]> git.lizzy.rs Git - rust.git/blob - src/librustc/hir/lowering.rs
3f8085f2344b3228ed57c659da4d831ddc013a94
[rust.git] / src / librustc / hir / lowering.rs
1 // ignore-tidy-filelength
2
3 //! Lowers the AST to the HIR.
4 //!
5 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
6 //! much like a fold. Where lowering involves a bit more work things get more
7 //! interesting and there are some invariants you should know about. These mostly
8 //! concern spans and IDs.
9 //!
10 //! Spans are assigned to AST nodes during parsing and then are modified during
11 //! expansion to indicate the origin of a node and the process it went through
12 //! being expanded. IDs are assigned to AST nodes just before lowering.
13 //!
14 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
15 //! expansion we do not preserve the process of lowering in the spans, so spans
16 //! should not be modified here. When creating a new node (as opposed to
17 //! 'folding' an existing one), then you create a new ID using `next_id()`.
18 //!
19 //! You must ensure that IDs are unique. That means that you should only use the
20 //! ID from an AST node in a single HIR node (you can assume that AST node-IDs
21 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
22 //! If you do, you must then set the new node's ID to a fresh one.
23 //!
24 //! Spans are used for error messages and for tools to map semantics back to
25 //! source code. It is therefore not as important with spans as IDs to be strict
26 //! about use (you can't break the compiler by screwing up a span). Obviously, a
27 //! HIR node can only have a single span. But multiple nodes can have the same
28 //! span and spans don't need to be kept in order, etc. Where code is preserved
29 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
30 //! new it is probably best to give a span for the whole AST node being lowered.
31 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
32 //! get confused if the spans from leaf AST nodes occur in multiple places
33 //! in the HIR, especially for multiple identifiers.
34
35 mod expr;
36 mod item;
37
38 use crate::dep_graph::DepGraph;
39 use crate::hir::{self, ParamName};
40 use crate::hir::HirVec;
41 use crate::hir::map::{DefKey, DefPathData, Definitions};
42 use crate::hir::def_id::{DefId, DefIndex, CRATE_DEF_INDEX};
43 use crate::hir::def::{Namespace, Res, DefKind, PartialRes, PerNS};
44 use crate::hir::{GenericArg, ConstArg};
45 use crate::hir::ptr::P;
46 use crate::lint;
47 use crate::lint::builtin::{self, ELIDED_LIFETIMES_IN_PATHS};
48 use crate::middle::cstore::CrateStore;
49 use crate::session::Session;
50 use crate::session::config::nightly_options;
51 use crate::util::common::FN_OUTPUT_NAME;
52 use crate::util::nodemap::{DefIdMap, NodeMap};
53 use errors::Applicability;
54 use rustc_data_structures::fx::FxHashSet;
55 use rustc_index::vec::IndexVec;
56 use rustc_data_structures::thin_vec::ThinVec;
57 use rustc_data_structures::sync::Lrc;
58
59 use std::collections::BTreeMap;
60 use std::mem;
61 use smallvec::SmallVec;
62 use syntax::attr;
63 use syntax::ast;
64 use syntax::ptr::P as AstP;
65 use syntax::ast::*;
66 use syntax::errors;
67 use syntax::print::pprust;
68 use syntax::token::{self, Nonterminal, Token};
69 use syntax::tokenstream::{TokenStream, TokenTree};
70 use syntax::sess::ParseSess;
71 use syntax::source_map::{respan, ExpnData, ExpnKind, DesugaringKind, Spanned};
72 use syntax::symbol::{kw, sym, Symbol};
73 use syntax::visit::{self, Visitor};
74 use syntax_pos::hygiene::ExpnId;
75 use syntax_pos::Span;
76
77 use rustc_error_codes::*;
78
79 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
80
81 pub struct LoweringContext<'a> {
82     crate_root: Option<Symbol>,
83
84     /// Used to assign IDs to HIR nodes that do not directly correspond to AST nodes.
85     sess: &'a Session,
86
87     resolver: &'a mut dyn Resolver,
88
89     /// HACK(Centril): there is a cyclic dependency between the parser and lowering
90     /// if we don't have this function pointer. To avoid that dependency so that
91     /// librustc is independent of the parser, we use dynamic dispatch here.
92     nt_to_tokenstream: NtToTokenstream,
93
94     /// The items being lowered are collected here.
95     items: BTreeMap<hir::HirId, hir::Item>,
96
97     trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem>,
98     impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem>,
99     bodies: BTreeMap<hir::BodyId, hir::Body>,
100     exported_macros: Vec<hir::MacroDef>,
101     non_exported_macro_attrs: Vec<ast::Attribute>,
102
103     trait_impls: BTreeMap<DefId, Vec<hir::HirId>>,
104
105     modules: BTreeMap<hir::HirId, hir::ModuleItems>,
106
107     generator_kind: Option<hir::GeneratorKind>,
108
109     /// Used to get the current `fn`'s def span to point to when using `await`
110     /// outside of an `async fn`.
111     current_item: Option<Span>,
112
113     catch_scopes: Vec<NodeId>,
114     loop_scopes: Vec<NodeId>,
115     is_in_loop_condition: bool,
116     is_in_trait_impl: bool,
117     is_in_dyn_type: bool,
118
119     /// What to do when we encounter either an "anonymous lifetime
120     /// reference". The term "anonymous" is meant to encompass both
121     /// `'_` lifetimes as well as fully elided cases where nothing is
122     /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
123     anonymous_lifetime_mode: AnonymousLifetimeMode,
124
125     /// Used to create lifetime definitions from in-band lifetime usages.
126     /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
127     /// When a named lifetime is encountered in a function or impl header and
128     /// has not been defined
129     /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
130     /// to this list. The results of this list are then added to the list of
131     /// lifetime definitions in the corresponding impl or function generics.
132     lifetimes_to_define: Vec<(Span, ParamName)>,
133
134     /// `true` if in-band lifetimes are being collected. This is used to
135     /// indicate whether or not we're in a place where new lifetimes will result
136     /// in in-band lifetime definitions, such a function or an impl header,
137     /// including implicit lifetimes from `impl_header_lifetime_elision`.
138     is_collecting_in_band_lifetimes: bool,
139
140     /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
141     /// When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
142     /// against this list to see if it is already in-scope, or if a definition
143     /// needs to be created for it.
144     ///
145     /// We always store a `modern()` version of the param-name in this
146     /// vector.
147     in_scope_lifetimes: Vec<ParamName>,
148
149     current_module: hir::HirId,
150
151     type_def_lifetime_params: DefIdMap<usize>,
152
153     current_hir_id_owner: Vec<(DefIndex, u32)>,
154     item_local_id_counters: NodeMap<u32>,
155     node_id_to_hir_id: IndexVec<NodeId, hir::HirId>,
156
157     allow_try_trait: Option<Lrc<[Symbol]>>,
158     allow_gen_future: Option<Lrc<[Symbol]>>,
159 }
160
161 pub trait Resolver {
162     fn cstore(&self) -> &dyn CrateStore;
163
164     /// Obtains resolution for a `NodeId` with a single resolution.
165     fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes>;
166
167     /// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
168     fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;
169
170     /// Obtains resolution for a label with the given `NodeId`.
171     fn get_label_res(&mut self, id: NodeId) -> Option<NodeId>;
172
173     /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
174     /// This should only return `None` during testing.
175     fn definitions(&mut self) -> &mut Definitions;
176
177     /// Given suffix `["b", "c", "d"]`, creates an AST path for `[::crate_root]::b::c::d` and
178     /// resolves it based on `is_value`.
179     fn resolve_str_path(
180         &mut self,
181         span: Span,
182         crate_root: Option<Symbol>,
183         components: &[Symbol],
184         ns: Namespace,
185     ) -> (ast::Path, Res<NodeId>);
186
187     fn lint_buffer(&mut self) -> &mut lint::LintBuffer;
188
189     fn next_node_id(&mut self) -> NodeId;
190 }
191
192 type NtToTokenstream = fn(&Nonterminal, &ParseSess, Span) -> TokenStream;
193
194 /// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
195 /// and if so, what meaning it has.
196 #[derive(Debug)]
197 enum ImplTraitContext<'a> {
198     /// Treat `impl Trait` as shorthand for a new universal generic parameter.
199     /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
200     /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
201     ///
202     /// Newly generated parameters should be inserted into the given `Vec`.
203     Universal(&'a mut Vec<hir::GenericParam>),
204
205     /// Treat `impl Trait` as shorthand for a new opaque type.
206     /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
207     /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
208     ///
209     /// We optionally store a `DefId` for the parent item here so we can look up necessary
210     /// information later. It is `None` when no information about the context should be stored
211     /// (e.g., for consts and statics).
212     OpaqueTy(Option<DefId> /* fn def-ID */),
213
214     /// `impl Trait` is not accepted in this position.
215     Disallowed(ImplTraitPosition),
216 }
217
218 /// Position in which `impl Trait` is disallowed.
219 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
220 enum ImplTraitPosition {
221     /// Disallowed in `let` / `const` / `static` bindings.
222     Binding,
223
224     /// All other posiitons.
225     Other,
226 }
227
228 impl<'a> ImplTraitContext<'a> {
229     #[inline]
230     fn disallowed() -> Self {
231         ImplTraitContext::Disallowed(ImplTraitPosition::Other)
232     }
233
234     fn reborrow(&'b mut self) -> ImplTraitContext<'b> {
235         use self::ImplTraitContext::*;
236         match self {
237             Universal(params) => Universal(params),
238             OpaqueTy(fn_def_id) => OpaqueTy(*fn_def_id),
239             Disallowed(pos) => Disallowed(*pos),
240         }
241     }
242 }
243
244 pub fn lower_crate(
245     sess: &Session,
246     dep_graph: &DepGraph,
247     krate: &Crate,
248     resolver: &mut dyn Resolver,
249     nt_to_tokenstream: NtToTokenstream,
250 ) -> hir::Crate {
251     // We're constructing the HIR here; we don't care what we will
252     // read, since we haven't even constructed the *input* to
253     // incr. comp. yet.
254     dep_graph.assert_ignored();
255
256     let _prof_timer = sess.prof.generic_activity("hir_lowering");
257
258     LoweringContext {
259         crate_root: sess.parse_sess.injected_crate_name.try_get().copied(),
260         sess,
261         resolver,
262         nt_to_tokenstream,
263         items: BTreeMap::new(),
264         trait_items: BTreeMap::new(),
265         impl_items: BTreeMap::new(),
266         bodies: BTreeMap::new(),
267         trait_impls: BTreeMap::new(),
268         modules: BTreeMap::new(),
269         exported_macros: Vec::new(),
270         non_exported_macro_attrs: Vec::new(),
271         catch_scopes: Vec::new(),
272         loop_scopes: Vec::new(),
273         is_in_loop_condition: false,
274         is_in_trait_impl: false,
275         is_in_dyn_type: false,
276         anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
277         type_def_lifetime_params: Default::default(),
278         current_module: hir::CRATE_HIR_ID,
279         current_hir_id_owner: vec![(CRATE_DEF_INDEX, 0)],
280         item_local_id_counters: Default::default(),
281         node_id_to_hir_id: IndexVec::new(),
282         generator_kind: None,
283         current_item: None,
284         lifetimes_to_define: Vec::new(),
285         is_collecting_in_band_lifetimes: false,
286         in_scope_lifetimes: Vec::new(),
287         allow_try_trait: Some([sym::try_trait][..].into()),
288         allow_gen_future: Some([sym::gen_future][..].into()),
289     }.lower_crate(krate)
290 }
291
292 #[derive(Copy, Clone, PartialEq)]
293 enum ParamMode {
294     /// Any path in a type context.
295     Explicit,
296     /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
297     ExplicitNamed,
298     /// The `module::Type` in `module::Type::method` in an expression.
299     Optional,
300 }
301
302 enum ParenthesizedGenericArgs {
303     Ok,
304     Err,
305 }
306
307 /// What to do when we encounter an **anonymous** lifetime
308 /// reference. Anonymous lifetime references come in two flavors. You
309 /// have implicit, or fully elided, references to lifetimes, like the
310 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
311 /// or `Ref<'_, T>`. These often behave the same, but not always:
312 ///
313 /// - certain usages of implicit references are deprecated, like
314 ///   `Ref<T>`, and we sometimes just give hard errors in those cases
315 ///   as well.
316 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
317 ///   the same as `Box<dyn Foo + '_>`.
318 ///
319 /// We describe the effects of the various modes in terms of three cases:
320 ///
321 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
322 ///   of a `&` (e.g., the missing lifetime in something like `&T`)
323 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
324 ///   there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
325 ///   elided bounds follow special rules. Note that this only covers
326 ///   cases where *nothing* is written; the `'_` in `Box<dyn Foo +
327 ///   '_>` is a case of "modern" elision.
328 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
329 ///   parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
330 ///   non-deprecated equivalent.
331 ///
332 /// Currently, the handling of lifetime elision is somewhat spread out
333 /// between HIR lowering and -- as described below -- the
334 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
335 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
336 /// everything into HIR lowering.
337 #[derive(Copy, Clone, Debug)]
338 enum AnonymousLifetimeMode {
339     /// For **Modern** cases, create a new anonymous region parameter
340     /// and reference that.
341     ///
342     /// For **Dyn Bound** cases, pass responsibility to
343     /// `resolve_lifetime` code.
344     ///
345     /// For **Deprecated** cases, report an error.
346     CreateParameter,
347
348     /// Give a hard error when either `&` or `'_` is written. Used to
349     /// rule out things like `where T: Foo<'_>`. Does not imply an
350     /// error on default object bounds (e.g., `Box<dyn Foo>`).
351     ReportError,
352
353     /// Pass responsibility to `resolve_lifetime` code for all cases.
354     PassThrough,
355 }
356
357 struct ImplTraitTypeIdVisitor<'a> { ids: &'a mut SmallVec<[NodeId; 1]> }
358
359 impl<'a, 'b> Visitor<'a> for ImplTraitTypeIdVisitor<'b> {
360     fn visit_ty(&mut self, ty: &'a Ty) {
361         match ty.kind {
362             | TyKind::Typeof(_)
363             | TyKind::BareFn(_)
364             => return,
365
366             TyKind::ImplTrait(id, _) => self.ids.push(id),
367             _ => {},
368         }
369         visit::walk_ty(self, ty);
370     }
371
372     fn visit_path_segment(
373         &mut self,
374         path_span: Span,
375         path_segment: &'v PathSegment,
376     ) {
377         if let Some(ref p) = path_segment.args {
378             if let GenericArgs::Parenthesized(_) = **p {
379                 return;
380             }
381         }
382         visit::walk_path_segment(self, path_span, path_segment)
383     }
384 }
385
386 impl<'a> LoweringContext<'a> {
387     fn lower_crate(mut self, c: &Crate) -> hir::Crate {
388         /// Full-crate AST visitor that inserts into a fresh
389         /// `LoweringContext` any information that may be
390         /// needed from arbitrary locations in the crate,
391         /// e.g., the number of lifetime generic parameters
392         /// declared for every type and trait definition.
393         struct MiscCollector<'tcx, 'interner> {
394             lctx: &'tcx mut LoweringContext<'interner>,
395             hir_id_owner: Option<NodeId>,
396         }
397
398         impl MiscCollector<'_, '_> {
399             fn allocate_use_tree_hir_id_counters(
400                 &mut self,
401                 tree: &UseTree,
402                 owner: DefIndex,
403             ) {
404                 match tree.kind {
405                     UseTreeKind::Simple(_, id1, id2) => {
406                         for &id in &[id1, id2] {
407                             self.lctx.resolver.definitions().create_def_with_parent(
408                                 owner,
409                                 id,
410                                 DefPathData::Misc,
411                                 ExpnId::root(),
412                                 tree.prefix.span,
413                             );
414                             self.lctx.allocate_hir_id_counter(id);
415                         }
416                     }
417                     UseTreeKind::Glob => (),
418                     UseTreeKind::Nested(ref trees) => {
419                         for &(ref use_tree, id) in trees {
420                             let hir_id = self.lctx.allocate_hir_id_counter(id);
421                             self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
422                         }
423                     }
424                 }
425             }
426
427             fn with_hir_id_owner<F, T>(&mut self, owner: Option<NodeId>, f: F) -> T
428             where
429                 F: FnOnce(&mut Self) -> T,
430             {
431                 let old = mem::replace(&mut self.hir_id_owner, owner);
432                 let r = f(self);
433                 self.hir_id_owner = old;
434                 r
435             }
436         }
437
438         impl<'tcx, 'interner> Visitor<'tcx> for MiscCollector<'tcx, 'interner> {
439             fn visit_pat(&mut self, p: &'tcx Pat) {
440                 if let PatKind::Paren(..) | PatKind::Rest = p.kind {
441                     // Doesn't generate a HIR node
442                 } else if let Some(owner) = self.hir_id_owner {
443                     self.lctx.lower_node_id_with_owner(p.id, owner);
444                 }
445
446                 visit::walk_pat(self, p)
447             }
448
449             fn visit_item(&mut self, item: &'tcx Item) {
450                 let hir_id = self.lctx.allocate_hir_id_counter(item.id);
451
452                 match item.kind {
453                     ItemKind::Struct(_, ref generics)
454                     | ItemKind::Union(_, ref generics)
455                     | ItemKind::Enum(_, ref generics)
456                     | ItemKind::TyAlias(_, ref generics)
457                     | ItemKind::Trait(_, _, ref generics, ..) => {
458                         let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
459                         let count = generics
460                             .params
461                             .iter()
462                             .filter(|param| match param.kind {
463                                 ast::GenericParamKind::Lifetime { .. } => true,
464                                 _ => false,
465                             })
466                             .count();
467                         self.lctx.type_def_lifetime_params.insert(def_id, count);
468                     }
469                     ItemKind::Use(ref use_tree) => {
470                         self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
471                     }
472                     _ => {}
473                 }
474
475                 self.with_hir_id_owner(Some(item.id), |this| {
476                     visit::walk_item(this, item);
477                 });
478             }
479
480             fn visit_trait_item(&mut self, item: &'tcx AssocItem) {
481                 self.lctx.allocate_hir_id_counter(item.id);
482
483                 match item.kind {
484                     AssocItemKind::Fn(_, None) => {
485                         // Ignore patterns in trait methods without bodies
486                         self.with_hir_id_owner(None, |this| {
487                             visit::walk_trait_item(this, item)
488                         });
489                     }
490                     _ => self.with_hir_id_owner(Some(item.id), |this| {
491                         visit::walk_trait_item(this, item);
492                     })
493                 }
494             }
495
496             fn visit_impl_item(&mut self, item: &'tcx AssocItem) {
497                 self.lctx.allocate_hir_id_counter(item.id);
498                 self.with_hir_id_owner(Some(item.id), |this| {
499                     visit::walk_impl_item(this, item);
500                 });
501             }
502
503             fn visit_foreign_item(&mut self, i: &'tcx ForeignItem) {
504                 // Ignore patterns in foreign items
505                 self.with_hir_id_owner(None, |this| {
506                     visit::walk_foreign_item(this, i)
507                 });
508             }
509
510             fn visit_ty(&mut self, t: &'tcx Ty) {
511                 match t.kind {
512                     // Mirrors the case in visit::walk_ty
513                     TyKind::BareFn(ref f) => {
514                         walk_list!(
515                             self,
516                             visit_generic_param,
517                             &f.generic_params
518                         );
519                         // Mirrors visit::walk_fn_decl
520                         for parameter in &f.decl.inputs {
521                             // We don't lower the ids of argument patterns
522                             self.with_hir_id_owner(None, |this| {
523                                 this.visit_pat(&parameter.pat);
524                             });
525                             self.visit_ty(&parameter.ty)
526                         }
527                         self.visit_fn_ret_ty(&f.decl.output)
528                     }
529                     _ => visit::walk_ty(self, t),
530                 }
531             }
532         }
533
534         self.lower_node_id(CRATE_NODE_ID);
535         debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == hir::CRATE_HIR_ID);
536
537         visit::walk_crate(&mut MiscCollector { lctx: &mut self, hir_id_owner: None }, c);
538         visit::walk_crate(&mut item::ItemLowerer { lctx: &mut self }, c);
539
540         let module = self.lower_mod(&c.module);
541         let attrs = self.lower_attrs(&c.attrs);
542         let body_ids = body_ids(&self.bodies);
543
544         self.resolver
545             .definitions()
546             .init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
547
548         hir::Crate {
549             module,
550             attrs,
551             span: c.span,
552             exported_macros: hir::HirVec::from(self.exported_macros),
553             non_exported_macro_attrs: hir::HirVec::from(self.non_exported_macro_attrs),
554             items: self.items,
555             trait_items: self.trait_items,
556             impl_items: self.impl_items,
557             bodies: self.bodies,
558             body_ids,
559             trait_impls: self.trait_impls,
560             modules: self.modules,
561         }
562     }
563
564     fn insert_item(&mut self, item: hir::Item) {
565         let id = item.hir_id;
566         // FIXME: Use `debug_asset-rt`.
567         assert_eq!(id.local_id, hir::ItemLocalId::from_u32(0));
568         self.items.insert(id, item);
569         self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
570     }
571
572     fn allocate_hir_id_counter(&mut self, owner: NodeId) -> hir::HirId {
573         // Set up the counter if needed.
574         self.item_local_id_counters.entry(owner).or_insert(0);
575         // Always allocate the first `HirId` for the owner itself.
576         let lowered = self.lower_node_id_with_owner(owner, owner);
577         debug_assert_eq!(lowered.local_id.as_u32(), 0);
578         lowered
579     }
580
581     fn lower_node_id_generic<F>(&mut self, ast_node_id: NodeId, alloc_hir_id: F) -> hir::HirId
582     where
583         F: FnOnce(&mut Self) -> hir::HirId,
584     {
585         if ast_node_id == DUMMY_NODE_ID {
586             return hir::DUMMY_HIR_ID;
587         }
588
589         let min_size = ast_node_id.as_usize() + 1;
590
591         if min_size > self.node_id_to_hir_id.len() {
592             self.node_id_to_hir_id.resize(min_size, hir::DUMMY_HIR_ID);
593         }
594
595         let existing_hir_id = self.node_id_to_hir_id[ast_node_id];
596
597         if existing_hir_id == hir::DUMMY_HIR_ID {
598             // Generate a new `HirId`.
599             let hir_id = alloc_hir_id(self);
600             self.node_id_to_hir_id[ast_node_id] = hir_id;
601
602             hir_id
603         } else {
604             existing_hir_id
605         }
606     }
607
608     fn with_hir_id_owner<F, T>(&mut self, owner: NodeId, f: F) -> T
609     where
610         F: FnOnce(&mut Self) -> T,
611     {
612         let counter = self.item_local_id_counters
613             .insert(owner, HIR_ID_COUNTER_LOCKED)
614             .unwrap_or_else(|| panic!("no `item_local_id_counters` entry for {:?}", owner));
615         let def_index = self.resolver.definitions().opt_def_index(owner).unwrap();
616         self.current_hir_id_owner.push((def_index, counter));
617         let ret = f(self);
618         let (new_def_index, new_counter) = self.current_hir_id_owner.pop().unwrap();
619
620         debug_assert!(def_index == new_def_index);
621         debug_assert!(new_counter >= counter);
622
623         let prev = self.item_local_id_counters
624             .insert(owner, new_counter)
625             .unwrap();
626         debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
627         ret
628     }
629
630     /// This method allocates a new `HirId` for the given `NodeId` and stores it in
631     /// the `LoweringContext`'s `NodeId => HirId` map.
632     /// Take care not to call this method if the resulting `HirId` is then not
633     /// actually used in the HIR, as that would trigger an assertion in the
634     /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
635     /// properly. Calling the method twice with the same `NodeId` is fine though.
636     fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
637         self.lower_node_id_generic(ast_node_id, |this| {
638             let &mut (def_index, ref mut local_id_counter) =
639                 this.current_hir_id_owner.last_mut().unwrap();
640             let local_id = *local_id_counter;
641             *local_id_counter += 1;
642             hir::HirId {
643                 owner: def_index,
644                 local_id: hir::ItemLocalId::from_u32(local_id),
645             }
646         })
647     }
648
649     fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> hir::HirId {
650         self.lower_node_id_generic(ast_node_id, |this| {
651             let local_id_counter = this
652                 .item_local_id_counters
653                 .get_mut(&owner)
654                 .expect("called `lower_node_id_with_owner` before `allocate_hir_id_counter`");
655             let local_id = *local_id_counter;
656
657             // We want to be sure not to modify the counter in the map while it
658             // is also on the stack. Otherwise we'll get lost updates when writing
659             // back from the stack to the map.
660             debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
661
662             *local_id_counter += 1;
663             let def_index = this
664                 .resolver
665                 .definitions()
666                 .opt_def_index(owner)
667                 .expect("you forgot to call `create_def_with_parent` or are lowering node-IDs \
668                          that do not belong to the current owner");
669
670             hir::HirId {
671                 owner: def_index,
672                 local_id: hir::ItemLocalId::from_u32(local_id),
673             }
674         })
675     }
676
677     fn next_id(&mut self) -> hir::HirId {
678         let node_id = self.resolver.next_node_id();
679         self.lower_node_id(node_id)
680     }
681
682     fn lower_res(&mut self, res: Res<NodeId>) -> Res {
683         res.map_id(|id| {
684             self.lower_node_id_generic(id, |_| {
685                 panic!("expected `NodeId` to be lowered already for res {:#?}", res);
686             })
687         })
688     }
689
690     fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
691         self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
692             if pr.unresolved_segments() != 0 {
693                 bug!("path not fully resolved: {:?}", pr);
694             }
695             pr.base_res()
696         })
697     }
698
699     fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
700         self.resolver.get_import_res(id).present_items()
701     }
702
703     fn diagnostic(&self) -> &errors::Handler {
704         self.sess.diagnostic()
705     }
706
707     /// Reuses the span but adds information like the kind of the desugaring and features that are
708     /// allowed inside this span.
709     fn mark_span_with_reason(
710         &self,
711         reason: DesugaringKind,
712         span: Span,
713         allow_internal_unstable: Option<Lrc<[Symbol]>>,
714     ) -> Span {
715         span.fresh_expansion(ExpnData {
716             allow_internal_unstable,
717             ..ExpnData::default(ExpnKind::Desugaring(reason), span, self.sess.edition())
718         })
719     }
720
721     fn with_anonymous_lifetime_mode<R>(
722         &mut self,
723         anonymous_lifetime_mode: AnonymousLifetimeMode,
724         op: impl FnOnce(&mut Self) -> R,
725     ) -> R {
726         debug!(
727             "with_anonymous_lifetime_mode(anonymous_lifetime_mode={:?})",
728             anonymous_lifetime_mode,
729         );
730         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
731         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
732         let result = op(self);
733         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
734         debug!("with_anonymous_lifetime_mode: restoring anonymous_lifetime_mode={:?}",
735                old_anonymous_lifetime_mode);
736         result
737     }
738
739     /// Creates a new `hir::GenericParam` for every new lifetime and
740     /// type parameter encountered while evaluating `f`. Definitions
741     /// are created with the parent provided. If no `parent_id` is
742     /// provided, no definitions will be returned.
743     ///
744     /// Presuming that in-band lifetimes are enabled, then
745     /// `self.anonymous_lifetime_mode` will be updated to match the
746     /// parameter while `f` is running (and restored afterwards).
747     fn collect_in_band_defs<T, F>(
748         &mut self,
749         parent_id: DefId,
750         anonymous_lifetime_mode: AnonymousLifetimeMode,
751         f: F,
752     ) -> (Vec<hir::GenericParam>, T)
753     where
754         F: FnOnce(&mut LoweringContext<'_>) -> (Vec<hir::GenericParam>, T),
755     {
756         assert!(!self.is_collecting_in_band_lifetimes);
757         assert!(self.lifetimes_to_define.is_empty());
758         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
759
760         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
761         self.is_collecting_in_band_lifetimes = true;
762
763         let (in_band_ty_params, res) = f(self);
764
765         self.is_collecting_in_band_lifetimes = false;
766         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
767
768         let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
769
770         let params = lifetimes_to_define
771             .into_iter()
772             .map(|(span, hir_name)| self.lifetime_to_generic_param(
773                 span, hir_name, parent_id.index,
774             ))
775             .chain(in_band_ty_params.into_iter())
776             .collect();
777
778         (params, res)
779     }
780
781     /// Converts a lifetime into a new generic parameter.
782     fn lifetime_to_generic_param(
783         &mut self,
784         span: Span,
785         hir_name: ParamName,
786         parent_index: DefIndex,
787     ) -> hir::GenericParam {
788         let node_id = self.resolver.next_node_id();
789
790         // Get the name we'll use to make the def-path. Note
791         // that collisions are ok here and this shouldn't
792         // really show up for end-user.
793         let (str_name, kind) = match hir_name {
794             ParamName::Plain(ident) => (
795                 ident.name,
796                 hir::LifetimeParamKind::InBand,
797             ),
798             ParamName::Fresh(_) => (
799                 kw::UnderscoreLifetime,
800                 hir::LifetimeParamKind::Elided,
801             ),
802             ParamName::Error => (
803                 kw::UnderscoreLifetime,
804                 hir::LifetimeParamKind::Error,
805             ),
806         };
807
808         // Add a definition for the in-band lifetime def.
809         self.resolver.definitions().create_def_with_parent(
810             parent_index,
811             node_id,
812             DefPathData::LifetimeNs(str_name),
813             ExpnId::root(),
814             span,
815         );
816
817         hir::GenericParam {
818             hir_id: self.lower_node_id(node_id),
819             name: hir_name,
820             attrs: hir_vec![],
821             bounds: hir_vec![],
822             span,
823             pure_wrt_drop: false,
824             kind: hir::GenericParamKind::Lifetime { kind }
825         }
826     }
827
828     /// When there is a reference to some lifetime `'a`, and in-band
829     /// lifetimes are enabled, then we want to push that lifetime into
830     /// the vector of names to define later. In that case, it will get
831     /// added to the appropriate generics.
832     fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
833         if !self.is_collecting_in_band_lifetimes {
834             return;
835         }
836
837         if !self.sess.features_untracked().in_band_lifetimes {
838             return;
839         }
840
841         if self.in_scope_lifetimes.contains(&ParamName::Plain(ident.modern())) {
842             return;
843         }
844
845         let hir_name = ParamName::Plain(ident);
846
847         if self.lifetimes_to_define.iter()
848                                    .any(|(_, lt_name)| lt_name.modern() == hir_name.modern()) {
849             return;
850         }
851
852         self.lifetimes_to_define.push((ident.span, hir_name));
853     }
854
855     /// When we have either an elided or `'_` lifetime in an impl
856     /// header, we convert it to an in-band lifetime.
857     fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
858         assert!(self.is_collecting_in_band_lifetimes);
859         let index = self.lifetimes_to_define.len() + self.in_scope_lifetimes.len();
860         let hir_name = ParamName::Fresh(index);
861         self.lifetimes_to_define.push((span, hir_name));
862         hir_name
863     }
864
865     // Evaluates `f` with the lifetimes in `params` in-scope.
866     // This is used to track which lifetimes have already been defined, and
867     // which are new in-band lifetimes that need to have a definition created
868     // for them.
869     fn with_in_scope_lifetime_defs<T, F>(&mut self, params: &[GenericParam], f: F) -> T
870     where
871         F: FnOnce(&mut LoweringContext<'_>) -> T,
872     {
873         let old_len = self.in_scope_lifetimes.len();
874         let lt_def_names = params.iter().filter_map(|param| match param.kind {
875             GenericParamKind::Lifetime { .. } => Some(ParamName::Plain(param.ident.modern())),
876             _ => None,
877         });
878         self.in_scope_lifetimes.extend(lt_def_names);
879
880         let res = f(self);
881
882         self.in_scope_lifetimes.truncate(old_len);
883         res
884     }
885
886     /// Appends in-band lifetime defs and argument-position `impl
887     /// Trait` defs to the existing set of generics.
888     ///
889     /// Presuming that in-band lifetimes are enabled, then
890     /// `self.anonymous_lifetime_mode` will be updated to match the
891     /// parameter while `f` is running (and restored afterwards).
892     fn add_in_band_defs<F, T>(
893         &mut self,
894         generics: &Generics,
895         parent_id: DefId,
896         anonymous_lifetime_mode: AnonymousLifetimeMode,
897         f: F,
898     ) -> (hir::Generics, T)
899     where
900         F: FnOnce(&mut LoweringContext<'_>, &mut Vec<hir::GenericParam>) -> T,
901     {
902         let (in_band_defs, (mut lowered_generics, res)) = self.with_in_scope_lifetime_defs(
903             &generics.params,
904             |this| {
905                 this.collect_in_band_defs(parent_id, anonymous_lifetime_mode, |this| {
906                     let mut params = Vec::new();
907                     // Note: it is necessary to lower generics *before* calling `f`.
908                     // When lowering `async fn`, there's a final step when lowering
909                     // the return type that assumes that all in-scope lifetimes have
910                     // already been added to either `in_scope_lifetimes` or
911                     // `lifetimes_to_define`. If we swapped the order of these two,
912                     // in-band-lifetimes introduced by generics or where-clauses
913                     // wouldn't have been added yet.
914                     let generics = this.lower_generics(
915                         generics,
916                         ImplTraitContext::Universal(&mut params),
917                     );
918                     let res = f(this, &mut params);
919                     (params, (generics, res))
920                 })
921             },
922         );
923
924         let mut lowered_params: Vec<_> = lowered_generics
925             .params
926             .into_iter()
927             .chain(in_band_defs)
928             .collect();
929
930         // FIXME(const_generics): the compiler doesn't always cope with
931         // unsorted generic parameters at the moment, so we make sure
932         // that they're ordered correctly here for now. (When we chain
933         // the `in_band_defs`, we might make the order unsorted.)
934         lowered_params.sort_by_key(|param| {
935             match param.kind {
936                 hir::GenericParamKind::Lifetime { .. } => ParamKindOrd::Lifetime,
937                 hir::GenericParamKind::Type { .. } => ParamKindOrd::Type,
938                 hir::GenericParamKind::Const { .. } => ParamKindOrd::Const,
939             }
940         });
941
942         lowered_generics.params = lowered_params.into();
943
944         (lowered_generics, res)
945     }
946
947     fn with_dyn_type_scope<T, F>(&mut self, in_scope: bool, f: F) -> T
948     where
949         F: FnOnce(&mut LoweringContext<'_>) -> T,
950     {
951         let was_in_dyn_type = self.is_in_dyn_type;
952         self.is_in_dyn_type = in_scope;
953
954         let result = f(self);
955
956         self.is_in_dyn_type = was_in_dyn_type;
957
958         result
959     }
960
961     fn with_new_scopes<T, F>(&mut self, f: F) -> T
962     where
963         F: FnOnce(&mut LoweringContext<'_>) -> T,
964     {
965         let was_in_loop_condition = self.is_in_loop_condition;
966         self.is_in_loop_condition = false;
967
968         let catch_scopes = mem::take(&mut self.catch_scopes);
969         let loop_scopes = mem::take(&mut self.loop_scopes);
970         let ret = f(self);
971         self.catch_scopes = catch_scopes;
972         self.loop_scopes = loop_scopes;
973
974         self.is_in_loop_condition = was_in_loop_condition;
975
976         ret
977     }
978
979     fn def_key(&mut self, id: DefId) -> DefKey {
980         if id.is_local() {
981             self.resolver.definitions().def_key(id.index)
982         } else {
983             self.resolver.cstore().def_key(id)
984         }
985     }
986
987     fn lower_attrs_extendable(&mut self, attrs: &[Attribute]) -> Vec<Attribute> {
988         attrs
989             .iter()
990             .map(|a| self.lower_attr(a))
991             .collect()
992     }
993
994     fn lower_attrs(&mut self, attrs: &[Attribute]) -> hir::HirVec<Attribute> {
995         self.lower_attrs_extendable(attrs).into()
996     }
997
998     fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
999         // Note that we explicitly do not walk the path. Since we don't really
1000         // lower attributes (we use the AST version) there is nowhere to keep
1001         // the `HirId`s. We don't actually need HIR version of attributes anyway.
1002         let kind = match attr.kind {
1003             AttrKind::Normal(ref item) => {
1004                 AttrKind::Normal(AttrItem {
1005                     path: item.path.clone(),
1006                     args: self.lower_mac_args(&item.args),
1007                 })
1008             }
1009             AttrKind::DocComment(comment) => AttrKind::DocComment(comment)
1010         };
1011
1012         Attribute {
1013             kind,
1014             id: attr.id,
1015             style: attr.style,
1016             span: attr.span,
1017         }
1018     }
1019
1020     fn lower_mac_args(&mut self, args: &MacArgs) -> MacArgs {
1021         match *args {
1022             MacArgs::Empty => MacArgs::Empty,
1023             MacArgs::Delimited(dspan, delim, ref tokens) =>
1024                 MacArgs::Delimited(dspan, delim, self.lower_token_stream(tokens.clone())),
1025             MacArgs::Eq(eq_span, ref tokens) =>
1026                 MacArgs::Eq(eq_span, self.lower_token_stream(tokens.clone())),
1027         }
1028     }
1029
1030     fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
1031         tokens
1032             .into_trees()
1033             .flat_map(|tree| self.lower_token_tree(tree).into_trees())
1034             .collect()
1035     }
1036
1037     fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
1038         match tree {
1039             TokenTree::Token(token) => self.lower_token(token),
1040             TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
1041                 span,
1042                 delim,
1043                 self.lower_token_stream(tts),
1044             ).into(),
1045         }
1046     }
1047
1048     fn lower_token(&mut self, token: Token) -> TokenStream {
1049         match token.kind {
1050             token::Interpolated(nt) => {
1051                 let tts = (self.nt_to_tokenstream)(&nt, &self.sess.parse_sess, token.span);
1052                 self.lower_token_stream(tts)
1053             }
1054             _ => TokenTree::Token(token).into(),
1055         }
1056     }
1057
1058     /// Given an associated type constraint like one of these:
1059     ///
1060     /// ```
1061     /// T: Iterator<Item: Debug>
1062     ///             ^^^^^^^^^^^
1063     /// T: Iterator<Item = Debug>
1064     ///             ^^^^^^^^^^^^
1065     /// ```
1066     ///
1067     /// returns a `hir::TypeBinding` representing `Item`.
1068     fn lower_assoc_ty_constraint(
1069         &mut self,
1070         constraint: &AssocTyConstraint,
1071         itctx: ImplTraitContext<'_>,
1072     ) -> hir::TypeBinding {
1073         debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);
1074
1075         let kind = match constraint.kind {
1076             AssocTyConstraintKind::Equality { ref ty } => hir::TypeBindingKind::Equality {
1077                 ty: self.lower_ty(ty, itctx)
1078             },
1079             AssocTyConstraintKind::Bound { ref bounds } => {
1080                 // Piggy-back on the `impl Trait` context to figure out the correct behavior.
1081                 let (desugar_to_impl_trait, itctx) = match itctx {
1082                     // We are in the return position:
1083                     //
1084                     //     fn foo() -> impl Iterator<Item: Debug>
1085                     //
1086                     // so desugar to
1087                     //
1088                     //     fn foo() -> impl Iterator<Item = impl Debug>
1089                     ImplTraitContext::OpaqueTy(_) => (true, itctx),
1090
1091                     // We are in the argument position, but within a dyn type:
1092                     //
1093                     //     fn foo(x: dyn Iterator<Item: Debug>)
1094                     //
1095                     // so desugar to
1096                     //
1097                     //     fn foo(x: dyn Iterator<Item = impl Debug>)
1098                     ImplTraitContext::Universal(_) if self.is_in_dyn_type => (true, itctx),
1099
1100                     // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
1101                     // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
1102                     // "impl trait context" to permit `impl Debug` in this position (it desugars
1103                     // then to an opaque type).
1104                     //
1105                     // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
1106                     ImplTraitContext::Disallowed(_) if self.is_in_dyn_type =>
1107                         (true, ImplTraitContext::OpaqueTy(None)),
1108
1109                     // We are in the parameter position, but not within a dyn type:
1110                     //
1111                     //     fn foo(x: impl Iterator<Item: Debug>)
1112                     //
1113                     // so we leave it as is and this gets expanded in astconv to a bound like
1114                     // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
1115                     // `impl Iterator`.
1116                     _ => (false, itctx),
1117                 };
1118
1119                 if desugar_to_impl_trait {
1120                     // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
1121                     // constructing the HIR for `impl bounds...` and then lowering that.
1122
1123                     let impl_trait_node_id = self.resolver.next_node_id();
1124                     let parent_def_index = self.current_hir_id_owner.last().unwrap().0;
1125                     self.resolver.definitions().create_def_with_parent(
1126                         parent_def_index,
1127                         impl_trait_node_id,
1128                         DefPathData::ImplTrait,
1129                         ExpnId::root(),
1130                         constraint.span,
1131                     );
1132
1133                     self.with_dyn_type_scope(false, |this| {
1134                         let node_id = this.resolver.next_node_id();
1135                         let ty = this.lower_ty(
1136                             &Ty {
1137                                 id: node_id,
1138                                 kind: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
1139                                 span: constraint.span,
1140                             },
1141                             itctx,
1142                         );
1143
1144                         hir::TypeBindingKind::Equality {
1145                             ty
1146                         }
1147                     })
1148                 } else {
1149                     // Desugar `AssocTy: Bounds` into a type binding where the
1150                     // later desugars into a trait predicate.
1151                     let bounds = self.lower_param_bounds(bounds, itctx);
1152
1153                     hir::TypeBindingKind::Constraint {
1154                         bounds
1155                     }
1156                 }
1157             }
1158         };
1159
1160         hir::TypeBinding {
1161             hir_id: self.lower_node_id(constraint.id),
1162             ident: constraint.ident,
1163             kind,
1164             span: constraint.span,
1165         }
1166     }
1167
1168     fn lower_generic_arg(
1169         &mut self,
1170         arg: &ast::GenericArg,
1171         itctx: ImplTraitContext<'_>
1172     ) -> hir::GenericArg {
1173         match arg {
1174             ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1175             ast::GenericArg::Type(ty) => {
1176                 // We parse const arguments as path types as we cannot distiguish them durring
1177                 // parsing. We try to resolve that ambiguity by attempting resolution in both the
1178                 // type and value namespaces. If we resolved the path in the value namespace, we
1179                 // transform it into a generic const argument.
1180                 if let TyKind::Path(ref qself, ref path) = ty.kind {
1181                     if let Some(partial_res) = self.resolver.get_partial_res(ty.id) {
1182                         let res = partial_res.base_res();
1183                         if !res.matches_ns(Namespace::TypeNS) {
1184                             debug!(
1185                                 "lower_generic_arg: Lowering type argument as const argument: {:?}",
1186                                 ty,
1187                             );
1188
1189                             // Construct a AnonConst where the expr is the "ty"'s path.
1190
1191                             let parent_def_index =
1192                                 self.current_hir_id_owner.last().unwrap().0;
1193                             let node_id = self.resolver.next_node_id();
1194
1195                             // Add a definition for the in-band const def.
1196                             self.resolver.definitions().create_def_with_parent(
1197                                 parent_def_index,
1198                                 node_id,
1199                                 DefPathData::AnonConst,
1200                                 ExpnId::root(),
1201                                 ty.span,
1202                             );
1203
1204                             let path_expr = Expr {
1205                                 id: ty.id,
1206                                 kind: ExprKind::Path(qself.clone(), path.clone()),
1207                                 span: ty.span,
1208                                 attrs: ThinVec::new(),
1209                             };
1210
1211                             let ct = self.with_new_scopes(|this| {
1212                                 hir::AnonConst {
1213                                     hir_id: this.lower_node_id(node_id),
1214                                     body: this.lower_const_body(path_expr.span, Some(&path_expr)),
1215                                 }
1216                             });
1217                             return GenericArg::Const(ConstArg {
1218                                 value: ct,
1219                                 span: ty.span,
1220                             });
1221                         }
1222                     }
1223                 }
1224                 GenericArg::Type(self.lower_ty_direct(&ty, itctx))
1225             }
1226             ast::GenericArg::Const(ct) => {
1227                 GenericArg::Const(ConstArg {
1228                     value: self.lower_anon_const(&ct),
1229                     span: ct.value.span,
1230                 })
1231             }
1232         }
1233     }
1234
1235     fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_>) -> P<hir::Ty> {
1236         P(self.lower_ty_direct(t, itctx))
1237     }
1238
1239     fn lower_path_ty(
1240         &mut self,
1241         t: &Ty,
1242         qself: &Option<QSelf>,
1243         path: &Path,
1244         param_mode: ParamMode,
1245         itctx: ImplTraitContext<'_>
1246     ) -> hir::Ty {
1247         let id = self.lower_node_id(t.id);
1248         let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
1249         let ty = self.ty_path(id, t.span, qpath);
1250         if let hir::TyKind::TraitObject(..) = ty.kind {
1251             self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1252         }
1253         ty
1254     }
1255
1256     fn ty(&mut self, span: Span, kind: hir::TyKind) -> hir::Ty {
1257         hir::Ty { hir_id: self.next_id(), kind, span }
1258     }
1259
1260     fn ty_tup(&mut self, span: Span, tys: HirVec<hir::Ty>) -> hir::Ty {
1261         self.ty(span, hir::TyKind::Tup(tys))
1262     }
1263
1264     fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_>) -> hir::Ty {
1265         let kind = match t.kind {
1266             TyKind::Infer => hir::TyKind::Infer,
1267             TyKind::Err => hir::TyKind::Err,
1268             TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1269             TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1270             TyKind::Rptr(ref region, ref mt) => {
1271                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1272                 let lifetime = match *region {
1273                     Some(ref lt) => self.lower_lifetime(lt),
1274                     None => self.elided_ref_lifetime(span),
1275                 };
1276                 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1277             }
1278             TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(
1279                 &f.generic_params,
1280                 |this| {
1281                     this.with_anonymous_lifetime_mode(
1282                         AnonymousLifetimeMode::PassThrough,
1283                         |this| {
1284                             hir::TyKind::BareFn(P(hir::BareFnTy {
1285                                 generic_params: this.lower_generic_params(
1286                                     &f.generic_params,
1287                                     &NodeMap::default(),
1288                                     ImplTraitContext::disallowed(),
1289                                 ),
1290                                 unsafety: f.unsafety,
1291                                 abi: this.lower_extern(f.ext),
1292                                 decl: this.lower_fn_decl(&f.decl, None, false, None),
1293                                 param_names: this.lower_fn_params_to_names(&f.decl),
1294                             }))
1295                         },
1296                     )
1297                 },
1298             ),
1299             TyKind::Never => hir::TyKind::Never,
1300             TyKind::Tup(ref tys) => {
1301                 hir::TyKind::Tup(tys.iter().map(|ty| {
1302                     self.lower_ty_direct(ty, itctx.reborrow())
1303                 }).collect())
1304             }
1305             TyKind::Paren(ref ty) => {
1306                 return self.lower_ty_direct(ty, itctx);
1307             }
1308             TyKind::Path(ref qself, ref path) => {
1309                 return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
1310             }
1311             TyKind::ImplicitSelf => {
1312                 let res = self.expect_full_res(t.id);
1313                 let res = self.lower_res(res);
1314                 hir::TyKind::Path(hir::QPath::Resolved(
1315                     None,
1316                     P(hir::Path {
1317                         res,
1318                         segments: hir_vec![hir::PathSegment::from_ident(
1319                             Ident::with_dummy_span(kw::SelfUpper)
1320                         )],
1321                         span: t.span,
1322                     }),
1323                 ))
1324             },
1325             TyKind::Array(ref ty, ref length) => {
1326                 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1327             }
1328             TyKind::Typeof(ref expr) => {
1329                 hir::TyKind::Typeof(self.lower_anon_const(expr))
1330             }
1331             TyKind::TraitObject(ref bounds, kind) => {
1332                 let mut lifetime_bound = None;
1333                 let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
1334                     let bounds = bounds
1335                         .iter()
1336                         .filter_map(|bound| match *bound {
1337                             GenericBound::Trait(ref ty, TraitBoundModifier::None) => {
1338                                 Some(this.lower_poly_trait_ref(ty, itctx.reborrow()))
1339                             }
1340                             GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
1341                             GenericBound::Outlives(ref lifetime) => {
1342                                 if lifetime_bound.is_none() {
1343                                     lifetime_bound = Some(this.lower_lifetime(lifetime));
1344                                 }
1345                                 None
1346                             }
1347                         })
1348                         .collect();
1349                     let lifetime_bound =
1350                         lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
1351                     (bounds, lifetime_bound)
1352                 });
1353                 if kind != TraitObjectSyntax::Dyn {
1354                     self.maybe_lint_bare_trait(t.span, t.id, false);
1355                 }
1356                 hir::TyKind::TraitObject(bounds, lifetime_bound)
1357             }
1358             TyKind::ImplTrait(def_node_id, ref bounds) => {
1359                 let span = t.span;
1360                 match itctx {
1361                     ImplTraitContext::OpaqueTy(fn_def_id) => {
1362                         self.lower_opaque_impl_trait(
1363                             span, fn_def_id, def_node_id,
1364                             |this| this.lower_param_bounds(bounds, itctx),
1365                         )
1366                     }
1367                     ImplTraitContext::Universal(in_band_ty_params) => {
1368                         // Add a definition for the in-band `Param`.
1369                         let def_index = self
1370                             .resolver
1371                             .definitions()
1372                             .opt_def_index(def_node_id)
1373                             .unwrap();
1374
1375                         let hir_bounds = self.lower_param_bounds(
1376                             bounds,
1377                             ImplTraitContext::Universal(in_band_ty_params),
1378                         );
1379                         // Set the name to `impl Bound1 + Bound2`.
1380                         let ident = Ident::from_str_and_span(&pprust::ty_to_string(t), span);
1381                         in_band_ty_params.push(hir::GenericParam {
1382                             hir_id: self.lower_node_id(def_node_id),
1383                             name: ParamName::Plain(ident),
1384                             pure_wrt_drop: false,
1385                             attrs: hir_vec![],
1386                             bounds: hir_bounds,
1387                             span,
1388                             kind: hir::GenericParamKind::Type {
1389                                 default: None,
1390                                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1391                             }
1392                         });
1393
1394                         hir::TyKind::Path(hir::QPath::Resolved(
1395                             None,
1396                             P(hir::Path {
1397                                 span,
1398                                 res: Res::Def(DefKind::TyParam, DefId::local(def_index)),
1399                                 segments: hir_vec![hir::PathSegment::from_ident(ident)],
1400                             }),
1401                         ))
1402                     }
1403                     ImplTraitContext::Disallowed(pos) => {
1404                         let allowed_in = if self.sess.features_untracked()
1405                                                 .impl_trait_in_bindings {
1406                             "bindings or function and inherent method return types"
1407                         } else {
1408                             "function and inherent method return types"
1409                         };
1410                         let mut err = struct_span_err!(
1411                             self.sess,
1412                             t.span,
1413                             E0562,
1414                             "`impl Trait` not allowed outside of {}",
1415                             allowed_in,
1416                         );
1417                         if pos == ImplTraitPosition::Binding &&
1418                             nightly_options::is_nightly_build() {
1419                             help!(err,
1420                                   "add `#![feature(impl_trait_in_bindings)]` to the crate \
1421                                    attributes to enable");
1422                         }
1423                         err.emit();
1424                         hir::TyKind::Err
1425                     }
1426                 }
1427             }
1428             TyKind::Mac(_) => bug!("`TyKind::Mac` should have been expanded by now"),
1429             TyKind::CVarArgs => {
1430                 self.sess.delay_span_bug(
1431                     t.span,
1432                     "`TyKind::CVarArgs` should have been handled elsewhere",
1433                 );
1434                 hir::TyKind::Err
1435             }
1436         };
1437
1438         hir::Ty {
1439             kind,
1440             span: t.span,
1441             hir_id: self.lower_node_id(t.id),
1442         }
1443     }
1444
1445     fn lower_opaque_impl_trait(
1446         &mut self,
1447         span: Span,
1448         fn_def_id: Option<DefId>,
1449         opaque_ty_node_id: NodeId,
1450         lower_bounds: impl FnOnce(&mut LoweringContext<'_>) -> hir::GenericBounds,
1451     ) -> hir::TyKind {
1452         debug!(
1453             "lower_opaque_impl_trait(fn_def_id={:?}, opaque_ty_node_id={:?}, span={:?})",
1454             fn_def_id,
1455             opaque_ty_node_id,
1456             span,
1457         );
1458
1459         // Make sure we know that some funky desugaring has been going on here.
1460         // This is a first: there is code in other places like for loop
1461         // desugaring that explicitly states that we don't want to track that.
1462         // Not tracking it makes lints in rustc and clippy very fragile, as
1463         // frequently opened issues show.
1464         let opaque_ty_span = self.mark_span_with_reason(
1465             DesugaringKind::OpaqueTy,
1466             span,
1467             None,
1468         );
1469
1470         let opaque_ty_def_index = self
1471             .resolver
1472             .definitions()
1473             .opt_def_index(opaque_ty_node_id)
1474             .unwrap();
1475
1476         self.allocate_hir_id_counter(opaque_ty_node_id);
1477
1478         let hir_bounds = self.with_hir_id_owner(opaque_ty_node_id, lower_bounds);
1479
1480         let (lifetimes, lifetime_defs) = self.lifetimes_from_impl_trait_bounds(
1481             opaque_ty_node_id,
1482             opaque_ty_def_index,
1483             &hir_bounds,
1484         );
1485
1486         debug!(
1487             "lower_opaque_impl_trait: lifetimes={:#?}", lifetimes,
1488         );
1489
1490         debug!(
1491             "lower_opaque_impl_trait: lifetime_defs={:#?}", lifetime_defs,
1492         );
1493
1494         self.with_hir_id_owner(opaque_ty_node_id, |lctx| {
1495             let opaque_ty_item = hir::OpaqueTy {
1496                 generics: hir::Generics {
1497                     params: lifetime_defs,
1498                     where_clause: hir::WhereClause {
1499                         predicates: hir_vec![],
1500                         span,
1501                     },
1502                     span,
1503                 },
1504                 bounds: hir_bounds,
1505                 impl_trait_fn: fn_def_id,
1506                 origin: hir::OpaqueTyOrigin::FnReturn,
1507             };
1508
1509             trace!("lower_opaque_impl_trait: {:#?}", opaque_ty_def_index);
1510             let opaque_ty_id = lctx.generate_opaque_type(
1511                 opaque_ty_node_id,
1512                 opaque_ty_item,
1513                 span,
1514                 opaque_ty_span,
1515             );
1516
1517             // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1518             hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, lifetimes)
1519         })
1520     }
1521
1522     /// Registers a new opaque type with the proper `NodeId`s and
1523     /// returns the lowered node-ID for the opaque type.
1524     fn generate_opaque_type(
1525         &mut self,
1526         opaque_ty_node_id: NodeId,
1527         opaque_ty_item: hir::OpaqueTy,
1528         span: Span,
1529         opaque_ty_span: Span,
1530     ) -> hir::HirId {
1531         let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
1532         let opaque_ty_id = self.lower_node_id(opaque_ty_node_id);
1533         // Generate an `type Foo = impl Trait;` declaration.
1534         trace!("registering opaque type with id {:#?}", opaque_ty_id);
1535         let opaque_ty_item = hir::Item {
1536             hir_id: opaque_ty_id,
1537             ident: Ident::invalid(),
1538             attrs: Default::default(),
1539             kind: opaque_ty_item_kind,
1540             vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1541             span: opaque_ty_span,
1542         };
1543
1544         // Insert the item into the global item list. This usually happens
1545         // automatically for all AST items. But this opaque type item
1546         // does not actually exist in the AST.
1547         self.insert_item(opaque_ty_item);
1548         opaque_ty_id
1549     }
1550
1551     fn lifetimes_from_impl_trait_bounds(
1552         &mut self,
1553         opaque_ty_id: NodeId,
1554         parent_index: DefIndex,
1555         bounds: &hir::GenericBounds,
1556     ) -> (HirVec<hir::GenericArg>, HirVec<hir::GenericParam>) {
1557         debug!(
1558             "lifetimes_from_impl_trait_bounds(opaque_ty_id={:?}, \
1559              parent_index={:?}, \
1560              bounds={:#?})",
1561             opaque_ty_id, parent_index, bounds,
1562         );
1563
1564         // This visitor walks over `impl Trait` bounds and creates defs for all lifetimes that
1565         // appear in the bounds, excluding lifetimes that are created within the bounds.
1566         // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1567         struct ImplTraitLifetimeCollector<'r, 'a> {
1568             context: &'r mut LoweringContext<'a>,
1569             parent: DefIndex,
1570             opaque_ty_id: NodeId,
1571             collect_elided_lifetimes: bool,
1572             currently_bound_lifetimes: Vec<hir::LifetimeName>,
1573             already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1574             output_lifetimes: Vec<hir::GenericArg>,
1575             output_lifetime_params: Vec<hir::GenericParam>,
1576         }
1577
1578         impl<'r, 'a, 'v> hir::intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a> {
1579             fn nested_visit_map<'this>(
1580                 &'this mut self,
1581             ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
1582                 hir::intravisit::NestedVisitorMap::None
1583             }
1584
1585             fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
1586                 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1587                 if parameters.parenthesized {
1588                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1589                     self.collect_elided_lifetimes = false;
1590                     hir::intravisit::walk_generic_args(self, span, parameters);
1591                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1592                 } else {
1593                     hir::intravisit::walk_generic_args(self, span, parameters);
1594                 }
1595             }
1596
1597             fn visit_ty(&mut self, t: &'v hir::Ty) {
1598                 // Don't collect elided lifetimes used inside of `fn()` syntax.
1599                 if let hir::TyKind::BareFn(_) = t.kind {
1600                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1601                     self.collect_elided_lifetimes = false;
1602
1603                     // Record the "stack height" of `for<'a>` lifetime bindings
1604                     // to be able to later fully undo their introduction.
1605                     let old_len = self.currently_bound_lifetimes.len();
1606                     hir::intravisit::walk_ty(self, t);
1607                     self.currently_bound_lifetimes.truncate(old_len);
1608
1609                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1610                 } else {
1611                     hir::intravisit::walk_ty(self, t)
1612                 }
1613             }
1614
1615             fn visit_poly_trait_ref(
1616                 &mut self,
1617                 trait_ref: &'v hir::PolyTraitRef,
1618                 modifier: hir::TraitBoundModifier,
1619             ) {
1620                 // Record the "stack height" of `for<'a>` lifetime bindings
1621                 // to be able to later fully undo their introduction.
1622                 let old_len = self.currently_bound_lifetimes.len();
1623                 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1624                 self.currently_bound_lifetimes.truncate(old_len);
1625             }
1626
1627             fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
1628                 // Record the introduction of 'a in `for<'a> ...`.
1629                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1630                     // Introduce lifetimes one at a time so that we can handle
1631                     // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1632                     let lt_name = hir::LifetimeName::Param(param.name);
1633                     self.currently_bound_lifetimes.push(lt_name);
1634                 }
1635
1636                 hir::intravisit::walk_generic_param(self, param);
1637             }
1638
1639             fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1640                 let name = match lifetime.name {
1641                     hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1642                         if self.collect_elided_lifetimes {
1643                             // Use `'_` for both implicit and underscore lifetimes in
1644                             // `type Foo<'_> = impl SomeTrait<'_>;`.
1645                             hir::LifetimeName::Underscore
1646                         } else {
1647                             return;
1648                         }
1649                     }
1650                     hir::LifetimeName::Param(_) => lifetime.name,
1651
1652                     // Refers to some other lifetime that is "in
1653                     // scope" within the type.
1654                     hir::LifetimeName::ImplicitObjectLifetimeDefault => return,
1655
1656                     hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1657                 };
1658
1659                 if !self.currently_bound_lifetimes.contains(&name)
1660                     && !self.already_defined_lifetimes.contains(&name) {
1661                     self.already_defined_lifetimes.insert(name);
1662
1663                     self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1664                         hir_id: self.context.next_id(),
1665                         span: lifetime.span,
1666                         name,
1667                     }));
1668
1669                     let def_node_id = self.context.resolver.next_node_id();
1670                     let hir_id =
1671                         self.context.lower_node_id_with_owner(def_node_id, self.opaque_ty_id);
1672                     self.context.resolver.definitions().create_def_with_parent(
1673                         self.parent,
1674                         def_node_id,
1675                         DefPathData::LifetimeNs(name.ident().name),
1676                         ExpnId::root(),
1677                         lifetime.span);
1678
1679                     let (name, kind) = match name {
1680                         hir::LifetimeName::Underscore => (
1681                             hir::ParamName::Plain(Ident::with_dummy_span(kw::UnderscoreLifetime)),
1682                             hir::LifetimeParamKind::Elided,
1683                         ),
1684                         hir::LifetimeName::Param(param_name) => (
1685                             param_name,
1686                             hir::LifetimeParamKind::Explicit,
1687                         ),
1688                         _ => bug!("expected `LifetimeName::Param` or `ParamName::Plain`"),
1689                     };
1690
1691                     self.output_lifetime_params.push(hir::GenericParam {
1692                         hir_id,
1693                         name,
1694                         span: lifetime.span,
1695                         pure_wrt_drop: false,
1696                         attrs: hir_vec![],
1697                         bounds: hir_vec![],
1698                         kind: hir::GenericParamKind::Lifetime { kind }
1699                     });
1700                 }
1701             }
1702         }
1703
1704         let mut lifetime_collector = ImplTraitLifetimeCollector {
1705             context: self,
1706             parent: parent_index,
1707             opaque_ty_id,
1708             collect_elided_lifetimes: true,
1709             currently_bound_lifetimes: Vec::new(),
1710             already_defined_lifetimes: FxHashSet::default(),
1711             output_lifetimes: Vec::new(),
1712             output_lifetime_params: Vec::new(),
1713         };
1714
1715         for bound in bounds {
1716             hir::intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1717         }
1718
1719         (
1720             lifetime_collector.output_lifetimes.into(),
1721             lifetime_collector.output_lifetime_params.into(),
1722         )
1723     }
1724
1725     fn lower_qpath(
1726         &mut self,
1727         id: NodeId,
1728         qself: &Option<QSelf>,
1729         p: &Path,
1730         param_mode: ParamMode,
1731         mut itctx: ImplTraitContext<'_>,
1732     ) -> hir::QPath {
1733         let qself_position = qself.as_ref().map(|q| q.position);
1734         let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow()));
1735
1736         let partial_res = self.resolver
1737             .get_partial_res(id)
1738             .unwrap_or_else(|| PartialRes::new(Res::Err));
1739
1740         let proj_start = p.segments.len() - partial_res.unresolved_segments();
1741         let path = P(hir::Path {
1742             res: self.lower_res(partial_res.base_res()),
1743             segments: p.segments[..proj_start]
1744                 .iter()
1745                 .enumerate()
1746                 .map(|(i, segment)| {
1747                     let param_mode = match (qself_position, param_mode) {
1748                         (Some(j), ParamMode::Optional) if i < j => {
1749                             // This segment is part of the trait path in a
1750                             // qualified path - one of `a`, `b` or `Trait`
1751                             // in `<X as a::b::Trait>::T::U::method`.
1752                             ParamMode::Explicit
1753                         }
1754                         _ => param_mode,
1755                     };
1756
1757                     // Figure out if this is a type/trait segment,
1758                     // which may need lifetime elision performed.
1759                     let parent_def_id = |this: &mut Self, def_id: DefId| DefId {
1760                         krate: def_id.krate,
1761                         index: this.def_key(def_id).parent.expect("missing parent"),
1762                     };
1763                     let type_def_id = match partial_res.base_res() {
1764                         Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
1765                             Some(parent_def_id(self, def_id))
1766                         }
1767                         Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
1768                             Some(parent_def_id(self, def_id))
1769                         }
1770                         Res::Def(DefKind::Struct, def_id)
1771                         | Res::Def(DefKind::Union, def_id)
1772                         | Res::Def(DefKind::Enum, def_id)
1773                         | Res::Def(DefKind::TyAlias, def_id)
1774                         | Res::Def(DefKind::Trait, def_id) if i + 1 == proj_start =>
1775                         {
1776                             Some(def_id)
1777                         }
1778                         _ => None,
1779                     };
1780                     let parenthesized_generic_args = match partial_res.base_res() {
1781                         // `a::b::Trait(Args)`
1782                         Res::Def(DefKind::Trait, _) if i + 1 == proj_start => {
1783                             ParenthesizedGenericArgs::Ok
1784                         }
1785                         // `a::b::Trait(Args)::TraitItem`
1786                         Res::Def(DefKind::Method, _) |
1787                         Res::Def(DefKind::AssocConst, _) |
1788                         Res::Def(DefKind::AssocTy, _) if i + 2 == proj_start => {
1789                             ParenthesizedGenericArgs::Ok
1790                         }
1791                         // Avoid duplicated errors.
1792                         Res::Err => ParenthesizedGenericArgs::Ok,
1793                         // An error
1794                         _ => ParenthesizedGenericArgs::Err,
1795                     };
1796
1797                     let num_lifetimes = type_def_id.map_or(0, |def_id| {
1798                         if let Some(&n) = self.type_def_lifetime_params.get(&def_id) {
1799                             return n;
1800                         }
1801                         assert!(!def_id.is_local());
1802                         let item_generics = self.resolver.cstore()
1803                             .item_generics_cloned_untracked(def_id, self.sess);
1804                         let n = item_generics.own_counts().lifetimes;
1805                         self.type_def_lifetime_params.insert(def_id, n);
1806                         n
1807                     });
1808                     self.lower_path_segment(
1809                         p.span,
1810                         segment,
1811                         param_mode,
1812                         num_lifetimes,
1813                         parenthesized_generic_args,
1814                         itctx.reborrow(),
1815                         None,
1816                     )
1817                 })
1818                 .collect(),
1819             span: p.span,
1820         });
1821
1822         // Simple case, either no projections, or only fully-qualified.
1823         // E.g., `std::mem::size_of` or `<I as Iterator>::Item`.
1824         if partial_res.unresolved_segments() == 0 {
1825             return hir::QPath::Resolved(qself, path);
1826         }
1827
1828         // Create the innermost type that we're projecting from.
1829         let mut ty = if path.segments.is_empty() {
1830             // If the base path is empty that means there exists a
1831             // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`.
1832             qself.expect("missing QSelf for <T>::...")
1833         } else {
1834             // Otherwise, the base path is an implicit `Self` type path,
1835             // e.g., `Vec` in `Vec::new` or `<I as Iterator>::Item` in
1836             // `<I as Iterator>::Item::default`.
1837             let new_id = self.next_id();
1838             P(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path)))
1839         };
1840
1841         // Anything after the base path are associated "extensions",
1842         // out of which all but the last one are associated types,
1843         // e.g., for `std::vec::Vec::<T>::IntoIter::Item::clone`:
1844         // * base path is `std::vec::Vec<T>`
1845         // * "extensions" are `IntoIter`, `Item` and `clone`
1846         // * type nodes are:
1847         //   1. `std::vec::Vec<T>` (created above)
1848         //   2. `<std::vec::Vec<T>>::IntoIter`
1849         //   3. `<<std::vec::Vec<T>>::IntoIter>::Item`
1850         // * final path is `<<<std::vec::Vec<T>>::IntoIter>::Item>::clone`
1851         for (i, segment) in p.segments.iter().enumerate().skip(proj_start) {
1852             let segment = P(self.lower_path_segment(
1853                 p.span,
1854                 segment,
1855                 param_mode,
1856                 0,
1857                 ParenthesizedGenericArgs::Err,
1858                 itctx.reborrow(),
1859                 None,
1860             ));
1861             let qpath = hir::QPath::TypeRelative(ty, segment);
1862
1863             // It's finished, return the extension of the right node type.
1864             if i == p.segments.len() - 1 {
1865                 return qpath;
1866             }
1867
1868             // Wrap the associated extension in another type node.
1869             let new_id = self.next_id();
1870             ty = P(self.ty_path(new_id, p.span, qpath));
1871         }
1872
1873         // We should've returned in the for loop above.
1874         span_bug!(
1875             p.span,
1876             "lower_qpath: no final extension segment in {}..{}",
1877             proj_start,
1878             p.segments.len()
1879         )
1880     }
1881
1882     fn lower_path_extra(
1883         &mut self,
1884         res: Res,
1885         p: &Path,
1886         param_mode: ParamMode,
1887         explicit_owner: Option<NodeId>,
1888     ) -> hir::Path {
1889         hir::Path {
1890             res,
1891             segments: p.segments
1892                 .iter()
1893                 .map(|segment| {
1894                     self.lower_path_segment(
1895                         p.span,
1896                         segment,
1897                         param_mode,
1898                         0,
1899                         ParenthesizedGenericArgs::Err,
1900                         ImplTraitContext::disallowed(),
1901                         explicit_owner,
1902                     )
1903                 })
1904                 .collect(),
1905             span: p.span,
1906         }
1907     }
1908
1909     fn lower_path(&mut self, id: NodeId, p: &Path, param_mode: ParamMode) -> hir::Path {
1910         let res = self.expect_full_res(id);
1911         let res = self.lower_res(res);
1912         self.lower_path_extra(res, p, param_mode, None)
1913     }
1914
1915     fn lower_path_segment(
1916         &mut self,
1917         path_span: Span,
1918         segment: &PathSegment,
1919         param_mode: ParamMode,
1920         expected_lifetimes: usize,
1921         parenthesized_generic_args: ParenthesizedGenericArgs,
1922         itctx: ImplTraitContext<'_>,
1923         explicit_owner: Option<NodeId>,
1924     ) -> hir::PathSegment {
1925         let (mut generic_args, infer_args) = if let Some(ref generic_args) = segment.args {
1926             let msg = "parenthesized type parameters may only be used with a `Fn` trait";
1927             match **generic_args {
1928                 GenericArgs::AngleBracketed(ref data) => {
1929                     self.lower_angle_bracketed_parameter_data(data, param_mode, itctx)
1930                 }
1931                 GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args {
1932                     ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data),
1933                     ParenthesizedGenericArgs::Err => {
1934                         let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg);
1935                         err.span_label(data.span, "only `Fn` traits may use parentheses");
1936                         if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) {
1937                             // Do not suggest going from `Trait()` to `Trait<>`
1938                             if data.inputs.len() > 0 {
1939                                 if let Some(split) = snippet.find('(') {
1940                                     let trait_name = &snippet[0..split];
1941                                     let args = &snippet[split + 1 .. snippet.len() - 1];
1942                                     err.span_suggestion(
1943                                         data.span,
1944                                         "use angle brackets instead",
1945                                         format!("{}<{}>", trait_name, args),
1946                                         Applicability::MaybeIncorrect,
1947                                     );
1948                                 }
1949                             }
1950                         };
1951                         err.emit();
1952                         (
1953                             self.lower_angle_bracketed_parameter_data(
1954                                 &data.as_angle_bracketed_args(),
1955                                 param_mode,
1956                                 itctx
1957                             ).0,
1958                             false,
1959                         )
1960                     }
1961                 },
1962             }
1963         } else {
1964             self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx)
1965         };
1966
1967         let has_lifetimes = generic_args.args.iter().any(|arg| match arg {
1968             GenericArg::Lifetime(_) => true,
1969             _ => false,
1970         });
1971         let first_generic_span = generic_args.args.iter().map(|a| a.span())
1972             .chain(generic_args.bindings.iter().map(|b| b.span)).next();
1973         if !generic_args.parenthesized && !has_lifetimes {
1974             generic_args.args =
1975                 self.elided_path_lifetimes(path_span, expected_lifetimes)
1976                     .into_iter()
1977                     .map(|lt| GenericArg::Lifetime(lt))
1978                     .chain(generic_args.args.into_iter())
1979                 .collect();
1980             if expected_lifetimes > 0 && param_mode == ParamMode::Explicit {
1981                 let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", ");
1982                 let no_non_lt_args = generic_args.args.len() == expected_lifetimes;
1983                 let no_bindings = generic_args.bindings.is_empty();
1984                 let (incl_angl_brckt, insertion_sp, suggestion) = if no_non_lt_args && no_bindings {
1985                     // If there are no (non-implicit) generic args or associated type
1986                     // bindings, our suggestion includes the angle brackets.
1987                     (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion))
1988                 } else {
1989                     // Otherwise (sorry, this is kind of gross) we need to infer the
1990                     // place to splice in the `'_, ` from the generics that do exist.
1991                     let first_generic_span = first_generic_span
1992                         .expect("already checked that non-lifetime args or bindings exist");
1993                     (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion))
1994                 };
1995                 match self.anonymous_lifetime_mode {
1996                     // In create-parameter mode we error here because we don't want to support
1997                     // deprecated impl elision in new features like impl elision and `async fn`,
1998                     // both of which work using the `CreateParameter` mode:
1999                     //
2000                     //     impl Foo for std::cell::Ref<u32> // note lack of '_
2001                     //     async fn foo(_: std::cell::Ref<u32>) { ... }
2002                     AnonymousLifetimeMode::CreateParameter => {
2003                         let mut err = struct_span_err!(
2004                             self.sess,
2005                             path_span,
2006                             E0726,
2007                             "implicit elided lifetime not allowed here"
2008                         );
2009                         crate::lint::builtin::add_elided_lifetime_in_path_suggestion(
2010                             &self.sess,
2011                             &mut err,
2012                             expected_lifetimes,
2013                             path_span,
2014                             incl_angl_brckt,
2015                             insertion_sp,
2016                             suggestion,
2017                         );
2018                         err.emit();
2019                     }
2020                     AnonymousLifetimeMode::PassThrough |
2021                     AnonymousLifetimeMode::ReportError => {
2022                         self.resolver.lint_buffer().buffer_lint_with_diagnostic(
2023                             ELIDED_LIFETIMES_IN_PATHS,
2024                             CRATE_NODE_ID,
2025                             path_span,
2026                             "hidden lifetime parameters in types are deprecated",
2027                             builtin::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
2028                                 expected_lifetimes,
2029                                 path_span,
2030                                 incl_angl_brckt,
2031                                 insertion_sp,
2032                                 suggestion,
2033                             )
2034                         );
2035                     }
2036                 }
2037             }
2038         }
2039
2040         let res = self.expect_full_res(segment.id);
2041         let id = if let Some(owner) = explicit_owner {
2042             self.lower_node_id_with_owner(segment.id, owner)
2043         } else {
2044             self.lower_node_id(segment.id)
2045         };
2046         debug!(
2047             "lower_path_segment: ident={:?} original-id={:?} new-id={:?}",
2048             segment.ident, segment.id, id,
2049         );
2050
2051         hir::PathSegment::new(
2052             segment.ident,
2053             Some(id),
2054             Some(self.lower_res(res)),
2055             generic_args,
2056             infer_args,
2057         )
2058     }
2059
2060     fn lower_angle_bracketed_parameter_data(
2061         &mut self,
2062         data: &AngleBracketedArgs,
2063         param_mode: ParamMode,
2064         mut itctx: ImplTraitContext<'_>,
2065     ) -> (hir::GenericArgs, bool) {
2066         let &AngleBracketedArgs { ref args, ref constraints, .. } = data;
2067         let has_non_lt_args = args.iter().any(|arg| match arg {
2068             ast::GenericArg::Lifetime(_) => false,
2069             ast::GenericArg::Type(_) => true,
2070             ast::GenericArg::Const(_) => true,
2071         });
2072         (
2073             hir::GenericArgs {
2074                 args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(),
2075                 bindings: constraints.iter()
2076                     .map(|b| self.lower_assoc_ty_constraint(b, itctx.reborrow()))
2077                     .collect(),
2078                 parenthesized: false,
2079             },
2080             !has_non_lt_args && param_mode == ParamMode::Optional
2081         )
2082     }
2083
2084     fn lower_parenthesized_parameter_data(
2085         &mut self,
2086         data: &ParenthesizedArgs,
2087     ) -> (hir::GenericArgs, bool) {
2088         // Switch to `PassThrough` mode for anonymous lifetimes; this
2089         // means that we permit things like `&Ref<T>`, where `Ref` has
2090         // a hidden lifetime parameter. This is needed for backwards
2091         // compatibility, even in contexts like an impl header where
2092         // we generally don't permit such things (see #51008).
2093         self.with_anonymous_lifetime_mode(
2094             AnonymousLifetimeMode::PassThrough,
2095             |this| {
2096                 let &ParenthesizedArgs { ref inputs, ref output, span } = data;
2097                 let inputs = inputs
2098                     .iter()
2099                     .map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed()))
2100                     .collect();
2101                 let output_ty = match output {
2102                     FunctionRetTy::Ty(ty) => this.lower_ty(&ty, ImplTraitContext::disallowed()),
2103                     FunctionRetTy::Default(_) => P(this.ty_tup(span, hir::HirVec::new())),
2104                 };
2105                 let args = hir_vec![GenericArg::Type(this.ty_tup(span, inputs))];
2106                 let binding = hir::TypeBinding {
2107                     hir_id: this.next_id(),
2108                     ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2109                     span: output_ty.span,
2110                     kind: hir::TypeBindingKind::Equality { ty: output_ty },
2111                 };
2112                 (
2113                     hir::GenericArgs { args, bindings: hir_vec![binding], parenthesized: true },
2114                     false,
2115                 )
2116             }
2117         )
2118     }
2119
2120     fn lower_local(&mut self, l: &Local) -> (hir::Local, SmallVec<[NodeId; 1]>) {
2121         let mut ids = SmallVec::<[NodeId; 1]>::new();
2122         if self.sess.features_untracked().impl_trait_in_bindings {
2123             if let Some(ref ty) = l.ty {
2124                 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
2125                 visitor.visit_ty(ty);
2126             }
2127         }
2128         let parent_def_id = DefId::local(self.current_hir_id_owner.last().unwrap().0);
2129         (hir::Local {
2130             hir_id: self.lower_node_id(l.id),
2131             ty: l.ty
2132                 .as_ref()
2133                 .map(|t| self.lower_ty(t,
2134                     if self.sess.features_untracked().impl_trait_in_bindings {
2135                         ImplTraitContext::OpaqueTy(Some(parent_def_id))
2136                     } else {
2137                         ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2138                     }
2139                 )),
2140             pat: self.lower_pat(&l.pat),
2141             init: l.init.as_ref().map(|e| P(self.lower_expr(e))),
2142             span: l.span,
2143             attrs: l.attrs.clone(),
2144             source: hir::LocalSource::Normal,
2145         }, ids)
2146     }
2147
2148     fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> hir::HirVec<Ident> {
2149         // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
2150         // as they are not explicit in HIR/Ty function signatures.
2151         // (instead, the `c_variadic` flag is set to `true`)
2152         let mut inputs = &decl.inputs[..];
2153         if decl.c_variadic() {
2154             inputs = &inputs[..inputs.len() - 1];
2155         }
2156         inputs
2157             .iter()
2158             .map(|param| match param.pat.kind {
2159                 PatKind::Ident(_, ident, _) => ident,
2160                 _ => Ident::new(kw::Invalid, param.pat.span),
2161             })
2162             .collect()
2163     }
2164
2165     // Lowers a function declaration.
2166     //
2167     // `decl`: the unlowered (AST) function declaration.
2168     // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
2169     //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
2170     //      `make_ret_async` is also `Some`.
2171     // `impl_trait_return_allow`: determines whether `impl Trait` can be used in return position.
2172     //      This guards against trait declarations and implementations where `impl Trait` is
2173     //      disallowed.
2174     // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
2175     //      return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
2176     //      return type `impl Trait` item.
2177     fn lower_fn_decl(
2178         &mut self,
2179         decl: &FnDecl,
2180         mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam>)>,
2181         impl_trait_return_allow: bool,
2182         make_ret_async: Option<NodeId>,
2183     ) -> P<hir::FnDecl> {
2184         debug!("lower_fn_decl(\
2185             fn_decl: {:?}, \
2186             in_band_ty_params: {:?}, \
2187             impl_trait_return_allow: {}, \
2188             make_ret_async: {:?})",
2189             decl,
2190             in_band_ty_params,
2191             impl_trait_return_allow,
2192             make_ret_async,
2193         );
2194         let lt_mode = if make_ret_async.is_some() {
2195             // In `async fn`, argument-position elided lifetimes
2196             // must be transformed into fresh generic parameters so that
2197             // they can be applied to the opaque `impl Trait` return type.
2198             AnonymousLifetimeMode::CreateParameter
2199         } else {
2200             self.anonymous_lifetime_mode
2201         };
2202
2203         let c_variadic = decl.c_variadic();
2204
2205         // Remember how many lifetimes were already around so that we can
2206         // only look at the lifetime parameters introduced by the arguments.
2207         let inputs = self.with_anonymous_lifetime_mode(lt_mode, |this| {
2208             // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
2209             // as they are not explicit in HIR/Ty function signatures.
2210             // (instead, the `c_variadic` flag is set to `true`)
2211             let mut inputs = &decl.inputs[..];
2212             if c_variadic {
2213                 inputs = &inputs[..inputs.len() - 1];
2214             }
2215             inputs
2216                 .iter()
2217                 .map(|param| {
2218                     if let Some((_, ibty)) = &mut in_band_ty_params {
2219                         this.lower_ty_direct(&param.ty, ImplTraitContext::Universal(ibty))
2220                     } else {
2221                         this.lower_ty_direct(&param.ty, ImplTraitContext::disallowed())
2222                     }
2223                 })
2224                 .collect::<HirVec<_>>()
2225         });
2226
2227         let output = if let Some(ret_id) = make_ret_async {
2228             self.lower_async_fn_ret_ty(
2229                 &decl.output,
2230                 in_band_ty_params.expect("`make_ret_async` but no `fn_def_id`").0,
2231                 ret_id,
2232             )
2233         } else {
2234             match decl.output {
2235                 FunctionRetTy::Ty(ref ty) => match in_band_ty_params {
2236                     Some((def_id, _)) if impl_trait_return_allow => {
2237                         hir::Return(self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(def_id))))
2238                     }
2239                     _ => {
2240                         hir::Return(self.lower_ty(ty, ImplTraitContext::disallowed()))
2241                     }
2242                 },
2243                 FunctionRetTy::Default(span) => hir::DefaultReturn(span),
2244             }
2245         };
2246
2247         P(hir::FnDecl {
2248             inputs,
2249             output,
2250             c_variadic,
2251             implicit_self: decl.inputs.get(0).map_or(
2252                 hir::ImplicitSelfKind::None,
2253                 |arg| {
2254                     let is_mutable_pat = match arg.pat.kind {
2255                         PatKind::Ident(BindingMode::ByValue(mt), _, _) |
2256                         PatKind::Ident(BindingMode::ByRef(mt), _, _) =>
2257                             mt == Mutability::Mutable,
2258                         _ => false,
2259                     };
2260
2261                     match arg.ty.kind {
2262                         TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
2263                         TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
2264                         // Given we are only considering `ImplicitSelf` types, we needn't consider
2265                         // the case where we have a mutable pattern to a reference as that would
2266                         // no longer be an `ImplicitSelf`.
2267                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() &&
2268                             mt.mutbl == ast::Mutability::Mutable =>
2269                                 hir::ImplicitSelfKind::MutRef,
2270                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() =>
2271                             hir::ImplicitSelfKind::ImmRef,
2272                         _ => hir::ImplicitSelfKind::None,
2273                     }
2274                 },
2275             ),
2276         })
2277     }
2278
2279     // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
2280     // combined with the following definition of `OpaqueTy`:
2281     //
2282     //     type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
2283     //
2284     // `inputs`: lowered types of parameters to the function (used to collect lifetimes)
2285     // `output`: unlowered output type (`T` in `-> T`)
2286     // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
2287     // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
2288     // `elided_lt_replacement`: replacement for elided lifetimes in the return type
2289     fn lower_async_fn_ret_ty(
2290         &mut self,
2291         output: &FunctionRetTy,
2292         fn_def_id: DefId,
2293         opaque_ty_node_id: NodeId,
2294     ) -> hir::FunctionRetTy {
2295         debug!(
2296             "lower_async_fn_ret_ty(\
2297              output={:?}, \
2298              fn_def_id={:?}, \
2299              opaque_ty_node_id={:?})",
2300             output, fn_def_id, opaque_ty_node_id,
2301         );
2302
2303         let span = output.span();
2304
2305         let opaque_ty_span = self.mark_span_with_reason(
2306             DesugaringKind::Async,
2307             span,
2308             None,
2309         );
2310
2311         let opaque_ty_def_index = self
2312             .resolver
2313             .definitions()
2314             .opt_def_index(opaque_ty_node_id)
2315             .unwrap();
2316
2317         self.allocate_hir_id_counter(opaque_ty_node_id);
2318
2319         // When we create the opaque type for this async fn, it is going to have
2320         // to capture all the lifetimes involved in the signature (including in the
2321         // return type). This is done by introducing lifetime parameters for:
2322         //
2323         // - all the explicitly declared lifetimes from the impl and function itself;
2324         // - all the elided lifetimes in the fn arguments;
2325         // - all the elided lifetimes in the return type.
2326         //
2327         // So for example in this snippet:
2328         //
2329         // ```rust
2330         // impl<'a> Foo<'a> {
2331         //   async fn bar<'b>(&self, x: &'b Vec<f64>, y: &str) -> &u32 {
2332         //   //               ^ '0                       ^ '1     ^ '2
2333         //   // elided lifetimes used below
2334         //   }
2335         // }
2336         // ```
2337         //
2338         // we would create an opaque type like:
2339         //
2340         // ```
2341         // type Bar<'a, 'b, '0, '1, '2> = impl Future<Output = &'2 u32>;
2342         // ```
2343         //
2344         // and we would then desugar `bar` to the equivalent of:
2345         //
2346         // ```rust
2347         // impl<'a> Foo<'a> {
2348         //   fn bar<'b, '0, '1>(&'0 self, x: &'b Vec<f64>, y: &'1 str) -> Bar<'a, 'b, '0, '1, '_>
2349         // }
2350         // ```
2351         //
2352         // Note that the final parameter to `Bar` is `'_`, not `'2` --
2353         // this is because the elided lifetimes from the return type
2354         // should be figured out using the ordinary elision rules, and
2355         // this desugaring achieves that.
2356         //
2357         // The variable `input_lifetimes_count` tracks the number of
2358         // lifetime parameters to the opaque type *not counting* those
2359         // lifetimes elided in the return type. This includes those
2360         // that are explicitly declared (`in_scope_lifetimes`) and
2361         // those elided lifetimes we found in the arguments (current
2362         // content of `lifetimes_to_define`). Next, we will process
2363         // the return type, which will cause `lifetimes_to_define` to
2364         // grow.
2365         let input_lifetimes_count = self.in_scope_lifetimes.len() + self.lifetimes_to_define.len();
2366
2367         let (opaque_ty_id, lifetime_params) = self.with_hir_id_owner(opaque_ty_node_id, |this| {
2368             // We have to be careful to get elision right here. The
2369             // idea is that we create a lifetime parameter for each
2370             // lifetime in the return type.  So, given a return type
2371             // like `async fn foo(..) -> &[&u32]`, we lower to `impl
2372             // Future<Output = &'1 [ &'2 u32 ]>`.
2373             //
2374             // Then, we will create `fn foo(..) -> Foo<'_, '_>`, and
2375             // hence the elision takes place at the fn site.
2376             let future_bound = this.with_anonymous_lifetime_mode(
2377                 AnonymousLifetimeMode::CreateParameter,
2378                 |this| this.lower_async_fn_output_type_to_future_bound(
2379                     output,
2380                     fn_def_id,
2381                     span,
2382                 ),
2383             );
2384
2385             debug!("lower_async_fn_ret_ty: future_bound={:#?}", future_bound);
2386
2387             // Calculate all the lifetimes that should be captured
2388             // by the opaque type. This should include all in-scope
2389             // lifetime parameters, including those defined in-band.
2390             //
2391             // Note: this must be done after lowering the output type,
2392             // as the output type may introduce new in-band lifetimes.
2393             let lifetime_params: Vec<(Span, ParamName)> =
2394                 this.in_scope_lifetimes
2395                     .iter().cloned()
2396                     .map(|name| (name.ident().span, name))
2397                     .chain(this.lifetimes_to_define.iter().cloned())
2398                     .collect();
2399
2400             debug!("lower_async_fn_ret_ty: in_scope_lifetimes={:#?}", this.in_scope_lifetimes);
2401             debug!("lower_async_fn_ret_ty: lifetimes_to_define={:#?}", this.lifetimes_to_define);
2402             debug!("lower_async_fn_ret_ty: lifetime_params={:#?}", lifetime_params);
2403
2404             let generic_params =
2405                 lifetime_params
2406                     .iter().cloned()
2407                     .map(|(span, hir_name)| {
2408                         this.lifetime_to_generic_param(span, hir_name, opaque_ty_def_index)
2409                     })
2410                     .collect();
2411
2412             let opaque_ty_item = hir::OpaqueTy {
2413                 generics: hir::Generics {
2414                     params: generic_params,
2415                     where_clause: hir::WhereClause {
2416                         predicates: hir_vec![],
2417                         span,
2418                     },
2419                     span,
2420                 },
2421                 bounds: hir_vec![future_bound],
2422                 impl_trait_fn: Some(fn_def_id),
2423                 origin: hir::OpaqueTyOrigin::AsyncFn,
2424             };
2425
2426             trace!("exist ty from async fn def index: {:#?}", opaque_ty_def_index);
2427             let opaque_ty_id = this.generate_opaque_type(
2428                 opaque_ty_node_id,
2429                 opaque_ty_item,
2430                 span,
2431                 opaque_ty_span,
2432             );
2433
2434             (opaque_ty_id, lifetime_params)
2435         });
2436
2437         // As documented above on the variable
2438         // `input_lifetimes_count`, we need to create the lifetime
2439         // arguments to our opaque type. Continuing with our example,
2440         // we're creating the type arguments for the return type:
2441         //
2442         // ```
2443         // Bar<'a, 'b, '0, '1, '_>
2444         // ```
2445         //
2446         // For the "input" lifetime parameters, we wish to create
2447         // references to the parameters themselves, including the
2448         // "implicit" ones created from parameter types (`'a`, `'b`,
2449         // '`0`, `'1`).
2450         //
2451         // For the "output" lifetime parameters, we just want to
2452         // generate `'_`.
2453         let mut generic_args: Vec<_> =
2454             lifetime_params[..input_lifetimes_count]
2455             .iter()
2456             .map(|&(span, hir_name)| {
2457                 // Input lifetime like `'a` or `'1`:
2458                 GenericArg::Lifetime(hir::Lifetime {
2459                     hir_id: self.next_id(),
2460                     span,
2461                     name: hir::LifetimeName::Param(hir_name),
2462                 })
2463             })
2464             .collect();
2465         generic_args.extend(
2466             lifetime_params[input_lifetimes_count..]
2467             .iter()
2468             .map(|&(span, _)| {
2469                 // Output lifetime like `'_`.
2470                 GenericArg::Lifetime(hir::Lifetime {
2471                     hir_id: self.next_id(),
2472                     span,
2473                     name: hir::LifetimeName::Implicit,
2474                 })
2475             })
2476         );
2477
2478         // Create the `Foo<...>` reference itself. Note that the `type
2479         // Foo = impl Trait` is, internally, created as a child of the
2480         // async fn, so the *type parameters* are inherited.  It's
2481         // only the lifetime parameters that we must supply.
2482         let opaque_ty_ref = hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, generic_args.into());
2483         let opaque_ty = self.ty(opaque_ty_span, opaque_ty_ref);
2484         hir::FunctionRetTy::Return(P(opaque_ty))
2485     }
2486
2487     /// Transforms `-> T` into `Future<Output = T>`
2488     fn lower_async_fn_output_type_to_future_bound(
2489         &mut self,
2490         output: &FunctionRetTy,
2491         fn_def_id: DefId,
2492         span: Span,
2493     ) -> hir::GenericBound {
2494         // Compute the `T` in `Future<Output = T>` from the return type.
2495         let output_ty = match output {
2496             FunctionRetTy::Ty(ty) => self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(fn_def_id))),
2497             FunctionRetTy::Default(ret_ty_span) => P(self.ty_tup(*ret_ty_span, hir_vec![])),
2498         };
2499
2500         // "<Output = T>"
2501         let future_params = P(hir::GenericArgs {
2502             args: hir_vec![],
2503             bindings: hir_vec![hir::TypeBinding {
2504                 ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2505                 kind: hir::TypeBindingKind::Equality {
2506                     ty: output_ty,
2507                 },
2508                 hir_id: self.next_id(),
2509                 span,
2510             }],
2511             parenthesized: false,
2512         });
2513
2514         // ::std::future::Future<future_params>
2515         let future_path =
2516             P(self.std_path(span, &[sym::future, sym::Future], Some(future_params), false));
2517
2518         hir::GenericBound::Trait(
2519             hir::PolyTraitRef {
2520                 trait_ref: hir::TraitRef {
2521                     path: future_path,
2522                     hir_ref_id: self.next_id(),
2523                 },
2524                 bound_generic_params: hir_vec![],
2525                 span,
2526             },
2527             hir::TraitBoundModifier::None,
2528         )
2529     }
2530
2531     fn lower_param_bound(
2532         &mut self,
2533         tpb: &GenericBound,
2534         itctx: ImplTraitContext<'_>,
2535     ) -> hir::GenericBound {
2536         match *tpb {
2537             GenericBound::Trait(ref ty, modifier) => {
2538                 hir::GenericBound::Trait(
2539                     self.lower_poly_trait_ref(ty, itctx),
2540                     self.lower_trait_bound_modifier(modifier),
2541                 )
2542             }
2543             GenericBound::Outlives(ref lifetime) => {
2544                 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2545             }
2546         }
2547     }
2548
2549     fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2550         let span = l.ident.span;
2551         match l.ident {
2552             ident if ident.name == kw::StaticLifetime =>
2553                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static),
2554             ident if ident.name == kw::UnderscoreLifetime =>
2555                 match self.anonymous_lifetime_mode {
2556                     AnonymousLifetimeMode::CreateParameter => {
2557                         let fresh_name = self.collect_fresh_in_band_lifetime(span);
2558                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2559                     }
2560
2561                     AnonymousLifetimeMode::PassThrough => {
2562                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2563                     }
2564
2565                     AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2566                 },
2567             ident => {
2568                 self.maybe_collect_in_band_lifetime(ident);
2569                 let param_name = ParamName::Plain(ident);
2570                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2571             }
2572         }
2573     }
2574
2575     fn new_named_lifetime(
2576         &mut self,
2577         id: NodeId,
2578         span: Span,
2579         name: hir::LifetimeName,
2580     ) -> hir::Lifetime {
2581         hir::Lifetime {
2582             hir_id: self.lower_node_id(id),
2583             span,
2584             name,
2585         }
2586     }
2587
2588     fn lower_generic_params(
2589         &mut self,
2590         params: &[GenericParam],
2591         add_bounds: &NodeMap<Vec<GenericBound>>,
2592         mut itctx: ImplTraitContext<'_>,
2593     ) -> hir::HirVec<hir::GenericParam> {
2594         params.iter().map(|param| {
2595             self.lower_generic_param(param, add_bounds, itctx.reborrow())
2596         }).collect()
2597     }
2598
2599     fn lower_generic_param(&mut self,
2600                            param: &GenericParam,
2601                            add_bounds: &NodeMap<Vec<GenericBound>>,
2602                            mut itctx: ImplTraitContext<'_>)
2603                            -> hir::GenericParam {
2604         let mut bounds = self.with_anonymous_lifetime_mode(
2605             AnonymousLifetimeMode::ReportError,
2606             |this| this.lower_param_bounds(&param.bounds, itctx.reborrow()),
2607         );
2608
2609         let (name, kind) = match param.kind {
2610             GenericParamKind::Lifetime => {
2611                 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2612                 self.is_collecting_in_band_lifetimes = false;
2613
2614                 let lt = self.with_anonymous_lifetime_mode(
2615                     AnonymousLifetimeMode::ReportError,
2616                     |this| this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident }),
2617                 );
2618                 let param_name = match lt.name {
2619                     hir::LifetimeName::Param(param_name) => param_name,
2620                     hir::LifetimeName::Implicit
2621                         | hir::LifetimeName::Underscore
2622                         | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2623                     hir::LifetimeName::ImplicitObjectLifetimeDefault => {
2624                         span_bug!(
2625                             param.ident.span,
2626                             "object-lifetime-default should not occur here",
2627                         );
2628                     }
2629                     hir::LifetimeName::Error => ParamName::Error,
2630                 };
2631
2632                 let kind = hir::GenericParamKind::Lifetime {
2633                     kind: hir::LifetimeParamKind::Explicit
2634                 };
2635
2636                 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2637
2638                 (param_name, kind)
2639             }
2640             GenericParamKind::Type { ref default, .. } => {
2641                 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2642                 if !add_bounds.is_empty() {
2643                     let params = self.lower_param_bounds(add_bounds, itctx.reborrow()).into_iter();
2644                     bounds = bounds.into_iter()
2645                                    .chain(params)
2646                                    .collect();
2647                 }
2648
2649                 let kind = hir::GenericParamKind::Type {
2650                     default: default.as_ref().map(|x| {
2651                         self.lower_ty(x, ImplTraitContext::OpaqueTy(None))
2652                     }),
2653                     synthetic: param.attrs.iter()
2654                                           .filter(|attr| attr.check_name(sym::rustc_synthetic))
2655                                           .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2656                                           .next(),
2657                 };
2658
2659                 (hir::ParamName::Plain(param.ident), kind)
2660             }
2661             GenericParamKind::Const { ref ty } => {
2662                 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const {
2663                     ty: self.lower_ty(&ty, ImplTraitContext::disallowed()),
2664                 })
2665             }
2666         };
2667
2668         hir::GenericParam {
2669             hir_id: self.lower_node_id(param.id),
2670             name,
2671             span: param.ident.span,
2672             pure_wrt_drop: attr::contains_name(&param.attrs, sym::may_dangle),
2673             attrs: self.lower_attrs(&param.attrs),
2674             bounds,
2675             kind,
2676         }
2677     }
2678
2679     fn lower_trait_ref(&mut self, p: &TraitRef, itctx: ImplTraitContext<'_>) -> hir::TraitRef {
2680         let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2681             hir::QPath::Resolved(None, path) => path,
2682             qpath => bug!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2683         };
2684         hir::TraitRef {
2685             path,
2686             hir_ref_id: self.lower_node_id(p.ref_id),
2687         }
2688     }
2689
2690     fn lower_poly_trait_ref(
2691         &mut self,
2692         p: &PolyTraitRef,
2693         mut itctx: ImplTraitContext<'_>,
2694     ) -> hir::PolyTraitRef {
2695         let bound_generic_params = self.lower_generic_params(
2696             &p.bound_generic_params,
2697             &NodeMap::default(),
2698             itctx.reborrow(),
2699         );
2700         let trait_ref = self.with_in_scope_lifetime_defs(
2701             &p.bound_generic_params,
2702             |this| this.lower_trait_ref(&p.trait_ref, itctx),
2703         );
2704
2705         hir::PolyTraitRef {
2706             bound_generic_params,
2707             trait_ref,
2708             span: p.span,
2709         }
2710     }
2711
2712     fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_>) -> hir::MutTy {
2713         hir::MutTy {
2714             ty: self.lower_ty(&mt.ty, itctx),
2715             mutbl: mt.mutbl,
2716         }
2717     }
2718
2719     fn lower_param_bounds(&mut self, bounds: &[GenericBound], mut itctx: ImplTraitContext<'_>)
2720                           -> hir::GenericBounds {
2721         bounds.iter().map(|bound| self.lower_param_bound(bound, itctx.reborrow())).collect()
2722     }
2723
2724     fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> P<hir::Block> {
2725         let mut stmts = vec![];
2726         let mut expr = None;
2727
2728         for (index, stmt) in b.stmts.iter().enumerate() {
2729             if index == b.stmts.len() - 1 {
2730                 if let StmtKind::Expr(ref e) = stmt.kind {
2731                     expr = Some(P(self.lower_expr(e)));
2732                 } else {
2733                     stmts.extend(self.lower_stmt(stmt));
2734                 }
2735             } else {
2736                 stmts.extend(self.lower_stmt(stmt));
2737             }
2738         }
2739
2740         P(hir::Block {
2741             hir_id: self.lower_node_id(b.id),
2742             stmts: stmts.into(),
2743             expr,
2744             rules: self.lower_block_check_mode(&b.rules),
2745             span: b.span,
2746             targeted_by_break,
2747         })
2748     }
2749
2750     /// Lowers a block directly to an expression, presuming that it
2751     /// has no attributes and is not targeted by a `break`.
2752     fn lower_block_expr(&mut self, b: &Block) -> hir::Expr {
2753         let block = self.lower_block(b, false);
2754         self.expr_block(block, ThinVec::new())
2755     }
2756
2757     fn lower_pat(&mut self, p: &Pat) -> P<hir::Pat> {
2758         let node = match p.kind {
2759             PatKind::Wild => hir::PatKind::Wild,
2760             PatKind::Ident(ref binding_mode, ident, ref sub) => {
2761                 let lower_sub = |this: &mut Self| sub.as_ref().map(|x| this.lower_pat(x));
2762                 self.lower_pat_ident(p, binding_mode, ident, lower_sub)
2763             }
2764             PatKind::Lit(ref e) => hir::PatKind::Lit(P(self.lower_expr(e))),
2765             PatKind::TupleStruct(ref path, ref pats) => {
2766                 let qpath = self.lower_qpath(
2767                     p.id,
2768                     &None,
2769                     path,
2770                     ParamMode::Optional,
2771                     ImplTraitContext::disallowed(),
2772                 );
2773                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple struct");
2774                 hir::PatKind::TupleStruct(qpath, pats, ddpos)
2775             }
2776             PatKind::Or(ref pats) => {
2777                 hir::PatKind::Or(pats.iter().map(|x| self.lower_pat(x)).collect())
2778             }
2779             PatKind::Path(ref qself, ref path) => {
2780                 let qpath = self.lower_qpath(
2781                     p.id,
2782                     qself,
2783                     path,
2784                     ParamMode::Optional,
2785                     ImplTraitContext::disallowed(),
2786                 );
2787                 hir::PatKind::Path(qpath)
2788             }
2789             PatKind::Struct(ref path, ref fields, etc) => {
2790                 let qpath = self.lower_qpath(
2791                     p.id,
2792                     &None,
2793                     path,
2794                     ParamMode::Optional,
2795                     ImplTraitContext::disallowed(),
2796                 );
2797
2798                 let fs = fields
2799                     .iter()
2800                     .map(|f| hir::FieldPat {
2801                         hir_id: self.next_id(),
2802                         ident: f.ident,
2803                         pat: self.lower_pat(&f.pat),
2804                         is_shorthand: f.is_shorthand,
2805                         span: f.span,
2806                     })
2807                     .collect();
2808                 hir::PatKind::Struct(qpath, fs, etc)
2809             }
2810             PatKind::Tuple(ref pats) => {
2811                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple");
2812                 hir::PatKind::Tuple(pats, ddpos)
2813             }
2814             PatKind::Box(ref inner) => hir::PatKind::Box(self.lower_pat(inner)),
2815             PatKind::Ref(ref inner, mutbl) => {
2816                 hir::PatKind::Ref(self.lower_pat(inner), mutbl)
2817             }
2818             PatKind::Range(ref e1, ref e2, Spanned { node: ref end, .. }) => hir::PatKind::Range(
2819                 P(self.lower_expr(e1)),
2820                 P(self.lower_expr(e2)),
2821                 self.lower_range_end(end),
2822             ),
2823             PatKind::Slice(ref pats) => self.lower_pat_slice(pats),
2824             PatKind::Rest => {
2825                 // If we reach here the `..` pattern is not semantically allowed.
2826                 self.ban_illegal_rest_pat(p.span)
2827             }
2828             PatKind::Paren(ref inner) => return self.lower_pat(inner),
2829             PatKind::Mac(_) => panic!("Shouldn't exist here"),
2830         };
2831
2832         self.pat_with_node_id_of(p, node)
2833     }
2834
2835     fn lower_pat_tuple(
2836         &mut self,
2837         pats: &[AstP<Pat>],
2838         ctx: &str,
2839     ) -> (HirVec<P<hir::Pat>>, Option<usize>) {
2840         let mut elems = Vec::with_capacity(pats.len());
2841         let mut rest = None;
2842
2843         let mut iter = pats.iter().enumerate();
2844         for (idx, pat) in iter.by_ref() {
2845             // Interpret the first `..` pattern as a sub-tuple pattern.
2846             // Note that unlike for slice patterns,
2847             // where `xs @ ..` is a legal sub-slice pattern,
2848             // it is not a legal sub-tuple pattern.
2849             if pat.is_rest() {
2850                 rest = Some((idx, pat.span));
2851                 break;
2852             }
2853             // It was not a sub-tuple pattern so lower it normally.
2854             elems.push(self.lower_pat(pat));
2855         }
2856
2857         for (_, pat) in iter {
2858             // There was a previous sub-tuple pattern; make sure we don't allow more...
2859             if pat.is_rest() {
2860                 // ...but there was one again, so error.
2861                 self.ban_extra_rest_pat(pat.span, rest.unwrap().1, ctx);
2862             } else {
2863                 elems.push(self.lower_pat(pat));
2864             }
2865         }
2866
2867         (elems.into(), rest.map(|(ddpos, _)| ddpos))
2868     }
2869
2870     /// Lower a slice pattern of form `[pat_0, ..., pat_n]` into
2871     /// `hir::PatKind::Slice(before, slice, after)`.
2872     ///
2873     /// When encountering `($binding_mode $ident @)? ..` (`slice`),
2874     /// this is interpreted as a sub-slice pattern semantically.
2875     /// Patterns that follow, which are not like `slice` -- or an error occurs, are in `after`.
2876     fn lower_pat_slice(&mut self, pats: &[AstP<Pat>]) -> hir::PatKind {
2877         let mut before = Vec::new();
2878         let mut after = Vec::new();
2879         let mut slice = None;
2880         let mut prev_rest_span = None;
2881
2882         let mut iter = pats.iter();
2883         // Lower all the patterns until the first occurence of a sub-slice pattern.
2884         for pat in iter.by_ref() {
2885             match pat.kind {
2886                 // Found a sub-slice pattern `..`. Record, lower it to `_`, and stop here.
2887                 PatKind::Rest => {
2888                     prev_rest_span = Some(pat.span);
2889                     slice = Some(self.pat_wild_with_node_id_of(pat));
2890                     break;
2891                 },
2892                 // Found a sub-slice pattern `$binding_mode $ident @ ..`.
2893                 // Record, lower it to `$binding_mode $ident @ _`, and stop here.
2894                 PatKind::Ident(ref bm, ident, Some(ref sub)) if sub.is_rest() => {
2895                     prev_rest_span = Some(sub.span);
2896                     let lower_sub = |this: &mut Self| Some(this.pat_wild_with_node_id_of(sub));
2897                     let node = self.lower_pat_ident(pat, bm, ident, lower_sub);
2898                     slice = Some(self.pat_with_node_id_of(pat, node));
2899                     break;
2900                 },
2901                 // It was not a subslice pattern so lower it normally.
2902                 _ => before.push(self.lower_pat(pat)),
2903             }
2904         }
2905
2906         // Lower all the patterns after the first sub-slice pattern.
2907         for pat in iter {
2908             // There was a previous subslice pattern; make sure we don't allow more.
2909             let rest_span = match pat.kind {
2910                 PatKind::Rest => Some(pat.span),
2911                 PatKind::Ident(.., Some(ref sub)) if sub.is_rest() => {
2912                     // The `HirValidator` is merciless; add a `_` pattern to avoid ICEs.
2913                     after.push(self.pat_wild_with_node_id_of(pat));
2914                     Some(sub.span)
2915                 },
2916                 _ => None,
2917             };
2918             if let Some(rest_span) = rest_span {
2919                 // We have e.g., `[a, .., b, ..]`. That's no good, error!
2920                 self.ban_extra_rest_pat(rest_span, prev_rest_span.unwrap(), "slice");
2921             } else {
2922                 // Lower the pattern normally.
2923                 after.push(self.lower_pat(pat));
2924             }
2925         }
2926
2927         hir::PatKind::Slice(before.into(), slice, after.into())
2928     }
2929
2930     fn lower_pat_ident(
2931         &mut self,
2932         p: &Pat,
2933         binding_mode: &BindingMode,
2934         ident: Ident,
2935         lower_sub: impl FnOnce(&mut Self) -> Option<P<hir::Pat>>,
2936     ) -> hir::PatKind {
2937         match self.resolver.get_partial_res(p.id).map(|d| d.base_res()) {
2938             // `None` can occur in body-less function signatures
2939             res @ None | res @ Some(Res::Local(_)) => {
2940                 let canonical_id = match res {
2941                     Some(Res::Local(id)) => id,
2942                     _ => p.id,
2943                 };
2944
2945                 hir::PatKind::Binding(
2946                     self.lower_binding_mode(binding_mode),
2947                     self.lower_node_id(canonical_id),
2948                     ident,
2949                     lower_sub(self),
2950                 )
2951             }
2952             Some(res) => hir::PatKind::Path(hir::QPath::Resolved(
2953                 None,
2954                 P(hir::Path {
2955                     span: ident.span,
2956                     res: self.lower_res(res),
2957                     segments: hir_vec![hir::PathSegment::from_ident(ident)],
2958                 }),
2959             )),
2960         }
2961     }
2962
2963     fn pat_wild_with_node_id_of(&mut self, p: &Pat) -> P<hir::Pat> {
2964         self.pat_with_node_id_of(p, hir::PatKind::Wild)
2965     }
2966
2967     /// Construct a `Pat` with the `HirId` of `p.id` lowered.
2968     fn pat_with_node_id_of(&mut self, p: &Pat, kind: hir::PatKind) -> P<hir::Pat> {
2969         P(hir::Pat {
2970             hir_id: self.lower_node_id(p.id),
2971             kind,
2972             span: p.span,
2973         })
2974     }
2975
2976     /// Emit a friendly error for extra `..` patterns in a tuple/tuple struct/slice pattern.
2977     fn ban_extra_rest_pat(&self, sp: Span, prev_sp: Span, ctx: &str) {
2978         self.diagnostic()
2979             .struct_span_err(sp, &format!("`..` can only be used once per {} pattern", ctx))
2980             .span_label(sp, &format!("can only be used once per {} pattern", ctx))
2981             .span_label(prev_sp, "previously used here")
2982             .emit();
2983     }
2984
2985     /// Used to ban the `..` pattern in places it shouldn't be semantically.
2986     fn ban_illegal_rest_pat(&self, sp: Span) -> hir::PatKind {
2987         self.diagnostic()
2988             .struct_span_err(sp, "`..` patterns are not allowed here")
2989             .note("only allowed in tuple, tuple struct, and slice patterns")
2990             .emit();
2991
2992         // We're not in a list context so `..` can be reasonably treated
2993         // as `_` because it should always be valid and roughly matches the
2994         // intent of `..` (notice that the rest of a single slot is that slot).
2995         hir::PatKind::Wild
2996     }
2997
2998     fn lower_range_end(&mut self, e: &RangeEnd) -> hir::RangeEnd {
2999         match *e {
3000             RangeEnd::Included(_) => hir::RangeEnd::Included,
3001             RangeEnd::Excluded => hir::RangeEnd::Excluded,
3002         }
3003     }
3004
3005     fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
3006         self.with_new_scopes(|this| {
3007             hir::AnonConst {
3008                 hir_id: this.lower_node_id(c.id),
3009                 body: this.lower_const_body(c.value.span, Some(&c.value)),
3010             }
3011         })
3012     }
3013
3014     fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt; 1]> {
3015         let kind = match s.kind {
3016             StmtKind::Local(ref l) => {
3017                 let (l, item_ids) = self.lower_local(l);
3018                 let mut ids: SmallVec<[hir::Stmt; 1]> = item_ids
3019                     .into_iter()
3020                     .map(|item_id| {
3021                         let item_id = hir::ItemId { id: self.lower_node_id(item_id) };
3022                         self.stmt(s.span, hir::StmtKind::Item(item_id))
3023                     })
3024                     .collect();
3025                 ids.push({
3026                     hir::Stmt {
3027                         hir_id: self.lower_node_id(s.id),
3028                         kind: hir::StmtKind::Local(P(l)),
3029                         span: s.span,
3030                     }
3031                 });
3032                 return ids;
3033             },
3034             StmtKind::Item(ref it) => {
3035                 // Can only use the ID once.
3036                 let mut id = Some(s.id);
3037                 return self.lower_item_id(it)
3038                     .into_iter()
3039                     .map(|item_id| {
3040                         let hir_id = id.take()
3041                           .map(|id| self.lower_node_id(id))
3042                           .unwrap_or_else(|| self.next_id());
3043
3044                         hir::Stmt {
3045                             hir_id,
3046                             kind: hir::StmtKind::Item(item_id),
3047                             span: s.span,
3048                         }
3049                     })
3050                     .collect();
3051             }
3052             StmtKind::Expr(ref e) => hir::StmtKind::Expr(P(self.lower_expr(e))),
3053             StmtKind::Semi(ref e) => hir::StmtKind::Semi(P(self.lower_expr(e))),
3054             StmtKind::Mac(..) => panic!("shouldn't exist here"),
3055         };
3056         smallvec![hir::Stmt {
3057             hir_id: self.lower_node_id(s.id),
3058             kind,
3059             span: s.span,
3060         }]
3061     }
3062
3063     fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
3064         match *b {
3065             BlockCheckMode::Default => hir::DefaultBlock,
3066             BlockCheckMode::Unsafe(u) => hir::UnsafeBlock(self.lower_unsafe_source(u)),
3067         }
3068     }
3069
3070     fn lower_binding_mode(&mut self, b: &BindingMode) -> hir::BindingAnnotation {
3071         match *b {
3072             BindingMode::ByValue(Mutability::Immutable) => hir::BindingAnnotation::Unannotated,
3073             BindingMode::ByRef(Mutability::Immutable) => hir::BindingAnnotation::Ref,
3074             BindingMode::ByValue(Mutability::Mutable) => hir::BindingAnnotation::Mutable,
3075             BindingMode::ByRef(Mutability::Mutable) => hir::BindingAnnotation::RefMut,
3076         }
3077     }
3078
3079     fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
3080         match u {
3081             CompilerGenerated => hir::CompilerGenerated,
3082             UserProvided => hir::UserProvided,
3083         }
3084     }
3085
3086     fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
3087         match f {
3088             TraitBoundModifier::None => hir::TraitBoundModifier::None,
3089             TraitBoundModifier::Maybe => hir::TraitBoundModifier::Maybe,
3090         }
3091     }
3092
3093     // Helper methods for building HIR.
3094
3095     fn stmt(&mut self, span: Span, kind: hir::StmtKind) -> hir::Stmt {
3096         hir::Stmt { span, kind, hir_id: self.next_id() }
3097     }
3098
3099     fn stmt_expr(&mut self, span: Span, expr: hir::Expr) -> hir::Stmt {
3100         self.stmt(span, hir::StmtKind::Expr(P(expr)))
3101     }
3102
3103     fn stmt_let_pat(
3104         &mut self,
3105         attrs: ThinVec<Attribute>,
3106         span: Span,
3107         init: Option<P<hir::Expr>>,
3108         pat: P<hir::Pat>,
3109         source: hir::LocalSource,
3110     ) -> hir::Stmt {
3111         let local = hir::Local {
3112             attrs,
3113             hir_id: self.next_id(),
3114             init,
3115             pat,
3116             source,
3117             span,
3118             ty: None,
3119         };
3120         self.stmt(span, hir::StmtKind::Local(P(local)))
3121     }
3122
3123     fn block_expr(&mut self, expr: P<hir::Expr>) -> hir::Block {
3124         self.block_all(expr.span, hir::HirVec::new(), Some(expr))
3125     }
3126
3127     fn block_all(
3128         &mut self,
3129         span: Span,
3130         stmts: hir::HirVec<hir::Stmt>,
3131         expr: Option<P<hir::Expr>>,
3132     ) -> hir::Block {
3133         hir::Block {
3134             stmts,
3135             expr,
3136             hir_id: self.next_id(),
3137             rules: hir::DefaultBlock,
3138             span,
3139             targeted_by_break: false,
3140         }
3141     }
3142
3143     /// Constructs a `true` or `false` literal pattern.
3144     fn pat_bool(&mut self, span: Span, val: bool) -> P<hir::Pat> {
3145         let expr = self.expr_bool(span, val);
3146         self.pat(span, hir::PatKind::Lit(P(expr)))
3147     }
3148
3149     fn pat_ok(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3150         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Ok], hir_vec![pat])
3151     }
3152
3153     fn pat_err(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3154         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Err], hir_vec![pat])
3155     }
3156
3157     fn pat_some(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3158         self.pat_std_enum(span, &[sym::option, sym::Option, sym::Some], hir_vec![pat])
3159     }
3160
3161     fn pat_none(&mut self, span: Span) -> P<hir::Pat> {
3162         self.pat_std_enum(span, &[sym::option, sym::Option, sym::None], hir_vec![])
3163     }
3164
3165     fn pat_std_enum(
3166         &mut self,
3167         span: Span,
3168         components: &[Symbol],
3169         subpats: hir::HirVec<P<hir::Pat>>,
3170     ) -> P<hir::Pat> {
3171         let path = self.std_path(span, components, None, true);
3172         let qpath = hir::QPath::Resolved(None, P(path));
3173         let pt = if subpats.is_empty() {
3174             hir::PatKind::Path(qpath)
3175         } else {
3176             hir::PatKind::TupleStruct(qpath, subpats, None)
3177         };
3178         self.pat(span, pt)
3179     }
3180
3181     fn pat_ident(&mut self, span: Span, ident: Ident) -> (P<hir::Pat>, hir::HirId) {
3182         self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
3183     }
3184
3185     fn pat_ident_binding_mode(
3186         &mut self,
3187         span: Span,
3188         ident: Ident,
3189         bm: hir::BindingAnnotation,
3190     ) -> (P<hir::Pat>, hir::HirId) {
3191         let hir_id = self.next_id();
3192
3193         (
3194             P(hir::Pat {
3195                 hir_id,
3196                 kind: hir::PatKind::Binding(bm, hir_id, ident.with_span_pos(span), None),
3197                 span,
3198             }),
3199             hir_id
3200         )
3201     }
3202
3203     fn pat_wild(&mut self, span: Span) -> P<hir::Pat> {
3204         self.pat(span, hir::PatKind::Wild)
3205     }
3206
3207     fn pat(&mut self, span: Span, kind: hir::PatKind) -> P<hir::Pat> {
3208         P(hir::Pat {
3209             hir_id: self.next_id(),
3210             kind,
3211             span,
3212         })
3213     }
3214
3215     /// Given a suffix `["b", "c", "d"]`, returns path `::std::b::c::d` when
3216     /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
3217     /// The path is also resolved according to `is_value`.
3218     fn std_path(
3219         &mut self,
3220         span: Span,
3221         components: &[Symbol],
3222         params: Option<P<hir::GenericArgs>>,
3223         is_value: bool,
3224     ) -> hir::Path {
3225         let ns = if is_value { Namespace::ValueNS } else { Namespace::TypeNS };
3226         let (path, res) = self.resolver.resolve_str_path(span, self.crate_root, components, ns);
3227
3228         let mut segments: Vec<_> = path.segments.iter().map(|segment| {
3229             let res = self.expect_full_res(segment.id);
3230             hir::PathSegment {
3231                 ident: segment.ident,
3232                 hir_id: Some(self.lower_node_id(segment.id)),
3233                 res: Some(self.lower_res(res)),
3234                 infer_args: true,
3235                 args: None,
3236             }
3237         }).collect();
3238         segments.last_mut().unwrap().args = params;
3239
3240         hir::Path {
3241             span,
3242             res: res.map_id(|_| panic!("unexpected `NodeId`")),
3243             segments: segments.into(),
3244         }
3245     }
3246
3247     fn ty_path(&mut self, mut hir_id: hir::HirId, span: Span, qpath: hir::QPath) -> hir::Ty {
3248         let kind = match qpath {
3249             hir::QPath::Resolved(None, path) => {
3250                 // Turn trait object paths into `TyKind::TraitObject` instead.
3251                 match path.res {
3252                     Res::Def(DefKind::Trait, _) | Res::Def(DefKind::TraitAlias, _) => {
3253                         let principal = hir::PolyTraitRef {
3254                             bound_generic_params: hir::HirVec::new(),
3255                             trait_ref: hir::TraitRef {
3256                                 path,
3257                                 hir_ref_id: hir_id,
3258                             },
3259                             span,
3260                         };
3261
3262                         // The original ID is taken by the `PolyTraitRef`,
3263                         // so the `Ty` itself needs a different one.
3264                         hir_id = self.next_id();
3265                         hir::TyKind::TraitObject(hir_vec![principal], self.elided_dyn_bound(span))
3266                     }
3267                     _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
3268                 }
3269             }
3270             _ => hir::TyKind::Path(qpath),
3271         };
3272
3273         hir::Ty {
3274             hir_id,
3275             kind,
3276             span,
3277         }
3278     }
3279
3280     /// Invoked to create the lifetime argument for a type `&T`
3281     /// with no explicit lifetime.
3282     fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
3283         match self.anonymous_lifetime_mode {
3284             // Intercept when we are in an impl header or async fn and introduce an in-band
3285             // lifetime.
3286             // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
3287             // `'f`.
3288             AnonymousLifetimeMode::CreateParameter => {
3289                 let fresh_name = self.collect_fresh_in_band_lifetime(span);
3290                 hir::Lifetime {
3291                     hir_id: self.next_id(),
3292                     span,
3293                     name: hir::LifetimeName::Param(fresh_name),
3294                 }
3295             }
3296
3297             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
3298
3299             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
3300         }
3301     }
3302
3303     /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
3304     /// return a "error lifetime".
3305     fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
3306         let (id, msg, label) = match id {
3307             Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
3308
3309             None => (
3310                 self.resolver.next_node_id(),
3311                 "`&` without an explicit lifetime name cannot be used here",
3312                 "explicit lifetime name needed here",
3313             ),
3314         };
3315
3316         let mut err = struct_span_err!(
3317             self.sess,
3318             span,
3319             E0637,
3320             "{}",
3321             msg,
3322         );
3323         err.span_label(span, label);
3324         err.emit();
3325
3326         self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3327     }
3328
3329     /// Invoked to create the lifetime argument(s) for a path like
3330     /// `std::cell::Ref<T>`; note that implicit lifetimes in these
3331     /// sorts of cases are deprecated. This may therefore report a warning or an
3332     /// error, depending on the mode.
3333     fn elided_path_lifetimes(&mut self, span: Span, count: usize) -> P<[hir::Lifetime]> {
3334         (0..count)
3335             .map(|_| self.elided_path_lifetime(span))
3336             .collect()
3337     }
3338
3339     fn elided_path_lifetime(&mut self, span: Span) -> hir::Lifetime {
3340         match self.anonymous_lifetime_mode {
3341             AnonymousLifetimeMode::CreateParameter => {
3342                 // We should have emitted E0726 when processing this path above
3343                 self.sess.delay_span_bug(
3344                     span,
3345                     "expected 'implicit elided lifetime not allowed' error",
3346                 );
3347                 let id = self.resolver.next_node_id();
3348                 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3349             }
3350             // `PassThrough` is the normal case.
3351             // `new_error_lifetime`, which would usually be used in the case of `ReportError`,
3352             // is unsuitable here, as these can occur from missing lifetime parameters in a
3353             // `PathSegment`, for which there is no associated `'_` or `&T` with no explicit
3354             // lifetime. Instead, we simply create an implicit lifetime, which will be checked
3355             // later, at which point a suitable error will be emitted.
3356           | AnonymousLifetimeMode::PassThrough
3357           | AnonymousLifetimeMode::ReportError => self.new_implicit_lifetime(span),
3358         }
3359     }
3360
3361     /// Invoked to create the lifetime argument(s) for an elided trait object
3362     /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
3363     /// when the bound is written, even if it is written with `'_` like in
3364     /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
3365     fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
3366         match self.anonymous_lifetime_mode {
3367             // NB. We intentionally ignore the create-parameter mode here.
3368             // and instead "pass through" to resolve-lifetimes, which will apply
3369             // the object-lifetime-defaulting rules. Elided object lifetime defaults
3370             // do not act like other elided lifetimes. In other words, given this:
3371             //
3372             //     impl Foo for Box<dyn Debug>
3373             //
3374             // we do not introduce a fresh `'_` to serve as the bound, but instead
3375             // ultimately translate to the equivalent of:
3376             //
3377             //     impl Foo for Box<dyn Debug + 'static>
3378             //
3379             // `resolve_lifetime` has the code to make that happen.
3380             AnonymousLifetimeMode::CreateParameter => {}
3381
3382             AnonymousLifetimeMode::ReportError => {
3383                 // ReportError applies to explicit use of `'_`.
3384             }
3385
3386             // This is the normal case.
3387             AnonymousLifetimeMode::PassThrough => {}
3388         }
3389
3390         let r = hir::Lifetime {
3391             hir_id: self.next_id(),
3392             span,
3393             name: hir::LifetimeName::ImplicitObjectLifetimeDefault,
3394         };
3395         debug!("elided_dyn_bound: r={:?}", r);
3396         r
3397     }
3398
3399     fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
3400         hir::Lifetime {
3401             hir_id: self.next_id(),
3402             span,
3403             name: hir::LifetimeName::Implicit,
3404         }
3405     }
3406
3407     fn maybe_lint_bare_trait(&mut self, span: Span, id: NodeId, is_global: bool) {
3408         // FIXME(davidtwco): This is a hack to detect macros which produce spans of the
3409         // call site which do not have a macro backtrace. See #61963.
3410         let is_macro_callsite = self.sess.source_map()
3411             .span_to_snippet(span)
3412             .map(|snippet| snippet.starts_with("#["))
3413             .unwrap_or(true);
3414         if !is_macro_callsite {
3415             self.resolver.lint_buffer().buffer_lint_with_diagnostic(
3416                 builtin::BARE_TRAIT_OBJECTS,
3417                 id,
3418                 span,
3419                 "trait objects without an explicit `dyn` are deprecated",
3420                 builtin::BuiltinLintDiagnostics::BareTraitObject(span, is_global),
3421             )
3422         }
3423     }
3424 }
3425
3426 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body>) -> Vec<hir::BodyId> {
3427     // Sorting by span ensures that we get things in order within a
3428     // file, and also puts the files in a sensible order.
3429     let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
3430     body_ids.sort_by_key(|b| bodies[b].value.span);
3431     body_ids
3432 }
3433
3434 /// Checks if the specified expression is a built-in range literal.
3435 /// (See: `LoweringContext::lower_expr()`).
3436 pub fn is_range_literal(sess: &Session, expr: &hir::Expr) -> bool {
3437     use hir::{Path, QPath, ExprKind, TyKind};
3438
3439     // Returns whether the given path represents a (desugared) range,
3440     // either in std or core, i.e. has either a `::std::ops::Range` or
3441     // `::core::ops::Range` prefix.
3442     fn is_range_path(path: &Path) -> bool {
3443         let segs: Vec<_> = path.segments.iter().map(|seg| seg.ident.to_string()).collect();
3444         let segs: Vec<_> = segs.iter().map(|seg| &**seg).collect();
3445
3446         // "{{root}}" is the equivalent of `::` prefix in `Path`.
3447         if let ["{{root}}", std_core, "ops", range] = segs.as_slice() {
3448             (*std_core == "std" || *std_core == "core") && range.starts_with("Range")
3449         } else {
3450             false
3451         }
3452     };
3453
3454     // Check whether a span corresponding to a range expression is a
3455     // range literal, rather than an explicit struct or `new()` call.
3456     fn is_lit(sess: &Session, span: &Span) -> bool {
3457         let source_map = sess.source_map();
3458         let end_point = source_map.end_point(*span);
3459
3460         if let Ok(end_string) = source_map.span_to_snippet(end_point) {
3461             !(end_string.ends_with("}") || end_string.ends_with(")"))
3462         } else {
3463             false
3464         }
3465     };
3466
3467     match expr.kind {
3468         // All built-in range literals but `..=` and `..` desugar to `Struct`s.
3469         ExprKind::Struct(ref qpath, _, _) => {
3470             if let QPath::Resolved(None, ref path) = **qpath {
3471                 return is_range_path(&path) && is_lit(sess, &expr.span);
3472             }
3473         }
3474
3475         // `..` desugars to its struct path.
3476         ExprKind::Path(QPath::Resolved(None, ref path)) => {
3477             return is_range_path(&path) && is_lit(sess, &expr.span);
3478         }
3479
3480         // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
3481         ExprKind::Call(ref func, _) => {
3482             if let ExprKind::Path(QPath::TypeRelative(ref ty, ref segment)) = func.kind {
3483                 if let TyKind::Path(QPath::Resolved(None, ref path)) = ty.kind {
3484                     let new_call = segment.ident.name == sym::new;
3485                     return is_range_path(&path) && is_lit(sess, &expr.span) && new_call;
3486                 }
3487             }
3488         }
3489
3490         _ => {}
3491     }
3492
3493     false
3494 }