882
4883     fn expr_tuple(&mut self, sp: Span, exprs: hir::HirVec<hir::Expr>) -> P<hir::Expr> {
4884         P(self.expr(sp, hir::ExprKind::Tup(exprs), ThinVec::new()))
4885     }
4886
4887     fn expr(&mut self, span: Span, node: hir::ExprKind, attrs: ThinVec<Attribute>) -> hir::Expr {
4888         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
4889         hir::Expr {
4890             hir_id,
4891             node,
4892             span,
4893             attrs,
4894         }
4895     }
4896
4897     fn stmt_let_pat(
4898         &mut self,
4899         sp: Span,
4900         ex: Option<P<hir::Expr>>,
4901         pat: P<hir::Pat>,
4902         source: hir::LocalSource,
4903     ) -> hir::Stmt {
4904         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
4905
4906         let local = hir::Local {
4907             pat,
4908             ty: None,
4909             init: ex,
4910             hir_id,
4911             span: sp,
4912             attrs: ThinVec::new(),
4913             source,
4914         };
4915
4916         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
4917         hir::Stmt {
4918             hir_id,
4919             node: hir::StmtKind::Local(P(local)),
4920             span: sp
4921         }
4922     }
4923
4924     fn stmt_let(
4925         &mut self,
4926         sp: Span,
4927         mutbl: bool,
4928         ident: Ident,
4929         ex: P<hir::Expr>,
4930     ) -> (hir::Stmt, NodeId) {
4931         let pat = if mutbl {
4932             self.pat_ident_binding_mode(sp, ident, hir::BindingAnnotation::Mutable)
4933         } else {
4934             self.pat_ident(sp, ident)
4935         };
4936         let pat_id = pat.id;
4937         (
4938             self.stmt_let_pat(sp, Some(ex), pat, hir::LocalSource::Normal),
4939             pat_id,
4940         )
4941     }
4942
4943     fn block_expr(&mut self, expr: P<hir::Expr>) -> hir::Block {
4944         self.block_all(expr.span, hir::HirVec::new(), Some(expr))
4945     }
4946
4947     fn block_all(
4948         &mut self,
4949         span: Span,
4950         stmts: hir::HirVec<hir::Stmt>,
4951         expr: Option<P<hir::Expr>>,
4952     ) -> hir::Block {
4953         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
4954
4955         hir::Block {
4956             stmts,
4957             expr,
4958             hir_id,
4959             rules: hir::DefaultBlock,
4960             span,
4961             targeted_by_break: false,
4962         }
4963     }
4964
4965     fn pat_ok(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
4966         self.pat_std_enum(span, &["result", "Result", "Ok"], hir_vec![pat])
4967     }
4968
4969     fn pat_err(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
4970         self.pat_std_enum(span, &["result", "Result", "Err"], hir_vec![pat])
4971     }
4972
4973     fn pat_some(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
4974         self.pat_std_enum(span, &["option", "Option", "Some"], hir_vec![pat])
4975     }
4976
4977     fn pat_none(&mut self, span: Span) -> P<hir::Pat> {
4978         self.pat_std_enum(span, &["option", "Option", "None"], hir_vec![])
4979     }
4980
4981     fn pat_std_enum(
4982         &mut self,
4983         span: Span,
4984         components: &[&str],
4985         subpats: hir::HirVec<P<hir::Pat>>,
4986     ) -> P<hir::Pat> {
4987         let path = self.std_path(span, components, None, true);
4988         let qpath = hir::QPath::Resolved(None, P(path));
4989         let pt = if subpats.is_empty() {
4990             hir::PatKind::Path(qpath)
4991         } else {
4992             hir::PatKind::TupleStruct(qpath, subpats, None)
4993         };
4994         self.pat(span, pt)
4995     }
4996
4997     fn pat_ident(&mut self, span: Span, ident: Ident) -> P<hir::Pat> {
4998         self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
4999     }
5000
5001     fn pat_ident_binding_mode(
5002         &mut self,
5003         span: Span,
5004         ident: Ident,
5005         bm: hir::BindingAnnotation,
5006     ) -> P<hir::Pat> {
5007         let LoweredNodeId { node_id, hir_id } = self.next_id();
5008
5009         P(hir::Pat {
5010             id: node_id,
5011             hir_id,
5012             node: hir::PatKind::Binding(bm, node_id, hir_id, ident.with_span_pos(span), None),
5013             span,
5014         })
5015     }
5016
5017     fn pat_wild(&mut self, span: Span) -> P<hir::Pat> {
5018         self.pat(span, hir::PatKind::Wild)
5019     }
5020
5021     fn pat(&mut self, span: Span, pat: hir::PatKind) -> P<hir::Pat> {
5022         let LoweredNodeId { node_id, hir_id } = self.next_id();
5023         P(hir::Pat {
5024             id: node_id,
5025             hir_id,
5026             node: pat,
5027             span,
5028         })
5029     }
5030
5031     /// Given suffix ["b","c","d"], returns path `::std::b::c::d` when
5032     /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
5033     /// The path is also resolved according to `is_value`.
5034     fn std_path(
5035         &mut self,
5036         span: Span,
5037         components: &[&str],
5038         params: Option<P<hir::GenericArgs>>,
5039         is_value: bool
5040     ) -> hir::Path {
5041         let mut path = self.resolver
5042             .resolve_str_path(span, self.crate_root, components, is_value);
5043         path.segments.last_mut().unwrap().args = params;
5044
5045
5046         for seg in path.segments.iter_mut() {
5047             if let Some(id) = seg.id {
5048                 seg.id = Some(self.lower_node_id(id).node_id);
5049             }
5050         }
5051         path
5052     }
5053
5054     fn ty_path(&mut self, id: LoweredNodeId, span: Span, qpath: hir::QPath) -> hir::Ty {
5055         let mut id = id;
5056         let node = match qpath {
5057             hir::QPath::Resolved(None, path) => {
5058                 // Turn trait object paths into `TyKind::TraitObject` instead.
5059                 match path.def {
5060                     Def::Trait(_) | Def::TraitAlias(_) => {
5061                         let principal = hir::PolyTraitRef {
5062                             bound_generic_params: hir::HirVec::new(),
5063                             trait_ref: hir::TraitRef {
5064                                 path: path.and_then(|path| path),
5065                                 ref_id: id.node_id,
5066                                 hir_ref_id: id.hir_id,
5067                             },
5068                             span,
5069                         };
5070
5071                         // The original ID is taken by the `PolyTraitRef`,
5072                         // so the `Ty` itself needs a different one.
5073                         id = self.next_id();
5074                         hir::TyKind::TraitObject(hir_vec![principal], self.elided_dyn_bound(span))
5075                     }
5076                     _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
5077                 }
5078             }
5079             _ => hir::TyKind::Path(qpath),
5080         };
5081         hir::Ty {
5082             hir_id: id.hir_id,
5083             node,
5084             span,
5085         }
5086     }
5087
5088     /// Invoked to create the lifetime argument for a type `&T`
5089     /// with no explicit lifetime.
5090     fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
5091         match self.anonymous_lifetime_mode {
5092             // Intercept when we are in an impl header and introduce an in-band lifetime.
5093             // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
5094             // `'f`.
5095             AnonymousLifetimeMode::CreateParameter => {
5096                 let fresh_name = self.collect_fresh_in_band_lifetime(span);
5097                 let LoweredNodeId { node_id: _, hir_id } = self.next_id();
5098                 hir::Lifetime {
5099                     hir_id,
5100                     span,
5101                     name: hir::LifetimeName::Param(fresh_name),
5102                 }
5103             }
5104
5105             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
5106
5107             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
5108         }
5109     }
5110
5111     /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
5112     /// return a "error lifetime".
5113     fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
5114         let (id, msg, label) = match id {
5115             Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
5116
5117             None => (
5118                 self.next_id().node_id,
5119                 "`&` without an explicit lifetime name cannot be used here",
5120                 "explicit lifetime name needed here",
5121             ),
5122         };
5123
5124         let mut err = struct_span_err!(
5125             self.sess,
5126             span,
5127             E0637,
5128             "{}",
5129             msg,
5130         );
5131         err.span_label(span, label);
5132         err.emit();
5133
5134         self.new_named_lifetime(id, span, hir::LifetimeName::Error)
5135     }
5136
5137     /// Invoked to create the lifetime argument(s) for a path like
5138     /// `std::cell::Ref<T>`; note that implicit lifetimes in these
5139     /// sorts of cases are deprecated. This may therefore report a warning or an
5140     /// error, depending on the mode.
5141     fn elided_path_lifetimes(&mut self, span: Span, count: usize) -> P<[hir::Lifetime]> {
5142         match self.anonymous_lifetime_mode {
5143             // N.B., We intentionally ignore the create-parameter mode here
5144             // and instead "pass through" to resolve-lifetimes, which will then
5145             // report an error. This is because we don't want to support
5146             // impl elision for deprecated forms like
5147             //
5148             //     impl Foo for std::cell::Ref<u32> // note lack of '_
5149             AnonymousLifetimeMode::CreateParameter => {}
5150
5151             AnonymousLifetimeMode::ReportError => {
5152                 return (0..count)
5153                     .map(|_| self.new_error_lifetime(None, span))
5154                     .collect();
5155             }
5156
5157             // This is the normal case.
5158             AnonymousLifetimeMode::PassThrough => {}
5159         }
5160
5161         (0..count)
5162             .map(|_| self.new_implicit_lifetime(span))
5163             .collect()
5164     }
5165
5166     /// Invoked to create the lifetime argument(s) for an elided trait object
5167     /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
5168     /// when the bound is written, even if it is written with `'_` like in
5169     /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
5170     fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
5171         match self.anonymous_lifetime_mode {
5172             // NB. We intentionally ignore the create-parameter mode here.
5173             // and instead "pass through" to resolve-lifetimes, which will apply
5174             // the object-lifetime-defaulting rules. Elided object lifetime defaults
5175             // do not act like other elided lifetimes. In other words, given this:
5176             //
5177             //     impl Foo for Box<dyn Debug>
5178             //
5179             // we do not introduce a fresh `'_` to serve as the bound, but instead
5180             // ultimately translate to the equivalent of:
5181             //
5182             //     impl Foo for Box<dyn Debug + 'static>
5183             //
5184             // `resolve_lifetime` has the code to make that happen.
5185             AnonymousLifetimeMode::CreateParameter => {}
5186
5187             AnonymousLifetimeMode::ReportError => {
5188                 // ReportError applies to explicit use of `'_`.
5189             }
5190
5191             // This is the normal case.
5192             AnonymousLifetimeMode::PassThrough => {}
5193         }
5194
5195         self.new_implicit_lifetime(span)
5196     }
5197
5198     fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
5199         let LoweredNodeId { node_id: _, hir_id } = self.next_id();
5200
5201         hir::Lifetime {
5202             hir_id,
5203             span,
5204             name: hir::LifetimeName::Implicit,
5205         }
5206     }
5207
5208     fn maybe_lint_bare_trait(&self, span: Span, id: NodeId, is_global: bool) {
5209         self.sess.buffer_lint_with_diagnostic(
5210             builtin::BARE_TRAIT_OBJECTS,
5211             id,
5212             span,
5213             "trait objects without an explicit `dyn` are deprecated",
5214             builtin::BuiltinLintDiagnostics::BareTraitObject(span, is_global),
5215         )
5216     }
5217
5218     fn wrap_in_try_constructor(
5219         &mut self,
5220         method: &'static str,
5221         e: hir::Expr,
5222         unstable_span: Span,
5223     ) -> P<hir::Expr> {
5224         let path = &["ops", "Try", method];
5225         let from_err = P(self.expr_std_path(unstable_span, path, None,
5226                                             ThinVec::new()));
5227         P(self.expr_call(e.span, from_err, hir_vec![e]))
5228     }
5229 }
5230
5231 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body>) -> Vec<hir::BodyId> {
5232     // Sorting by span ensures that we get things in order within a
5233     // file, and also puts the files in a sensible order.
5234     let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
5235     body_ids.sort_by_key(|b| bodies[b].value.span);
5236     body_ids
5237 }