]> git.lizzy.rs Git - rust.git/blob - src/librustc/hir/lowering.rs
ef6a6ae23dc2f8efcd209a6443abfe2e592b1e0d
[rust.git] / src / librustc / hir / lowering.rs
1 // ignore-tidy-filelength
2
3 //! Lowers the AST to the HIR.
4 //!
5 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
6 //! much like a fold. Where lowering involves a bit more work things get more
7 //! interesting and there are some invariants you should know about. These mostly
8 //! concern spans and IDs.
9 //!
10 //! Spans are assigned to AST nodes during parsing and then are modified during
11 //! expansion to indicate the origin of a node and the process it went through
12 //! being expanded. IDs are assigned to AST nodes just before lowering.
13 //!
14 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
15 //! expansion we do not preserve the process of lowering in the spans, so spans
16 //! should not be modified here. When creating a new node (as opposed to
17 //! 'folding' an existing one), then you create a new ID using `next_id()`.
18 //!
19 //! You must ensure that IDs are unique. That means that you should only use the
20 //! ID from an AST node in a single HIR node (you can assume that AST node-IDs
21 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
22 //! If you do, you must then set the new node's ID to a fresh one.
23 //!
24 //! Spans are used for error messages and for tools to map semantics back to
25 //! source code. It is therefore not as important with spans as IDs to be strict
26 //! about use (you can't break the compiler by screwing up a span). Obviously, a
27 //! HIR node can only have a single span. But multiple nodes can have the same
28 //! span and spans don't need to be kept in order, etc. Where code is preserved
29 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
30 //! new it is probably best to give a span for the whole AST node being lowered.
31 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
32 //! get confused if the spans from leaf AST nodes occur in multiple places
33 //! in the HIR, especially for multiple identifiers.
34
35 mod expr;
36 mod item;
37
38 use crate::dep_graph::DepGraph;
39 use crate::hir::{self, ParamName};
40 use crate::hir::HirVec;
41 use crate::hir::map::{DefKey, DefPathData, Definitions};
42 use crate::hir::def_id::{DefId, DefIndex, CRATE_DEF_INDEX};
43 use crate::hir::def::{Namespace, Res, DefKind, PartialRes, PerNS};
44 use crate::hir::{GenericArg, ConstArg};
45 use crate::hir::ptr::P;
46 use crate::lint;
47 use crate::lint::builtin::{self, ELIDED_LIFETIMES_IN_PATHS};
48 use crate::middle::cstore::CrateStore;
49 use crate::session::Session;
50 use crate::session::config::nightly_options;
51 use crate::util::common::FN_OUTPUT_NAME;
52 use crate::util::nodemap::{DefIdMap, NodeMap};
53 use errors::Applicability;
54 use rustc_data_structures::fx::FxHashSet;
55 use rustc_index::vec::IndexVec;
56 use rustc_data_structures::thin_vec::ThinVec;
57 use rustc_data_structures::sync::Lrc;
58
59 use std::collections::BTreeMap;
60 use std::mem;
61 use smallvec::SmallVec;
62 use syntax::attr;
63 use syntax::ast;
64 use syntax::ptr::P as AstP;
65 use syntax::ast::*;
66 use syntax::errors;
67 use syntax::print::pprust;
68 use syntax::token::{self, Nonterminal, Token};
69 use syntax::tokenstream::{TokenStream, TokenTree};
70 use syntax::sess::ParseSess;
71 use syntax::source_map::{respan, ExpnData, ExpnKind, DesugaringKind, Spanned};
72 use syntax::symbol::{kw, sym, Symbol};
73 use syntax::visit::{self, Visitor};
74 use syntax_pos::hygiene::ExpnId;
75 use syntax_pos::Span;
76
77 use rustc_error_codes::*;
78
79 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
80
81 pub struct LoweringContext<'a> {
82     crate_root: Option<Symbol>,
83
84     /// Used to assign IDs to HIR nodes that do not directly correspond to AST nodes.
85     sess: &'a Session,
86
87     resolver: &'a mut dyn Resolver,
88
89     /// HACK(Centril): there is a cyclic dependency between the parser and lowering
90     /// if we don't have this function pointer. To avoid that dependency so that
91     /// librustc is independent of the parser, we use dynamic dispatch here.
92     nt_to_tokenstream: NtToTokenstream,
93
94     /// The items being lowered are collected here.
95     items: BTreeMap<hir::HirId, hir::Item>,
96
97     trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem>,
98     impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem>,
99     bodies: BTreeMap<hir::BodyId, hir::Body>,
100     exported_macros: Vec<hir::MacroDef>,
101     non_exported_macro_attrs: Vec<ast::Attribute>,
102
103     trait_impls: BTreeMap<DefId, Vec<hir::HirId>>,
104
105     modules: BTreeMap<hir::HirId, hir::ModuleItems>,
106
107     generator_kind: Option<hir::GeneratorKind>,
108
109     /// Used to get the current `fn`'s def span to point to when using `await`
110     /// outside of an `async fn`.
111     current_item: Option<Span>,
112
113     catch_scopes: Vec<NodeId>,
114     loop_scopes: Vec<NodeId>,
115     is_in_loop_condition: bool,
116     is_in_trait_impl: bool,
117     is_in_dyn_type: bool,
118
119     /// What to do when we encounter either an "anonymous lifetime
120     /// reference". The term "anonymous" is meant to encompass both
121     /// `'_` lifetimes as well as fully elided cases where nothing is
122     /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
123     anonymous_lifetime_mode: AnonymousLifetimeMode,
124
125     /// Used to create lifetime definitions from in-band lifetime usages.
126     /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
127     /// When a named lifetime is encountered in a function or impl header and
128     /// has not been defined
129     /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
130     /// to this list. The results of this list are then added to the list of
131     /// lifetime definitions in the corresponding impl or function generics.
132     lifetimes_to_define: Vec<(Span, ParamName)>,
133
134     /// `true` if in-band lifetimes are being collected. This is used to
135     /// indicate whether or not we're in a place where new lifetimes will result
136     /// in in-band lifetime definitions, such a function or an impl header,
137     /// including implicit lifetimes from `impl_header_lifetime_elision`.
138     is_collecting_in_band_lifetimes: bool,
139
140     /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
141     /// When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
142     /// against this list to see if it is already in-scope, or if a definition
143     /// needs to be created for it.
144     ///
145     /// We always store a `modern()` version of the param-name in this
146     /// vector.
147     in_scope_lifetimes: Vec<ParamName>,
148
149     current_module: hir::HirId,
150
151     type_def_lifetime_params: DefIdMap<usize>,
152
153     current_hir_id_owner: Vec<(DefIndex, u32)>,
154     item_local_id_counters: NodeMap<u32>,
155     node_id_to_hir_id: IndexVec<NodeId, hir::HirId>,
156
157     allow_try_trait: Option<Lrc<[Symbol]>>,
158     allow_gen_future: Option<Lrc<[Symbol]>>,
159 }
160
161 pub trait Resolver {
162     fn cstore(&self) -> &dyn CrateStore;
163
164     /// Obtains resolution for a `NodeId` with a single resolution.
165     fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes>;
166
167     /// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
168     fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;
169
170     /// Obtains resolution for a label with the given `NodeId`.
171     fn get_label_res(&mut self, id: NodeId) -> Option<NodeId>;
172
173     /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
174     /// This should only return `None` during testing.
175     fn definitions(&mut self) -> &mut Definitions;
176
177     /// Given suffix `["b", "c", "d"]`, creates an AST path for `[::crate_root]::b::c::d` and
178     /// resolves it based on `is_value`.
179     fn resolve_str_path(
180         &mut self,
181         span: Span,
182         crate_root: Option<Symbol>,
183         components: &[Symbol],
184         ns: Namespace,
185     ) -> (ast::Path, Res<NodeId>);
186
187     fn lint_buffer(&mut self) -> &mut lint::LintBuffer;
188
189     fn next_node_id(&mut self) -> NodeId;
190 }
191
192 type NtToTokenstream = fn(&Nonterminal, &ParseSess, Span) -> TokenStream;
193
194 /// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
195 /// and if so, what meaning it has.
196 #[derive(Debug)]
197 enum ImplTraitContext<'a> {
198     /// Treat `impl Trait` as shorthand for a new universal generic parameter.
199     /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
200     /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
201     ///
202     /// Newly generated parameters should be inserted into the given `Vec`.
203     Universal(&'a mut Vec<hir::GenericParam>),
204
205     /// Treat `impl Trait` as shorthand for a new opaque type.
206     /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
207     /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
208     ///
209     /// We optionally store a `DefId` for the parent item here so we can look up necessary
210     /// information later. It is `None` when no information about the context should be stored
211     /// (e.g., for consts and statics).
212     OpaqueTy(Option<DefId> /* fn def-ID */),
213
214     /// `impl Trait` is not accepted in this position.
215     Disallowed(ImplTraitPosition),
216 }
217
218 /// Position in which `impl Trait` is disallowed.
219 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
220 enum ImplTraitPosition {
221     /// Disallowed in `let` / `const` / `static` bindings.
222     Binding,
223
224     /// All other posiitons.
225     Other,
226 }
227
228 impl<'a> ImplTraitContext<'a> {
229     #[inline]
230     fn disallowed() -> Self {
231         ImplTraitContext::Disallowed(ImplTraitPosition::Other)
232     }
233
234     fn reborrow(&'b mut self) -> ImplTraitContext<'b> {
235         use self::ImplTraitContext::*;
236         match self {
237             Universal(params) => Universal(params),
238             OpaqueTy(fn_def_id) => OpaqueTy(*fn_def_id),
239             Disallowed(pos) => Disallowed(*pos),
240         }
241     }
242 }
243
244 pub fn lower_crate(
245     sess: &Session,
246     dep_graph: &DepGraph,
247     krate: &Crate,
248     resolver: &mut dyn Resolver,
249     nt_to_tokenstream: NtToTokenstream,
250 ) -> hir::Crate {
251     // We're constructing the HIR here; we don't care what we will
252     // read, since we haven't even constructed the *input* to
253     // incr. comp. yet.
254     dep_graph.assert_ignored();
255
256     let _prof_timer = sess.prof.generic_activity("hir_lowering");
257
258     LoweringContext {
259         crate_root: sess.parse_sess.injected_crate_name.try_get().copied(),
260         sess,
261         resolver,
262         nt_to_tokenstream,
263         items: BTreeMap::new(),
264         trait_items: BTreeMap::new(),
265         impl_items: BTreeMap::new(),
266         bodies: BTreeMap::new(),
267         trait_impls: BTreeMap::new(),
268         modules: BTreeMap::new(),
269         exported_macros: Vec::new(),
270         non_exported_macro_attrs: Vec::new(),
271         catch_scopes: Vec::new(),
272         loop_scopes: Vec::new(),
273         is_in_loop_condition: false,
274         is_in_trait_impl: false,
275         is_in_dyn_type: false,
276         anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
277         type_def_lifetime_params: Default::default(),
278         current_module: hir::CRATE_HIR_ID,
279         current_hir_id_owner: vec![(CRATE_DEF_INDEX, 0)],
280         item_local_id_counters: Default::default(),
281         node_id_to_hir_id: IndexVec::new(),
282         generator_kind: None,
283         current_item: None,
284         lifetimes_to_define: Vec::new(),
285         is_collecting_in_band_lifetimes: false,
286         in_scope_lifetimes: Vec::new(),
287         allow_try_trait: Some([sym::try_trait][..].into()),
288         allow_gen_future: Some([sym::gen_future][..].into()),
289     }.lower_crate(krate)
290 }
291
292 #[derive(Copy, Clone, PartialEq)]
293 enum ParamMode {
294     /// Any path in a type context.
295     Explicit,
296     /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
297     ExplicitNamed,
298     /// The `module::Type` in `module::Type::method` in an expression.
299     Optional,
300 }
301
302 enum ParenthesizedGenericArgs {
303     Ok,
304     Err,
305 }
306
307 /// What to do when we encounter an **anonymous** lifetime
308 /// reference. Anonymous lifetime references come in two flavors. You
309 /// have implicit, or fully elided, references to lifetimes, like the
310 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
311 /// or `Ref<'_, T>`. These often behave the same, but not always:
312 ///
313 /// - certain usages of implicit references are deprecated, like
314 ///   `Ref<T>`, and we sometimes just give hard errors in those cases
315 ///   as well.
316 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
317 ///   the same as `Box<dyn Foo + '_>`.
318 ///
319 /// We describe the effects of the various modes in terms of three cases:
320 ///
321 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
322 ///   of a `&` (e.g., the missing lifetime in something like `&T`)
323 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
324 ///   there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
325 ///   elided bounds follow special rules. Note that this only covers
326 ///   cases where *nothing* is written; the `'_` in `Box<dyn Foo +
327 ///   '_>` is a case of "modern" elision.
328 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
329 ///   parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
330 ///   non-deprecated equivalent.
331 ///
332 /// Currently, the handling of lifetime elision is somewhat spread out
333 /// between HIR lowering and -- as described below -- the
334 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
335 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
336 /// everything into HIR lowering.
337 #[derive(Copy, Clone, Debug)]
338 enum AnonymousLifetimeMode {
339     /// For **Modern** cases, create a new anonymous region parameter
340     /// and reference that.
341     ///
342     /// For **Dyn Bound** cases, pass responsibility to
343     /// `resolve_lifetime` code.
344     ///
345     /// For **Deprecated** cases, report an error.
346     CreateParameter,
347
348     /// Give a hard error when either `&` or `'_` is written. Used to
349     /// rule out things like `where T: Foo<'_>`. Does not imply an
350     /// error on default object bounds (e.g., `Box<dyn Foo>`).
351     ReportError,
352
353     /// Pass responsibility to `resolve_lifetime` code for all cases.
354     PassThrough,
355 }
356
357 struct ImplTraitTypeIdVisitor<'a> { ids: &'a mut SmallVec<[NodeId; 1]> }
358
359 impl<'a, 'b> Visitor<'a> for ImplTraitTypeIdVisitor<'b> {
360     fn visit_ty(&mut self, ty: &'a Ty) {
361         match ty.kind {
362             | TyKind::Typeof(_)
363             | TyKind::BareFn(_)
364             => return,
365
366             TyKind::ImplTrait(id, _) => self.ids.push(id),
367             _ => {},
368         }
369         visit::walk_ty(self, ty);
370     }
371
372     fn visit_path_segment(
373         &mut self,
374         path_span: Span,
375         path_segment: &'v PathSegment,
376     ) {
377         if let Some(ref p) = path_segment.args {
378             if let GenericArgs::Parenthesized(_) = **p {
379                 return;
380             }
381         }
382         visit::walk_path_segment(self, path_span, path_segment)
383     }
384 }
385
386 impl<'a> LoweringContext<'a> {
387     fn lower_crate(mut self, c: &Crate) -> hir::Crate {
388         /// Full-crate AST visitor that inserts into a fresh
389         /// `LoweringContext` any information that may be
390         /// needed from arbitrary locations in the crate,
391         /// e.g., the number of lifetime generic parameters
392         /// declared for every type and trait definition.
393         struct MiscCollector<'tcx, 'interner> {
394             lctx: &'tcx mut LoweringContext<'interner>,
395             hir_id_owner: Option<NodeId>,
396         }
397
398         impl MiscCollector<'_, '_> {
399             fn allocate_use_tree_hir_id_counters(
400                 &mut self,
401                 tree: &UseTree,
402                 owner: DefIndex,
403             ) {
404                 match tree.kind {
405                     UseTreeKind::Simple(_, id1, id2) => {
406                         for &id in &[id1, id2] {
407                             self.lctx.resolver.definitions().create_def_with_parent(
408                                 owner,
409                                 id,
410                                 DefPathData::Misc,
411                                 ExpnId::root(),
412                                 tree.prefix.span,
413                             );
414                             self.lctx.allocate_hir_id_counter(id);
415                         }
416                     }
417                     UseTreeKind::Glob => (),
418                     UseTreeKind::Nested(ref trees) => {
419                         for &(ref use_tree, id) in trees {
420                             let hir_id = self.lctx.allocate_hir_id_counter(id);
421                             self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
422                         }
423                     }
424                 }
425             }
426
427             fn with_hir_id_owner<F, T>(&mut self, owner: Option<NodeId>, f: F) -> T
428             where
429                 F: FnOnce(&mut Self) -> T,
430             {
431                 let old = mem::replace(&mut self.hir_id_owner, owner);
432                 let r = f(self);
433                 self.hir_id_owner = old;
434                 r
435             }
436         }
437
438         impl<'tcx, 'interner> Visitor<'tcx> for MiscCollector<'tcx, 'interner> {
439             fn visit_pat(&mut self, p: &'tcx Pat) {
440                 if let PatKind::Paren(..) | PatKind::Rest = p.kind {
441                     // Doesn't generate a HIR node
442                 } else if let Some(owner) = self.hir_id_owner {
443                     self.lctx.lower_node_id_with_owner(p.id, owner);
444                 }
445
446                 visit::walk_pat(self, p)
447             }
448
449             fn visit_item(&mut self, item: &'tcx Item) {
450                 let hir_id = self.lctx.allocate_hir_id_counter(item.id);
451
452                 match item.kind {
453                     ItemKind::Struct(_, ref generics)
454                     | ItemKind::Union(_, ref generics)
455                     | ItemKind::Enum(_, ref generics)
456                     | ItemKind::TyAlias(_, ref generics)
457                     | ItemKind::Trait(_, _, ref generics, ..) => {
458                         let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
459                         let count = generics
460                             .params
461                             .iter()
462                             .filter(|param| match param.kind {
463                                 ast::GenericParamKind::Lifetime { .. } => true,
464                                 _ => false,
465                             })
466                             .count();
467                         self.lctx.type_def_lifetime_params.insert(def_id, count);
468                     }
469                     ItemKind::Use(ref use_tree) => {
470                         self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
471                     }
472                     _ => {}
473                 }
474
475                 self.with_hir_id_owner(Some(item.id), |this| {
476                     visit::walk_item(this, item);
477                 });
478             }
479
480             fn visit_trait_item(&mut self, item: &'tcx TraitItem) {
481                 self.lctx.allocate_hir_id_counter(item.id);
482
483                 match item.kind {
484                     TraitItemKind::Method(_, None) => {
485                         // Ignore patterns in trait methods without bodies
486                         self.with_hir_id_owner(None, |this| {
487                             visit::walk_trait_item(this, item)
488                         });
489                     }
490                     _ => self.with_hir_id_owner(Some(item.id), |this| {
491                         visit::walk_trait_item(this, item);
492                     })
493                 }
494             }
495
496             fn visit_impl_item(&mut self, item: &'tcx ImplItem) {
497                 self.lctx.allocate_hir_id_counter(item.id);
498                 self.with_hir_id_owner(Some(item.id), |this| {
499                     visit::walk_impl_item(this, item);
500                 });
501             }
502
503             fn visit_foreign_item(&mut self, i: &'tcx ForeignItem) {
504                 // Ignore patterns in foreign items
505                 self.with_hir_id_owner(None, |this| {
506                     visit::walk_foreign_item(this, i)
507                 });
508             }
509
510             fn visit_ty(&mut self, t: &'tcx Ty) {
511                 match t.kind {
512                     // Mirrors the case in visit::walk_ty
513                     TyKind::BareFn(ref f) => {
514                         walk_list!(
515                             self,
516                             visit_generic_param,
517                             &f.generic_params
518                         );
519                         // Mirrors visit::walk_fn_decl
520                         for parameter in &f.decl.inputs {
521                             // We don't lower the ids of argument patterns
522                             self.with_hir_id_owner(None, |this| {
523                                 this.visit_pat(&parameter.pat);
524                             });
525                             self.visit_ty(&parameter.ty)
526                         }
527                         self.visit_fn_ret_ty(&f.decl.output)
528                     }
529                     _ => visit::walk_ty(self, t),
530                 }
531             }
532         }
533
534         self.lower_node_id(CRATE_NODE_ID);
535         debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == hir::CRATE_HIR_ID);
536
537         visit::walk_crate(&mut MiscCollector { lctx: &mut self, hir_id_owner: None }, c);
538         visit::walk_crate(&mut item::ItemLowerer { lctx: &mut self }, c);
539
540         let module = self.lower_mod(&c.module);
541         let attrs = self.lower_attrs(&c.attrs);
542         let body_ids = body_ids(&self.bodies);
543
544         self.resolver
545             .definitions()
546             .init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
547
548         hir::Crate {
549             module,
550             attrs,
551             span: c.span,
552             exported_macros: hir::HirVec::from(self.exported_macros),
553             non_exported_macro_attrs: hir::HirVec::from(self.non_exported_macro_attrs),
554             items: self.items,
555             trait_items: self.trait_items,
556             impl_items: self.impl_items,
557             bodies: self.bodies,
558             body_ids,
559             trait_impls: self.trait_impls,
560             modules: self.modules,
561         }
562     }
563
564     fn insert_item(&mut self, item: hir::Item) {
565         let id = item.hir_id;
566         // FIXME: Use `debug_asset-rt`.
567         assert_eq!(id.local_id, hir::ItemLocalId::from_u32(0));
568         self.items.insert(id, item);
569         self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
570     }
571
572     fn allocate_hir_id_counter(&mut self, owner: NodeId) -> hir::HirId {
573         // Set up the counter if needed.
574         self.item_local_id_counters.entry(owner).or_insert(0);
575         // Always allocate the first `HirId` for the owner itself.
576         let lowered = self.lower_node_id_with_owner(owner, owner);
577         debug_assert_eq!(lowered.local_id.as_u32(), 0);
578         lowered
579     }
580
581     fn lower_node_id_generic<F>(&mut self, ast_node_id: NodeId, alloc_hir_id: F) -> hir::HirId
582     where
583         F: FnOnce(&mut Self) -> hir::HirId,
584     {
585         if ast_node_id == DUMMY_NODE_ID {
586             return hir::DUMMY_HIR_ID;
587         }
588
589         let min_size = ast_node_id.as_usize() + 1;
590
591         if min_size > self.node_id_to_hir_id.len() {
592             self.node_id_to_hir_id.resize(min_size, hir::DUMMY_HIR_ID);
593         }
594
595         let existing_hir_id = self.node_id_to_hir_id[ast_node_id];
596
597         if existing_hir_id == hir::DUMMY_HIR_ID {
598             // Generate a new `HirId`.
599             let hir_id = alloc_hir_id(self);
600             self.node_id_to_hir_id[ast_node_id] = hir_id;
601
602             hir_id
603         } else {
604             existing_hir_id
605         }
606     }
607
608     fn with_hir_id_owner<F, T>(&mut self, owner: NodeId, f: F) -> T
609     where
610         F: FnOnce(&mut Self) -> T,
611     {
612         let counter = self.item_local_id_counters
613             .insert(owner, HIR_ID_COUNTER_LOCKED)
614             .unwrap_or_else(|| panic!("no `item_local_id_counters` entry for {:?}", owner));
615         let def_index = self.resolver.definitions().opt_def_index(owner).unwrap();
616         self.current_hir_id_owner.push((def_index, counter));
617         let ret = f(self);
618         let (new_def_index, new_counter) = self.current_hir_id_owner.pop().unwrap();
619
620         debug_assert!(def_index == new_def_index);
621         debug_assert!(new_counter >= counter);
622
623         let prev = self.item_local_id_counters
624             .insert(owner, new_counter)
625             .unwrap();
626         debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
627         ret
628     }
629
630     /// This method allocates a new `HirId` for the given `NodeId` and stores it in
631     /// the `LoweringContext`'s `NodeId => HirId` map.
632     /// Take care not to call this method if the resulting `HirId` is then not
633     /// actually used in the HIR, as that would trigger an assertion in the
634     /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
635     /// properly. Calling the method twice with the same `NodeId` is fine though.
636     fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
637         self.lower_node_id_generic(ast_node_id, |this| {
638             let &mut (def_index, ref mut local_id_counter) =
639                 this.current_hir_id_owner.last_mut().unwrap();
640             let local_id = *local_id_counter;
641             *local_id_counter += 1;
642             hir::HirId {
643                 owner: def_index,
644                 local_id: hir::ItemLocalId::from_u32(local_id),
645             }
646         })
647     }
648
649     fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> hir::HirId {
650         self.lower_node_id_generic(ast_node_id, |this| {
651             let local_id_counter = this
652                 .item_local_id_counters
653                 .get_mut(&owner)
654                 .expect("called `lower_node_id_with_owner` before `allocate_hir_id_counter`");
655             let local_id = *local_id_counter;
656
657             // We want to be sure not to modify the counter in the map while it
658             // is also on the stack. Otherwise we'll get lost updates when writing
659             // back from the stack to the map.
660             debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
661
662             *local_id_counter += 1;
663             let def_index = this
664                 .resolver
665                 .definitions()
666                 .opt_def_index(owner)
667                 .expect("you forgot to call `create_def_with_parent` or are lowering node-IDs \
668                          that do not belong to the current owner");
669
670             hir::HirId {
671                 owner: def_index,
672                 local_id: hir::ItemLocalId::from_u32(local_id),
673             }
674         })
675     }
676
677     fn next_id(&mut self) -> hir::HirId {
678         let node_id = self.resolver.next_node_id();
679         self.lower_node_id(node_id)
680     }
681
682     fn lower_res(&mut self, res: Res<NodeId>) -> Res {
683         res.map_id(|id| {
684             self.lower_node_id_generic(id, |_| {
685                 panic!("expected `NodeId` to be lowered already for res {:#?}", res);
686             })
687         })
688     }
689
690     fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
691         self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
692             if pr.unresolved_segments() != 0 {
693                 bug!("path not fully resolved: {:?}", pr);
694             }
695             pr.base_res()
696         })
697     }
698
699     fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
700         self.resolver.get_import_res(id).present_items()
701     }
702
703     fn diagnostic(&self) -> &errors::Handler {
704         self.sess.diagnostic()
705     }
706
707     /// Reuses the span but adds information like the kind of the desugaring and features that are
708     /// allowed inside this span.
709     fn mark_span_with_reason(
710         &self,
711         reason: DesugaringKind,
712         span: Span,
713         allow_internal_unstable: Option<Lrc<[Symbol]>>,
714     ) -> Span {
715         span.fresh_expansion(ExpnData {
716             allow_internal_unstable,
717             ..ExpnData::default(ExpnKind::Desugaring(reason), span, self.sess.edition())
718         })
719     }
720
721     fn with_anonymous_lifetime_mode<R>(
722         &mut self,
723         anonymous_lifetime_mode: AnonymousLifetimeMode,
724         op: impl FnOnce(&mut Self) -> R,
725     ) -> R {
726         debug!(
727             "with_anonymous_lifetime_mode(anonymous_lifetime_mode={:?})",
728             anonymous_lifetime_mode,
729         );
730         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
731         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
732         let result = op(self);
733         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
734         debug!("with_anonymous_lifetime_mode: restoring anonymous_lifetime_mode={:?}",
735                old_anonymous_lifetime_mode);
736         result
737     }
738
739     /// Creates a new `hir::GenericParam` for every new lifetime and
740     /// type parameter encountered while evaluating `f`. Definitions
741     /// are created with the parent provided. If no `parent_id` is
742     /// provided, no definitions will be returned.
743     ///
744     /// Presuming that in-band lifetimes are enabled, then
745     /// `self.anonymous_lifetime_mode` will be updated to match the
746     /// parameter while `f` is running (and restored afterwards).
747     fn collect_in_band_defs<T, F>(
748         &mut self,
749         parent_id: DefId,
750         anonymous_lifetime_mode: AnonymousLifetimeMode,
751         f: F,
752     ) -> (Vec<hir::GenericParam>, T)
753     where
754         F: FnOnce(&mut LoweringContext<'_>) -> (Vec<hir::GenericParam>, T),
755     {
756         assert!(!self.is_collecting_in_band_lifetimes);
757         assert!(self.lifetimes_to_define.is_empty());
758         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
759
760         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
761         self.is_collecting_in_band_lifetimes = true;
762
763         let (in_band_ty_params, res) = f(self);
764
765         self.is_collecting_in_band_lifetimes = false;
766         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
767
768         let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
769
770         let params = lifetimes_to_define
771             .into_iter()
772             .map(|(span, hir_name)| self.lifetime_to_generic_param(
773                 span, hir_name, parent_id.index,
774             ))
775             .chain(in_band_ty_params.into_iter())
776             .collect();
777
778         (params, res)
779     }
780
781     /// Converts a lifetime into a new generic parameter.
782     fn lifetime_to_generic_param(
783         &mut self,
784         span: Span,
785         hir_name: ParamName,
786         parent_index: DefIndex,
787     ) -> hir::GenericParam {
788         let node_id = self.resolver.next_node_id();
789
790         // Get the name we'll use to make the def-path. Note
791         // that collisions are ok here and this shouldn't
792         // really show up for end-user.
793         let (str_name, kind) = match hir_name {
794             ParamName::Plain(ident) => (
795                 ident.name,
796                 hir::LifetimeParamKind::InBand,
797             ),
798             ParamName::Fresh(_) => (
799                 kw::UnderscoreLifetime,
800                 hir::LifetimeParamKind::Elided,
801             ),
802             ParamName::Error => (
803                 kw::UnderscoreLifetime,
804                 hir::LifetimeParamKind::Error,
805             ),
806         };
807
808         // Add a definition for the in-band lifetime def.
809         self.resolver.definitions().create_def_with_parent(
810             parent_index,
811             node_id,
812             DefPathData::LifetimeNs(str_name),
813             ExpnId::root(),
814             span,
815         );
816
817         hir::GenericParam {
818             hir_id: self.lower_node_id(node_id),
819             name: hir_name,
820             attrs: hir_vec![],
821             bounds: hir_vec![],
822             span,
823             pure_wrt_drop: false,
824             kind: hir::GenericParamKind::Lifetime { kind }
825         }
826     }
827
828     /// When there is a reference to some lifetime `'a`, and in-band
829     /// lifetimes are enabled, then we want to push that lifetime into
830     /// the vector of names to define later. In that case, it will get
831     /// added to the appropriate generics.
832     fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
833         if !self.is_collecting_in_band_lifetimes {
834             return;
835         }
836
837         if !self.sess.features_untracked().in_band_lifetimes {
838             return;
839         }
840
841         if self.in_scope_lifetimes.contains(&ParamName::Plain(ident.modern())) {
842             return;
843         }
844
845         let hir_name = ParamName::Plain(ident);
846
847         if self.lifetimes_to_define.iter()
848                                    .any(|(_, lt_name)| lt_name.modern() == hir_name.modern()) {
849             return;
850         }
851
852         self.lifetimes_to_define.push((ident.span, hir_name));
853     }
854
855     /// When we have either an elided or `'_` lifetime in an impl
856     /// header, we convert it to an in-band lifetime.
857     fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
858         assert!(self.is_collecting_in_band_lifetimes);
859         let index = self.lifetimes_to_define.len() + self.in_scope_lifetimes.len();
860         let hir_name = ParamName::Fresh(index);
861         self.lifetimes_to_define.push((span, hir_name));
862         hir_name
863     }
864
865     // Evaluates `f` with the lifetimes in `params` in-scope.
866     // This is used to track which lifetimes have already been defined, and
867     // which are new in-band lifetimes that need to have a definition created
868     // for them.
869     fn with_in_scope_lifetime_defs<T, F>(&mut self, params: &[GenericParam], f: F) -> T
870     where
871         F: FnOnce(&mut LoweringContext<'_>) -> T,
872     {
873         let old_len = self.in_scope_lifetimes.len();
874         let lt_def_names = params.iter().filter_map(|param| match param.kind {
875             GenericParamKind::Lifetime { .. } => Some(ParamName::Plain(param.ident.modern())),
876             _ => None,
877         });
878         self.in_scope_lifetimes.extend(lt_def_names);
879
880         let res = f(self);
881
882         self.in_scope_lifetimes.truncate(old_len);
883         res
884     }
885
886     /// Appends in-band lifetime defs and argument-position `impl
887     /// Trait` defs to the existing set of generics.
888     ///
889     /// Presuming that in-band lifetimes are enabled, then
890     /// `self.anonymous_lifetime_mode` will be updated to match the
891     /// parameter while `f` is running (and restored afterwards).
892     fn add_in_band_defs<F, T>(
893         &mut self,
894         generics: &Generics,
895         parent_id: DefId,
896         anonymous_lifetime_mode: AnonymousLifetimeMode,
897         f: F,
898     ) -> (hir::Generics, T)
899     where
900         F: FnOnce(&mut LoweringContext<'_>, &mut Vec<hir::GenericParam>) -> T,
901     {
902         let (in_band_defs, (mut lowered_generics, res)) = self.with_in_scope_lifetime_defs(
903             &generics.params,
904             |this| {
905                 this.collect_in_band_defs(parent_id, anonymous_lifetime_mode, |this| {
906                     let mut params = Vec::new();
907                     // Note: it is necessary to lower generics *before* calling `f`.
908                     // When lowering `async fn`, there's a final step when lowering
909                     // the return type that assumes that all in-scope lifetimes have
910                     // already been added to either `in_scope_lifetimes` or
911                     // `lifetimes_to_define`. If we swapped the order of these two,
912                     // in-band-lifetimes introduced by generics or where-clauses
913                     // wouldn't have been added yet.
914                     let generics = this.lower_generics(
915                         generics,
916                         ImplTraitContext::Universal(&mut params),
917                     );
918                     let res = f(this, &mut params);
919                     (params, (generics, res))
920                 })
921             },
922         );
923
924         let mut lowered_params: Vec<_> = lowered_generics
925             .params
926             .into_iter()
927             .chain(in_band_defs)
928             .collect();
929
930         // FIXME(const_generics): the compiler doesn't always cope with
931         // unsorted generic parameters at the moment, so we make sure
932         // that they're ordered correctly here for now. (When we chain
933         // the `in_band_defs`, we might make the order unsorted.)
934         lowered_params.sort_by_key(|param| {
935             match param.kind {
936                 hir::GenericParamKind::Lifetime { .. } => ParamKindOrd::Lifetime,
937                 hir::GenericParamKind::Type { .. } => ParamKindOrd::Type,
938                 hir::GenericParamKind::Const { .. } => ParamKindOrd::Const,
939             }
940         });
941
942         lowered_generics.params = lowered_params.into();
943
944         (lowered_generics, res)
945     }
946
947     fn with_dyn_type_scope<T, F>(&mut self, in_scope: bool, f: F) -> T
948     where
949         F: FnOnce(&mut LoweringContext<'_>) -> T,
950     {
951         let was_in_dyn_type = self.is_in_dyn_type;
952         self.is_in_dyn_type = in_scope;
953
954         let result = f(self);
955
956         self.is_in_dyn_type = was_in_dyn_type;
957
958         result
959     }
960
961     fn with_new_scopes<T, F>(&mut self, f: F) -> T
962     where
963         F: FnOnce(&mut LoweringContext<'_>) -> T,
964     {
965         let was_in_loop_condition = self.is_in_loop_condition;
966         self.is_in_loop_condition = false;
967
968         let catch_scopes = mem::take(&mut self.catch_scopes);
969         let loop_scopes = mem::take(&mut self.loop_scopes);
970         let ret = f(self);
971         self.catch_scopes = catch_scopes;
972         self.loop_scopes = loop_scopes;
973
974         self.is_in_loop_condition = was_in_loop_condition;
975
976         ret
977     }
978
979     fn def_key(&mut self, id: DefId) -> DefKey {
980         if id.is_local() {
981             self.resolver.definitions().def_key(id.index)
982         } else {
983             self.resolver.cstore().def_key(id)
984         }
985     }
986
987     fn lower_attrs_extendable(&mut self, attrs: &[Attribute]) -> Vec<Attribute> {
988         attrs
989             .iter()
990             .map(|a| self.lower_attr(a))
991             .collect()
992     }
993
994     fn lower_attrs(&mut self, attrs: &[Attribute]) -> hir::HirVec<Attribute> {
995         self.lower_attrs_extendable(attrs).into()
996     }
997
998     fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
999         // Note that we explicitly do not walk the path. Since we don't really
1000         // lower attributes (we use the AST version) there is nowhere to keep
1001         // the `HirId`s. We don't actually need HIR version of attributes anyway.
1002         let kind = match attr.kind {
1003             AttrKind::Normal(ref item) => {
1004                 AttrKind::Normal(AttrItem {
1005                     path: item.path.clone(),
1006                     tokens: self.lower_token_stream(item.tokens.clone()),
1007                 })
1008             }
1009             AttrKind::DocComment(comment) => AttrKind::DocComment(comment)
1010         };
1011
1012         Attribute {
1013             kind,
1014             id: attr.id,
1015             style: attr.style,
1016             span: attr.span,
1017         }
1018     }
1019
1020     fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
1021         tokens
1022             .into_trees()
1023             .flat_map(|tree| self.lower_token_tree(tree).into_trees())
1024             .collect()
1025     }
1026
1027     fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
1028         match tree {
1029             TokenTree::Token(token) => self.lower_token(token),
1030             TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
1031                 span,
1032                 delim,
1033                 self.lower_token_stream(tts),
1034             ).into(),
1035         }
1036     }
1037
1038     fn lower_token(&mut self, token: Token) -> TokenStream {
1039         match token.kind {
1040             token::Interpolated(nt) => {
1041                 let tts = (self.nt_to_tokenstream)(&nt, &self.sess.parse_sess, token.span);
1042                 self.lower_token_stream(tts)
1043             }
1044             _ => TokenTree::Token(token).into(),
1045         }
1046     }
1047
1048     /// Given an associated type constraint like one of these:
1049     ///
1050     /// ```
1051     /// T: Iterator<Item: Debug>
1052     ///             ^^^^^^^^^^^
1053     /// T: Iterator<Item = Debug>
1054     ///             ^^^^^^^^^^^^
1055     /// ```
1056     ///
1057     /// returns a `hir::TypeBinding` representing `Item`.
1058     fn lower_assoc_ty_constraint(
1059         &mut self,
1060         constraint: &AssocTyConstraint,
1061         itctx: ImplTraitContext<'_>,
1062     ) -> hir::TypeBinding {
1063         debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);
1064
1065         let kind = match constraint.kind {
1066             AssocTyConstraintKind::Equality { ref ty } => hir::TypeBindingKind::Equality {
1067                 ty: self.lower_ty(ty, itctx)
1068             },
1069             AssocTyConstraintKind::Bound { ref bounds } => {
1070                 // Piggy-back on the `impl Trait` context to figure out the correct behavior.
1071                 let (desugar_to_impl_trait, itctx) = match itctx {
1072                     // We are in the return position:
1073                     //
1074                     //     fn foo() -> impl Iterator<Item: Debug>
1075                     //
1076                     // so desugar to
1077                     //
1078                     //     fn foo() -> impl Iterator<Item = impl Debug>
1079                     ImplTraitContext::OpaqueTy(_) => (true, itctx),
1080
1081                     // We are in the argument position, but within a dyn type:
1082                     //
1083                     //     fn foo(x: dyn Iterator<Item: Debug>)
1084                     //
1085                     // so desugar to
1086                     //
1087                     //     fn foo(x: dyn Iterator<Item = impl Debug>)
1088                     ImplTraitContext::Universal(_) if self.is_in_dyn_type => (true, itctx),
1089
1090                     // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
1091                     // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
1092                     // "impl trait context" to permit `impl Debug` in this position (it desugars
1093                     // then to an opaque type).
1094                     //
1095                     // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
1096                     ImplTraitContext::Disallowed(_) if self.is_in_dyn_type =>
1097                         (true, ImplTraitContext::OpaqueTy(None)),
1098
1099                     // We are in the parameter position, but not within a dyn type:
1100                     //
1101                     //     fn foo(x: impl Iterator<Item: Debug>)
1102                     //
1103                     // so we leave it as is and this gets expanded in astconv to a bound like
1104                     // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
1105                     // `impl Iterator`.
1106                     _ => (false, itctx),
1107                 };
1108
1109                 if desugar_to_impl_trait {
1110                     // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
1111                     // constructing the HIR for `impl bounds...` and then lowering that.
1112
1113                     let impl_trait_node_id = self.resolver.next_node_id();
1114                     let parent_def_index = self.current_hir_id_owner.last().unwrap().0;
1115                     self.resolver.definitions().create_def_with_parent(
1116                         parent_def_index,
1117                         impl_trait_node_id,
1118                         DefPathData::ImplTrait,
1119                         ExpnId::root(),
1120                         constraint.span,
1121                     );
1122
1123                     self.with_dyn_type_scope(false, |this| {
1124                         let node_id = this.resolver.next_node_id();
1125                         let ty = this.lower_ty(
1126                             &Ty {
1127                                 id: node_id,
1128                                 kind: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
1129                                 span: constraint.span,
1130                             },
1131                             itctx,
1132                         );
1133
1134                         hir::TypeBindingKind::Equality {
1135                             ty
1136                         }
1137                     })
1138                 } else {
1139                     // Desugar `AssocTy: Bounds` into a type binding where the
1140                     // later desugars into a trait predicate.
1141                     let bounds = self.lower_param_bounds(bounds, itctx);
1142
1143                     hir::TypeBindingKind::Constraint {
1144                         bounds
1145                     }
1146                 }
1147             }
1148         };
1149
1150         hir::TypeBinding {
1151             hir_id: self.lower_node_id(constraint.id),
1152             ident: constraint.ident,
1153             kind,
1154             span: constraint.span,
1155         }
1156     }
1157
1158     fn lower_generic_arg(&mut self,
1159                          arg: &ast::GenericArg,
1160                          itctx: ImplTraitContext<'_>)
1161                          -> hir::GenericArg {
1162         match arg {
1163             ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1164             ast::GenericArg::Type(ty) => GenericArg::Type(self.lower_ty_direct(&ty, itctx)),
1165             ast::GenericArg::Const(ct) => {
1166                 GenericArg::Const(ConstArg {
1167                     value: self.lower_anon_const(&ct),
1168                     span: ct.value.span,
1169                 })
1170             }
1171         }
1172     }
1173
1174     fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_>) -> P<hir::Ty> {
1175         P(self.lower_ty_direct(t, itctx))
1176     }
1177
1178     fn lower_path_ty(
1179         &mut self,
1180         t: &Ty,
1181         qself: &Option<QSelf>,
1182         path: &Path,
1183         param_mode: ParamMode,
1184         itctx: ImplTraitContext<'_>
1185     ) -> hir::Ty {
1186         let id = self.lower_node_id(t.id);
1187         let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
1188         let ty = self.ty_path(id, t.span, qpath);
1189         if let hir::TyKind::TraitObject(..) = ty.kind {
1190             self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1191         }
1192         ty
1193     }
1194
1195     fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_>) -> hir::Ty {
1196         let kind = match t.kind {
1197             TyKind::Infer => hir::TyKind::Infer,
1198             TyKind::Err => hir::TyKind::Err,
1199             TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1200             TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1201             TyKind::Rptr(ref region, ref mt) => {
1202                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1203                 let lifetime = match *region {
1204                     Some(ref lt) => self.lower_lifetime(lt),
1205                     None => self.elided_ref_lifetime(span),
1206                 };
1207                 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1208             }
1209             TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(
1210                 &f.generic_params,
1211                 |this| {
1212                     this.with_anonymous_lifetime_mode(
1213                         AnonymousLifetimeMode::PassThrough,
1214                         |this| {
1215                             hir::TyKind::BareFn(P(hir::BareFnTy {
1216                                 generic_params: this.lower_generic_params(
1217                                     &f.generic_params,
1218                                     &NodeMap::default(),
1219                                     ImplTraitContext::disallowed(),
1220                                 ),
1221                                 unsafety: f.unsafety,
1222                                 abi: this.lower_abi(f.abi),
1223                                 decl: this.lower_fn_decl(&f.decl, None, false, None),
1224                                 param_names: this.lower_fn_params_to_names(&f.decl),
1225                             }))
1226                         },
1227                     )
1228                 },
1229             ),
1230             TyKind::Never => hir::TyKind::Never,
1231             TyKind::Tup(ref tys) => {
1232                 hir::TyKind::Tup(tys.iter().map(|ty| {
1233                     self.lower_ty_direct(ty, itctx.reborrow())
1234                 }).collect())
1235             }
1236             TyKind::Paren(ref ty) => {
1237                 return self.lower_ty_direct(ty, itctx);
1238             }
1239             TyKind::Path(ref qself, ref path) => {
1240                 return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
1241             }
1242             TyKind::ImplicitSelf => {
1243                 let res = self.expect_full_res(t.id);
1244                 let res = self.lower_res(res);
1245                 hir::TyKind::Path(hir::QPath::Resolved(
1246                     None,
1247                     P(hir::Path {
1248                         res,
1249                         segments: hir_vec![hir::PathSegment::from_ident(
1250                             Ident::with_dummy_span(kw::SelfUpper)
1251                         )],
1252                         span: t.span,
1253                     }),
1254                 ))
1255             },
1256             TyKind::Array(ref ty, ref length) => {
1257                 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1258             }
1259             TyKind::Typeof(ref expr) => {
1260                 hir::TyKind::Typeof(self.lower_anon_const(expr))
1261             }
1262             TyKind::TraitObject(ref bounds, kind) => {
1263                 let mut lifetime_bound = None;
1264                 let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
1265                     let bounds = bounds
1266                         .iter()
1267                         .filter_map(|bound| match *bound {
1268                             GenericBound::Trait(ref ty, TraitBoundModifier::None) => {
1269                                 Some(this.lower_poly_trait_ref(ty, itctx.reborrow()))
1270                             }
1271                             GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
1272                             GenericBound::Outlives(ref lifetime) => {
1273                                 if lifetime_bound.is_none() {
1274                                     lifetime_bound = Some(this.lower_lifetime(lifetime));
1275                                 }
1276                                 None
1277                             }
1278                         })
1279                         .collect();
1280                     let lifetime_bound =
1281                         lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
1282                     (bounds, lifetime_bound)
1283                 });
1284                 if kind != TraitObjectSyntax::Dyn {
1285                     self.maybe_lint_bare_trait(t.span, t.id, false);
1286                 }
1287                 hir::TyKind::TraitObject(bounds, lifetime_bound)
1288             }
1289             TyKind::ImplTrait(def_node_id, ref bounds) => {
1290                 let span = t.span;
1291                 match itctx {
1292                     ImplTraitContext::OpaqueTy(fn_def_id) => {
1293                         self.lower_opaque_impl_trait(
1294                             span, fn_def_id, def_node_id,
1295                             |this| this.lower_param_bounds(bounds, itctx),
1296                         )
1297                     }
1298                     ImplTraitContext::Universal(in_band_ty_params) => {
1299                         // Add a definition for the in-band `Param`.
1300                         let def_index = self
1301                             .resolver
1302                             .definitions()
1303                             .opt_def_index(def_node_id)
1304                             .unwrap();
1305
1306                         let hir_bounds = self.lower_param_bounds(
1307                             bounds,
1308                             ImplTraitContext::Universal(in_band_ty_params),
1309                         );
1310                         // Set the name to `impl Bound1 + Bound2`.
1311                         let ident = Ident::from_str_and_span(&pprust::ty_to_string(t), span);
1312                         in_band_ty_params.push(hir::GenericParam {
1313                             hir_id: self.lower_node_id(def_node_id),
1314                             name: ParamName::Plain(ident),
1315                             pure_wrt_drop: false,
1316                             attrs: hir_vec![],
1317                             bounds: hir_bounds,
1318                             span,
1319                             kind: hir::GenericParamKind::Type {
1320                                 default: None,
1321                                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1322                             }
1323                         });
1324
1325                         hir::TyKind::Path(hir::QPath::Resolved(
1326                             None,
1327                             P(hir::Path {
1328                                 span,
1329                                 res: Res::Def(DefKind::TyParam, DefId::local(def_index)),
1330                                 segments: hir_vec![hir::PathSegment::from_ident(ident)],
1331                             }),
1332                         ))
1333                     }
1334                     ImplTraitContext::Disallowed(pos) => {
1335                         let allowed_in = if self.sess.features_untracked()
1336                                                 .impl_trait_in_bindings {
1337                             "bindings or function and inherent method return types"
1338                         } else {
1339                             "function and inherent method return types"
1340                         };
1341                         let mut err = struct_span_err!(
1342                             self.sess,
1343                             t.span,
1344                             E0562,
1345                             "`impl Trait` not allowed outside of {}",
1346                             allowed_in,
1347                         );
1348                         if pos == ImplTraitPosition::Binding &&
1349                             nightly_options::is_nightly_build() {
1350                             help!(err,
1351                                   "add `#![feature(impl_trait_in_bindings)]` to the crate \
1352                                    attributes to enable");
1353                         }
1354                         err.emit();
1355                         hir::TyKind::Err
1356                     }
1357                 }
1358             }
1359             TyKind::Mac(_) => bug!("`TyKind::Mac` should have been expanded by now"),
1360             TyKind::CVarArgs => bug!("`TyKind::CVarArgs` should have been handled elsewhere"),
1361         };
1362
1363         hir::Ty {
1364             kind,
1365             span: t.span,
1366             hir_id: self.lower_node_id(t.id),
1367         }
1368     }
1369
1370     fn lower_opaque_impl_trait(
1371         &mut self,
1372         span: Span,
1373         fn_def_id: Option<DefId>,
1374         opaque_ty_node_id: NodeId,
1375         lower_bounds: impl FnOnce(&mut LoweringContext<'_>) -> hir::GenericBounds,
1376     ) -> hir::TyKind {
1377         debug!(
1378             "lower_opaque_impl_trait(fn_def_id={:?}, opaque_ty_node_id={:?}, span={:?})",
1379             fn_def_id,
1380             opaque_ty_node_id,
1381             span,
1382         );
1383
1384         // Make sure we know that some funky desugaring has been going on here.
1385         // This is a first: there is code in other places like for loop
1386         // desugaring that explicitly states that we don't want to track that.
1387         // Not tracking it makes lints in rustc and clippy very fragile, as
1388         // frequently opened issues show.
1389         let opaque_ty_span = self.mark_span_with_reason(
1390             DesugaringKind::OpaqueTy,
1391             span,
1392             None,
1393         );
1394
1395         let opaque_ty_def_index = self
1396             .resolver
1397             .definitions()
1398             .opt_def_index(opaque_ty_node_id)
1399             .unwrap();
1400
1401         self.allocate_hir_id_counter(opaque_ty_node_id);
1402
1403         let hir_bounds = self.with_hir_id_owner(opaque_ty_node_id, lower_bounds);
1404
1405         let (lifetimes, lifetime_defs) = self.lifetimes_from_impl_trait_bounds(
1406             opaque_ty_node_id,
1407             opaque_ty_def_index,
1408             &hir_bounds,
1409         );
1410
1411         debug!(
1412             "lower_opaque_impl_trait: lifetimes={:#?}", lifetimes,
1413         );
1414
1415         debug!(
1416             "lower_opaque_impl_trait: lifetime_defs={:#?}", lifetime_defs,
1417         );
1418
1419         self.with_hir_id_owner(opaque_ty_node_id, |lctx| {
1420             let opaque_ty_item = hir::OpaqueTy {
1421                 generics: hir::Generics {
1422                     params: lifetime_defs,
1423                     where_clause: hir::WhereClause {
1424                         predicates: hir_vec![],
1425                         span,
1426                     },
1427                     span,
1428                 },
1429                 bounds: hir_bounds,
1430                 impl_trait_fn: fn_def_id,
1431                 origin: hir::OpaqueTyOrigin::FnReturn,
1432             };
1433
1434             trace!("lower_opaque_impl_trait: {:#?}", opaque_ty_def_index);
1435             let opaque_ty_id = lctx.generate_opaque_type(
1436                 opaque_ty_node_id,
1437                 opaque_ty_item,
1438                 span,
1439                 opaque_ty_span,
1440             );
1441
1442             // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1443             hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, lifetimes)
1444         })
1445     }
1446
1447     /// Registers a new opaque type with the proper `NodeId`s and
1448     /// returns the lowered node-ID for the opaque type.
1449     fn generate_opaque_type(
1450         &mut self,
1451         opaque_ty_node_id: NodeId,
1452         opaque_ty_item: hir::OpaqueTy,
1453         span: Span,
1454         opaque_ty_span: Span,
1455     ) -> hir::HirId {
1456         let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
1457         let opaque_ty_id = self.lower_node_id(opaque_ty_node_id);
1458         // Generate an `type Foo = impl Trait;` declaration.
1459         trace!("registering opaque type with id {:#?}", opaque_ty_id);
1460         let opaque_ty_item = hir::Item {
1461             hir_id: opaque_ty_id,
1462             ident: Ident::invalid(),
1463             attrs: Default::default(),
1464             kind: opaque_ty_item_kind,
1465             vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1466             span: opaque_ty_span,
1467         };
1468
1469         // Insert the item into the global item list. This usually happens
1470         // automatically for all AST items. But this opaque type item
1471         // does not actually exist in the AST.
1472         self.insert_item(opaque_ty_item);
1473         opaque_ty_id
1474     }
1475
1476     fn lifetimes_from_impl_trait_bounds(
1477         &mut self,
1478         opaque_ty_id: NodeId,
1479         parent_index: DefIndex,
1480         bounds: &hir::GenericBounds,
1481     ) -> (HirVec<hir::GenericArg>, HirVec<hir::GenericParam>) {
1482         debug!(
1483             "lifetimes_from_impl_trait_bounds(opaque_ty_id={:?}, \
1484              parent_index={:?}, \
1485              bounds={:#?})",
1486             opaque_ty_id, parent_index, bounds,
1487         );
1488
1489         // This visitor walks over `impl Trait` bounds and creates defs for all lifetimes that
1490         // appear in the bounds, excluding lifetimes that are created within the bounds.
1491         // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1492         struct ImplTraitLifetimeCollector<'r, 'a> {
1493             context: &'r mut LoweringContext<'a>,
1494             parent: DefIndex,
1495             opaque_ty_id: NodeId,
1496             collect_elided_lifetimes: bool,
1497             currently_bound_lifetimes: Vec<hir::LifetimeName>,
1498             already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1499             output_lifetimes: Vec<hir::GenericArg>,
1500             output_lifetime_params: Vec<hir::GenericParam>,
1501         }
1502
1503         impl<'r, 'a, 'v> hir::intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a> {
1504             fn nested_visit_map<'this>(
1505                 &'this mut self,
1506             ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
1507                 hir::intravisit::NestedVisitorMap::None
1508             }
1509
1510             fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
1511                 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1512                 if parameters.parenthesized {
1513                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1514                     self.collect_elided_lifetimes = false;
1515                     hir::intravisit::walk_generic_args(self, span, parameters);
1516                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1517                 } else {
1518                     hir::intravisit::walk_generic_args(self, span, parameters);
1519                 }
1520             }
1521
1522             fn visit_ty(&mut self, t: &'v hir::Ty) {
1523                 // Don't collect elided lifetimes used inside of `fn()` syntax.
1524                 if let hir::TyKind::BareFn(_) = t.kind {
1525                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1526                     self.collect_elided_lifetimes = false;
1527
1528                     // Record the "stack height" of `for<'a>` lifetime bindings
1529                     // to be able to later fully undo their introduction.
1530                     let old_len = self.currently_bound_lifetimes.len();
1531                     hir::intravisit::walk_ty(self, t);
1532                     self.currently_bound_lifetimes.truncate(old_len);
1533
1534                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1535                 } else {
1536                     hir::intravisit::walk_ty(self, t)
1537                 }
1538             }
1539
1540             fn visit_poly_trait_ref(
1541                 &mut self,
1542                 trait_ref: &'v hir::PolyTraitRef,
1543                 modifier: hir::TraitBoundModifier,
1544             ) {
1545                 // Record the "stack height" of `for<'a>` lifetime bindings
1546                 // to be able to later fully undo their introduction.
1547                 let old_len = self.currently_bound_lifetimes.len();
1548                 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1549                 self.currently_bound_lifetimes.truncate(old_len);
1550             }
1551
1552             fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
1553                 // Record the introduction of 'a in `for<'a> ...`.
1554                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1555                     // Introduce lifetimes one at a time so that we can handle
1556                     // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1557                     let lt_name = hir::LifetimeName::Param(param.name);
1558                     self.currently_bound_lifetimes.push(lt_name);
1559                 }
1560
1561                 hir::intravisit::walk_generic_param(self, param);
1562             }
1563
1564             fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1565                 let name = match lifetime.name {
1566                     hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1567                         if self.collect_elided_lifetimes {
1568                             // Use `'_` for both implicit and underscore lifetimes in
1569                             // `type Foo<'_> = impl SomeTrait<'_>;`.
1570                             hir::LifetimeName::Underscore
1571                         } else {
1572                             return;
1573                         }
1574                     }
1575                     hir::LifetimeName::Param(_) => lifetime.name,
1576
1577                     // Refers to some other lifetime that is "in
1578                     // scope" within the type.
1579                     hir::LifetimeName::ImplicitObjectLifetimeDefault => return,
1580
1581                     hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1582                 };
1583
1584                 if !self.currently_bound_lifetimes.contains(&name)
1585                     && !self.already_defined_lifetimes.contains(&name) {
1586                     self.already_defined_lifetimes.insert(name);
1587
1588                     self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1589                         hir_id: self.context.next_id(),
1590                         span: lifetime.span,
1591                         name,
1592                     }));
1593
1594                     let def_node_id = self.context.resolver.next_node_id();
1595                     let hir_id =
1596                         self.context.lower_node_id_with_owner(def_node_id, self.opaque_ty_id);
1597                     self.context.resolver.definitions().create_def_with_parent(
1598                         self.parent,
1599                         def_node_id,
1600                         DefPathData::LifetimeNs(name.ident().name),
1601                         ExpnId::root(),
1602                         lifetime.span);
1603
1604                     let (name, kind) = match name {
1605                         hir::LifetimeName::Underscore => (
1606                             hir::ParamName::Plain(Ident::with_dummy_span(kw::UnderscoreLifetime)),
1607                             hir::LifetimeParamKind::Elided,
1608                         ),
1609                         hir::LifetimeName::Param(param_name) => (
1610                             param_name,
1611                             hir::LifetimeParamKind::Explicit,
1612                         ),
1613                         _ => bug!("expected `LifetimeName::Param` or `ParamName::Plain`"),
1614                     };
1615
1616                     self.output_lifetime_params.push(hir::GenericParam {
1617                         hir_id,
1618                         name,
1619                         span: lifetime.span,
1620                         pure_wrt_drop: false,
1621                         attrs: hir_vec![],
1622                         bounds: hir_vec![],
1623                         kind: hir::GenericParamKind::Lifetime { kind }
1624                     });
1625                 }
1626             }
1627         }
1628
1629         let mut lifetime_collector = ImplTraitLifetimeCollector {
1630             context: self,
1631             parent: parent_index,
1632             opaque_ty_id,
1633             collect_elided_lifetimes: true,
1634             currently_bound_lifetimes: Vec::new(),
1635             already_defined_lifetimes: FxHashSet::default(),
1636             output_lifetimes: Vec::new(),
1637             output_lifetime_params: Vec::new(),
1638         };
1639
1640         for bound in bounds {
1641             hir::intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1642         }
1643
1644         (
1645             lifetime_collector.output_lifetimes.into(),
1646             lifetime_collector.output_lifetime_params.into(),
1647         )
1648     }
1649
1650     fn lower_qpath(
1651         &mut self,
1652         id: NodeId,
1653         qself: &Option<QSelf>,
1654         p: &Path,
1655         param_mode: ParamMode,
1656         mut itctx: ImplTraitContext<'_>,
1657     ) -> hir::QPath {
1658         let qself_position = qself.as_ref().map(|q| q.position);
1659         let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow()));
1660
1661         let partial_res = self.resolver
1662             .get_partial_res(id)
1663             .unwrap_or_else(|| PartialRes::new(Res::Err));
1664
1665         let proj_start = p.segments.len() - partial_res.unresolved_segments();
1666         let path = P(hir::Path {
1667             res: self.lower_res(partial_res.base_res()),
1668             segments: p.segments[..proj_start]
1669                 .iter()
1670                 .enumerate()
1671                 .map(|(i, segment)| {
1672                     let param_mode = match (qself_position, param_mode) {
1673                         (Some(j), ParamMode::Optional) if i < j => {
1674                             // This segment is part of the trait path in a
1675                             // qualified path - one of `a`, `b` or `Trait`
1676                             // in `<X as a::b::Trait>::T::U::method`.
1677                             ParamMode::Explicit
1678                         }
1679                         _ => param_mode,
1680                     };
1681
1682                     // Figure out if this is a type/trait segment,
1683                     // which may need lifetime elision performed.
1684                     let parent_def_id = |this: &mut Self, def_id: DefId| DefId {
1685                         krate: def_id.krate,
1686                         index: this.def_key(def_id).parent.expect("missing parent"),
1687                     };
1688                     let type_def_id = match partial_res.base_res() {
1689                         Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
1690                             Some(parent_def_id(self, def_id))
1691                         }
1692                         Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
1693                             Some(parent_def_id(self, def_id))
1694                         }
1695                         Res::Def(DefKind::Struct, def_id)
1696                         | Res::Def(DefKind::Union, def_id)
1697                         | Res::Def(DefKind::Enum, def_id)
1698                         | Res::Def(DefKind::TyAlias, def_id)
1699                         | Res::Def(DefKind::Trait, def_id) if i + 1 == proj_start =>
1700                         {
1701                             Some(def_id)
1702                         }
1703                         _ => None,
1704                     };
1705                     let parenthesized_generic_args = match partial_res.base_res() {
1706                         // `a::b::Trait(Args)`
1707                         Res::Def(DefKind::Trait, _) if i + 1 == proj_start => {
1708                             ParenthesizedGenericArgs::Ok
1709                         }
1710                         // `a::b::Trait(Args)::TraitItem`
1711                         Res::Def(DefKind::Method, _) |
1712                         Res::Def(DefKind::AssocConst, _) |
1713                         Res::Def(DefKind::AssocTy, _) if i + 2 == proj_start => {
1714                             ParenthesizedGenericArgs::Ok
1715                         }
1716                         // Avoid duplicated errors.
1717                         Res::Err => ParenthesizedGenericArgs::Ok,
1718                         // An error
1719                         _ => ParenthesizedGenericArgs::Err,
1720                     };
1721
1722                     let num_lifetimes = type_def_id.map_or(0, |def_id| {
1723                         if let Some(&n) = self.type_def_lifetime_params.get(&def_id) {
1724                             return n;
1725                         }
1726                         assert!(!def_id.is_local());
1727                         let item_generics = self.resolver.cstore()
1728                             .item_generics_cloned_untracked(def_id, self.sess);
1729                         let n = item_generics.own_counts().lifetimes;
1730                         self.type_def_lifetime_params.insert(def_id, n);
1731                         n
1732                     });
1733                     self.lower_path_segment(
1734                         p.span,
1735                         segment,
1736                         param_mode,
1737                         num_lifetimes,
1738                         parenthesized_generic_args,
1739                         itctx.reborrow(),
1740                         None,
1741                     )
1742                 })
1743                 .collect(),
1744             span: p.span,
1745         });
1746
1747         // Simple case, either no projections, or only fully-qualified.
1748         // E.g., `std::mem::size_of` or `<I as Iterator>::Item`.
1749         if partial_res.unresolved_segments() == 0 {
1750             return hir::QPath::Resolved(qself, path);
1751         }
1752
1753         // Create the innermost type that we're projecting from.
1754         let mut ty = if path.segments.is_empty() {
1755             // If the base path is empty that means there exists a
1756             // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`.
1757             qself.expect("missing QSelf for <T>::...")
1758         } else {
1759             // Otherwise, the base path is an implicit `Self` type path,
1760             // e.g., `Vec` in `Vec::new` or `<I as Iterator>::Item` in
1761             // `<I as Iterator>::Item::default`.
1762             let new_id = self.next_id();
1763             P(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path)))
1764         };
1765
1766         // Anything after the base path are associated "extensions",
1767         // out of which all but the last one are associated types,
1768         // e.g., for `std::vec::Vec::<T>::IntoIter::Item::clone`:
1769         // * base path is `std::vec::Vec<T>`
1770         // * "extensions" are `IntoIter`, `Item` and `clone`
1771         // * type nodes are:
1772         //   1. `std::vec::Vec<T>` (created above)
1773         //   2. `<std::vec::Vec<T>>::IntoIter`
1774         //   3. `<<std::vec::Vec<T>>::IntoIter>::Item`
1775         // * final path is `<<<std::vec::Vec<T>>::IntoIter>::Item>::clone`
1776         for (i, segment) in p.segments.iter().enumerate().skip(proj_start) {
1777             let segment = P(self.lower_path_segment(
1778                 p.span,
1779                 segment,
1780                 param_mode,
1781                 0,
1782                 ParenthesizedGenericArgs::Err,
1783                 itctx.reborrow(),
1784                 None,
1785             ));
1786             let qpath = hir::QPath::TypeRelative(ty, segment);
1787
1788             // It's finished, return the extension of the right node type.
1789             if i == p.segments.len() - 1 {
1790                 return qpath;
1791             }
1792
1793             // Wrap the associated extension in another type node.
1794             let new_id = self.next_id();
1795             ty = P(self.ty_path(new_id, p.span, qpath));
1796         }
1797
1798         // We should've returned in the for loop above.
1799         span_bug!(
1800             p.span,
1801             "lower_qpath: no final extension segment in {}..{}",
1802             proj_start,
1803             p.segments.len()
1804         )
1805     }
1806
1807     fn lower_path_extra(
1808         &mut self,
1809         res: Res,
1810         p: &Path,
1811         param_mode: ParamMode,
1812         explicit_owner: Option<NodeId>,
1813     ) -> hir::Path {
1814         hir::Path {
1815             res,
1816             segments: p.segments
1817                 .iter()
1818                 .map(|segment| {
1819                     self.lower_path_segment(
1820                         p.span,
1821                         segment,
1822                         param_mode,
1823                         0,
1824                         ParenthesizedGenericArgs::Err,
1825                         ImplTraitContext::disallowed(),
1826                         explicit_owner,
1827                     )
1828                 })
1829                 .collect(),
1830             span: p.span,
1831         }
1832     }
1833
1834     fn lower_path(&mut self, id: NodeId, p: &Path, param_mode: ParamMode) -> hir::Path {
1835         let res = self.expect_full_res(id);
1836         let res = self.lower_res(res);
1837         self.lower_path_extra(res, p, param_mode, None)
1838     }
1839
1840     fn lower_path_segment(
1841         &mut self,
1842         path_span: Span,
1843         segment: &PathSegment,
1844         param_mode: ParamMode,
1845         expected_lifetimes: usize,
1846         parenthesized_generic_args: ParenthesizedGenericArgs,
1847         itctx: ImplTraitContext<'_>,
1848         explicit_owner: Option<NodeId>,
1849     ) -> hir::PathSegment {
1850         let (mut generic_args, infer_args) = if let Some(ref generic_args) = segment.args {
1851             let msg = "parenthesized type parameters may only be used with a `Fn` trait";
1852             match **generic_args {
1853                 GenericArgs::AngleBracketed(ref data) => {
1854                     self.lower_angle_bracketed_parameter_data(data, param_mode, itctx)
1855                 }
1856                 GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args {
1857                     ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data),
1858                     ParenthesizedGenericArgs::Err => {
1859                         let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg);
1860                         err.span_label(data.span, "only `Fn` traits may use parentheses");
1861                         if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) {
1862                             // Do not suggest going from `Trait()` to `Trait<>`
1863                             if data.inputs.len() > 0 {
1864                                 if let Some(split) = snippet.find('(') {
1865                                     let trait_name = &snippet[0..split];
1866                                     let args = &snippet[split + 1 .. snippet.len() - 1];
1867                                     err.span_suggestion(
1868                                         data.span,
1869                                         "use angle brackets instead",
1870                                         format!("{}<{}>", trait_name, args),
1871                                         Applicability::MaybeIncorrect,
1872                                     );
1873                                 }
1874                             }
1875                         };
1876                         err.emit();
1877                         (
1878                             self.lower_angle_bracketed_parameter_data(
1879                                 &data.as_angle_bracketed_args(),
1880                                 param_mode,
1881                                 itctx
1882                             ).0,
1883                             false,
1884                         )
1885                     }
1886                 },
1887             }
1888         } else {
1889             self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx)
1890         };
1891
1892         let has_lifetimes = generic_args.args.iter().any(|arg| match arg {
1893             GenericArg::Lifetime(_) => true,
1894             _ => false,
1895         });
1896         let first_generic_span = generic_args.args.iter().map(|a| a.span())
1897             .chain(generic_args.bindings.iter().map(|b| b.span)).next();
1898         if !generic_args.parenthesized && !has_lifetimes {
1899             generic_args.args =
1900                 self.elided_path_lifetimes(path_span, expected_lifetimes)
1901                     .into_iter()
1902                     .map(|lt| GenericArg::Lifetime(lt))
1903                     .chain(generic_args.args.into_iter())
1904                 .collect();
1905             if expected_lifetimes > 0 && param_mode == ParamMode::Explicit {
1906                 let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", ");
1907                 let no_non_lt_args = generic_args.args.len() == expected_lifetimes;
1908                 let no_bindings = generic_args.bindings.is_empty();
1909                 let (incl_angl_brckt, insertion_sp, suggestion) = if no_non_lt_args && no_bindings {
1910                     // If there are no (non-implicit) generic args or associated type
1911                     // bindings, our suggestion includes the angle brackets.
1912                     (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion))
1913                 } else {
1914                     // Otherwise (sorry, this is kind of gross) we need to infer the
1915                     // place to splice in the `'_, ` from the generics that do exist.
1916                     let first_generic_span = first_generic_span
1917                         .expect("already checked that non-lifetime args or bindings exist");
1918                     (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion))
1919                 };
1920                 match self.anonymous_lifetime_mode {
1921                     // In create-parameter mode we error here because we don't want to support
1922                     // deprecated impl elision in new features like impl elision and `async fn`,
1923                     // both of which work using the `CreateParameter` mode:
1924                     //
1925                     //     impl Foo for std::cell::Ref<u32> // note lack of '_
1926                     //     async fn foo(_: std::cell::Ref<u32>) { ... }
1927                     AnonymousLifetimeMode::CreateParameter => {
1928                         let mut err = struct_span_err!(
1929                             self.sess,
1930                             path_span,
1931                             E0726,
1932                             "implicit elided lifetime not allowed here"
1933                         );
1934                         crate::lint::builtin::add_elided_lifetime_in_path_suggestion(
1935                             &self.sess,
1936                             &mut err,
1937                             expected_lifetimes,
1938                             path_span,
1939                             incl_angl_brckt,
1940                             insertion_sp,
1941                             suggestion,
1942                         );
1943                         err.emit();
1944                     }
1945                     AnonymousLifetimeMode::PassThrough |
1946                     AnonymousLifetimeMode::ReportError => {
1947                         self.resolver.lint_buffer().buffer_lint_with_diagnostic(
1948                             ELIDED_LIFETIMES_IN_PATHS,
1949                             CRATE_NODE_ID,
1950                             path_span,
1951                             "hidden lifetime parameters in types are deprecated",
1952                             builtin::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
1953                                 expected_lifetimes,
1954                                 path_span,
1955                                 incl_angl_brckt,
1956                                 insertion_sp,
1957                                 suggestion,
1958                             )
1959                         );
1960                     }
1961                 }
1962             }
1963         }
1964
1965         let res = self.expect_full_res(segment.id);
1966         let id = if let Some(owner) = explicit_owner {
1967             self.lower_node_id_with_owner(segment.id, owner)
1968         } else {
1969             self.lower_node_id(segment.id)
1970         };
1971         debug!(
1972             "lower_path_segment: ident={:?} original-id={:?} new-id={:?}",
1973             segment.ident, segment.id, id,
1974         );
1975
1976         hir::PathSegment::new(
1977             segment.ident,
1978             Some(id),
1979             Some(self.lower_res(res)),
1980             generic_args,
1981             infer_args,
1982         )
1983     }
1984
1985     fn lower_angle_bracketed_parameter_data(
1986         &mut self,
1987         data: &AngleBracketedArgs,
1988         param_mode: ParamMode,
1989         mut itctx: ImplTraitContext<'_>,
1990     ) -> (hir::GenericArgs, bool) {
1991         let &AngleBracketedArgs { ref args, ref constraints, .. } = data;
1992         let has_non_lt_args = args.iter().any(|arg| match arg {
1993             ast::GenericArg::Lifetime(_) => false,
1994             ast::GenericArg::Type(_) => true,
1995             ast::GenericArg::Const(_) => true,
1996         });
1997         (
1998             hir::GenericArgs {
1999                 args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(),
2000                 bindings: constraints.iter()
2001                     .map(|b| self.lower_assoc_ty_constraint(b, itctx.reborrow()))
2002                     .collect(),
2003                 parenthesized: false,
2004             },
2005             !has_non_lt_args && param_mode == ParamMode::Optional
2006         )
2007     }
2008
2009     fn lower_parenthesized_parameter_data(
2010         &mut self,
2011         data: &ParenthesizedArgs,
2012     ) -> (hir::GenericArgs, bool) {
2013         // Switch to `PassThrough` mode for anonymous lifetimes; this
2014         // means that we permit things like `&Ref<T>`, where `Ref` has
2015         // a hidden lifetime parameter. This is needed for backwards
2016         // compatibility, even in contexts like an impl header where
2017         // we generally don't permit such things (see #51008).
2018         self.with_anonymous_lifetime_mode(
2019             AnonymousLifetimeMode::PassThrough,
2020             |this| {
2021                 let &ParenthesizedArgs { ref inputs, ref output, span } = data;
2022                 let inputs = inputs
2023                     .iter()
2024                     .map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed()))
2025                     .collect();
2026                 let mk_tup = |this: &mut Self, tys, span| {
2027                     hir::Ty { kind: hir::TyKind::Tup(tys), hir_id: this.next_id(), span }
2028                 };
2029                 (
2030                     hir::GenericArgs {
2031                         args: hir_vec![GenericArg::Type(mk_tup(this, inputs, span))],
2032                         bindings: hir_vec![
2033                             hir::TypeBinding {
2034                                 hir_id: this.next_id(),
2035                                 ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2036                                 kind: hir::TypeBindingKind::Equality {
2037                                     ty: output
2038                                         .as_ref()
2039                                         .map(|ty| this.lower_ty(
2040                                             &ty,
2041                                             ImplTraitContext::disallowed()
2042                                         ))
2043                                         .unwrap_or_else(||
2044                                             P(mk_tup(this, hir::HirVec::new(), span))
2045                                         ),
2046                                 },
2047                                 span: output.as_ref().map_or(span, |ty| ty.span),
2048                             }
2049                         ],
2050                         parenthesized: true,
2051                     },
2052                     false,
2053                 )
2054             }
2055         )
2056     }
2057
2058     fn lower_local(&mut self, l: &Local) -> (hir::Local, SmallVec<[NodeId; 1]>) {
2059         let mut ids = SmallVec::<[NodeId; 1]>::new();
2060         if self.sess.features_untracked().impl_trait_in_bindings {
2061             if let Some(ref ty) = l.ty {
2062                 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
2063                 visitor.visit_ty(ty);
2064             }
2065         }
2066         let parent_def_id = DefId::local(self.current_hir_id_owner.last().unwrap().0);
2067         (hir::Local {
2068             hir_id: self.lower_node_id(l.id),
2069             ty: l.ty
2070                 .as_ref()
2071                 .map(|t| self.lower_ty(t,
2072                     if self.sess.features_untracked().impl_trait_in_bindings {
2073                         ImplTraitContext::OpaqueTy(Some(parent_def_id))
2074                     } else {
2075                         ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2076                     }
2077                 )),
2078             pat: self.lower_pat(&l.pat),
2079             init: l.init.as_ref().map(|e| P(self.lower_expr(e))),
2080             span: l.span,
2081             attrs: l.attrs.clone(),
2082             source: hir::LocalSource::Normal,
2083         }, ids)
2084     }
2085
2086     fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> hir::HirVec<Ident> {
2087         // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
2088         // as they are not explicit in HIR/Ty function signatures.
2089         // (instead, the `c_variadic` flag is set to `true`)
2090         let mut inputs = &decl.inputs[..];
2091         if decl.c_variadic() {
2092             inputs = &inputs[..inputs.len() - 1];
2093         }
2094         inputs
2095             .iter()
2096             .map(|param| match param.pat.kind {
2097                 PatKind::Ident(_, ident, _) => ident,
2098                 _ => Ident::new(kw::Invalid, param.pat.span),
2099             })
2100             .collect()
2101     }
2102
2103     // Lowers a function declaration.
2104     //
2105     // `decl`: the unlowered (AST) function declaration.
2106     // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
2107     //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
2108     //      `make_ret_async` is also `Some`.
2109     // `impl_trait_return_allow`: determines whether `impl Trait` can be used in return position.
2110     //      This guards against trait declarations and implementations where `impl Trait` is
2111     //      disallowed.
2112     // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
2113     //      return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
2114     //      return type `impl Trait` item.
2115     fn lower_fn_decl(
2116         &mut self,
2117         decl: &FnDecl,
2118         mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam>)>,
2119         impl_trait_return_allow: bool,
2120         make_ret_async: Option<NodeId>,
2121     ) -> P<hir::FnDecl> {
2122         let lt_mode = if make_ret_async.is_some() {
2123             // In `async fn`, argument-position elided lifetimes
2124             // must be transformed into fresh generic parameters so that
2125             // they can be applied to the opaque `impl Trait` return type.
2126             AnonymousLifetimeMode::CreateParameter
2127         } else {
2128             self.anonymous_lifetime_mode
2129         };
2130
2131         let c_variadic = decl.c_variadic();
2132
2133         // Remember how many lifetimes were already around so that we can
2134         // only look at the lifetime parameters introduced by the arguments.
2135         let inputs = self.with_anonymous_lifetime_mode(lt_mode, |this| {
2136             // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
2137             // as they are not explicit in HIR/Ty function signatures.
2138             // (instead, the `c_variadic` flag is set to `true`)
2139             let mut inputs = &decl.inputs[..];
2140             if c_variadic {
2141                 inputs = &inputs[..inputs.len() - 1];
2142             }
2143             inputs
2144                 .iter()
2145                 .map(|param| {
2146                     if let Some((_, ibty)) = &mut in_band_ty_params {
2147                         this.lower_ty_direct(&param.ty, ImplTraitContext::Universal(ibty))
2148                     } else {
2149                         this.lower_ty_direct(&param.ty, ImplTraitContext::disallowed())
2150                     }
2151                 })
2152                 .collect::<HirVec<_>>()
2153         });
2154
2155         let output = if let Some(ret_id) = make_ret_async {
2156             self.lower_async_fn_ret_ty(
2157                 &decl.output,
2158                 in_band_ty_params.expect("`make_ret_async` but no `fn_def_id`").0,
2159                 ret_id,
2160             )
2161         } else {
2162             match decl.output {
2163                 FunctionRetTy::Ty(ref ty) => match in_band_ty_params {
2164                     Some((def_id, _)) if impl_trait_return_allow => {
2165                         hir::Return(self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(def_id))))
2166                     }
2167                     _ => {
2168                         hir::Return(self.lower_ty(ty, ImplTraitContext::disallowed()))
2169                     }
2170                 },
2171                 FunctionRetTy::Default(span) => hir::DefaultReturn(span),
2172             }
2173         };
2174
2175         P(hir::FnDecl {
2176             inputs,
2177             output,
2178             c_variadic,
2179             implicit_self: decl.inputs.get(0).map_or(
2180                 hir::ImplicitSelfKind::None,
2181                 |arg| {
2182                     let is_mutable_pat = match arg.pat.kind {
2183                         PatKind::Ident(BindingMode::ByValue(mt), _, _) |
2184                         PatKind::Ident(BindingMode::ByRef(mt), _, _) =>
2185                             mt == Mutability::Mutable,
2186                         _ => false,
2187                     };
2188
2189                     match arg.ty.kind {
2190                         TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
2191                         TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
2192                         // Given we are only considering `ImplicitSelf` types, we needn't consider
2193                         // the case where we have a mutable pattern to a reference as that would
2194                         // no longer be an `ImplicitSelf`.
2195                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() &&
2196                             mt.mutbl == ast::Mutability::Mutable =>
2197                                 hir::ImplicitSelfKind::MutRef,
2198                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() =>
2199                             hir::ImplicitSelfKind::ImmRef,
2200                         _ => hir::ImplicitSelfKind::None,
2201                     }
2202                 },
2203             ),
2204         })
2205     }
2206
2207     // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
2208     // combined with the following definition of `OpaqueTy`:
2209     //
2210     //     type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
2211     //
2212     // `inputs`: lowered types of parameters to the function (used to collect lifetimes)
2213     // `output`: unlowered output type (`T` in `-> T`)
2214     // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
2215     // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
2216     // `elided_lt_replacement`: replacement for elided lifetimes in the return type
2217     fn lower_async_fn_ret_ty(
2218         &mut self,
2219         output: &FunctionRetTy,
2220         fn_def_id: DefId,
2221         opaque_ty_node_id: NodeId,
2222     ) -> hir::FunctionRetTy {
2223         debug!(
2224             "lower_async_fn_ret_ty(\
2225              output={:?}, \
2226              fn_def_id={:?}, \
2227              opaque_ty_node_id={:?})",
2228             output, fn_def_id, opaque_ty_node_id,
2229         );
2230
2231         let span = output.span();
2232
2233         let opaque_ty_span = self.mark_span_with_reason(
2234             DesugaringKind::Async,
2235             span,
2236             None,
2237         );
2238
2239         let opaque_ty_def_index = self
2240             .resolver
2241             .definitions()
2242             .opt_def_index(opaque_ty_node_id)
2243             .unwrap();
2244
2245         self.allocate_hir_id_counter(opaque_ty_node_id);
2246
2247         // When we create the opaque type for this async fn, it is going to have
2248         // to capture all the lifetimes involved in the signature (including in the
2249         // return type). This is done by introducing lifetime parameters for:
2250         //
2251         // - all the explicitly declared lifetimes from the impl and function itself;
2252         // - all the elided lifetimes in the fn arguments;
2253         // - all the elided lifetimes in the return type.
2254         //
2255         // So for example in this snippet:
2256         //
2257         // ```rust
2258         // impl<'a> Foo<'a> {
2259         //   async fn bar<'b>(&self, x: &'b Vec<f64>, y: &str) -> &u32 {
2260         //   //               ^ '0                       ^ '1     ^ '2
2261         //   // elided lifetimes used below
2262         //   }
2263         // }
2264         // ```
2265         //
2266         // we would create an opaque type like:
2267         //
2268         // ```
2269         // type Bar<'a, 'b, '0, '1, '2> = impl Future<Output = &'2 u32>;
2270         // ```
2271         //
2272         // and we would then desugar `bar` to the equivalent of:
2273         //
2274         // ```rust
2275         // impl<'a> Foo<'a> {
2276         //   fn bar<'b, '0, '1>(&'0 self, x: &'b Vec<f64>, y: &'1 str) -> Bar<'a, 'b, '0, '1, '_>
2277         // }
2278         // ```
2279         //
2280         // Note that the final parameter to `Bar` is `'_`, not `'2` --
2281         // this is because the elided lifetimes from the return type
2282         // should be figured out using the ordinary elision rules, and
2283         // this desugaring achieves that.
2284         //
2285         // The variable `input_lifetimes_count` tracks the number of
2286         // lifetime parameters to the opaque type *not counting* those
2287         // lifetimes elided in the return type. This includes those
2288         // that are explicitly declared (`in_scope_lifetimes`) and
2289         // those elided lifetimes we found in the arguments (current
2290         // content of `lifetimes_to_define`). Next, we will process
2291         // the return type, which will cause `lifetimes_to_define` to
2292         // grow.
2293         let input_lifetimes_count = self.in_scope_lifetimes.len() + self.lifetimes_to_define.len();
2294
2295         let (opaque_ty_id, lifetime_params) = self.with_hir_id_owner(opaque_ty_node_id, |this| {
2296             // We have to be careful to get elision right here. The
2297             // idea is that we create a lifetime parameter for each
2298             // lifetime in the return type.  So, given a return type
2299             // like `async fn foo(..) -> &[&u32]`, we lower to `impl
2300             // Future<Output = &'1 [ &'2 u32 ]>`.
2301             //
2302             // Then, we will create `fn foo(..) -> Foo<'_, '_>`, and
2303             // hence the elision takes place at the fn site.
2304             let future_bound = this.with_anonymous_lifetime_mode(
2305                 AnonymousLifetimeMode::CreateParameter,
2306                 |this| this.lower_async_fn_output_type_to_future_bound(
2307                     output,
2308                     fn_def_id,
2309                     span,
2310                 ),
2311             );
2312
2313             debug!("lower_async_fn_ret_ty: future_bound={:#?}", future_bound);
2314
2315             // Calculate all the lifetimes that should be captured
2316             // by the opaque type. This should include all in-scope
2317             // lifetime parameters, including those defined in-band.
2318             //
2319             // Note: this must be done after lowering the output type,
2320             // as the output type may introduce new in-band lifetimes.
2321             let lifetime_params: Vec<(Span, ParamName)> =
2322                 this.in_scope_lifetimes
2323                     .iter().cloned()
2324                     .map(|name| (name.ident().span, name))
2325                     .chain(this.lifetimes_to_define.iter().cloned())
2326                     .collect();
2327
2328             debug!("lower_async_fn_ret_ty: in_scope_lifetimes={:#?}", this.in_scope_lifetimes);
2329             debug!("lower_async_fn_ret_ty: lifetimes_to_define={:#?}", this.lifetimes_to_define);
2330             debug!("lower_async_fn_ret_ty: lifetime_params={:#?}", lifetime_params);
2331
2332             let generic_params =
2333                 lifetime_params
2334                     .iter().cloned()
2335                     .map(|(span, hir_name)| {
2336                         this.lifetime_to_generic_param(span, hir_name, opaque_ty_def_index)
2337                     })
2338                     .collect();
2339
2340             let opaque_ty_item = hir::OpaqueTy {
2341                 generics: hir::Generics {
2342                     params: generic_params,
2343                     where_clause: hir::WhereClause {
2344                         predicates: hir_vec![],
2345                         span,
2346                     },
2347                     span,
2348                 },
2349                 bounds: hir_vec![future_bound],
2350                 impl_trait_fn: Some(fn_def_id),
2351                 origin: hir::OpaqueTyOrigin::AsyncFn,
2352             };
2353
2354             trace!("exist ty from async fn def index: {:#?}", opaque_ty_def_index);
2355             let opaque_ty_id = this.generate_opaque_type(
2356                 opaque_ty_node_id,
2357                 opaque_ty_item,
2358                 span,
2359                 opaque_ty_span,
2360             );
2361
2362             (opaque_ty_id, lifetime_params)
2363         });
2364
2365         // As documented above on the variable
2366         // `input_lifetimes_count`, we need to create the lifetime
2367         // arguments to our opaque type. Continuing with our example,
2368         // we're creating the type arguments for the return type:
2369         //
2370         // ```
2371         // Bar<'a, 'b, '0, '1, '_>
2372         // ```
2373         //
2374         // For the "input" lifetime parameters, we wish to create
2375         // references to the parameters themselves, including the
2376         // "implicit" ones created from parameter types (`'a`, `'b`,
2377         // '`0`, `'1`).
2378         //
2379         // For the "output" lifetime parameters, we just want to
2380         // generate `'_`.
2381         let mut generic_args: Vec<_> =
2382             lifetime_params[..input_lifetimes_count]
2383             .iter()
2384             .map(|&(span, hir_name)| {
2385                 // Input lifetime like `'a` or `'1`:
2386                 GenericArg::Lifetime(hir::Lifetime {
2387                     hir_id: self.next_id(),
2388                     span,
2389                     name: hir::LifetimeName::Param(hir_name),
2390                 })
2391             })
2392             .collect();
2393         generic_args.extend(
2394             lifetime_params[input_lifetimes_count..]
2395             .iter()
2396             .map(|&(span, _)| {
2397                 // Output lifetime like `'_`.
2398                 GenericArg::Lifetime(hir::Lifetime {
2399                     hir_id: self.next_id(),
2400                     span,
2401                     name: hir::LifetimeName::Implicit,
2402                 })
2403             })
2404         );
2405
2406         // Create the `Foo<...>` refernece itself. Note that the `type
2407         // Foo = impl Trait` is, internally, created as a child of the
2408         // async fn, so the *type parameters* are inherited.  It's
2409         // only the lifetime parameters that we must supply.
2410         let opaque_ty_ref = hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, generic_args.into());
2411
2412         hir::FunctionRetTy::Return(P(hir::Ty {
2413             kind: opaque_ty_ref,
2414             span,
2415             hir_id: self.next_id(),
2416         }))
2417     }
2418
2419     /// Transforms `-> T` into `Future<Output = T>`
2420     fn lower_async_fn_output_type_to_future_bound(
2421         &mut self,
2422         output: &FunctionRetTy,
2423         fn_def_id: DefId,
2424         span: Span,
2425     ) -> hir::GenericBound {
2426         // Compute the `T` in `Future<Output = T>` from the return type.
2427         let output_ty = match output {
2428             FunctionRetTy::Ty(ty) => {
2429                 self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(fn_def_id)))
2430             }
2431             FunctionRetTy::Default(ret_ty_span) => {
2432                 P(hir::Ty {
2433                     hir_id: self.next_id(),
2434                     kind: hir::TyKind::Tup(hir_vec![]),
2435                     span: *ret_ty_span,
2436                 })
2437             }
2438         };
2439
2440         // "<Output = T>"
2441         let future_params = P(hir::GenericArgs {
2442             args: hir_vec![],
2443             bindings: hir_vec![hir::TypeBinding {
2444                 ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2445                 kind: hir::TypeBindingKind::Equality {
2446                     ty: output_ty,
2447                 },
2448                 hir_id: self.next_id(),
2449                 span,
2450             }],
2451             parenthesized: false,
2452         });
2453
2454         // ::std::future::Future<future_params>
2455         let future_path =
2456             P(self.std_path(span, &[sym::future, sym::Future], Some(future_params), false));
2457
2458         hir::GenericBound::Trait(
2459             hir::PolyTraitRef {
2460                 trait_ref: hir::TraitRef {
2461                     path: future_path,
2462                     hir_ref_id: self.next_id(),
2463                 },
2464                 bound_generic_params: hir_vec![],
2465                 span,
2466             },
2467             hir::TraitBoundModifier::None,
2468         )
2469     }
2470
2471     fn lower_param_bound(
2472         &mut self,
2473         tpb: &GenericBound,
2474         itctx: ImplTraitContext<'_>,
2475     ) -> hir::GenericBound {
2476         match *tpb {
2477             GenericBound::Trait(ref ty, modifier) => {
2478                 hir::GenericBound::Trait(
2479                     self.lower_poly_trait_ref(ty, itctx),
2480                     self.lower_trait_bound_modifier(modifier),
2481                 )
2482             }
2483             GenericBound::Outlives(ref lifetime) => {
2484                 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2485             }
2486         }
2487     }
2488
2489     fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2490         let span = l.ident.span;
2491         match l.ident {
2492             ident if ident.name == kw::StaticLifetime =>
2493                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static),
2494             ident if ident.name == kw::UnderscoreLifetime =>
2495                 match self.anonymous_lifetime_mode {
2496                     AnonymousLifetimeMode::CreateParameter => {
2497                         let fresh_name = self.collect_fresh_in_band_lifetime(span);
2498                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2499                     }
2500
2501                     AnonymousLifetimeMode::PassThrough => {
2502                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2503                     }
2504
2505                     AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2506                 },
2507             ident => {
2508                 self.maybe_collect_in_band_lifetime(ident);
2509                 let param_name = ParamName::Plain(ident);
2510                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2511             }
2512         }
2513     }
2514
2515     fn new_named_lifetime(
2516         &mut self,
2517         id: NodeId,
2518         span: Span,
2519         name: hir::LifetimeName,
2520     ) -> hir::Lifetime {
2521         hir::Lifetime {
2522             hir_id: self.lower_node_id(id),
2523             span,
2524             name: name,
2525         }
2526     }
2527
2528     fn lower_generic_params(
2529         &mut self,
2530         params: &[GenericParam],
2531         add_bounds: &NodeMap<Vec<GenericBound>>,
2532         mut itctx: ImplTraitContext<'_>,
2533     ) -> hir::HirVec<hir::GenericParam> {
2534         params.iter().map(|param| {
2535             self.lower_generic_param(param, add_bounds, itctx.reborrow())
2536         }).collect()
2537     }
2538
2539     fn lower_generic_param(&mut self,
2540                            param: &GenericParam,
2541                            add_bounds: &NodeMap<Vec<GenericBound>>,
2542                            mut itctx: ImplTraitContext<'_>)
2543                            -> hir::GenericParam {
2544         let mut bounds = self.with_anonymous_lifetime_mode(
2545             AnonymousLifetimeMode::ReportError,
2546             |this| this.lower_param_bounds(&param.bounds, itctx.reborrow()),
2547         );
2548
2549         let (name, kind) = match param.kind {
2550             GenericParamKind::Lifetime => {
2551                 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2552                 self.is_collecting_in_band_lifetimes = false;
2553
2554                 let lt = self.with_anonymous_lifetime_mode(
2555                     AnonymousLifetimeMode::ReportError,
2556                     |this| this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident }),
2557                 );
2558                 let param_name = match lt.name {
2559                     hir::LifetimeName::Param(param_name) => param_name,
2560                     hir::LifetimeName::Implicit
2561                         | hir::LifetimeName::Underscore
2562                         | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2563                     hir::LifetimeName::ImplicitObjectLifetimeDefault => {
2564                         span_bug!(
2565                             param.ident.span,
2566                             "object-lifetime-default should not occur here",
2567                         );
2568                     }
2569                     hir::LifetimeName::Error => ParamName::Error,
2570                 };
2571
2572                 let kind = hir::GenericParamKind::Lifetime {
2573                     kind: hir::LifetimeParamKind::Explicit
2574                 };
2575
2576                 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2577
2578                 (param_name, kind)
2579             }
2580             GenericParamKind::Type { ref default, .. } => {
2581                 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2582                 if !add_bounds.is_empty() {
2583                     let params = self.lower_param_bounds(add_bounds, itctx.reborrow()).into_iter();
2584                     bounds = bounds.into_iter()
2585                                    .chain(params)
2586                                    .collect();
2587                 }
2588
2589                 let kind = hir::GenericParamKind::Type {
2590                     default: default.as_ref().map(|x| {
2591                         self.lower_ty(x, ImplTraitContext::OpaqueTy(None))
2592                     }),
2593                     synthetic: param.attrs.iter()
2594                                           .filter(|attr| attr.check_name(sym::rustc_synthetic))
2595                                           .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2596                                           .next(),
2597                 };
2598
2599                 (hir::ParamName::Plain(param.ident), kind)
2600             }
2601             GenericParamKind::Const { ref ty } => {
2602                 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const {
2603                     ty: self.lower_ty(&ty, ImplTraitContext::disallowed()),
2604                 })
2605             }
2606         };
2607
2608         hir::GenericParam {
2609             hir_id: self.lower_node_id(param.id),
2610             name,
2611             span: param.ident.span,
2612             pure_wrt_drop: attr::contains_name(&param.attrs, sym::may_dangle),
2613             attrs: self.lower_attrs(&param.attrs),
2614             bounds,
2615             kind,
2616         }
2617     }
2618
2619     fn lower_trait_ref(&mut self, p: &TraitRef, itctx: ImplTraitContext<'_>) -> hir::TraitRef {
2620         let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2621             hir::QPath::Resolved(None, path) => path,
2622             qpath => bug!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2623         };
2624         hir::TraitRef {
2625             path,
2626             hir_ref_id: self.lower_node_id(p.ref_id),
2627         }
2628     }
2629
2630     fn lower_poly_trait_ref(
2631         &mut self,
2632         p: &PolyTraitRef,
2633         mut itctx: ImplTraitContext<'_>,
2634     ) -> hir::PolyTraitRef {
2635         let bound_generic_params = self.lower_generic_params(
2636             &p.bound_generic_params,
2637             &NodeMap::default(),
2638             itctx.reborrow(),
2639         );
2640         let trait_ref = self.with_in_scope_lifetime_defs(
2641             &p.bound_generic_params,
2642             |this| this.lower_trait_ref(&p.trait_ref, itctx),
2643         );
2644
2645         hir::PolyTraitRef {
2646             bound_generic_params,
2647             trait_ref,
2648             span: p.span,
2649         }
2650     }
2651
2652     fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_>) -> hir::MutTy {
2653         hir::MutTy {
2654             ty: self.lower_ty(&mt.ty, itctx),
2655             mutbl: mt.mutbl,
2656         }
2657     }
2658
2659     fn lower_param_bounds(&mut self, bounds: &[GenericBound], mut itctx: ImplTraitContext<'_>)
2660                           -> hir::GenericBounds {
2661         bounds.iter().map(|bound| self.lower_param_bound(bound, itctx.reborrow())).collect()
2662     }
2663
2664     fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> P<hir::Block> {
2665         let mut stmts = vec![];
2666         let mut expr = None;
2667
2668         for (index, stmt) in b.stmts.iter().enumerate() {
2669             if index == b.stmts.len() - 1 {
2670                 if let StmtKind::Expr(ref e) = stmt.kind {
2671                     expr = Some(P(self.lower_expr(e)));
2672                 } else {
2673                     stmts.extend(self.lower_stmt(stmt));
2674                 }
2675             } else {
2676                 stmts.extend(self.lower_stmt(stmt));
2677             }
2678         }
2679
2680         P(hir::Block {
2681             hir_id: self.lower_node_id(b.id),
2682             stmts: stmts.into(),
2683             expr,
2684             rules: self.lower_block_check_mode(&b.rules),
2685             span: b.span,
2686             targeted_by_break,
2687         })
2688     }
2689
2690     /// Lowers a block directly to an expression, presuming that it
2691     /// has no attributes and is not targeted by a `break`.
2692     fn lower_block_expr(&mut self, b: &Block) -> hir::Expr {
2693         let block = self.lower_block(b, false);
2694         self.expr_block(block, ThinVec::new())
2695     }
2696
2697     fn lower_pat(&mut self, p: &Pat) -> P<hir::Pat> {
2698         let node = match p.kind {
2699             PatKind::Wild => hir::PatKind::Wild,
2700             PatKind::Ident(ref binding_mode, ident, ref sub) => {
2701                 let lower_sub = |this: &mut Self| sub.as_ref().map(|x| this.lower_pat(x));
2702                 self.lower_pat_ident(p, binding_mode, ident, lower_sub)
2703             }
2704             PatKind::Lit(ref e) => hir::PatKind::Lit(P(self.lower_expr(e))),
2705             PatKind::TupleStruct(ref path, ref pats) => {
2706                 let qpath = self.lower_qpath(
2707                     p.id,
2708                     &None,
2709                     path,
2710                     ParamMode::Optional,
2711                     ImplTraitContext::disallowed(),
2712                 );
2713                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple struct");
2714                 hir::PatKind::TupleStruct(qpath, pats, ddpos)
2715             }
2716             PatKind::Or(ref pats) => {
2717                 hir::PatKind::Or(pats.iter().map(|x| self.lower_pat(x)).collect())
2718             }
2719             PatKind::Path(ref qself, ref path) => {
2720                 let qpath = self.lower_qpath(
2721                     p.id,
2722                     qself,
2723                     path,
2724                     ParamMode::Optional,
2725                     ImplTraitContext::disallowed(),
2726                 );
2727                 hir::PatKind::Path(qpath)
2728             }
2729             PatKind::Struct(ref path, ref fields, etc) => {
2730                 let qpath = self.lower_qpath(
2731                     p.id,
2732                     &None,
2733                     path,
2734                     ParamMode::Optional,
2735                     ImplTraitContext::disallowed(),
2736                 );
2737
2738                 let fs = fields
2739                     .iter()
2740                     .map(|f| hir::FieldPat {
2741                         hir_id: self.next_id(),
2742                         ident: f.ident,
2743                         pat: self.lower_pat(&f.pat),
2744                         is_shorthand: f.is_shorthand,
2745                         span: f.span,
2746                     })
2747                     .collect();
2748                 hir::PatKind::Struct(qpath, fs, etc)
2749             }
2750             PatKind::Tuple(ref pats) => {
2751                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple");
2752                 hir::PatKind::Tuple(pats, ddpos)
2753             }
2754             PatKind::Box(ref inner) => hir::PatKind::Box(self.lower_pat(inner)),
2755             PatKind::Ref(ref inner, mutbl) => {
2756                 hir::PatKind::Ref(self.lower_pat(inner), mutbl)
2757             }
2758             PatKind::Range(ref e1, ref e2, Spanned { node: ref end, .. }) => hir::PatKind::Range(
2759                 P(self.lower_expr(e1)),
2760                 P(self.lower_expr(e2)),
2761                 self.lower_range_end(end),
2762             ),
2763             PatKind::Slice(ref pats) => self.lower_pat_slice(pats),
2764             PatKind::Rest => {
2765                 // If we reach here the `..` pattern is not semantically allowed.
2766                 self.ban_illegal_rest_pat(p.span)
2767             }
2768             PatKind::Paren(ref inner) => return self.lower_pat(inner),
2769             PatKind::Mac(_) => panic!("Shouldn't exist here"),
2770         };
2771
2772         self.pat_with_node_id_of(p, node)
2773     }
2774
2775     fn lower_pat_tuple(
2776         &mut self,
2777         pats: &[AstP<Pat>],
2778         ctx: &str,
2779     ) -> (HirVec<P<hir::Pat>>, Option<usize>) {
2780         let mut elems = Vec::with_capacity(pats.len());
2781         let mut rest = None;
2782
2783         let mut iter = pats.iter().enumerate();
2784         while let Some((idx, pat)) = iter.next() {
2785             // Interpret the first `..` pattern as a subtuple pattern.
2786             if pat.is_rest() {
2787                 rest = Some((idx, pat.span));
2788                 break;
2789             }
2790             // It was not a subslice pattern so lower it normally.
2791             elems.push(self.lower_pat(pat));
2792         }
2793
2794         while let Some((_, pat)) = iter.next() {
2795             // There was a previous subtuple pattern; make sure we don't allow more.
2796             if pat.is_rest() {
2797                 self.ban_extra_rest_pat(pat.span, rest.unwrap().1, ctx);
2798             } else {
2799                 elems.push(self.lower_pat(pat));
2800             }
2801         }
2802
2803         (elems.into(), rest.map(|(ddpos, _)| ddpos))
2804     }
2805
2806     fn lower_pat_slice(&mut self, pats: &[AstP<Pat>]) -> hir::PatKind {
2807         let mut before = Vec::new();
2808         let mut after = Vec::new();
2809         let mut slice = None;
2810         let mut prev_rest_span = None;
2811
2812         let mut iter = pats.iter();
2813         while let Some(pat) = iter.next() {
2814             // Interpret the first `((ref mut?)? x @)? ..` pattern as a subslice pattern.
2815             match pat.kind {
2816                 PatKind::Rest => {
2817                     prev_rest_span = Some(pat.span);
2818                     slice = Some(self.pat_wild_with_node_id_of(pat));
2819                     break;
2820                 },
2821                 PatKind::Ident(ref bm, ident, Some(ref sub)) if sub.is_rest() => {
2822                     prev_rest_span = Some(sub.span);
2823                     let lower_sub = |this: &mut Self| Some(this.pat_wild_with_node_id_of(sub));
2824                     let node = self.lower_pat_ident(pat, bm, ident, lower_sub);
2825                     slice = Some(self.pat_with_node_id_of(pat, node));
2826                     break;
2827                 },
2828                 _ => {}
2829             }
2830
2831             // It was not a subslice pattern so lower it normally.
2832             before.push(self.lower_pat(pat));
2833         }
2834
2835         while let Some(pat) = iter.next() {
2836             // There was a previous subslice pattern; make sure we don't allow more.
2837             let rest_span = match pat.kind {
2838                 PatKind::Rest => Some(pat.span),
2839                 PatKind::Ident(.., Some(ref sub)) if sub.is_rest() => {
2840                     // The `HirValidator` is merciless; add a `_` pattern to avoid ICEs.
2841                     after.push(self.pat_wild_with_node_id_of(pat));
2842                     Some(sub.span)
2843                 },
2844                 _ => None,
2845             };
2846             if let Some(rest_span) = rest_span {
2847                 self.ban_extra_rest_pat(rest_span, prev_rest_span.unwrap(), "slice");
2848             } else {
2849                 after.push(self.lower_pat(pat));
2850             }
2851         }
2852
2853         hir::PatKind::Slice(before.into(), slice, after.into())
2854     }
2855
2856     fn lower_pat_ident(
2857         &mut self,
2858         p: &Pat,
2859         binding_mode: &BindingMode,
2860         ident: Ident,
2861         lower_sub: impl FnOnce(&mut Self) -> Option<P<hir::Pat>>,
2862     ) -> hir::PatKind {
2863         match self.resolver.get_partial_res(p.id).map(|d| d.base_res()) {
2864             // `None` can occur in body-less function signatures
2865             res @ None | res @ Some(Res::Local(_)) => {
2866                 let canonical_id = match res {
2867                     Some(Res::Local(id)) => id,
2868                     _ => p.id,
2869                 };
2870
2871                 hir::PatKind::Binding(
2872                     self.lower_binding_mode(binding_mode),
2873                     self.lower_node_id(canonical_id),
2874                     ident,
2875                     lower_sub(self),
2876                 )
2877             }
2878             Some(res) => hir::PatKind::Path(hir::QPath::Resolved(
2879                 None,
2880                 P(hir::Path {
2881                     span: ident.span,
2882                     res: self.lower_res(res),
2883                     segments: hir_vec![hir::PathSegment::from_ident(ident)],
2884                 }),
2885             )),
2886         }
2887     }
2888
2889     fn pat_wild_with_node_id_of(&mut self, p: &Pat) -> P<hir::Pat> {
2890         self.pat_with_node_id_of(p, hir::PatKind::Wild)
2891     }
2892
2893     /// Construct a `Pat` with the `HirId` of `p.id` lowered.
2894     fn pat_with_node_id_of(&mut self, p: &Pat, kind: hir::PatKind) -> P<hir::Pat> {
2895         P(hir::Pat {
2896             hir_id: self.lower_node_id(p.id),
2897             kind,
2898             span: p.span,
2899         })
2900     }
2901
2902     /// Emit a friendly error for extra `..` patterns in a tuple/tuple struct/slice pattern.
2903     fn ban_extra_rest_pat(&self, sp: Span, prev_sp: Span, ctx: &str) {
2904         self.diagnostic()
2905             .struct_span_err(sp, &format!("`..` can only be used once per {} pattern", ctx))
2906             .span_label(sp, &format!("can only be used once per {} pattern", ctx))
2907             .span_label(prev_sp, "previously used here")
2908             .emit();
2909     }
2910
2911     /// Used to ban the `..` pattern in places it shouldn't be semantically.
2912     fn ban_illegal_rest_pat(&self, sp: Span) -> hir::PatKind {
2913         self.diagnostic()
2914             .struct_span_err(sp, "`..` patterns are not allowed here")
2915             .note("only allowed in tuple, tuple struct, and slice patterns")
2916             .emit();
2917
2918         // We're not in a list context so `..` can be reasonably treated
2919         // as `_` because it should always be valid and roughly matches the
2920         // intent of `..` (notice that the rest of a single slot is that slot).
2921         hir::PatKind::Wild
2922     }
2923
2924     fn lower_range_end(&mut self, e: &RangeEnd) -> hir::RangeEnd {
2925         match *e {
2926             RangeEnd::Included(_) => hir::RangeEnd::Included,
2927             RangeEnd::Excluded => hir::RangeEnd::Excluded,
2928         }
2929     }
2930
2931     fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
2932         self.with_new_scopes(|this| {
2933             hir::AnonConst {
2934                 hir_id: this.lower_node_id(c.id),
2935                 body: this.lower_const_body(&c.value),
2936             }
2937         })
2938     }
2939
2940     fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt; 1]> {
2941         let kind = match s.kind {
2942             StmtKind::Local(ref l) => {
2943                 let (l, item_ids) = self.lower_local(l);
2944                 let mut ids: SmallVec<[hir::Stmt; 1]> = item_ids
2945                     .into_iter()
2946                     .map(|item_id| {
2947                         let item_id = hir::ItemId { id: self.lower_node_id(item_id) };
2948                         self.stmt(s.span, hir::StmtKind::Item(item_id))
2949                     })
2950                     .collect();
2951                 ids.push({
2952                     hir::Stmt {
2953                         hir_id: self.lower_node_id(s.id),
2954                         kind: hir::StmtKind::Local(P(l)),
2955                         span: s.span,
2956                     }
2957                 });
2958                 return ids;
2959             },
2960             StmtKind::Item(ref it) => {
2961                 // Can only use the ID once.
2962                 let mut id = Some(s.id);
2963                 return self.lower_item_id(it)
2964                     .into_iter()
2965                     .map(|item_id| {
2966                         let hir_id = id.take()
2967                           .map(|id| self.lower_node_id(id))
2968                           .unwrap_or_else(|| self.next_id());
2969
2970                         hir::Stmt {
2971                             hir_id,
2972                             kind: hir::StmtKind::Item(item_id),
2973                             span: s.span,
2974                         }
2975                     })
2976                     .collect();
2977             }
2978             StmtKind::Expr(ref e) => hir::StmtKind::Expr(P(self.lower_expr(e))),
2979             StmtKind::Semi(ref e) => hir::StmtKind::Semi(P(self.lower_expr(e))),
2980             StmtKind::Mac(..) => panic!("shouldn't exist here"),
2981         };
2982         smallvec![hir::Stmt {
2983             hir_id: self.lower_node_id(s.id),
2984             kind,
2985             span: s.span,
2986         }]
2987     }
2988
2989     fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
2990         match *b {
2991             BlockCheckMode::Default => hir::DefaultBlock,
2992             BlockCheckMode::Unsafe(u) => hir::UnsafeBlock(self.lower_unsafe_source(u)),
2993         }
2994     }
2995
2996     fn lower_binding_mode(&mut self, b: &BindingMode) -> hir::BindingAnnotation {
2997         match *b {
2998             BindingMode::ByValue(Mutability::Immutable) => hir::BindingAnnotation::Unannotated,
2999             BindingMode::ByRef(Mutability::Immutable) => hir::BindingAnnotation::Ref,
3000             BindingMode::ByValue(Mutability::Mutable) => hir::BindingAnnotation::Mutable,
3001             BindingMode::ByRef(Mutability::Mutable) => hir::BindingAnnotation::RefMut,
3002         }
3003     }
3004
3005     fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
3006         match u {
3007             CompilerGenerated => hir::CompilerGenerated,
3008             UserProvided => hir::UserProvided,
3009         }
3010     }
3011
3012     fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
3013         match f {
3014             TraitBoundModifier::None => hir::TraitBoundModifier::None,
3015             TraitBoundModifier::Maybe => hir::TraitBoundModifier::Maybe,
3016         }
3017     }
3018
3019     // Helper methods for building HIR.
3020
3021     fn stmt(&mut self, span: Span, kind: hir::StmtKind) -> hir::Stmt {
3022         hir::Stmt { span, kind, hir_id: self.next_id() }
3023     }
3024
3025     fn stmt_expr(&mut self, span: Span, expr: hir::Expr) -> hir::Stmt {
3026         self.stmt(span, hir::StmtKind::Expr(P(expr)))
3027     }
3028
3029     fn stmt_let_pat(
3030         &mut self,
3031         attrs: ThinVec<Attribute>,
3032         span: Span,
3033         init: Option<P<hir::Expr>>,
3034         pat: P<hir::Pat>,
3035         source: hir::LocalSource,
3036     ) -> hir::Stmt {
3037         let local = hir::Local {
3038             attrs,
3039             hir_id: self.next_id(),
3040             init,
3041             pat,
3042             source,
3043             span,
3044             ty: None,
3045         };
3046         self.stmt(span, hir::StmtKind::Local(P(local)))
3047     }
3048
3049     fn block_expr(&mut self, expr: P<hir::Expr>) -> hir::Block {
3050         self.block_all(expr.span, hir::HirVec::new(), Some(expr))
3051     }
3052
3053     fn block_all(
3054         &mut self,
3055         span: Span,
3056         stmts: hir::HirVec<hir::Stmt>,
3057         expr: Option<P<hir::Expr>>,
3058     ) -> hir::Block {
3059         hir::Block {
3060             stmts,
3061             expr,
3062             hir_id: self.next_id(),
3063             rules: hir::DefaultBlock,
3064             span,
3065             targeted_by_break: false,
3066         }
3067     }
3068
3069     /// Constructs a `true` or `false` literal pattern.
3070     fn pat_bool(&mut self, span: Span, val: bool) -> P<hir::Pat> {
3071         let expr = self.expr_bool(span, val);
3072         self.pat(span, hir::PatKind::Lit(P(expr)))
3073     }
3074
3075     fn pat_ok(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3076         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Ok], hir_vec![pat])
3077     }
3078
3079     fn pat_err(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3080         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Err], hir_vec![pat])
3081     }
3082
3083     fn pat_some(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3084         self.pat_std_enum(span, &[sym::option, sym::Option, sym::Some], hir_vec![pat])
3085     }
3086
3087     fn pat_none(&mut self, span: Span) -> P<hir::Pat> {
3088         self.pat_std_enum(span, &[sym::option, sym::Option, sym::None], hir_vec![])
3089     }
3090
3091     fn pat_std_enum(
3092         &mut self,
3093         span: Span,
3094         components: &[Symbol],
3095         subpats: hir::HirVec<P<hir::Pat>>,
3096     ) -> P<hir::Pat> {
3097         let path = self.std_path(span, components, None, true);
3098         let qpath = hir::QPath::Resolved(None, P(path));
3099         let pt = if subpats.is_empty() {
3100             hir::PatKind::Path(qpath)
3101         } else {
3102             hir::PatKind::TupleStruct(qpath, subpats, None)
3103         };
3104         self.pat(span, pt)
3105     }
3106
3107     fn pat_ident(&mut self, span: Span, ident: Ident) -> (P<hir::Pat>, hir::HirId) {
3108         self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
3109     }
3110
3111     fn pat_ident_binding_mode(
3112         &mut self,
3113         span: Span,
3114         ident: Ident,
3115         bm: hir::BindingAnnotation,
3116     ) -> (P<hir::Pat>, hir::HirId) {
3117         let hir_id = self.next_id();
3118
3119         (
3120             P(hir::Pat {
3121                 hir_id,
3122                 kind: hir::PatKind::Binding(bm, hir_id, ident.with_span_pos(span), None),
3123                 span,
3124             }),
3125             hir_id
3126         )
3127     }
3128
3129     fn pat_wild(&mut self, span: Span) -> P<hir::Pat> {
3130         self.pat(span, hir::PatKind::Wild)
3131     }
3132
3133     fn pat(&mut self, span: Span, kind: hir::PatKind) -> P<hir::Pat> {
3134         P(hir::Pat {
3135             hir_id: self.next_id(),
3136             kind,
3137             span,
3138         })
3139     }
3140
3141     /// Given a suffix `["b", "c", "d"]`, returns path `::std::b::c::d` when
3142     /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
3143     /// The path is also resolved according to `is_value`.
3144     fn std_path(
3145         &mut self,
3146         span: Span,
3147         components: &[Symbol],
3148         params: Option<P<hir::GenericArgs>>,
3149         is_value: bool,
3150     ) -> hir::Path {
3151         let ns = if is_value { Namespace::ValueNS } else { Namespace::TypeNS };
3152         let (path, res) = self.resolver.resolve_str_path(span, self.crate_root, components, ns);
3153
3154         let mut segments: Vec<_> = path.segments.iter().map(|segment| {
3155             let res = self.expect_full_res(segment.id);
3156             hir::PathSegment {
3157                 ident: segment.ident,
3158                 hir_id: Some(self.lower_node_id(segment.id)),
3159                 res: Some(self.lower_res(res)),
3160                 infer_args: true,
3161                 args: None,
3162             }
3163         }).collect();
3164         segments.last_mut().unwrap().args = params;
3165
3166         hir::Path {
3167             span,
3168             res: res.map_id(|_| panic!("unexpected `NodeId`")),
3169             segments: segments.into(),
3170         }
3171     }
3172
3173     fn ty_path(&mut self, mut hir_id: hir::HirId, span: Span, qpath: hir::QPath) -> hir::Ty {
3174         let kind = match qpath {
3175             hir::QPath::Resolved(None, path) => {
3176                 // Turn trait object paths into `TyKind::TraitObject` instead.
3177                 match path.res {
3178                     Res::Def(DefKind::Trait, _) | Res::Def(DefKind::TraitAlias, _) => {
3179                         let principal = hir::PolyTraitRef {
3180                             bound_generic_params: hir::HirVec::new(),
3181                             trait_ref: hir::TraitRef {
3182                                 path,
3183                                 hir_ref_id: hir_id,
3184                             },
3185                             span,
3186                         };
3187
3188                         // The original ID is taken by the `PolyTraitRef`,
3189                         // so the `Ty` itself needs a different one.
3190                         hir_id = self.next_id();
3191                         hir::TyKind::TraitObject(hir_vec![principal], self.elided_dyn_bound(span))
3192                     }
3193                     _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
3194                 }
3195             }
3196             _ => hir::TyKind::Path(qpath),
3197         };
3198
3199         hir::Ty {
3200             hir_id,
3201             kind,
3202             span,
3203         }
3204     }
3205
3206     /// Invoked to create the lifetime argument for a type `&T`
3207     /// with no explicit lifetime.
3208     fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
3209         match self.anonymous_lifetime_mode {
3210             // Intercept when we are in an impl header or async fn and introduce an in-band
3211             // lifetime.
3212             // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
3213             // `'f`.
3214             AnonymousLifetimeMode::CreateParameter => {
3215                 let fresh_name = self.collect_fresh_in_band_lifetime(span);
3216                 hir::Lifetime {
3217                     hir_id: self.next_id(),
3218                     span,
3219                     name: hir::LifetimeName::Param(fresh_name),
3220                 }
3221             }
3222
3223             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
3224
3225             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
3226         }
3227     }
3228
3229     /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
3230     /// return a "error lifetime".
3231     fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
3232         let (id, msg, label) = match id {
3233             Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
3234
3235             None => (
3236                 self.resolver.next_node_id(),
3237                 "`&` without an explicit lifetime name cannot be used here",
3238                 "explicit lifetime name needed here",
3239             ),
3240         };
3241
3242         let mut err = struct_span_err!(
3243             self.sess,
3244             span,
3245             E0637,
3246             "{}",
3247             msg,
3248         );
3249         err.span_label(span, label);
3250         err.emit();
3251
3252         self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3253     }
3254
3255     /// Invoked to create the lifetime argument(s) for a path like
3256     /// `std::cell::Ref<T>`; note that implicit lifetimes in these
3257     /// sorts of cases are deprecated. This may therefore report a warning or an
3258     /// error, depending on the mode.
3259     fn elided_path_lifetimes(&mut self, span: Span, count: usize) -> P<[hir::Lifetime]> {
3260         (0..count)
3261             .map(|_| self.elided_path_lifetime(span))
3262             .collect()
3263     }
3264
3265     fn elided_path_lifetime(&mut self, span: Span) -> hir::Lifetime {
3266         match self.anonymous_lifetime_mode {
3267             AnonymousLifetimeMode::CreateParameter => {
3268                 // We should have emitted E0726 when processing this path above
3269                 self.sess.delay_span_bug(
3270                     span,
3271                     "expected 'implicit elided lifetime not allowed' error",
3272                 );
3273                 let id = self.resolver.next_node_id();
3274                 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3275             }
3276             // `PassThrough` is the normal case.
3277             // `new_error_lifetime`, which would usually be used in the case of `ReportError`,
3278             // is unsuitable here, as these can occur from missing lifetime parameters in a
3279             // `PathSegment`, for which there is no associated `'_` or `&T` with no explicit
3280             // lifetime. Instead, we simply create an implicit lifetime, which will be checked
3281             // later, at which point a suitable error will be emitted.
3282           | AnonymousLifetimeMode::PassThrough
3283           | AnonymousLifetimeMode::ReportError => self.new_implicit_lifetime(span),
3284         }
3285     }
3286
3287     /// Invoked to create the lifetime argument(s) for an elided trait object
3288     /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
3289     /// when the bound is written, even if it is written with `'_` like in
3290     /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
3291     fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
3292         match self.anonymous_lifetime_mode {
3293             // NB. We intentionally ignore the create-parameter mode here.
3294             // and instead "pass through" to resolve-lifetimes, which will apply
3295             // the object-lifetime-defaulting rules. Elided object lifetime defaults
3296             // do not act like other elided lifetimes. In other words, given this:
3297             //
3298             //     impl Foo for Box<dyn Debug>
3299             //
3300             // we do not introduce a fresh `'_` to serve as the bound, but instead
3301             // ultimately translate to the equivalent of:
3302             //
3303             //     impl Foo for Box<dyn Debug + 'static>
3304             //
3305             // `resolve_lifetime` has the code to make that happen.
3306             AnonymousLifetimeMode::CreateParameter => {}
3307
3308             AnonymousLifetimeMode::ReportError => {
3309                 // ReportError applies to explicit use of `'_`.
3310             }
3311
3312             // This is the normal case.
3313             AnonymousLifetimeMode::PassThrough => {}
3314         }
3315
3316         let r = hir::Lifetime {
3317             hir_id: self.next_id(),
3318             span,
3319             name: hir::LifetimeName::ImplicitObjectLifetimeDefault,
3320         };
3321         debug!("elided_dyn_bound: r={:?}", r);
3322         r
3323     }
3324
3325     fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
3326         hir::Lifetime {
3327             hir_id: self.next_id(),
3328             span,
3329             name: hir::LifetimeName::Implicit,
3330         }
3331     }
3332
3333     fn maybe_lint_bare_trait(&mut self, span: Span, id: NodeId, is_global: bool) {
3334         // FIXME(davidtwco): This is a hack to detect macros which produce spans of the
3335         // call site which do not have a macro backtrace. See #61963.
3336         let is_macro_callsite = self.sess.source_map()
3337             .span_to_snippet(span)
3338             .map(|snippet| snippet.starts_with("#["))
3339             .unwrap_or(true);
3340         if !is_macro_callsite {
3341             self.resolver.lint_buffer().buffer_lint_with_diagnostic(
3342                 builtin::BARE_TRAIT_OBJECTS,
3343                 id,
3344                 span,
3345                 "trait objects without an explicit `dyn` are deprecated",
3346                 builtin::BuiltinLintDiagnostics::BareTraitObject(span, is_global),
3347             )
3348         }
3349     }
3350 }
3351
3352 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body>) -> Vec<hir::BodyId> {
3353     // Sorting by span ensures that we get things in order within a
3354     // file, and also puts the files in a sensible order.
3355     let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
3356     body_ids.sort_by_key(|b| bodies[b].value.span);
3357     body_ids
3358 }
3359
3360 /// Checks if the specified expression is a built-in range literal.
3361 /// (See: `LoweringContext::lower_expr()`).
3362 pub fn is_range_literal(sess: &Session, expr: &hir::Expr) -> bool {
3363     use hir::{Path, QPath, ExprKind, TyKind};
3364
3365     // Returns whether the given path represents a (desugared) range,
3366     // either in std or core, i.e. has either a `::std::ops::Range` or
3367     // `::core::ops::Range` prefix.
3368     fn is_range_path(path: &Path) -> bool {
3369         let segs: Vec<_> = path.segments.iter().map(|seg| seg.ident.to_string()).collect();
3370         let segs: Vec<_> = segs.iter().map(|seg| &**seg).collect();
3371
3372         // "{{root}}" is the equivalent of `::` prefix in `Path`.
3373         if let ["{{root}}", std_core, "ops", range] = segs.as_slice() {
3374             (*std_core == "std" || *std_core == "core") && range.starts_with("Range")
3375         } else {
3376             false
3377         }
3378     };
3379
3380     // Check whether a span corresponding to a range expression is a
3381     // range literal, rather than an explicit struct or `new()` call.
3382     fn is_lit(sess: &Session, span: &Span) -> bool {
3383         let source_map = sess.source_map();
3384         let end_point = source_map.end_point(*span);
3385
3386         if let Ok(end_string) = source_map.span_to_snippet(end_point) {
3387             !(end_string.ends_with("}") || end_string.ends_with(")"))
3388         } else {
3389             false
3390         }
3391     };
3392
3393     match expr.kind {
3394         // All built-in range literals but `..=` and `..` desugar to `Struct`s.
3395         ExprKind::Struct(ref qpath, _, _) => {
3396             if let QPath::Resolved(None, ref path) = **qpath {
3397                 return is_range_path(&path) && is_lit(sess, &expr.span);
3398             }
3399         }
3400
3401         // `..` desugars to its struct path.
3402         ExprKind::Path(QPath::Resolved(None, ref path)) => {
3403             return is_range_path(&path) && is_lit(sess, &expr.span);
3404         }
3405
3406         // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
3407         ExprKind::Call(ref func, _) => {
3408             if let ExprKind::Path(QPath::TypeRelative(ref ty, ref segment)) = func.kind {
3409                 if let TyKind::Path(QPath::Resolved(None, ref path)) = ty.kind {
3410                     let new_call = segment.ident.name == sym::new;
3411                     return is_range_path(&path) && is_lit(sess, &expr.span) && new_call;
3412                 }
3413             }
3414         }
3415
3416         _ => {}
3417     }
3418
3419     false
3420 }