]> git.lizzy.rs Git - rust.git/blob - src/librustc/hir/lowering.rs
2c8e14f2addff3b63b02d995bb49c7eb725ac5d8
[rust.git] / src / librustc / hir / lowering.rs
1 // ignore-tidy-filelength
2
3 //! Lowers the AST to the HIR.
4 //!
5 //! Since the AST and HIR are fairly similar, this is mostly a simple procedure,
6 //! much like a fold. Where lowering involves a bit more work things get more
7 //! interesting and there are some invariants you should know about. These mostly
8 //! concern spans and IDs.
9 //!
10 //! Spans are assigned to AST nodes during parsing and then are modified during
11 //! expansion to indicate the origin of a node and the process it went through
12 //! being expanded. IDs are assigned to AST nodes just before lowering.
13 //!
14 //! For the simpler lowering steps, IDs and spans should be preserved. Unlike
15 //! expansion we do not preserve the process of lowering in the spans, so spans
16 //! should not be modified here. When creating a new node (as opposed to
17 //! 'folding' an existing one), then you create a new ID using `next_id()`.
18 //!
19 //! You must ensure that IDs are unique. That means that you should only use the
20 //! ID from an AST node in a single HIR node (you can assume that AST node-IDs
21 //! are unique). Every new node must have a unique ID. Avoid cloning HIR nodes.
22 //! If you do, you must then set the new node's ID to a fresh one.
23 //!
24 //! Spans are used for error messages and for tools to map semantics back to
25 //! source code. It is therefore not as important with spans as IDs to be strict
26 //! about use (you can't break the compiler by screwing up a span). Obviously, a
27 //! HIR node can only have a single span. But multiple nodes can have the same
28 //! span and spans don't need to be kept in order, etc. Where code is preserved
29 //! by lowering, it should have the same span as in the AST. Where HIR nodes are
30 //! new it is probably best to give a span for the whole AST node being lowered.
31 //! All nodes should have real spans, don't use dummy spans. Tools are likely to
32 //! get confused if the spans from leaf AST nodes occur in multiple places
33 //! in the HIR, especially for multiple identifiers.
34
35 mod expr;
36 mod item;
37
38 use crate::dep_graph::DepGraph;
39 use crate::hir::{self, ParamName};
40 use crate::hir::HirVec;
41 use crate::hir::map::{DefKey, DefPathData, Definitions};
42 use crate::hir::def_id::{DefId, DefIndex, CRATE_DEF_INDEX};
43 use crate::hir::def::{Namespace, Res, DefKind, PartialRes, PerNS};
44 use crate::hir::{GenericArg, ConstArg};
45 use crate::hir::ptr::P;
46 use crate::lint;
47 use crate::lint::builtin::{self, ELIDED_LIFETIMES_IN_PATHS};
48 use crate::middle::cstore::CrateStore;
49 use crate::session::Session;
50 use crate::session::config::nightly_options;
51 use crate::util::common::FN_OUTPUT_NAME;
52 use crate::util::nodemap::{DefIdMap, NodeMap};
53 use errors::Applicability;
54 use rustc_data_structures::fx::FxHashSet;
55 use rustc_index::vec::IndexVec;
56 use rustc_data_structures::thin_vec::ThinVec;
57 use rustc_data_structures::sync::Lrc;
58
59 use std::collections::BTreeMap;
60 use std::mem;
61 use smallvec::SmallVec;
62 use syntax::attr;
63 use syntax::ast;
64 use syntax::ptr::P as AstP;
65 use syntax::ast::*;
66 use syntax::errors;
67 use syntax::print::pprust;
68 use syntax::token::{self, Nonterminal, Token};
69 use syntax::tokenstream::{TokenStream, TokenTree};
70 use syntax::sess::ParseSess;
71 use syntax::source_map::{respan, ExpnData, ExpnKind, DesugaringKind, Spanned};
72 use syntax::symbol::{kw, sym, Symbol};
73 use syntax::visit::{self, Visitor};
74 use syntax_pos::hygiene::ExpnId;
75 use syntax_pos::Span;
76
77 const HIR_ID_COUNTER_LOCKED: u32 = 0xFFFFFFFF;
78
79 pub struct LoweringContext<'a> {
80     crate_root: Option<Symbol>,
81
82     /// Used to assign IDs to HIR nodes that do not directly correspond to AST nodes.
83     sess: &'a Session,
84
85     resolver: &'a mut dyn Resolver,
86
87     /// HACK(Centril): there is a cyclic dependency between the parser and lowering
88     /// if we don't have this function pointer. To avoid that dependency so that
89     /// librustc is independent of the parser, we use dynamic dispatch here.
90     nt_to_tokenstream: NtToTokenstream,
91
92     /// The items being lowered are collected here.
93     items: BTreeMap<hir::HirId, hir::Item>,
94
95     trait_items: BTreeMap<hir::TraitItemId, hir::TraitItem>,
96     impl_items: BTreeMap<hir::ImplItemId, hir::ImplItem>,
97     bodies: BTreeMap<hir::BodyId, hir::Body>,
98     exported_macros: Vec<hir::MacroDef>,
99     non_exported_macro_attrs: Vec<ast::Attribute>,
100
101     trait_impls: BTreeMap<DefId, Vec<hir::HirId>>,
102
103     modules: BTreeMap<hir::HirId, hir::ModuleItems>,
104
105     generator_kind: Option<hir::GeneratorKind>,
106
107     /// Used to get the current `fn`'s def span to point to when using `await`
108     /// outside of an `async fn`.
109     current_item: Option<Span>,
110
111     catch_scopes: Vec<NodeId>,
112     loop_scopes: Vec<NodeId>,
113     is_in_loop_condition: bool,
114     is_in_trait_impl: bool,
115     is_in_dyn_type: bool,
116
117     /// What to do when we encounter either an "anonymous lifetime
118     /// reference". The term "anonymous" is meant to encompass both
119     /// `'_` lifetimes as well as fully elided cases where nothing is
120     /// written at all (e.g., `&T` or `std::cell::Ref<T>`).
121     anonymous_lifetime_mode: AnonymousLifetimeMode,
122
123     /// Used to create lifetime definitions from in-band lifetime usages.
124     /// e.g., `fn foo(x: &'x u8) -> &'x u8` to `fn foo<'x>(x: &'x u8) -> &'x u8`
125     /// When a named lifetime is encountered in a function or impl header and
126     /// has not been defined
127     /// (i.e., it doesn't appear in the in_scope_lifetimes list), it is added
128     /// to this list. The results of this list are then added to the list of
129     /// lifetime definitions in the corresponding impl or function generics.
130     lifetimes_to_define: Vec<(Span, ParamName)>,
131
132     /// `true` if in-band lifetimes are being collected. This is used to
133     /// indicate whether or not we're in a place where new lifetimes will result
134     /// in in-band lifetime definitions, such a function or an impl header,
135     /// including implicit lifetimes from `impl_header_lifetime_elision`.
136     is_collecting_in_band_lifetimes: bool,
137
138     /// Currently in-scope lifetimes defined in impl headers, fn headers, or HRTB.
139     /// When `is_collectin_in_band_lifetimes` is true, each lifetime is checked
140     /// against this list to see if it is already in-scope, or if a definition
141     /// needs to be created for it.
142     ///
143     /// We always store a `modern()` version of the param-name in this
144     /// vector.
145     in_scope_lifetimes: Vec<ParamName>,
146
147     current_module: hir::HirId,
148
149     type_def_lifetime_params: DefIdMap<usize>,
150
151     current_hir_id_owner: Vec<(DefIndex, u32)>,
152     item_local_id_counters: NodeMap<u32>,
153     node_id_to_hir_id: IndexVec<NodeId, hir::HirId>,
154
155     allow_try_trait: Option<Lrc<[Symbol]>>,
156     allow_gen_future: Option<Lrc<[Symbol]>>,
157 }
158
159 pub trait Resolver {
160     fn cstore(&self) -> &dyn CrateStore;
161
162     /// Obtains resolution for a `NodeId` with a single resolution.
163     fn get_partial_res(&mut self, id: NodeId) -> Option<PartialRes>;
164
165     /// Obtains per-namespace resolutions for `use` statement with the given `NodeId`.
166     fn get_import_res(&mut self, id: NodeId) -> PerNS<Option<Res<NodeId>>>;
167
168     /// Obtains resolution for a label with the given `NodeId`.
169     fn get_label_res(&mut self, id: NodeId) -> Option<NodeId>;
170
171     /// We must keep the set of definitions up to date as we add nodes that weren't in the AST.
172     /// This should only return `None` during testing.
173     fn definitions(&mut self) -> &mut Definitions;
174
175     /// Given suffix `["b", "c", "d"]`, creates an AST path for `[::crate_root]::b::c::d` and
176     /// resolves it based on `is_value`.
177     fn resolve_str_path(
178         &mut self,
179         span: Span,
180         crate_root: Option<Symbol>,
181         components: &[Symbol],
182         ns: Namespace,
183     ) -> (ast::Path, Res<NodeId>);
184
185     fn lint_buffer(&mut self) -> &mut lint::LintBuffer;
186
187     fn next_node_id(&mut self) -> NodeId;
188 }
189
190 type NtToTokenstream = fn(&Nonterminal, &ParseSess, Span) -> TokenStream;
191
192 /// Context of `impl Trait` in code, which determines whether it is allowed in an HIR subtree,
193 /// and if so, what meaning it has.
194 #[derive(Debug)]
195 enum ImplTraitContext<'a> {
196     /// Treat `impl Trait` as shorthand for a new universal generic parameter.
197     /// Example: `fn foo(x: impl Debug)`, where `impl Debug` is conceptually
198     /// equivalent to a fresh universal parameter like `fn foo<T: Debug>(x: T)`.
199     ///
200     /// Newly generated parameters should be inserted into the given `Vec`.
201     Universal(&'a mut Vec<hir::GenericParam>),
202
203     /// Treat `impl Trait` as shorthand for a new opaque type.
204     /// Example: `fn foo() -> impl Debug`, where `impl Debug` is conceptually
205     /// equivalent to a new opaque type like `type T = impl Debug; fn foo() -> T`.
206     ///
207     /// We optionally store a `DefId` for the parent item here so we can look up necessary
208     /// information later. It is `None` when no information about the context should be stored
209     /// (e.g., for consts and statics).
210     OpaqueTy(Option<DefId> /* fn def-ID */),
211
212     /// `impl Trait` is not accepted in this position.
213     Disallowed(ImplTraitPosition),
214 }
215
216 /// Position in which `impl Trait` is disallowed.
217 #[derive(Debug, Copy, Clone, PartialEq, Eq)]
218 enum ImplTraitPosition {
219     /// Disallowed in `let` / `const` / `static` bindings.
220     Binding,
221
222     /// All other posiitons.
223     Other,
224 }
225
226 impl<'a> ImplTraitContext<'a> {
227     #[inline]
228     fn disallowed() -> Self {
229         ImplTraitContext::Disallowed(ImplTraitPosition::Other)
230     }
231
232     fn reborrow(&'b mut self) -> ImplTraitContext<'b> {
233         use self::ImplTraitContext::*;
234         match self {
235             Universal(params) => Universal(params),
236             OpaqueTy(fn_def_id) => OpaqueTy(*fn_def_id),
237             Disallowed(pos) => Disallowed(*pos),
238         }
239     }
240 }
241
242 pub fn lower_crate(
243     sess: &Session,
244     dep_graph: &DepGraph,
245     krate: &Crate,
246     resolver: &mut dyn Resolver,
247     nt_to_tokenstream: NtToTokenstream,
248 ) -> hir::Crate {
249     // We're constructing the HIR here; we don't care what we will
250     // read, since we haven't even constructed the *input* to
251     // incr. comp. yet.
252     dep_graph.assert_ignored();
253
254     let _prof_timer = sess.prof.generic_activity("hir_lowering");
255
256     LoweringContext {
257         crate_root: sess.parse_sess.injected_crate_name.try_get().copied(),
258         sess,
259         resolver,
260         nt_to_tokenstream,
261         items: BTreeMap::new(),
262         trait_items: BTreeMap::new(),
263         impl_items: BTreeMap::new(),
264         bodies: BTreeMap::new(),
265         trait_impls: BTreeMap::new(),
266         modules: BTreeMap::new(),
267         exported_macros: Vec::new(),
268         non_exported_macro_attrs: Vec::new(),
269         catch_scopes: Vec::new(),
270         loop_scopes: Vec::new(),
271         is_in_loop_condition: false,
272         is_in_trait_impl: false,
273         is_in_dyn_type: false,
274         anonymous_lifetime_mode: AnonymousLifetimeMode::PassThrough,
275         type_def_lifetime_params: Default::default(),
276         current_module: hir::CRATE_HIR_ID,
277         current_hir_id_owner: vec![(CRATE_DEF_INDEX, 0)],
278         item_local_id_counters: Default::default(),
279         node_id_to_hir_id: IndexVec::new(),
280         generator_kind: None,
281         current_item: None,
282         lifetimes_to_define: Vec::new(),
283         is_collecting_in_band_lifetimes: false,
284         in_scope_lifetimes: Vec::new(),
285         allow_try_trait: Some([sym::try_trait][..].into()),
286         allow_gen_future: Some([sym::gen_future][..].into()),
287     }.lower_crate(krate)
288 }
289
290 #[derive(Copy, Clone, PartialEq)]
291 enum ParamMode {
292     /// Any path in a type context.
293     Explicit,
294     /// Path in a type definition, where the anonymous lifetime `'_` is not allowed.
295     ExplicitNamed,
296     /// The `module::Type` in `module::Type::method` in an expression.
297     Optional,
298 }
299
300 enum ParenthesizedGenericArgs {
301     Ok,
302     Err,
303 }
304
305 /// What to do when we encounter an **anonymous** lifetime
306 /// reference. Anonymous lifetime references come in two flavors. You
307 /// have implicit, or fully elided, references to lifetimes, like the
308 /// one in `&T` or `Ref<T>`, and you have `'_` lifetimes, like `&'_ T`
309 /// or `Ref<'_, T>`. These often behave the same, but not always:
310 ///
311 /// - certain usages of implicit references are deprecated, like
312 ///   `Ref<T>`, and we sometimes just give hard errors in those cases
313 ///   as well.
314 /// - for object bounds there is a difference: `Box<dyn Foo>` is not
315 ///   the same as `Box<dyn Foo + '_>`.
316 ///
317 /// We describe the effects of the various modes in terms of three cases:
318 ///
319 /// - **Modern** -- includes all uses of `'_`, but also the lifetime arg
320 ///   of a `&` (e.g., the missing lifetime in something like `&T`)
321 /// - **Dyn Bound** -- if you have something like `Box<dyn Foo>`,
322 ///   there is an elided lifetime bound (`Box<dyn Foo + 'X>`). These
323 ///   elided bounds follow special rules. Note that this only covers
324 ///   cases where *nothing* is written; the `'_` in `Box<dyn Foo +
325 ///   '_>` is a case of "modern" elision.
326 /// - **Deprecated** -- this coverse cases like `Ref<T>`, where the lifetime
327 ///   parameter to ref is completely elided. `Ref<'_, T>` would be the modern,
328 ///   non-deprecated equivalent.
329 ///
330 /// Currently, the handling of lifetime elision is somewhat spread out
331 /// between HIR lowering and -- as described below -- the
332 /// `resolve_lifetime` module. Often we "fallthrough" to that code by generating
333 /// an "elided" or "underscore" lifetime name. In the future, we probably want to move
334 /// everything into HIR lowering.
335 #[derive(Copy, Clone, Debug)]
336 enum AnonymousLifetimeMode {
337     /// For **Modern** cases, create a new anonymous region parameter
338     /// and reference that.
339     ///
340     /// For **Dyn Bound** cases, pass responsibility to
341     /// `resolve_lifetime` code.
342     ///
343     /// For **Deprecated** cases, report an error.
344     CreateParameter,
345
346     /// Give a hard error when either `&` or `'_` is written. Used to
347     /// rule out things like `where T: Foo<'_>`. Does not imply an
348     /// error on default object bounds (e.g., `Box<dyn Foo>`).
349     ReportError,
350
351     /// Pass responsibility to `resolve_lifetime` code for all cases.
352     PassThrough,
353 }
354
355 struct ImplTraitTypeIdVisitor<'a> { ids: &'a mut SmallVec<[NodeId; 1]> }
356
357 impl<'a, 'b> Visitor<'a> for ImplTraitTypeIdVisitor<'b> {
358     fn visit_ty(&mut self, ty: &'a Ty) {
359         match ty.kind {
360             | TyKind::Typeof(_)
361             | TyKind::BareFn(_)
362             => return,
363
364             TyKind::ImplTrait(id, _) => self.ids.push(id),
365             _ => {},
366         }
367         visit::walk_ty(self, ty);
368     }
369
370     fn visit_path_segment(
371         &mut self,
372         path_span: Span,
373         path_segment: &'v PathSegment,
374     ) {
375         if let Some(ref p) = path_segment.args {
376             if let GenericArgs::Parenthesized(_) = **p {
377                 return;
378             }
379         }
380         visit::walk_path_segment(self, path_span, path_segment)
381     }
382 }
383
384 impl<'a> LoweringContext<'a> {
385     fn lower_crate(mut self, c: &Crate) -> hir::Crate {
386         /// Full-crate AST visitor that inserts into a fresh
387         /// `LoweringContext` any information that may be
388         /// needed from arbitrary locations in the crate,
389         /// e.g., the number of lifetime generic parameters
390         /// declared for every type and trait definition.
391         struct MiscCollector<'tcx, 'interner> {
392             lctx: &'tcx mut LoweringContext<'interner>,
393             hir_id_owner: Option<NodeId>,
394         }
395
396         impl MiscCollector<'_, '_> {
397             fn allocate_use_tree_hir_id_counters(
398                 &mut self,
399                 tree: &UseTree,
400                 owner: DefIndex,
401             ) {
402                 match tree.kind {
403                     UseTreeKind::Simple(_, id1, id2) => {
404                         for &id in &[id1, id2] {
405                             self.lctx.resolver.definitions().create_def_with_parent(
406                                 owner,
407                                 id,
408                                 DefPathData::Misc,
409                                 ExpnId::root(),
410                                 tree.prefix.span,
411                             );
412                             self.lctx.allocate_hir_id_counter(id);
413                         }
414                     }
415                     UseTreeKind::Glob => (),
416                     UseTreeKind::Nested(ref trees) => {
417                         for &(ref use_tree, id) in trees {
418                             let hir_id = self.lctx.allocate_hir_id_counter(id);
419                             self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
420                         }
421                     }
422                 }
423             }
424
425             fn with_hir_id_owner<F, T>(&mut self, owner: Option<NodeId>, f: F) -> T
426             where
427                 F: FnOnce(&mut Self) -> T,
428             {
429                 let old = mem::replace(&mut self.hir_id_owner, owner);
430                 let r = f(self);
431                 self.hir_id_owner = old;
432                 r
433             }
434         }
435
436         impl<'tcx, 'interner> Visitor<'tcx> for MiscCollector<'tcx, 'interner> {
437             fn visit_pat(&mut self, p: &'tcx Pat) {
438                 if let PatKind::Paren(..) | PatKind::Rest = p.kind {
439                     // Doesn't generate a HIR node
440                 } else if let Some(owner) = self.hir_id_owner {
441                     self.lctx.lower_node_id_with_owner(p.id, owner);
442                 }
443
444                 visit::walk_pat(self, p)
445             }
446
447             fn visit_item(&mut self, item: &'tcx Item) {
448                 let hir_id = self.lctx.allocate_hir_id_counter(item.id);
449
450                 match item.kind {
451                     ItemKind::Struct(_, ref generics)
452                     | ItemKind::Union(_, ref generics)
453                     | ItemKind::Enum(_, ref generics)
454                     | ItemKind::TyAlias(_, ref generics)
455                     | ItemKind::OpaqueTy(_, ref generics)
456                     | ItemKind::Trait(_, _, ref generics, ..) => {
457                         let def_id = self.lctx.resolver.definitions().local_def_id(item.id);
458                         let count = generics
459                             .params
460                             .iter()
461                             .filter(|param| match param.kind {
462                                 ast::GenericParamKind::Lifetime { .. } => true,
463                                 _ => false,
464                             })
465                             .count();
466                         self.lctx.type_def_lifetime_params.insert(def_id, count);
467                     }
468                     ItemKind::Use(ref use_tree) => {
469                         self.allocate_use_tree_hir_id_counters(use_tree, hir_id.owner);
470                     }
471                     _ => {}
472                 }
473
474                 self.with_hir_id_owner(Some(item.id), |this| {
475                     visit::walk_item(this, item);
476                 });
477             }
478
479             fn visit_trait_item(&mut self, item: &'tcx TraitItem) {
480                 self.lctx.allocate_hir_id_counter(item.id);
481
482                 match item.kind {
483                     TraitItemKind::Method(_, None) => {
484                         // Ignore patterns in trait methods without bodies
485                         self.with_hir_id_owner(None, |this| {
486                             visit::walk_trait_item(this, item)
487                         });
488                     }
489                     _ => self.with_hir_id_owner(Some(item.id), |this| {
490                         visit::walk_trait_item(this, item);
491                     })
492                 }
493             }
494
495             fn visit_impl_item(&mut self, item: &'tcx ImplItem) {
496                 self.lctx.allocate_hir_id_counter(item.id);
497                 self.with_hir_id_owner(Some(item.id), |this| {
498                     visit::walk_impl_item(this, item);
499                 });
500             }
501
502             fn visit_foreign_item(&mut self, i: &'tcx ForeignItem) {
503                 // Ignore patterns in foreign items
504                 self.with_hir_id_owner(None, |this| {
505                     visit::walk_foreign_item(this, i)
506                 });
507             }
508
509             fn visit_ty(&mut self, t: &'tcx Ty) {
510                 match t.kind {
511                     // Mirrors the case in visit::walk_ty
512                     TyKind::BareFn(ref f) => {
513                         walk_list!(
514                             self,
515                             visit_generic_param,
516                             &f.generic_params
517                         );
518                         // Mirrors visit::walk_fn_decl
519                         for parameter in &f.decl.inputs {
520                             // We don't lower the ids of argument patterns
521                             self.with_hir_id_owner(None, |this| {
522                                 this.visit_pat(&parameter.pat);
523                             });
524                             self.visit_ty(&parameter.ty)
525                         }
526                         self.visit_fn_ret_ty(&f.decl.output)
527                     }
528                     _ => visit::walk_ty(self, t),
529                 }
530             }
531         }
532
533         self.lower_node_id(CRATE_NODE_ID);
534         debug_assert!(self.node_id_to_hir_id[CRATE_NODE_ID] == hir::CRATE_HIR_ID);
535
536         visit::walk_crate(&mut MiscCollector { lctx: &mut self, hir_id_owner: None }, c);
537         visit::walk_crate(&mut item::ItemLowerer { lctx: &mut self }, c);
538
539         let module = self.lower_mod(&c.module);
540         let attrs = self.lower_attrs(&c.attrs);
541         let body_ids = body_ids(&self.bodies);
542
543         self.resolver
544             .definitions()
545             .init_node_id_to_hir_id_mapping(self.node_id_to_hir_id);
546
547         hir::Crate {
548             module,
549             attrs,
550             span: c.span,
551             exported_macros: hir::HirVec::from(self.exported_macros),
552             non_exported_macro_attrs: hir::HirVec::from(self.non_exported_macro_attrs),
553             items: self.items,
554             trait_items: self.trait_items,
555             impl_items: self.impl_items,
556             bodies: self.bodies,
557             body_ids,
558             trait_impls: self.trait_impls,
559             modules: self.modules,
560         }
561     }
562
563     fn insert_item(&mut self, item: hir::Item) {
564         let id = item.hir_id;
565         // FIXME: Use `debug_asset-rt`.
566         assert_eq!(id.local_id, hir::ItemLocalId::from_u32(0));
567         self.items.insert(id, item);
568         self.modules.get_mut(&self.current_module).unwrap().items.insert(id);
569     }
570
571     fn allocate_hir_id_counter(&mut self, owner: NodeId) -> hir::HirId {
572         // Set up the counter if needed.
573         self.item_local_id_counters.entry(owner).or_insert(0);
574         // Always allocate the first `HirId` for the owner itself.
575         let lowered = self.lower_node_id_with_owner(owner, owner);
576         debug_assert_eq!(lowered.local_id.as_u32(), 0);
577         lowered
578     }
579
580     fn lower_node_id_generic<F>(&mut self, ast_node_id: NodeId, alloc_hir_id: F) -> hir::HirId
581     where
582         F: FnOnce(&mut Self) -> hir::HirId,
583     {
584         if ast_node_id == DUMMY_NODE_ID {
585             return hir::DUMMY_HIR_ID;
586         }
587
588         let min_size = ast_node_id.as_usize() + 1;
589
590         if min_size > self.node_id_to_hir_id.len() {
591             self.node_id_to_hir_id.resize(min_size, hir::DUMMY_HIR_ID);
592         }
593
594         let existing_hir_id = self.node_id_to_hir_id[ast_node_id];
595
596         if existing_hir_id == hir::DUMMY_HIR_ID {
597             // Generate a new `HirId`.
598             let hir_id = alloc_hir_id(self);
599             self.node_id_to_hir_id[ast_node_id] = hir_id;
600
601             hir_id
602         } else {
603             existing_hir_id
604         }
605     }
606
607     fn with_hir_id_owner<F, T>(&mut self, owner: NodeId, f: F) -> T
608     where
609         F: FnOnce(&mut Self) -> T,
610     {
611         let counter = self.item_local_id_counters
612             .insert(owner, HIR_ID_COUNTER_LOCKED)
613             .unwrap_or_else(|| panic!("no `item_local_id_counters` entry for {:?}", owner));
614         let def_index = self.resolver.definitions().opt_def_index(owner).unwrap();
615         self.current_hir_id_owner.push((def_index, counter));
616         let ret = f(self);
617         let (new_def_index, new_counter) = self.current_hir_id_owner.pop().unwrap();
618
619         debug_assert!(def_index == new_def_index);
620         debug_assert!(new_counter >= counter);
621
622         let prev = self.item_local_id_counters
623             .insert(owner, new_counter)
624             .unwrap();
625         debug_assert!(prev == HIR_ID_COUNTER_LOCKED);
626         ret
627     }
628
629     /// This method allocates a new `HirId` for the given `NodeId` and stores it in
630     /// the `LoweringContext`'s `NodeId => HirId` map.
631     /// Take care not to call this method if the resulting `HirId` is then not
632     /// actually used in the HIR, as that would trigger an assertion in the
633     /// `HirIdValidator` later on, which makes sure that all `NodeId`s got mapped
634     /// properly. Calling the method twice with the same `NodeId` is fine though.
635     fn lower_node_id(&mut self, ast_node_id: NodeId) -> hir::HirId {
636         self.lower_node_id_generic(ast_node_id, |this| {
637             let &mut (def_index, ref mut local_id_counter) =
638                 this.current_hir_id_owner.last_mut().unwrap();
639             let local_id = *local_id_counter;
640             *local_id_counter += 1;
641             hir::HirId {
642                 owner: def_index,
643                 local_id: hir::ItemLocalId::from_u32(local_id),
644             }
645         })
646     }
647
648     fn lower_node_id_with_owner(&mut self, ast_node_id: NodeId, owner: NodeId) -> hir::HirId {
649         self.lower_node_id_generic(ast_node_id, |this| {
650             let local_id_counter = this
651                 .item_local_id_counters
652                 .get_mut(&owner)
653                 .expect("called `lower_node_id_with_owner` before `allocate_hir_id_counter`");
654             let local_id = *local_id_counter;
655
656             // We want to be sure not to modify the counter in the map while it
657             // is also on the stack. Otherwise we'll get lost updates when writing
658             // back from the stack to the map.
659             debug_assert!(local_id != HIR_ID_COUNTER_LOCKED);
660
661             *local_id_counter += 1;
662             let def_index = this
663                 .resolver
664                 .definitions()
665                 .opt_def_index(owner)
666                 .expect("you forgot to call `create_def_with_parent` or are lowering node-IDs \
667                          that do not belong to the current owner");
668
669             hir::HirId {
670                 owner: def_index,
671                 local_id: hir::ItemLocalId::from_u32(local_id),
672             }
673         })
674     }
675
676     fn next_id(&mut self) -> hir::HirId {
677         let node_id = self.resolver.next_node_id();
678         self.lower_node_id(node_id)
679     }
680
681     fn lower_res(&mut self, res: Res<NodeId>) -> Res {
682         res.map_id(|id| {
683             self.lower_node_id_generic(id, |_| {
684                 panic!("expected `NodeId` to be lowered already for res {:#?}", res);
685             })
686         })
687     }
688
689     fn expect_full_res(&mut self, id: NodeId) -> Res<NodeId> {
690         self.resolver.get_partial_res(id).map_or(Res::Err, |pr| {
691             if pr.unresolved_segments() != 0 {
692                 bug!("path not fully resolved: {:?}", pr);
693             }
694             pr.base_res()
695         })
696     }
697
698     fn expect_full_res_from_use(&mut self, id: NodeId) -> impl Iterator<Item = Res<NodeId>> {
699         self.resolver.get_import_res(id).present_items()
700     }
701
702     fn diagnostic(&self) -> &errors::Handler {
703         self.sess.diagnostic()
704     }
705
706     /// Reuses the span but adds information like the kind of the desugaring and features that are
707     /// allowed inside this span.
708     fn mark_span_with_reason(
709         &self,
710         reason: DesugaringKind,
711         span: Span,
712         allow_internal_unstable: Option<Lrc<[Symbol]>>,
713     ) -> Span {
714         span.fresh_expansion(ExpnData {
715             allow_internal_unstable,
716             ..ExpnData::default(ExpnKind::Desugaring(reason), span, self.sess.edition())
717         })
718     }
719
720     fn with_anonymous_lifetime_mode<R>(
721         &mut self,
722         anonymous_lifetime_mode: AnonymousLifetimeMode,
723         op: impl FnOnce(&mut Self) -> R,
724     ) -> R {
725         debug!(
726             "with_anonymous_lifetime_mode(anonymous_lifetime_mode={:?})",
727             anonymous_lifetime_mode,
728         );
729         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
730         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
731         let result = op(self);
732         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
733         debug!("with_anonymous_lifetime_mode: restoring anonymous_lifetime_mode={:?}",
734                old_anonymous_lifetime_mode);
735         result
736     }
737
738     /// Creates a new `hir::GenericParam` for every new lifetime and
739     /// type parameter encountered while evaluating `f`. Definitions
740     /// are created with the parent provided. If no `parent_id` is
741     /// provided, no definitions will be returned.
742     ///
743     /// Presuming that in-band lifetimes are enabled, then
744     /// `self.anonymous_lifetime_mode` will be updated to match the
745     /// parameter while `f` is running (and restored afterwards).
746     fn collect_in_band_defs<T, F>(
747         &mut self,
748         parent_id: DefId,
749         anonymous_lifetime_mode: AnonymousLifetimeMode,
750         f: F,
751     ) -> (Vec<hir::GenericParam>, T)
752     where
753         F: FnOnce(&mut LoweringContext<'_>) -> (Vec<hir::GenericParam>, T),
754     {
755         assert!(!self.is_collecting_in_band_lifetimes);
756         assert!(self.lifetimes_to_define.is_empty());
757         let old_anonymous_lifetime_mode = self.anonymous_lifetime_mode;
758
759         self.anonymous_lifetime_mode = anonymous_lifetime_mode;
760         self.is_collecting_in_band_lifetimes = true;
761
762         let (in_band_ty_params, res) = f(self);
763
764         self.is_collecting_in_band_lifetimes = false;
765         self.anonymous_lifetime_mode = old_anonymous_lifetime_mode;
766
767         let lifetimes_to_define = self.lifetimes_to_define.split_off(0);
768
769         let params = lifetimes_to_define
770             .into_iter()
771             .map(|(span, hir_name)| self.lifetime_to_generic_param(
772                 span, hir_name, parent_id.index,
773             ))
774             .chain(in_band_ty_params.into_iter())
775             .collect();
776
777         (params, res)
778     }
779
780     /// Converts a lifetime into a new generic parameter.
781     fn lifetime_to_generic_param(
782         &mut self,
783         span: Span,
784         hir_name: ParamName,
785         parent_index: DefIndex,
786     ) -> hir::GenericParam {
787         let node_id = self.resolver.next_node_id();
788
789         // Get the name we'll use to make the def-path. Note
790         // that collisions are ok here and this shouldn't
791         // really show up for end-user.
792         let (str_name, kind) = match hir_name {
793             ParamName::Plain(ident) => (
794                 ident.name,
795                 hir::LifetimeParamKind::InBand,
796             ),
797             ParamName::Fresh(_) => (
798                 kw::UnderscoreLifetime,
799                 hir::LifetimeParamKind::Elided,
800             ),
801             ParamName::Error => (
802                 kw::UnderscoreLifetime,
803                 hir::LifetimeParamKind::Error,
804             ),
805         };
806
807         // Add a definition for the in-band lifetime def.
808         self.resolver.definitions().create_def_with_parent(
809             parent_index,
810             node_id,
811             DefPathData::LifetimeNs(str_name),
812             ExpnId::root(),
813             span,
814         );
815
816         hir::GenericParam {
817             hir_id: self.lower_node_id(node_id),
818             name: hir_name,
819             attrs: hir_vec![],
820             bounds: hir_vec![],
821             span,
822             pure_wrt_drop: false,
823             kind: hir::GenericParamKind::Lifetime { kind }
824         }
825     }
826
827     /// When there is a reference to some lifetime `'a`, and in-band
828     /// lifetimes are enabled, then we want to push that lifetime into
829     /// the vector of names to define later. In that case, it will get
830     /// added to the appropriate generics.
831     fn maybe_collect_in_band_lifetime(&mut self, ident: Ident) {
832         if !self.is_collecting_in_band_lifetimes {
833             return;
834         }
835
836         if !self.sess.features_untracked().in_band_lifetimes {
837             return;
838         }
839
840         if self.in_scope_lifetimes.contains(&ParamName::Plain(ident.modern())) {
841             return;
842         }
843
844         let hir_name = ParamName::Plain(ident);
845
846         if self.lifetimes_to_define.iter()
847                                    .any(|(_, lt_name)| lt_name.modern() == hir_name.modern()) {
848             return;
849         }
850
851         self.lifetimes_to_define.push((ident.span, hir_name));
852     }
853
854     /// When we have either an elided or `'_` lifetime in an impl
855     /// header, we convert it to an in-band lifetime.
856     fn collect_fresh_in_band_lifetime(&mut self, span: Span) -> ParamName {
857         assert!(self.is_collecting_in_band_lifetimes);
858         let index = self.lifetimes_to_define.len() + self.in_scope_lifetimes.len();
859         let hir_name = ParamName::Fresh(index);
860         self.lifetimes_to_define.push((span, hir_name));
861         hir_name
862     }
863
864     // Evaluates `f` with the lifetimes in `params` in-scope.
865     // This is used to track which lifetimes have already been defined, and
866     // which are new in-band lifetimes that need to have a definition created
867     // for them.
868     fn with_in_scope_lifetime_defs<T, F>(&mut self, params: &[GenericParam], f: F) -> T
869     where
870         F: FnOnce(&mut LoweringContext<'_>) -> T,
871     {
872         let old_len = self.in_scope_lifetimes.len();
873         let lt_def_names = params.iter().filter_map(|param| match param.kind {
874             GenericParamKind::Lifetime { .. } => Some(ParamName::Plain(param.ident.modern())),
875             _ => None,
876         });
877         self.in_scope_lifetimes.extend(lt_def_names);
878
879         let res = f(self);
880
881         self.in_scope_lifetimes.truncate(old_len);
882         res
883     }
884
885     /// Appends in-band lifetime defs and argument-position `impl
886     /// Trait` defs to the existing set of generics.
887     ///
888     /// Presuming that in-band lifetimes are enabled, then
889     /// `self.anonymous_lifetime_mode` will be updated to match the
890     /// parameter while `f` is running (and restored afterwards).
891     fn add_in_band_defs<F, T>(
892         &mut self,
893         generics: &Generics,
894         parent_id: DefId,
895         anonymous_lifetime_mode: AnonymousLifetimeMode,
896         f: F,
897     ) -> (hir::Generics, T)
898     where
899         F: FnOnce(&mut LoweringContext<'_>, &mut Vec<hir::GenericParam>) -> T,
900     {
901         let (in_band_defs, (mut lowered_generics, res)) = self.with_in_scope_lifetime_defs(
902             &generics.params,
903             |this| {
904                 this.collect_in_band_defs(parent_id, anonymous_lifetime_mode, |this| {
905                     let mut params = Vec::new();
906                     // Note: it is necessary to lower generics *before* calling `f`.
907                     // When lowering `async fn`, there's a final step when lowering
908                     // the return type that assumes that all in-scope lifetimes have
909                     // already been added to either `in_scope_lifetimes` or
910                     // `lifetimes_to_define`. If we swapped the order of these two,
911                     // in-band-lifetimes introduced by generics or where-clauses
912                     // wouldn't have been added yet.
913                     let generics = this.lower_generics(
914                         generics,
915                         ImplTraitContext::Universal(&mut params),
916                     );
917                     let res = f(this, &mut params);
918                     (params, (generics, res))
919                 })
920             },
921         );
922
923         let mut lowered_params: Vec<_> = lowered_generics
924             .params
925             .into_iter()
926             .chain(in_band_defs)
927             .collect();
928
929         // FIXME(const_generics): the compiler doesn't always cope with
930         // unsorted generic parameters at the moment, so we make sure
931         // that they're ordered correctly here for now. (When we chain
932         // the `in_band_defs`, we might make the order unsorted.)
933         lowered_params.sort_by_key(|param| {
934             match param.kind {
935                 hir::GenericParamKind::Lifetime { .. } => ParamKindOrd::Lifetime,
936                 hir::GenericParamKind::Type { .. } => ParamKindOrd::Type,
937                 hir::GenericParamKind::Const { .. } => ParamKindOrd::Const,
938             }
939         });
940
941         lowered_generics.params = lowered_params.into();
942
943         (lowered_generics, res)
944     }
945
946     fn with_dyn_type_scope<T, F>(&mut self, in_scope: bool, f: F) -> T
947     where
948         F: FnOnce(&mut LoweringContext<'_>) -> T,
949     {
950         let was_in_dyn_type = self.is_in_dyn_type;
951         self.is_in_dyn_type = in_scope;
952
953         let result = f(self);
954
955         self.is_in_dyn_type = was_in_dyn_type;
956
957         result
958     }
959
960     fn with_new_scopes<T, F>(&mut self, f: F) -> T
961     where
962         F: FnOnce(&mut LoweringContext<'_>) -> T,
963     {
964         let was_in_loop_condition = self.is_in_loop_condition;
965         self.is_in_loop_condition = false;
966
967         let catch_scopes = mem::take(&mut self.catch_scopes);
968         let loop_scopes = mem::take(&mut self.loop_scopes);
969         let ret = f(self);
970         self.catch_scopes = catch_scopes;
971         self.loop_scopes = loop_scopes;
972
973         self.is_in_loop_condition = was_in_loop_condition;
974
975         ret
976     }
977
978     fn def_key(&mut self, id: DefId) -> DefKey {
979         if id.is_local() {
980             self.resolver.definitions().def_key(id.index)
981         } else {
982             self.resolver.cstore().def_key(id)
983         }
984     }
985
986     fn lower_attrs_extendable(&mut self, attrs: &[Attribute]) -> Vec<Attribute> {
987         attrs
988             .iter()
989             .map(|a| self.lower_attr(a))
990             .collect()
991     }
992
993     fn lower_attrs(&mut self, attrs: &[Attribute]) -> hir::HirVec<Attribute> {
994         self.lower_attrs_extendable(attrs).into()
995     }
996
997     fn lower_attr(&mut self, attr: &Attribute) -> Attribute {
998         // Note that we explicitly do not walk the path. Since we don't really
999         // lower attributes (we use the AST version) there is nowhere to keep
1000         // the `HirId`s. We don't actually need HIR version of attributes anyway.
1001         let kind = match attr.kind {
1002             AttrKind::Normal(ref item) => {
1003                 AttrKind::Normal(AttrItem {
1004                     path: item.path.clone(),
1005                     tokens: self.lower_token_stream(item.tokens.clone()),
1006                 })
1007             }
1008             AttrKind::DocComment(comment) => AttrKind::DocComment(comment)
1009         };
1010
1011         Attribute {
1012             kind,
1013             id: attr.id,
1014             style: attr.style,
1015             span: attr.span,
1016         }
1017     }
1018
1019     fn lower_token_stream(&mut self, tokens: TokenStream) -> TokenStream {
1020         tokens
1021             .into_trees()
1022             .flat_map(|tree| self.lower_token_tree(tree).into_trees())
1023             .collect()
1024     }
1025
1026     fn lower_token_tree(&mut self, tree: TokenTree) -> TokenStream {
1027         match tree {
1028             TokenTree::Token(token) => self.lower_token(token),
1029             TokenTree::Delimited(span, delim, tts) => TokenTree::Delimited(
1030                 span,
1031                 delim,
1032                 self.lower_token_stream(tts),
1033             ).into(),
1034         }
1035     }
1036
1037     fn lower_token(&mut self, token: Token) -> TokenStream {
1038         match token.kind {
1039             token::Interpolated(nt) => {
1040                 let tts = (self.nt_to_tokenstream)(&nt, &self.sess.parse_sess, token.span);
1041                 self.lower_token_stream(tts)
1042             }
1043             _ => TokenTree::Token(token).into(),
1044         }
1045     }
1046
1047     /// Given an associated type constraint like one of these:
1048     ///
1049     /// ```
1050     /// T: Iterator<Item: Debug>
1051     ///             ^^^^^^^^^^^
1052     /// T: Iterator<Item = Debug>
1053     ///             ^^^^^^^^^^^^
1054     /// ```
1055     ///
1056     /// returns a `hir::TypeBinding` representing `Item`.
1057     fn lower_assoc_ty_constraint(
1058         &mut self,
1059         constraint: &AssocTyConstraint,
1060         itctx: ImplTraitContext<'_>,
1061     ) -> hir::TypeBinding {
1062         debug!("lower_assoc_ty_constraint(constraint={:?}, itctx={:?})", constraint, itctx);
1063
1064         let kind = match constraint.kind {
1065             AssocTyConstraintKind::Equality { ref ty } => hir::TypeBindingKind::Equality {
1066                 ty: self.lower_ty(ty, itctx)
1067             },
1068             AssocTyConstraintKind::Bound { ref bounds } => {
1069                 // Piggy-back on the `impl Trait` context to figure out the correct behavior.
1070                 let (desugar_to_impl_trait, itctx) = match itctx {
1071                     // We are in the return position:
1072                     //
1073                     //     fn foo() -> impl Iterator<Item: Debug>
1074                     //
1075                     // so desugar to
1076                     //
1077                     //     fn foo() -> impl Iterator<Item = impl Debug>
1078                     ImplTraitContext::OpaqueTy(_) => (true, itctx),
1079
1080                     // We are in the argument position, but within a dyn type:
1081                     //
1082                     //     fn foo(x: dyn Iterator<Item: Debug>)
1083                     //
1084                     // so desugar to
1085                     //
1086                     //     fn foo(x: dyn Iterator<Item = impl Debug>)
1087                     ImplTraitContext::Universal(_) if self.is_in_dyn_type => (true, itctx),
1088
1089                     // In `type Foo = dyn Iterator<Item: Debug>` we desugar to
1090                     // `type Foo = dyn Iterator<Item = impl Debug>` but we have to override the
1091                     // "impl trait context" to permit `impl Debug` in this position (it desugars
1092                     // then to an opaque type).
1093                     //
1094                     // FIXME: this is only needed until `impl Trait` is allowed in type aliases.
1095                     ImplTraitContext::Disallowed(_) if self.is_in_dyn_type =>
1096                         (true, ImplTraitContext::OpaqueTy(None)),
1097
1098                     // We are in the parameter position, but not within a dyn type:
1099                     //
1100                     //     fn foo(x: impl Iterator<Item: Debug>)
1101                     //
1102                     // so we leave it as is and this gets expanded in astconv to a bound like
1103                     // `<T as Iterator>::Item: Debug` where `T` is the type parameter for the
1104                     // `impl Iterator`.
1105                     _ => (false, itctx),
1106                 };
1107
1108                 if desugar_to_impl_trait {
1109                     // Desugar `AssocTy: Bounds` into `AssocTy = impl Bounds`. We do this by
1110                     // constructing the HIR for `impl bounds...` and then lowering that.
1111
1112                     let impl_trait_node_id = self.resolver.next_node_id();
1113                     let parent_def_index = self.current_hir_id_owner.last().unwrap().0;
1114                     self.resolver.definitions().create_def_with_parent(
1115                         parent_def_index,
1116                         impl_trait_node_id,
1117                         DefPathData::ImplTrait,
1118                         ExpnId::root(),
1119                         constraint.span,
1120                     );
1121
1122                     self.with_dyn_type_scope(false, |this| {
1123                         let node_id = this.resolver.next_node_id();
1124                         let ty = this.lower_ty(
1125                             &Ty {
1126                                 id: node_id,
1127                                 kind: TyKind::ImplTrait(impl_trait_node_id, bounds.clone()),
1128                                 span: constraint.span,
1129                             },
1130                             itctx,
1131                         );
1132
1133                         hir::TypeBindingKind::Equality {
1134                             ty
1135                         }
1136                     })
1137                 } else {
1138                     // Desugar `AssocTy: Bounds` into a type binding where the
1139                     // later desugars into a trait predicate.
1140                     let bounds = self.lower_param_bounds(bounds, itctx);
1141
1142                     hir::TypeBindingKind::Constraint {
1143                         bounds
1144                     }
1145                 }
1146             }
1147         };
1148
1149         hir::TypeBinding {
1150             hir_id: self.lower_node_id(constraint.id),
1151             ident: constraint.ident,
1152             kind,
1153             span: constraint.span,
1154         }
1155     }
1156
1157     fn lower_generic_arg(&mut self,
1158                          arg: &ast::GenericArg,
1159                          itctx: ImplTraitContext<'_>)
1160                          -> hir::GenericArg {
1161         match arg {
1162             ast::GenericArg::Lifetime(lt) => GenericArg::Lifetime(self.lower_lifetime(&lt)),
1163             ast::GenericArg::Type(ty) => GenericArg::Type(self.lower_ty_direct(&ty, itctx)),
1164             ast::GenericArg::Const(ct) => {
1165                 GenericArg::Const(ConstArg {
1166                     value: self.lower_anon_const(&ct),
1167                     span: ct.value.span,
1168                 })
1169             }
1170         }
1171     }
1172
1173     fn lower_ty(&mut self, t: &Ty, itctx: ImplTraitContext<'_>) -> P<hir::Ty> {
1174         P(self.lower_ty_direct(t, itctx))
1175     }
1176
1177     fn lower_path_ty(
1178         &mut self,
1179         t: &Ty,
1180         qself: &Option<QSelf>,
1181         path: &Path,
1182         param_mode: ParamMode,
1183         itctx: ImplTraitContext<'_>
1184     ) -> hir::Ty {
1185         let id = self.lower_node_id(t.id);
1186         let qpath = self.lower_qpath(t.id, qself, path, param_mode, itctx);
1187         let ty = self.ty_path(id, t.span, qpath);
1188         if let hir::TyKind::TraitObject(..) = ty.kind {
1189             self.maybe_lint_bare_trait(t.span, t.id, qself.is_none() && path.is_global());
1190         }
1191         ty
1192     }
1193
1194     fn lower_ty_direct(&mut self, t: &Ty, mut itctx: ImplTraitContext<'_>) -> hir::Ty {
1195         let kind = match t.kind {
1196             TyKind::Infer => hir::TyKind::Infer,
1197             TyKind::Err => hir::TyKind::Err,
1198             TyKind::Slice(ref ty) => hir::TyKind::Slice(self.lower_ty(ty, itctx)),
1199             TyKind::Ptr(ref mt) => hir::TyKind::Ptr(self.lower_mt(mt, itctx)),
1200             TyKind::Rptr(ref region, ref mt) => {
1201                 let span = self.sess.source_map().next_point(t.span.shrink_to_lo());
1202                 let lifetime = match *region {
1203                     Some(ref lt) => self.lower_lifetime(lt),
1204                     None => self.elided_ref_lifetime(span),
1205                 };
1206                 hir::TyKind::Rptr(lifetime, self.lower_mt(mt, itctx))
1207             }
1208             TyKind::BareFn(ref f) => self.with_in_scope_lifetime_defs(
1209                 &f.generic_params,
1210                 |this| {
1211                     this.with_anonymous_lifetime_mode(
1212                         AnonymousLifetimeMode::PassThrough,
1213                         |this| {
1214                             hir::TyKind::BareFn(P(hir::BareFnTy {
1215                                 generic_params: this.lower_generic_params(
1216                                     &f.generic_params,
1217                                     &NodeMap::default(),
1218                                     ImplTraitContext::disallowed(),
1219                                 ),
1220                                 unsafety: f.unsafety,
1221                                 abi: this.lower_abi(f.abi),
1222                                 decl: this.lower_fn_decl(&f.decl, None, false, None),
1223                                 param_names: this.lower_fn_params_to_names(&f.decl),
1224                             }))
1225                         },
1226                     )
1227                 },
1228             ),
1229             TyKind::Never => hir::TyKind::Never,
1230             TyKind::Tup(ref tys) => {
1231                 hir::TyKind::Tup(tys.iter().map(|ty| {
1232                     self.lower_ty_direct(ty, itctx.reborrow())
1233                 }).collect())
1234             }
1235             TyKind::Paren(ref ty) => {
1236                 return self.lower_ty_direct(ty, itctx);
1237             }
1238             TyKind::Path(ref qself, ref path) => {
1239                 return self.lower_path_ty(t, qself, path, ParamMode::Explicit, itctx);
1240             }
1241             TyKind::ImplicitSelf => {
1242                 let res = self.expect_full_res(t.id);
1243                 let res = self.lower_res(res);
1244                 hir::TyKind::Path(hir::QPath::Resolved(
1245                     None,
1246                     P(hir::Path {
1247                         res,
1248                         segments: hir_vec![hir::PathSegment::from_ident(
1249                             Ident::with_dummy_span(kw::SelfUpper)
1250                         )],
1251                         span: t.span,
1252                     }),
1253                 ))
1254             },
1255             TyKind::Array(ref ty, ref length) => {
1256                 hir::TyKind::Array(self.lower_ty(ty, itctx), self.lower_anon_const(length))
1257             }
1258             TyKind::Typeof(ref expr) => {
1259                 hir::TyKind::Typeof(self.lower_anon_const(expr))
1260             }
1261             TyKind::TraitObject(ref bounds, kind) => {
1262                 let mut lifetime_bound = None;
1263                 let (bounds, lifetime_bound) = self.with_dyn_type_scope(true, |this| {
1264                     let bounds = bounds
1265                         .iter()
1266                         .filter_map(|bound| match *bound {
1267                             GenericBound::Trait(ref ty, TraitBoundModifier::None) => {
1268                                 Some(this.lower_poly_trait_ref(ty, itctx.reborrow()))
1269                             }
1270                             GenericBound::Trait(_, TraitBoundModifier::Maybe) => None,
1271                             GenericBound::Outlives(ref lifetime) => {
1272                                 if lifetime_bound.is_none() {
1273                                     lifetime_bound = Some(this.lower_lifetime(lifetime));
1274                                 }
1275                                 None
1276                             }
1277                         })
1278                         .collect();
1279                     let lifetime_bound =
1280                         lifetime_bound.unwrap_or_else(|| this.elided_dyn_bound(t.span));
1281                     (bounds, lifetime_bound)
1282                 });
1283                 if kind != TraitObjectSyntax::Dyn {
1284                     self.maybe_lint_bare_trait(t.span, t.id, false);
1285                 }
1286                 hir::TyKind::TraitObject(bounds, lifetime_bound)
1287             }
1288             TyKind::ImplTrait(def_node_id, ref bounds) => {
1289                 let span = t.span;
1290                 match itctx {
1291                     ImplTraitContext::OpaqueTy(fn_def_id) => {
1292                         self.lower_opaque_impl_trait(
1293                             span, fn_def_id, def_node_id,
1294                             |this| this.lower_param_bounds(bounds, itctx),
1295                         )
1296                     }
1297                     ImplTraitContext::Universal(in_band_ty_params) => {
1298                         // Add a definition for the in-band `Param`.
1299                         let def_index = self
1300                             .resolver
1301                             .definitions()
1302                             .opt_def_index(def_node_id)
1303                             .unwrap();
1304
1305                         let hir_bounds = self.lower_param_bounds(
1306                             bounds,
1307                             ImplTraitContext::Universal(in_band_ty_params),
1308                         );
1309                         // Set the name to `impl Bound1 + Bound2`.
1310                         let ident = Ident::from_str_and_span(&pprust::ty_to_string(t), span);
1311                         in_band_ty_params.push(hir::GenericParam {
1312                             hir_id: self.lower_node_id(def_node_id),
1313                             name: ParamName::Plain(ident),
1314                             pure_wrt_drop: false,
1315                             attrs: hir_vec![],
1316                             bounds: hir_bounds,
1317                             span,
1318                             kind: hir::GenericParamKind::Type {
1319                                 default: None,
1320                                 synthetic: Some(hir::SyntheticTyParamKind::ImplTrait),
1321                             }
1322                         });
1323
1324                         hir::TyKind::Path(hir::QPath::Resolved(
1325                             None,
1326                             P(hir::Path {
1327                                 span,
1328                                 res: Res::Def(DefKind::TyParam, DefId::local(def_index)),
1329                                 segments: hir_vec![hir::PathSegment::from_ident(ident)],
1330                             }),
1331                         ))
1332                     }
1333                     ImplTraitContext::Disallowed(pos) => {
1334                         let allowed_in = if self.sess.features_untracked()
1335                                                 .impl_trait_in_bindings {
1336                             "bindings or function and inherent method return types"
1337                         } else {
1338                             "function and inherent method return types"
1339                         };
1340                         let mut err = struct_span_err!(
1341                             self.sess,
1342                             t.span,
1343                             E0562,
1344                             "`impl Trait` not allowed outside of {}",
1345                             allowed_in,
1346                         );
1347                         if pos == ImplTraitPosition::Binding &&
1348                             nightly_options::is_nightly_build() {
1349                             help!(err,
1350                                   "add `#![feature(impl_trait_in_bindings)]` to the crate \
1351                                    attributes to enable");
1352                         }
1353                         err.emit();
1354                         hir::TyKind::Err
1355                     }
1356                 }
1357             }
1358             TyKind::Mac(_) => bug!("`TyKind::Mac` should have been expanded by now"),
1359             TyKind::CVarArgs => bug!("`TyKind::CVarArgs` should have been handled elsewhere"),
1360         };
1361
1362         hir::Ty {
1363             kind,
1364             span: t.span,
1365             hir_id: self.lower_node_id(t.id),
1366         }
1367     }
1368
1369     fn lower_opaque_impl_trait(
1370         &mut self,
1371         span: Span,
1372         fn_def_id: Option<DefId>,
1373         opaque_ty_node_id: NodeId,
1374         lower_bounds: impl FnOnce(&mut LoweringContext<'_>) -> hir::GenericBounds,
1375     ) -> hir::TyKind {
1376         debug!(
1377             "lower_opaque_impl_trait(fn_def_id={:?}, opaque_ty_node_id={:?}, span={:?})",
1378             fn_def_id,
1379             opaque_ty_node_id,
1380             span,
1381         );
1382
1383         // Make sure we know that some funky desugaring has been going on here.
1384         // This is a first: there is code in other places like for loop
1385         // desugaring that explicitly states that we don't want to track that.
1386         // Not tracking it makes lints in rustc and clippy very fragile, as
1387         // frequently opened issues show.
1388         let opaque_ty_span = self.mark_span_with_reason(
1389             DesugaringKind::OpaqueTy,
1390             span,
1391             None,
1392         );
1393
1394         let opaque_ty_def_index = self
1395             .resolver
1396             .definitions()
1397             .opt_def_index(opaque_ty_node_id)
1398             .unwrap();
1399
1400         self.allocate_hir_id_counter(opaque_ty_node_id);
1401
1402         let hir_bounds = self.with_hir_id_owner(opaque_ty_node_id, lower_bounds);
1403
1404         let (lifetimes, lifetime_defs) = self.lifetimes_from_impl_trait_bounds(
1405             opaque_ty_node_id,
1406             opaque_ty_def_index,
1407             &hir_bounds,
1408         );
1409
1410         debug!(
1411             "lower_opaque_impl_trait: lifetimes={:#?}", lifetimes,
1412         );
1413
1414         debug!(
1415             "lower_opaque_impl_trait: lifetime_defs={:#?}", lifetime_defs,
1416         );
1417
1418         self.with_hir_id_owner(opaque_ty_node_id, |lctx| {
1419             let opaque_ty_item = hir::OpaqueTy {
1420                 generics: hir::Generics {
1421                     params: lifetime_defs,
1422                     where_clause: hir::WhereClause {
1423                         predicates: hir_vec![],
1424                         span,
1425                     },
1426                     span,
1427                 },
1428                 bounds: hir_bounds,
1429                 impl_trait_fn: fn_def_id,
1430                 origin: hir::OpaqueTyOrigin::FnReturn,
1431             };
1432
1433             trace!("lower_opaque_impl_trait: {:#?}", opaque_ty_def_index);
1434             let opaque_ty_id = lctx.generate_opaque_type(
1435                 opaque_ty_node_id,
1436                 opaque_ty_item,
1437                 span,
1438                 opaque_ty_span,
1439             );
1440
1441             // `impl Trait` now just becomes `Foo<'a, 'b, ..>`.
1442             hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, lifetimes)
1443         })
1444     }
1445
1446     /// Registers a new opaque type with the proper `NodeId`s and
1447     /// returns the lowered node-ID for the opaque type.
1448     fn generate_opaque_type(
1449         &mut self,
1450         opaque_ty_node_id: NodeId,
1451         opaque_ty_item: hir::OpaqueTy,
1452         span: Span,
1453         opaque_ty_span: Span,
1454     ) -> hir::HirId {
1455         let opaque_ty_item_kind = hir::ItemKind::OpaqueTy(opaque_ty_item);
1456         let opaque_ty_id = self.lower_node_id(opaque_ty_node_id);
1457         // Generate an `type Foo = impl Trait;` declaration.
1458         trace!("registering opaque type with id {:#?}", opaque_ty_id);
1459         let opaque_ty_item = hir::Item {
1460             hir_id: opaque_ty_id,
1461             ident: Ident::invalid(),
1462             attrs: Default::default(),
1463             kind: opaque_ty_item_kind,
1464             vis: respan(span.shrink_to_lo(), hir::VisibilityKind::Inherited),
1465             span: opaque_ty_span,
1466         };
1467
1468         // Insert the item into the global item list. This usually happens
1469         // automatically for all AST items. But this opaque type item
1470         // does not actually exist in the AST.
1471         self.insert_item(opaque_ty_item);
1472         opaque_ty_id
1473     }
1474
1475     fn lifetimes_from_impl_trait_bounds(
1476         &mut self,
1477         opaque_ty_id: NodeId,
1478         parent_index: DefIndex,
1479         bounds: &hir::GenericBounds,
1480     ) -> (HirVec<hir::GenericArg>, HirVec<hir::GenericParam>) {
1481         debug!(
1482             "lifetimes_from_impl_trait_bounds(opaque_ty_id={:?}, \
1483              parent_index={:?}, \
1484              bounds={:#?})",
1485             opaque_ty_id, parent_index, bounds,
1486         );
1487
1488         // This visitor walks over `impl Trait` bounds and creates defs for all lifetimes that
1489         // appear in the bounds, excluding lifetimes that are created within the bounds.
1490         // E.g., `'a`, `'b`, but not `'c` in `impl for<'c> SomeTrait<'a, 'b, 'c>`.
1491         struct ImplTraitLifetimeCollector<'r, 'a> {
1492             context: &'r mut LoweringContext<'a>,
1493             parent: DefIndex,
1494             opaque_ty_id: NodeId,
1495             collect_elided_lifetimes: bool,
1496             currently_bound_lifetimes: Vec<hir::LifetimeName>,
1497             already_defined_lifetimes: FxHashSet<hir::LifetimeName>,
1498             output_lifetimes: Vec<hir::GenericArg>,
1499             output_lifetime_params: Vec<hir::GenericParam>,
1500         }
1501
1502         impl<'r, 'a, 'v> hir::intravisit::Visitor<'v> for ImplTraitLifetimeCollector<'r, 'a> {
1503             fn nested_visit_map<'this>(
1504                 &'this mut self,
1505             ) -> hir::intravisit::NestedVisitorMap<'this, 'v> {
1506                 hir::intravisit::NestedVisitorMap::None
1507             }
1508
1509             fn visit_generic_args(&mut self, span: Span, parameters: &'v hir::GenericArgs) {
1510                 // Don't collect elided lifetimes used inside of `Fn()` syntax.
1511                 if parameters.parenthesized {
1512                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1513                     self.collect_elided_lifetimes = false;
1514                     hir::intravisit::walk_generic_args(self, span, parameters);
1515                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1516                 } else {
1517                     hir::intravisit::walk_generic_args(self, span, parameters);
1518                 }
1519             }
1520
1521             fn visit_ty(&mut self, t: &'v hir::Ty) {
1522                 // Don't collect elided lifetimes used inside of `fn()` syntax.
1523                 if let hir::TyKind::BareFn(_) = t.kind {
1524                     let old_collect_elided_lifetimes = self.collect_elided_lifetimes;
1525                     self.collect_elided_lifetimes = false;
1526
1527                     // Record the "stack height" of `for<'a>` lifetime bindings
1528                     // to be able to later fully undo their introduction.
1529                     let old_len = self.currently_bound_lifetimes.len();
1530                     hir::intravisit::walk_ty(self, t);
1531                     self.currently_bound_lifetimes.truncate(old_len);
1532
1533                     self.collect_elided_lifetimes = old_collect_elided_lifetimes;
1534                 } else {
1535                     hir::intravisit::walk_ty(self, t)
1536                 }
1537             }
1538
1539             fn visit_poly_trait_ref(
1540                 &mut self,
1541                 trait_ref: &'v hir::PolyTraitRef,
1542                 modifier: hir::TraitBoundModifier,
1543             ) {
1544                 // Record the "stack height" of `for<'a>` lifetime bindings
1545                 // to be able to later fully undo their introduction.
1546                 let old_len = self.currently_bound_lifetimes.len();
1547                 hir::intravisit::walk_poly_trait_ref(self, trait_ref, modifier);
1548                 self.currently_bound_lifetimes.truncate(old_len);
1549             }
1550
1551             fn visit_generic_param(&mut self, param: &'v hir::GenericParam) {
1552                 // Record the introduction of 'a in `for<'a> ...`.
1553                 if let hir::GenericParamKind::Lifetime { .. } = param.kind {
1554                     // Introduce lifetimes one at a time so that we can handle
1555                     // cases like `fn foo<'d>() -> impl for<'a, 'b: 'a, 'c: 'b + 'd>`.
1556                     let lt_name = hir::LifetimeName::Param(param.name);
1557                     self.currently_bound_lifetimes.push(lt_name);
1558                 }
1559
1560                 hir::intravisit::walk_generic_param(self, param);
1561             }
1562
1563             fn visit_lifetime(&mut self, lifetime: &'v hir::Lifetime) {
1564                 let name = match lifetime.name {
1565                     hir::LifetimeName::Implicit | hir::LifetimeName::Underscore => {
1566                         if self.collect_elided_lifetimes {
1567                             // Use `'_` for both implicit and underscore lifetimes in
1568                             // `type Foo<'_> = impl SomeTrait<'_>;`.
1569                             hir::LifetimeName::Underscore
1570                         } else {
1571                             return;
1572                         }
1573                     }
1574                     hir::LifetimeName::Param(_) => lifetime.name,
1575
1576                     // Refers to some other lifetime that is "in
1577                     // scope" within the type.
1578                     hir::LifetimeName::ImplicitObjectLifetimeDefault => return,
1579
1580                     hir::LifetimeName::Error | hir::LifetimeName::Static => return,
1581                 };
1582
1583                 if !self.currently_bound_lifetimes.contains(&name)
1584                     && !self.already_defined_lifetimes.contains(&name) {
1585                     self.already_defined_lifetimes.insert(name);
1586
1587                     self.output_lifetimes.push(hir::GenericArg::Lifetime(hir::Lifetime {
1588                         hir_id: self.context.next_id(),
1589                         span: lifetime.span,
1590                         name,
1591                     }));
1592
1593                     let def_node_id = self.context.resolver.next_node_id();
1594                     let hir_id =
1595                         self.context.lower_node_id_with_owner(def_node_id, self.opaque_ty_id);
1596                     self.context.resolver.definitions().create_def_with_parent(
1597                         self.parent,
1598                         def_node_id,
1599                         DefPathData::LifetimeNs(name.ident().name),
1600                         ExpnId::root(),
1601                         lifetime.span);
1602
1603                     let (name, kind) = match name {
1604                         hir::LifetimeName::Underscore => (
1605                             hir::ParamName::Plain(Ident::with_dummy_span(kw::UnderscoreLifetime)),
1606                             hir::LifetimeParamKind::Elided,
1607                         ),
1608                         hir::LifetimeName::Param(param_name) => (
1609                             param_name,
1610                             hir::LifetimeParamKind::Explicit,
1611                         ),
1612                         _ => bug!("expected `LifetimeName::Param` or `ParamName::Plain`"),
1613                     };
1614
1615                     self.output_lifetime_params.push(hir::GenericParam {
1616                         hir_id,
1617                         name,
1618                         span: lifetime.span,
1619                         pure_wrt_drop: false,
1620                         attrs: hir_vec![],
1621                         bounds: hir_vec![],
1622                         kind: hir::GenericParamKind::Lifetime { kind }
1623                     });
1624                 }
1625             }
1626         }
1627
1628         let mut lifetime_collector = ImplTraitLifetimeCollector {
1629             context: self,
1630             parent: parent_index,
1631             opaque_ty_id,
1632             collect_elided_lifetimes: true,
1633             currently_bound_lifetimes: Vec::new(),
1634             already_defined_lifetimes: FxHashSet::default(),
1635             output_lifetimes: Vec::new(),
1636             output_lifetime_params: Vec::new(),
1637         };
1638
1639         for bound in bounds {
1640             hir::intravisit::walk_param_bound(&mut lifetime_collector, &bound);
1641         }
1642
1643         (
1644             lifetime_collector.output_lifetimes.into(),
1645             lifetime_collector.output_lifetime_params.into(),
1646         )
1647     }
1648
1649     fn lower_qpath(
1650         &mut self,
1651         id: NodeId,
1652         qself: &Option<QSelf>,
1653         p: &Path,
1654         param_mode: ParamMode,
1655         mut itctx: ImplTraitContext<'_>,
1656     ) -> hir::QPath {
1657         let qself_position = qself.as_ref().map(|q| q.position);
1658         let qself = qself.as_ref().map(|q| self.lower_ty(&q.ty, itctx.reborrow()));
1659
1660         let partial_res = self.resolver
1661             .get_partial_res(id)
1662             .unwrap_or_else(|| PartialRes::new(Res::Err));
1663
1664         let proj_start = p.segments.len() - partial_res.unresolved_segments();
1665         let path = P(hir::Path {
1666             res: self.lower_res(partial_res.base_res()),
1667             segments: p.segments[..proj_start]
1668                 .iter()
1669                 .enumerate()
1670                 .map(|(i, segment)| {
1671                     let param_mode = match (qself_position, param_mode) {
1672                         (Some(j), ParamMode::Optional) if i < j => {
1673                             // This segment is part of the trait path in a
1674                             // qualified path - one of `a`, `b` or `Trait`
1675                             // in `<X as a::b::Trait>::T::U::method`.
1676                             ParamMode::Explicit
1677                         }
1678                         _ => param_mode,
1679                     };
1680
1681                     // Figure out if this is a type/trait segment,
1682                     // which may need lifetime elision performed.
1683                     let parent_def_id = |this: &mut Self, def_id: DefId| DefId {
1684                         krate: def_id.krate,
1685                         index: this.def_key(def_id).parent.expect("missing parent"),
1686                     };
1687                     let type_def_id = match partial_res.base_res() {
1688                         Res::Def(DefKind::AssocTy, def_id) if i + 2 == proj_start => {
1689                             Some(parent_def_id(self, def_id))
1690                         }
1691                         Res::Def(DefKind::Variant, def_id) if i + 1 == proj_start => {
1692                             Some(parent_def_id(self, def_id))
1693                         }
1694                         Res::Def(DefKind::Struct, def_id)
1695                         | Res::Def(DefKind::Union, def_id)
1696                         | Res::Def(DefKind::Enum, def_id)
1697                         | Res::Def(DefKind::TyAlias, def_id)
1698                         | Res::Def(DefKind::Trait, def_id) if i + 1 == proj_start =>
1699                         {
1700                             Some(def_id)
1701                         }
1702                         _ => None,
1703                     };
1704                     let parenthesized_generic_args = match partial_res.base_res() {
1705                         // `a::b::Trait(Args)`
1706                         Res::Def(DefKind::Trait, _) if i + 1 == proj_start => {
1707                             ParenthesizedGenericArgs::Ok
1708                         }
1709                         // `a::b::Trait(Args)::TraitItem`
1710                         Res::Def(DefKind::Method, _) |
1711                         Res::Def(DefKind::AssocConst, _) |
1712                         Res::Def(DefKind::AssocTy, _) if i + 2 == proj_start => {
1713                             ParenthesizedGenericArgs::Ok
1714                         }
1715                         // Avoid duplicated errors.
1716                         Res::Err => ParenthesizedGenericArgs::Ok,
1717                         // An error
1718                         _ => ParenthesizedGenericArgs::Err,
1719                     };
1720
1721                     let num_lifetimes = type_def_id.map_or(0, |def_id| {
1722                         if let Some(&n) = self.type_def_lifetime_params.get(&def_id) {
1723                             return n;
1724                         }
1725                         assert!(!def_id.is_local());
1726                         let item_generics = self.resolver.cstore()
1727                             .item_generics_cloned_untracked(def_id, self.sess);
1728                         let n = item_generics.own_counts().lifetimes;
1729                         self.type_def_lifetime_params.insert(def_id, n);
1730                         n
1731                     });
1732                     self.lower_path_segment(
1733                         p.span,
1734                         segment,
1735                         param_mode,
1736                         num_lifetimes,
1737                         parenthesized_generic_args,
1738                         itctx.reborrow(),
1739                         None,
1740                     )
1741                 })
1742                 .collect(),
1743             span: p.span,
1744         });
1745
1746         // Simple case, either no projections, or only fully-qualified.
1747         // E.g., `std::mem::size_of` or `<I as Iterator>::Item`.
1748         if partial_res.unresolved_segments() == 0 {
1749             return hir::QPath::Resolved(qself, path);
1750         }
1751
1752         // Create the innermost type that we're projecting from.
1753         let mut ty = if path.segments.is_empty() {
1754             // If the base path is empty that means there exists a
1755             // syntactical `Self`, e.g., `&i32` in `<&i32>::clone`.
1756             qself.expect("missing QSelf for <T>::...")
1757         } else {
1758             // Otherwise, the base path is an implicit `Self` type path,
1759             // e.g., `Vec` in `Vec::new` or `<I as Iterator>::Item` in
1760             // `<I as Iterator>::Item::default`.
1761             let new_id = self.next_id();
1762             P(self.ty_path(new_id, p.span, hir::QPath::Resolved(qself, path)))
1763         };
1764
1765         // Anything after the base path are associated "extensions",
1766         // out of which all but the last one are associated types,
1767         // e.g., for `std::vec::Vec::<T>::IntoIter::Item::clone`:
1768         // * base path is `std::vec::Vec<T>`
1769         // * "extensions" are `IntoIter`, `Item` and `clone`
1770         // * type nodes are:
1771         //   1. `std::vec::Vec<T>` (created above)
1772         //   2. `<std::vec::Vec<T>>::IntoIter`
1773         //   3. `<<std::vec::Vec<T>>::IntoIter>::Item`
1774         // * final path is `<<<std::vec::Vec<T>>::IntoIter>::Item>::clone`
1775         for (i, segment) in p.segments.iter().enumerate().skip(proj_start) {
1776             let segment = P(self.lower_path_segment(
1777                 p.span,
1778                 segment,
1779                 param_mode,
1780                 0,
1781                 ParenthesizedGenericArgs::Err,
1782                 itctx.reborrow(),
1783                 None,
1784             ));
1785             let qpath = hir::QPath::TypeRelative(ty, segment);
1786
1787             // It's finished, return the extension of the right node type.
1788             if i == p.segments.len() - 1 {
1789                 return qpath;
1790             }
1791
1792             // Wrap the associated extension in another type node.
1793             let new_id = self.next_id();
1794             ty = P(self.ty_path(new_id, p.span, qpath));
1795         }
1796
1797         // We should've returned in the for loop above.
1798         span_bug!(
1799             p.span,
1800             "lower_qpath: no final extension segment in {}..{}",
1801             proj_start,
1802             p.segments.len()
1803         )
1804     }
1805
1806     fn lower_path_extra(
1807         &mut self,
1808         res: Res,
1809         p: &Path,
1810         param_mode: ParamMode,
1811         explicit_owner: Option<NodeId>,
1812     ) -> hir::Path {
1813         hir::Path {
1814             res,
1815             segments: p.segments
1816                 .iter()
1817                 .map(|segment| {
1818                     self.lower_path_segment(
1819                         p.span,
1820                         segment,
1821                         param_mode,
1822                         0,
1823                         ParenthesizedGenericArgs::Err,
1824                         ImplTraitContext::disallowed(),
1825                         explicit_owner,
1826                     )
1827                 })
1828                 .collect(),
1829             span: p.span,
1830         }
1831     }
1832
1833     fn lower_path(&mut self, id: NodeId, p: &Path, param_mode: ParamMode) -> hir::Path {
1834         let res = self.expect_full_res(id);
1835         let res = self.lower_res(res);
1836         self.lower_path_extra(res, p, param_mode, None)
1837     }
1838
1839     fn lower_path_segment(
1840         &mut self,
1841         path_span: Span,
1842         segment: &PathSegment,
1843         param_mode: ParamMode,
1844         expected_lifetimes: usize,
1845         parenthesized_generic_args: ParenthesizedGenericArgs,
1846         itctx: ImplTraitContext<'_>,
1847         explicit_owner: Option<NodeId>,
1848     ) -> hir::PathSegment {
1849         let (mut generic_args, infer_args) = if let Some(ref generic_args) = segment.args {
1850             let msg = "parenthesized type parameters may only be used with a `Fn` trait";
1851             match **generic_args {
1852                 GenericArgs::AngleBracketed(ref data) => {
1853                     self.lower_angle_bracketed_parameter_data(data, param_mode, itctx)
1854                 }
1855                 GenericArgs::Parenthesized(ref data) => match parenthesized_generic_args {
1856                     ParenthesizedGenericArgs::Ok => self.lower_parenthesized_parameter_data(data),
1857                     ParenthesizedGenericArgs::Err => {
1858                         let mut err = struct_span_err!(self.sess, data.span, E0214, "{}", msg);
1859                         err.span_label(data.span, "only `Fn` traits may use parentheses");
1860                         if let Ok(snippet) = self.sess.source_map().span_to_snippet(data.span) {
1861                             // Do not suggest going from `Trait()` to `Trait<>`
1862                             if data.inputs.len() > 0 {
1863                                 let split = snippet.find('(').unwrap();
1864                                 let trait_name = &snippet[0..split];
1865                                 let args = &snippet[split + 1 .. snippet.len() - 1];
1866                                 err.span_suggestion(
1867                                     data.span,
1868                                     "use angle brackets instead",
1869                                     format!("{}<{}>", trait_name, args),
1870                                     Applicability::MaybeIncorrect,
1871                                 );
1872                             }
1873                         };
1874                         err.emit();
1875                         (
1876                             self.lower_angle_bracketed_parameter_data(
1877                                 &data.as_angle_bracketed_args(),
1878                                 param_mode,
1879                                 itctx
1880                             ).0,
1881                             false,
1882                         )
1883                     }
1884                 },
1885             }
1886         } else {
1887             self.lower_angle_bracketed_parameter_data(&Default::default(), param_mode, itctx)
1888         };
1889
1890         let has_lifetimes = generic_args.args.iter().any(|arg| match arg {
1891             GenericArg::Lifetime(_) => true,
1892             _ => false,
1893         });
1894         let first_generic_span = generic_args.args.iter().map(|a| a.span())
1895             .chain(generic_args.bindings.iter().map(|b| b.span)).next();
1896         if !generic_args.parenthesized && !has_lifetimes {
1897             generic_args.args =
1898                 self.elided_path_lifetimes(path_span, expected_lifetimes)
1899                     .into_iter()
1900                     .map(|lt| GenericArg::Lifetime(lt))
1901                     .chain(generic_args.args.into_iter())
1902                 .collect();
1903             if expected_lifetimes > 0 && param_mode == ParamMode::Explicit {
1904                 let anon_lt_suggestion = vec!["'_"; expected_lifetimes].join(", ");
1905                 let no_non_lt_args = generic_args.args.len() == expected_lifetimes;
1906                 let no_bindings = generic_args.bindings.is_empty();
1907                 let (incl_angl_brckt, insertion_sp, suggestion) = if no_non_lt_args && no_bindings {
1908                     // If there are no (non-implicit) generic args or associated type
1909                     // bindings, our suggestion includes the angle brackets.
1910                     (true, path_span.shrink_to_hi(), format!("<{}>", anon_lt_suggestion))
1911                 } else {
1912                     // Otherwise (sorry, this is kind of gross) we need to infer the
1913                     // place to splice in the `'_, ` from the generics that do exist.
1914                     let first_generic_span = first_generic_span
1915                         .expect("already checked that non-lifetime args or bindings exist");
1916                     (false, first_generic_span.shrink_to_lo(), format!("{}, ", anon_lt_suggestion))
1917                 };
1918                 match self.anonymous_lifetime_mode {
1919                     // In create-parameter mode we error here because we don't want to support
1920                     // deprecated impl elision in new features like impl elision and `async fn`,
1921                     // both of which work using the `CreateParameter` mode:
1922                     //
1923                     //     impl Foo for std::cell::Ref<u32> // note lack of '_
1924                     //     async fn foo(_: std::cell::Ref<u32>) { ... }
1925                     AnonymousLifetimeMode::CreateParameter => {
1926                         let mut err = struct_span_err!(
1927                             self.sess,
1928                             path_span,
1929                             E0726,
1930                             "implicit elided lifetime not allowed here"
1931                         );
1932                         crate::lint::builtin::add_elided_lifetime_in_path_suggestion(
1933                             &self.sess,
1934                             &mut err,
1935                             expected_lifetimes,
1936                             path_span,
1937                             incl_angl_brckt,
1938                             insertion_sp,
1939                             suggestion,
1940                         );
1941                         err.emit();
1942                     }
1943                     AnonymousLifetimeMode::PassThrough |
1944                     AnonymousLifetimeMode::ReportError => {
1945                         self.resolver.lint_buffer().buffer_lint_with_diagnostic(
1946                             ELIDED_LIFETIMES_IN_PATHS,
1947                             CRATE_NODE_ID,
1948                             path_span,
1949                             "hidden lifetime parameters in types are deprecated",
1950                             builtin::BuiltinLintDiagnostics::ElidedLifetimesInPaths(
1951                                 expected_lifetimes,
1952                                 path_span,
1953                                 incl_angl_brckt,
1954                                 insertion_sp,
1955                                 suggestion,
1956                             )
1957                         );
1958                     }
1959                 }
1960             }
1961         }
1962
1963         let res = self.expect_full_res(segment.id);
1964         let id = if let Some(owner) = explicit_owner {
1965             self.lower_node_id_with_owner(segment.id, owner)
1966         } else {
1967             self.lower_node_id(segment.id)
1968         };
1969         debug!(
1970             "lower_path_segment: ident={:?} original-id={:?} new-id={:?}",
1971             segment.ident, segment.id, id,
1972         );
1973
1974         hir::PathSegment::new(
1975             segment.ident,
1976             Some(id),
1977             Some(self.lower_res(res)),
1978             generic_args,
1979             infer_args,
1980         )
1981     }
1982
1983     fn lower_angle_bracketed_parameter_data(
1984         &mut self,
1985         data: &AngleBracketedArgs,
1986         param_mode: ParamMode,
1987         mut itctx: ImplTraitContext<'_>,
1988     ) -> (hir::GenericArgs, bool) {
1989         let &AngleBracketedArgs { ref args, ref constraints, .. } = data;
1990         let has_non_lt_args = args.iter().any(|arg| match arg {
1991             ast::GenericArg::Lifetime(_) => false,
1992             ast::GenericArg::Type(_) => true,
1993             ast::GenericArg::Const(_) => true,
1994         });
1995         (
1996             hir::GenericArgs {
1997                 args: args.iter().map(|a| self.lower_generic_arg(a, itctx.reborrow())).collect(),
1998                 bindings: constraints.iter()
1999                     .map(|b| self.lower_assoc_ty_constraint(b, itctx.reborrow()))
2000                     .collect(),
2001                 parenthesized: false,
2002             },
2003             !has_non_lt_args && param_mode == ParamMode::Optional
2004         )
2005     }
2006
2007     fn lower_parenthesized_parameter_data(
2008         &mut self,
2009         data: &ParenthesizedArgs,
2010     ) -> (hir::GenericArgs, bool) {
2011         // Switch to `PassThrough` mode for anonymous lifetimes; this
2012         // means that we permit things like `&Ref<T>`, where `Ref` has
2013         // a hidden lifetime parameter. This is needed for backwards
2014         // compatibility, even in contexts like an impl header where
2015         // we generally don't permit such things (see #51008).
2016         self.with_anonymous_lifetime_mode(
2017             AnonymousLifetimeMode::PassThrough,
2018             |this| {
2019                 let &ParenthesizedArgs { ref inputs, ref output, span } = data;
2020                 let inputs = inputs
2021                     .iter()
2022                     .map(|ty| this.lower_ty_direct(ty, ImplTraitContext::disallowed()))
2023                     .collect();
2024                 let mk_tup = |this: &mut Self, tys, span| {
2025                     hir::Ty { kind: hir::TyKind::Tup(tys), hir_id: this.next_id(), span }
2026                 };
2027                 (
2028                     hir::GenericArgs {
2029                         args: hir_vec![GenericArg::Type(mk_tup(this, inputs, span))],
2030                         bindings: hir_vec![
2031                             hir::TypeBinding {
2032                                 hir_id: this.next_id(),
2033                                 ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2034                                 kind: hir::TypeBindingKind::Equality {
2035                                     ty: output
2036                                         .as_ref()
2037                                         .map(|ty| this.lower_ty(
2038                                             &ty,
2039                                             ImplTraitContext::disallowed()
2040                                         ))
2041                                         .unwrap_or_else(||
2042                                             P(mk_tup(this, hir::HirVec::new(), span))
2043                                         ),
2044                                 },
2045                                 span: output.as_ref().map_or(span, |ty| ty.span),
2046                             }
2047                         ],
2048                         parenthesized: true,
2049                     },
2050                     false,
2051                 )
2052             }
2053         )
2054     }
2055
2056     fn lower_local(&mut self, l: &Local) -> (hir::Local, SmallVec<[NodeId; 1]>) {
2057         let mut ids = SmallVec::<[NodeId; 1]>::new();
2058         if self.sess.features_untracked().impl_trait_in_bindings {
2059             if let Some(ref ty) = l.ty {
2060                 let mut visitor = ImplTraitTypeIdVisitor { ids: &mut ids };
2061                 visitor.visit_ty(ty);
2062             }
2063         }
2064         let parent_def_id = DefId::local(self.current_hir_id_owner.last().unwrap().0);
2065         (hir::Local {
2066             hir_id: self.lower_node_id(l.id),
2067             ty: l.ty
2068                 .as_ref()
2069                 .map(|t| self.lower_ty(t,
2070                     if self.sess.features_untracked().impl_trait_in_bindings {
2071                         ImplTraitContext::OpaqueTy(Some(parent_def_id))
2072                     } else {
2073                         ImplTraitContext::Disallowed(ImplTraitPosition::Binding)
2074                     }
2075                 )),
2076             pat: self.lower_pat(&l.pat),
2077             init: l.init.as_ref().map(|e| P(self.lower_expr(e))),
2078             span: l.span,
2079             attrs: l.attrs.clone(),
2080             source: hir::LocalSource::Normal,
2081         }, ids)
2082     }
2083
2084     fn lower_fn_params_to_names(&mut self, decl: &FnDecl) -> hir::HirVec<Ident> {
2085         // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
2086         // as they are not explicit in HIR/Ty function signatures.
2087         // (instead, the `c_variadic` flag is set to `true`)
2088         let mut inputs = &decl.inputs[..];
2089         if decl.c_variadic() {
2090             inputs = &inputs[..inputs.len() - 1];
2091         }
2092         inputs
2093             .iter()
2094             .map(|param| match param.pat.kind {
2095                 PatKind::Ident(_, ident, _) => ident,
2096                 _ => Ident::new(kw::Invalid, param.pat.span),
2097             })
2098             .collect()
2099     }
2100
2101     // Lowers a function declaration.
2102     //
2103     // `decl`: the unlowered (AST) function declaration.
2104     // `fn_def_id`: if `Some`, impl Trait arguments are lowered into generic parameters on the
2105     //      given DefId, otherwise impl Trait is disallowed. Must be `Some` if
2106     //      `make_ret_async` is also `Some`.
2107     // `impl_trait_return_allow`: determines whether `impl Trait` can be used in return position.
2108     //      This guards against trait declarations and implementations where `impl Trait` is
2109     //      disallowed.
2110     // `make_ret_async`: if `Some`, converts `-> T` into `-> impl Future<Output = T>` in the
2111     //      return type. This is used for `async fn` declarations. The `NodeId` is the ID of the
2112     //      return type `impl Trait` item.
2113     fn lower_fn_decl(
2114         &mut self,
2115         decl: &FnDecl,
2116         mut in_band_ty_params: Option<(DefId, &mut Vec<hir::GenericParam>)>,
2117         impl_trait_return_allow: bool,
2118         make_ret_async: Option<NodeId>,
2119     ) -> P<hir::FnDecl> {
2120         let lt_mode = if make_ret_async.is_some() {
2121             // In `async fn`, argument-position elided lifetimes
2122             // must be transformed into fresh generic parameters so that
2123             // they can be applied to the opaque `impl Trait` return type.
2124             AnonymousLifetimeMode::CreateParameter
2125         } else {
2126             self.anonymous_lifetime_mode
2127         };
2128
2129         let c_variadic = decl.c_variadic();
2130
2131         // Remember how many lifetimes were already around so that we can
2132         // only look at the lifetime parameters introduced by the arguments.
2133         let inputs = self.with_anonymous_lifetime_mode(lt_mode, |this| {
2134             // Skip the `...` (`CVarArgs`) trailing arguments from the AST,
2135             // as they are not explicit in HIR/Ty function signatures.
2136             // (instead, the `c_variadic` flag is set to `true`)
2137             let mut inputs = &decl.inputs[..];
2138             if c_variadic {
2139                 inputs = &inputs[..inputs.len() - 1];
2140             }
2141             inputs
2142                 .iter()
2143                 .map(|param| {
2144                     if let Some((_, ibty)) = &mut in_band_ty_params {
2145                         this.lower_ty_direct(&param.ty, ImplTraitContext::Universal(ibty))
2146                     } else {
2147                         this.lower_ty_direct(&param.ty, ImplTraitContext::disallowed())
2148                     }
2149                 })
2150                 .collect::<HirVec<_>>()
2151         });
2152
2153         let output = if let Some(ret_id) = make_ret_async {
2154             self.lower_async_fn_ret_ty(
2155                 &decl.output,
2156                 in_band_ty_params.expect("`make_ret_async` but no `fn_def_id`").0,
2157                 ret_id,
2158             )
2159         } else {
2160             match decl.output {
2161                 FunctionRetTy::Ty(ref ty) => match in_band_ty_params {
2162                     Some((def_id, _)) if impl_trait_return_allow => {
2163                         hir::Return(self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(def_id))))
2164                     }
2165                     _ => {
2166                         hir::Return(self.lower_ty(ty, ImplTraitContext::disallowed()))
2167                     }
2168                 },
2169                 FunctionRetTy::Default(span) => hir::DefaultReturn(span),
2170             }
2171         };
2172
2173         P(hir::FnDecl {
2174             inputs,
2175             output,
2176             c_variadic,
2177             implicit_self: decl.inputs.get(0).map_or(
2178                 hir::ImplicitSelfKind::None,
2179                 |arg| {
2180                     let is_mutable_pat = match arg.pat.kind {
2181                         PatKind::Ident(BindingMode::ByValue(mt), _, _) |
2182                         PatKind::Ident(BindingMode::ByRef(mt), _, _) =>
2183                             mt == Mutability::Mutable,
2184                         _ => false,
2185                     };
2186
2187                     match arg.ty.kind {
2188                         TyKind::ImplicitSelf if is_mutable_pat => hir::ImplicitSelfKind::Mut,
2189                         TyKind::ImplicitSelf => hir::ImplicitSelfKind::Imm,
2190                         // Given we are only considering `ImplicitSelf` types, we needn't consider
2191                         // the case where we have a mutable pattern to a reference as that would
2192                         // no longer be an `ImplicitSelf`.
2193                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() &&
2194                             mt.mutbl == ast::Mutability::Mutable =>
2195                                 hir::ImplicitSelfKind::MutRef,
2196                         TyKind::Rptr(_, ref mt) if mt.ty.kind.is_implicit_self() =>
2197                             hir::ImplicitSelfKind::ImmRef,
2198                         _ => hir::ImplicitSelfKind::None,
2199                     }
2200                 },
2201             ),
2202         })
2203     }
2204
2205     // Transforms `-> T` for `async fn` into `-> OpaqueTy { .. }`
2206     // combined with the following definition of `OpaqueTy`:
2207     //
2208     //     type OpaqueTy<generics_from_parent_fn> = impl Future<Output = T>;
2209     //
2210     // `inputs`: lowered types of parameters to the function (used to collect lifetimes)
2211     // `output`: unlowered output type (`T` in `-> T`)
2212     // `fn_def_id`: `DefId` of the parent function (used to create child impl trait definition)
2213     // `opaque_ty_node_id`: `NodeId` of the opaque `impl Trait` type that should be created
2214     // `elided_lt_replacement`: replacement for elided lifetimes in the return type
2215     fn lower_async_fn_ret_ty(
2216         &mut self,
2217         output: &FunctionRetTy,
2218         fn_def_id: DefId,
2219         opaque_ty_node_id: NodeId,
2220     ) -> hir::FunctionRetTy {
2221         debug!(
2222             "lower_async_fn_ret_ty(\
2223              output={:?}, \
2224              fn_def_id={:?}, \
2225              opaque_ty_node_id={:?})",
2226             output, fn_def_id, opaque_ty_node_id,
2227         );
2228
2229         let span = output.span();
2230
2231         let opaque_ty_span = self.mark_span_with_reason(
2232             DesugaringKind::Async,
2233             span,
2234             None,
2235         );
2236
2237         let opaque_ty_def_index = self
2238             .resolver
2239             .definitions()
2240             .opt_def_index(opaque_ty_node_id)
2241             .unwrap();
2242
2243         self.allocate_hir_id_counter(opaque_ty_node_id);
2244
2245         // When we create the opaque type for this async fn, it is going to have
2246         // to capture all the lifetimes involved in the signature (including in the
2247         // return type). This is done by introducing lifetime parameters for:
2248         //
2249         // - all the explicitly declared lifetimes from the impl and function itself;
2250         // - all the elided lifetimes in the fn arguments;
2251         // - all the elided lifetimes in the return type.
2252         //
2253         // So for example in this snippet:
2254         //
2255         // ```rust
2256         // impl<'a> Foo<'a> {
2257         //   async fn bar<'b>(&self, x: &'b Vec<f64>, y: &str) -> &u32 {
2258         //   //               ^ '0                       ^ '1     ^ '2
2259         //   // elided lifetimes used below
2260         //   }
2261         // }
2262         // ```
2263         //
2264         // we would create an opaque type like:
2265         //
2266         // ```
2267         // type Bar<'a, 'b, '0, '1, '2> = impl Future<Output = &'2 u32>;
2268         // ```
2269         //
2270         // and we would then desugar `bar` to the equivalent of:
2271         //
2272         // ```rust
2273         // impl<'a> Foo<'a> {
2274         //   fn bar<'b, '0, '1>(&'0 self, x: &'b Vec<f64>, y: &'1 str) -> Bar<'a, 'b, '0, '1, '_>
2275         // }
2276         // ```
2277         //
2278         // Note that the final parameter to `Bar` is `'_`, not `'2` --
2279         // this is because the elided lifetimes from the return type
2280         // should be figured out using the ordinary elision rules, and
2281         // this desugaring achieves that.
2282         //
2283         // The variable `input_lifetimes_count` tracks the number of
2284         // lifetime parameters to the opaque type *not counting* those
2285         // lifetimes elided in the return type. This includes those
2286         // that are explicitly declared (`in_scope_lifetimes`) and
2287         // those elided lifetimes we found in the arguments (current
2288         // content of `lifetimes_to_define`). Next, we will process
2289         // the return type, which will cause `lifetimes_to_define` to
2290         // grow.
2291         let input_lifetimes_count = self.in_scope_lifetimes.len() + self.lifetimes_to_define.len();
2292
2293         let (opaque_ty_id, lifetime_params) = self.with_hir_id_owner(opaque_ty_node_id, |this| {
2294             // We have to be careful to get elision right here. The
2295             // idea is that we create a lifetime parameter for each
2296             // lifetime in the return type.  So, given a return type
2297             // like `async fn foo(..) -> &[&u32]`, we lower to `impl
2298             // Future<Output = &'1 [ &'2 u32 ]>`.
2299             //
2300             // Then, we will create `fn foo(..) -> Foo<'_, '_>`, and
2301             // hence the elision takes place at the fn site.
2302             let future_bound = this.with_anonymous_lifetime_mode(
2303                 AnonymousLifetimeMode::CreateParameter,
2304                 |this| this.lower_async_fn_output_type_to_future_bound(
2305                     output,
2306                     fn_def_id,
2307                     span,
2308                 ),
2309             );
2310
2311             debug!("lower_async_fn_ret_ty: future_bound={:#?}", future_bound);
2312
2313             // Calculate all the lifetimes that should be captured
2314             // by the opaque type. This should include all in-scope
2315             // lifetime parameters, including those defined in-band.
2316             //
2317             // Note: this must be done after lowering the output type,
2318             // as the output type may introduce new in-band lifetimes.
2319             let lifetime_params: Vec<(Span, ParamName)> =
2320                 this.in_scope_lifetimes
2321                     .iter().cloned()
2322                     .map(|name| (name.ident().span, name))
2323                     .chain(this.lifetimes_to_define.iter().cloned())
2324                     .collect();
2325
2326             debug!("lower_async_fn_ret_ty: in_scope_lifetimes={:#?}", this.in_scope_lifetimes);
2327             debug!("lower_async_fn_ret_ty: lifetimes_to_define={:#?}", this.lifetimes_to_define);
2328             debug!("lower_async_fn_ret_ty: lifetime_params={:#?}", lifetime_params);
2329
2330             let generic_params =
2331                 lifetime_params
2332                     .iter().cloned()
2333                     .map(|(span, hir_name)| {
2334                         this.lifetime_to_generic_param(span, hir_name, opaque_ty_def_index)
2335                     })
2336                     .collect();
2337
2338             let opaque_ty_item = hir::OpaqueTy {
2339                 generics: hir::Generics {
2340                     params: generic_params,
2341                     where_clause: hir::WhereClause {
2342                         predicates: hir_vec![],
2343                         span,
2344                     },
2345                     span,
2346                 },
2347                 bounds: hir_vec![future_bound],
2348                 impl_trait_fn: Some(fn_def_id),
2349                 origin: hir::OpaqueTyOrigin::AsyncFn,
2350             };
2351
2352             trace!("exist ty from async fn def index: {:#?}", opaque_ty_def_index);
2353             let opaque_ty_id = this.generate_opaque_type(
2354                 opaque_ty_node_id,
2355                 opaque_ty_item,
2356                 span,
2357                 opaque_ty_span,
2358             );
2359
2360             (opaque_ty_id, lifetime_params)
2361         });
2362
2363         // As documented above on the variable
2364         // `input_lifetimes_count`, we need to create the lifetime
2365         // arguments to our opaque type. Continuing with our example,
2366         // we're creating the type arguments for the return type:
2367         //
2368         // ```
2369         // Bar<'a, 'b, '0, '1, '_>
2370         // ```
2371         //
2372         // For the "input" lifetime parameters, we wish to create
2373         // references to the parameters themselves, including the
2374         // "implicit" ones created from parameter types (`'a`, `'b`,
2375         // '`0`, `'1`).
2376         //
2377         // For the "output" lifetime parameters, we just want to
2378         // generate `'_`.
2379         let mut generic_args: Vec<_> =
2380             lifetime_params[..input_lifetimes_count]
2381             .iter()
2382             .map(|&(span, hir_name)| {
2383                 // Input lifetime like `'a` or `'1`:
2384                 GenericArg::Lifetime(hir::Lifetime {
2385                     hir_id: self.next_id(),
2386                     span,
2387                     name: hir::LifetimeName::Param(hir_name),
2388                 })
2389             })
2390             .collect();
2391         generic_args.extend(
2392             lifetime_params[input_lifetimes_count..]
2393             .iter()
2394             .map(|&(span, _)| {
2395                 // Output lifetime like `'_`.
2396                 GenericArg::Lifetime(hir::Lifetime {
2397                     hir_id: self.next_id(),
2398                     span,
2399                     name: hir::LifetimeName::Implicit,
2400                 })
2401             })
2402         );
2403
2404         // Create the `Foo<...>` refernece itself. Note that the `type
2405         // Foo = impl Trait` is, internally, created as a child of the
2406         // async fn, so the *type parameters* are inherited.  It's
2407         // only the lifetime parameters that we must supply.
2408         let opaque_ty_ref = hir::TyKind::Def(hir::ItemId { id: opaque_ty_id }, generic_args.into());
2409
2410         hir::FunctionRetTy::Return(P(hir::Ty {
2411             kind: opaque_ty_ref,
2412             span,
2413             hir_id: self.next_id(),
2414         }))
2415     }
2416
2417     /// Transforms `-> T` into `Future<Output = T>`
2418     fn lower_async_fn_output_type_to_future_bound(
2419         &mut self,
2420         output: &FunctionRetTy,
2421         fn_def_id: DefId,
2422         span: Span,
2423     ) -> hir::GenericBound {
2424         // Compute the `T` in `Future<Output = T>` from the return type.
2425         let output_ty = match output {
2426             FunctionRetTy::Ty(ty) => {
2427                 self.lower_ty(ty, ImplTraitContext::OpaqueTy(Some(fn_def_id)))
2428             }
2429             FunctionRetTy::Default(ret_ty_span) => {
2430                 P(hir::Ty {
2431                     hir_id: self.next_id(),
2432                     kind: hir::TyKind::Tup(hir_vec![]),
2433                     span: *ret_ty_span,
2434                 })
2435             }
2436         };
2437
2438         // "<Output = T>"
2439         let future_params = P(hir::GenericArgs {
2440             args: hir_vec![],
2441             bindings: hir_vec![hir::TypeBinding {
2442                 ident: Ident::with_dummy_span(FN_OUTPUT_NAME),
2443                 kind: hir::TypeBindingKind::Equality {
2444                     ty: output_ty,
2445                 },
2446                 hir_id: self.next_id(),
2447                 span,
2448             }],
2449             parenthesized: false,
2450         });
2451
2452         // ::std::future::Future<future_params>
2453         let future_path =
2454             P(self.std_path(span, &[sym::future, sym::Future], Some(future_params), false));
2455
2456         hir::GenericBound::Trait(
2457             hir::PolyTraitRef {
2458                 trait_ref: hir::TraitRef {
2459                     path: future_path,
2460                     hir_ref_id: self.next_id(),
2461                 },
2462                 bound_generic_params: hir_vec![],
2463                 span,
2464             },
2465             hir::TraitBoundModifier::None,
2466         )
2467     }
2468
2469     fn lower_param_bound(
2470         &mut self,
2471         tpb: &GenericBound,
2472         itctx: ImplTraitContext<'_>,
2473     ) -> hir::GenericBound {
2474         match *tpb {
2475             GenericBound::Trait(ref ty, modifier) => {
2476                 hir::GenericBound::Trait(
2477                     self.lower_poly_trait_ref(ty, itctx),
2478                     self.lower_trait_bound_modifier(modifier),
2479                 )
2480             }
2481             GenericBound::Outlives(ref lifetime) => {
2482                 hir::GenericBound::Outlives(self.lower_lifetime(lifetime))
2483             }
2484         }
2485     }
2486
2487     fn lower_lifetime(&mut self, l: &Lifetime) -> hir::Lifetime {
2488         let span = l.ident.span;
2489         match l.ident {
2490             ident if ident.name == kw::StaticLifetime =>
2491                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Static),
2492             ident if ident.name == kw::UnderscoreLifetime =>
2493                 match self.anonymous_lifetime_mode {
2494                     AnonymousLifetimeMode::CreateParameter => {
2495                         let fresh_name = self.collect_fresh_in_band_lifetime(span);
2496                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(fresh_name))
2497                     }
2498
2499                     AnonymousLifetimeMode::PassThrough => {
2500                         self.new_named_lifetime(l.id, span, hir::LifetimeName::Underscore)
2501                     }
2502
2503                     AnonymousLifetimeMode::ReportError => self.new_error_lifetime(Some(l.id), span),
2504                 },
2505             ident => {
2506                 self.maybe_collect_in_band_lifetime(ident);
2507                 let param_name = ParamName::Plain(ident);
2508                 self.new_named_lifetime(l.id, span, hir::LifetimeName::Param(param_name))
2509             }
2510         }
2511     }
2512
2513     fn new_named_lifetime(
2514         &mut self,
2515         id: NodeId,
2516         span: Span,
2517         name: hir::LifetimeName,
2518     ) -> hir::Lifetime {
2519         hir::Lifetime {
2520             hir_id: self.lower_node_id(id),
2521             span,
2522             name: name,
2523         }
2524     }
2525
2526     fn lower_generic_params(
2527         &mut self,
2528         params: &[GenericParam],
2529         add_bounds: &NodeMap<Vec<GenericBound>>,
2530         mut itctx: ImplTraitContext<'_>,
2531     ) -> hir::HirVec<hir::GenericParam> {
2532         params.iter().map(|param| {
2533             self.lower_generic_param(param, add_bounds, itctx.reborrow())
2534         }).collect()
2535     }
2536
2537     fn lower_generic_param(&mut self,
2538                            param: &GenericParam,
2539                            add_bounds: &NodeMap<Vec<GenericBound>>,
2540                            mut itctx: ImplTraitContext<'_>)
2541                            -> hir::GenericParam {
2542         let mut bounds = self.with_anonymous_lifetime_mode(
2543             AnonymousLifetimeMode::ReportError,
2544             |this| this.lower_param_bounds(&param.bounds, itctx.reborrow()),
2545         );
2546
2547         let (name, kind) = match param.kind {
2548             GenericParamKind::Lifetime => {
2549                 let was_collecting_in_band = self.is_collecting_in_band_lifetimes;
2550                 self.is_collecting_in_band_lifetimes = false;
2551
2552                 let lt = self.with_anonymous_lifetime_mode(
2553                     AnonymousLifetimeMode::ReportError,
2554                     |this| this.lower_lifetime(&Lifetime { id: param.id, ident: param.ident }),
2555                 );
2556                 let param_name = match lt.name {
2557                     hir::LifetimeName::Param(param_name) => param_name,
2558                     hir::LifetimeName::Implicit
2559                         | hir::LifetimeName::Underscore
2560                         | hir::LifetimeName::Static => hir::ParamName::Plain(lt.name.ident()),
2561                     hir::LifetimeName::ImplicitObjectLifetimeDefault => {
2562                         span_bug!(
2563                             param.ident.span,
2564                             "object-lifetime-default should not occur here",
2565                         );
2566                     }
2567                     hir::LifetimeName::Error => ParamName::Error,
2568                 };
2569
2570                 let kind = hir::GenericParamKind::Lifetime {
2571                     kind: hir::LifetimeParamKind::Explicit
2572                 };
2573
2574                 self.is_collecting_in_band_lifetimes = was_collecting_in_band;
2575
2576                 (param_name, kind)
2577             }
2578             GenericParamKind::Type { ref default, .. } => {
2579                 let add_bounds = add_bounds.get(&param.id).map_or(&[][..], |x| &x);
2580                 if !add_bounds.is_empty() {
2581                     let params = self.lower_param_bounds(add_bounds, itctx.reborrow()).into_iter();
2582                     bounds = bounds.into_iter()
2583                                    .chain(params)
2584                                    .collect();
2585                 }
2586
2587                 let kind = hir::GenericParamKind::Type {
2588                     default: default.as_ref().map(|x| {
2589                         self.lower_ty(x, ImplTraitContext::OpaqueTy(None))
2590                     }),
2591                     synthetic: param.attrs.iter()
2592                                           .filter(|attr| attr.check_name(sym::rustc_synthetic))
2593                                           .map(|_| hir::SyntheticTyParamKind::ImplTrait)
2594                                           .next(),
2595                 };
2596
2597                 (hir::ParamName::Plain(param.ident), kind)
2598             }
2599             GenericParamKind::Const { ref ty } => {
2600                 (hir::ParamName::Plain(param.ident), hir::GenericParamKind::Const {
2601                     ty: self.lower_ty(&ty, ImplTraitContext::disallowed()),
2602                 })
2603             }
2604         };
2605
2606         hir::GenericParam {
2607             hir_id: self.lower_node_id(param.id),
2608             name,
2609             span: param.ident.span,
2610             pure_wrt_drop: attr::contains_name(&param.attrs, sym::may_dangle),
2611             attrs: self.lower_attrs(&param.attrs),
2612             bounds,
2613             kind,
2614         }
2615     }
2616
2617     fn lower_trait_ref(&mut self, p: &TraitRef, itctx: ImplTraitContext<'_>) -> hir::TraitRef {
2618         let path = match self.lower_qpath(p.ref_id, &None, &p.path, ParamMode::Explicit, itctx) {
2619             hir::QPath::Resolved(None, path) => path,
2620             qpath => bug!("lower_trait_ref: unexpected QPath `{:?}`", qpath),
2621         };
2622         hir::TraitRef {
2623             path,
2624             hir_ref_id: self.lower_node_id(p.ref_id),
2625         }
2626     }
2627
2628     fn lower_poly_trait_ref(
2629         &mut self,
2630         p: &PolyTraitRef,
2631         mut itctx: ImplTraitContext<'_>,
2632     ) -> hir::PolyTraitRef {
2633         let bound_generic_params = self.lower_generic_params(
2634             &p.bound_generic_params,
2635             &NodeMap::default(),
2636             itctx.reborrow(),
2637         );
2638         let trait_ref = self.with_in_scope_lifetime_defs(
2639             &p.bound_generic_params,
2640             |this| this.lower_trait_ref(&p.trait_ref, itctx),
2641         );
2642
2643         hir::PolyTraitRef {
2644             bound_generic_params,
2645             trait_ref,
2646             span: p.span,
2647         }
2648     }
2649
2650     fn lower_mt(&mut self, mt: &MutTy, itctx: ImplTraitContext<'_>) -> hir::MutTy {
2651         hir::MutTy {
2652             ty: self.lower_ty(&mt.ty, itctx),
2653             mutbl: mt.mutbl,
2654         }
2655     }
2656
2657     fn lower_param_bounds(&mut self, bounds: &[GenericBound], mut itctx: ImplTraitContext<'_>)
2658                           -> hir::GenericBounds {
2659         bounds.iter().map(|bound| self.lower_param_bound(bound, itctx.reborrow())).collect()
2660     }
2661
2662     fn lower_block(&mut self, b: &Block, targeted_by_break: bool) -> P<hir::Block> {
2663         let mut stmts = vec![];
2664         let mut expr = None;
2665
2666         for (index, stmt) in b.stmts.iter().enumerate() {
2667             if index == b.stmts.len() - 1 {
2668                 if let StmtKind::Expr(ref e) = stmt.kind {
2669                     expr = Some(P(self.lower_expr(e)));
2670                 } else {
2671                     stmts.extend(self.lower_stmt(stmt));
2672                 }
2673             } else {
2674                 stmts.extend(self.lower_stmt(stmt));
2675             }
2676         }
2677
2678         P(hir::Block {
2679             hir_id: self.lower_node_id(b.id),
2680             stmts: stmts.into(),
2681             expr,
2682             rules: self.lower_block_check_mode(&b.rules),
2683             span: b.span,
2684             targeted_by_break,
2685         })
2686     }
2687
2688     /// Lowers a block directly to an expression, presuming that it
2689     /// has no attributes and is not targeted by a `break`.
2690     fn lower_block_expr(&mut self, b: &Block) -> hir::Expr {
2691         let block = self.lower_block(b, false);
2692         self.expr_block(block, ThinVec::new())
2693     }
2694
2695     fn lower_pat(&mut self, p: &Pat) -> P<hir::Pat> {
2696         let node = match p.kind {
2697             PatKind::Wild => hir::PatKind::Wild,
2698             PatKind::Ident(ref binding_mode, ident, ref sub) => {
2699                 let lower_sub = |this: &mut Self| sub.as_ref().map(|x| this.lower_pat(x));
2700                 self.lower_pat_ident(p, binding_mode, ident, lower_sub)
2701             }
2702             PatKind::Lit(ref e) => hir::PatKind::Lit(P(self.lower_expr(e))),
2703             PatKind::TupleStruct(ref path, ref pats) => {
2704                 let qpath = self.lower_qpath(
2705                     p.id,
2706                     &None,
2707                     path,
2708                     ParamMode::Optional,
2709                     ImplTraitContext::disallowed(),
2710                 );
2711                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple struct");
2712                 hir::PatKind::TupleStruct(qpath, pats, ddpos)
2713             }
2714             PatKind::Or(ref pats) => {
2715                 hir::PatKind::Or(pats.iter().map(|x| self.lower_pat(x)).collect())
2716             }
2717             PatKind::Path(ref qself, ref path) => {
2718                 let qpath = self.lower_qpath(
2719                     p.id,
2720                     qself,
2721                     path,
2722                     ParamMode::Optional,
2723                     ImplTraitContext::disallowed(),
2724                 );
2725                 hir::PatKind::Path(qpath)
2726             }
2727             PatKind::Struct(ref path, ref fields, etc) => {
2728                 let qpath = self.lower_qpath(
2729                     p.id,
2730                     &None,
2731                     path,
2732                     ParamMode::Optional,
2733                     ImplTraitContext::disallowed(),
2734                 );
2735
2736                 let fs = fields
2737                     .iter()
2738                     .map(|f| hir::FieldPat {
2739                         hir_id: self.next_id(),
2740                         ident: f.ident,
2741                         pat: self.lower_pat(&f.pat),
2742                         is_shorthand: f.is_shorthand,
2743                         span: f.span,
2744                     })
2745                     .collect();
2746                 hir::PatKind::Struct(qpath, fs, etc)
2747             }
2748             PatKind::Tuple(ref pats) => {
2749                 let (pats, ddpos) = self.lower_pat_tuple(pats, "tuple");
2750                 hir::PatKind::Tuple(pats, ddpos)
2751             }
2752             PatKind::Box(ref inner) => hir::PatKind::Box(self.lower_pat(inner)),
2753             PatKind::Ref(ref inner, mutbl) => {
2754                 hir::PatKind::Ref(self.lower_pat(inner), mutbl)
2755             }
2756             PatKind::Range(ref e1, ref e2, Spanned { node: ref end, .. }) => hir::PatKind::Range(
2757                 P(self.lower_expr(e1)),
2758                 P(self.lower_expr(e2)),
2759                 self.lower_range_end(end),
2760             ),
2761             PatKind::Slice(ref pats) => self.lower_pat_slice(pats),
2762             PatKind::Rest => {
2763                 // If we reach here the `..` pattern is not semantically allowed.
2764                 self.ban_illegal_rest_pat(p.span)
2765             }
2766             PatKind::Paren(ref inner) => return self.lower_pat(inner),
2767             PatKind::Mac(_) => panic!("Shouldn't exist here"),
2768         };
2769
2770         self.pat_with_node_id_of(p, node)
2771     }
2772
2773     fn lower_pat_tuple(
2774         &mut self,
2775         pats: &[AstP<Pat>],
2776         ctx: &str,
2777     ) -> (HirVec<P<hir::Pat>>, Option<usize>) {
2778         let mut elems = Vec::with_capacity(pats.len());
2779         let mut rest = None;
2780
2781         let mut iter = pats.iter().enumerate();
2782         while let Some((idx, pat)) = iter.next() {
2783             // Interpret the first `..` pattern as a subtuple pattern.
2784             if pat.is_rest() {
2785                 rest = Some((idx, pat.span));
2786                 break;
2787             }
2788             // It was not a subslice pattern so lower it normally.
2789             elems.push(self.lower_pat(pat));
2790         }
2791
2792         while let Some((_, pat)) = iter.next() {
2793             // There was a previous subtuple pattern; make sure we don't allow more.
2794             if pat.is_rest() {
2795                 self.ban_extra_rest_pat(pat.span, rest.unwrap().1, ctx);
2796             } else {
2797                 elems.push(self.lower_pat(pat));
2798             }
2799         }
2800
2801         (elems.into(), rest.map(|(ddpos, _)| ddpos))
2802     }
2803
2804     fn lower_pat_slice(&mut self, pats: &[AstP<Pat>]) -> hir::PatKind {
2805         let mut before = Vec::new();
2806         let mut after = Vec::new();
2807         let mut slice = None;
2808         let mut prev_rest_span = None;
2809
2810         let mut iter = pats.iter();
2811         while let Some(pat) = iter.next() {
2812             // Interpret the first `((ref mut?)? x @)? ..` pattern as a subslice pattern.
2813             match pat.kind {
2814                 PatKind::Rest => {
2815                     prev_rest_span = Some(pat.span);
2816                     slice = Some(self.pat_wild_with_node_id_of(pat));
2817                     break;
2818                 },
2819                 PatKind::Ident(ref bm, ident, Some(ref sub)) if sub.is_rest() => {
2820                     prev_rest_span = Some(sub.span);
2821                     let lower_sub = |this: &mut Self| Some(this.pat_wild_with_node_id_of(sub));
2822                     let node = self.lower_pat_ident(pat, bm, ident, lower_sub);
2823                     slice = Some(self.pat_with_node_id_of(pat, node));
2824                     break;
2825                 },
2826                 _ => {}
2827             }
2828
2829             // It was not a subslice pattern so lower it normally.
2830             before.push(self.lower_pat(pat));
2831         }
2832
2833         while let Some(pat) = iter.next() {
2834             // There was a previous subslice pattern; make sure we don't allow more.
2835             let rest_span = match pat.kind {
2836                 PatKind::Rest => Some(pat.span),
2837                 PatKind::Ident(.., Some(ref sub)) if sub.is_rest() => {
2838                     // The `HirValidator` is merciless; add a `_` pattern to avoid ICEs.
2839                     after.push(self.pat_wild_with_node_id_of(pat));
2840                     Some(sub.span)
2841                 },
2842                 _ => None,
2843             };
2844             if let Some(rest_span) = rest_span {
2845                 self.ban_extra_rest_pat(rest_span, prev_rest_span.unwrap(), "slice");
2846             } else {
2847                 after.push(self.lower_pat(pat));
2848             }
2849         }
2850
2851         hir::PatKind::Slice(before.into(), slice, after.into())
2852     }
2853
2854     fn lower_pat_ident(
2855         &mut self,
2856         p: &Pat,
2857         binding_mode: &BindingMode,
2858         ident: Ident,
2859         lower_sub: impl FnOnce(&mut Self) -> Option<P<hir::Pat>>,
2860     ) -> hir::PatKind {
2861         match self.resolver.get_partial_res(p.id).map(|d| d.base_res()) {
2862             // `None` can occur in body-less function signatures
2863             res @ None | res @ Some(Res::Local(_)) => {
2864                 let canonical_id = match res {
2865                     Some(Res::Local(id)) => id,
2866                     _ => p.id,
2867                 };
2868
2869                 hir::PatKind::Binding(
2870                     self.lower_binding_mode(binding_mode),
2871                     self.lower_node_id(canonical_id),
2872                     ident,
2873                     lower_sub(self),
2874                 )
2875             }
2876             Some(res) => hir::PatKind::Path(hir::QPath::Resolved(
2877                 None,
2878                 P(hir::Path {
2879                     span: ident.span,
2880                     res: self.lower_res(res),
2881                     segments: hir_vec![hir::PathSegment::from_ident(ident)],
2882                 }),
2883             )),
2884         }
2885     }
2886
2887     fn pat_wild_with_node_id_of(&mut self, p: &Pat) -> P<hir::Pat> {
2888         self.pat_with_node_id_of(p, hir::PatKind::Wild)
2889     }
2890
2891     /// Construct a `Pat` with the `HirId` of `p.id` lowered.
2892     fn pat_with_node_id_of(&mut self, p: &Pat, kind: hir::PatKind) -> P<hir::Pat> {
2893         P(hir::Pat {
2894             hir_id: self.lower_node_id(p.id),
2895             kind,
2896             span: p.span,
2897         })
2898     }
2899
2900     /// Emit a friendly error for extra `..` patterns in a tuple/tuple struct/slice pattern.
2901     fn ban_extra_rest_pat(&self, sp: Span, prev_sp: Span, ctx: &str) {
2902         self.diagnostic()
2903             .struct_span_err(sp, &format!("`..` can only be used once per {} pattern", ctx))
2904             .span_label(sp, &format!("can only be used once per {} pattern", ctx))
2905             .span_label(prev_sp, "previously used here")
2906             .emit();
2907     }
2908
2909     /// Used to ban the `..` pattern in places it shouldn't be semantically.
2910     fn ban_illegal_rest_pat(&self, sp: Span) -> hir::PatKind {
2911         self.diagnostic()
2912             .struct_span_err(sp, "`..` patterns are not allowed here")
2913             .note("only allowed in tuple, tuple struct, and slice patterns")
2914             .emit();
2915
2916         // We're not in a list context so `..` can be reasonably treated
2917         // as `_` because it should always be valid and roughly matches the
2918         // intent of `..` (notice that the rest of a single slot is that slot).
2919         hir::PatKind::Wild
2920     }
2921
2922     fn lower_range_end(&mut self, e: &RangeEnd) -> hir::RangeEnd {
2923         match *e {
2924             RangeEnd::Included(_) => hir::RangeEnd::Included,
2925             RangeEnd::Excluded => hir::RangeEnd::Excluded,
2926         }
2927     }
2928
2929     fn lower_anon_const(&mut self, c: &AnonConst) -> hir::AnonConst {
2930         self.with_new_scopes(|this| {
2931             hir::AnonConst {
2932                 hir_id: this.lower_node_id(c.id),
2933                 body: this.lower_const_body(&c.value),
2934             }
2935         })
2936     }
2937
2938     fn lower_stmt(&mut self, s: &Stmt) -> SmallVec<[hir::Stmt; 1]> {
2939         let kind = match s.kind {
2940             StmtKind::Local(ref l) => {
2941                 let (l, item_ids) = self.lower_local(l);
2942                 let mut ids: SmallVec<[hir::Stmt; 1]> = item_ids
2943                     .into_iter()
2944                     .map(|item_id| {
2945                         let item_id = hir::ItemId { id: self.lower_node_id(item_id) };
2946                         self.stmt(s.span, hir::StmtKind::Item(item_id))
2947                     })
2948                     .collect();
2949                 ids.push({
2950                     hir::Stmt {
2951                         hir_id: self.lower_node_id(s.id),
2952                         kind: hir::StmtKind::Local(P(l)),
2953                         span: s.span,
2954                     }
2955                 });
2956                 return ids;
2957             },
2958             StmtKind::Item(ref it) => {
2959                 // Can only use the ID once.
2960                 let mut id = Some(s.id);
2961                 return self.lower_item_id(it)
2962                     .into_iter()
2963                     .map(|item_id| {
2964                         let hir_id = id.take()
2965                           .map(|id| self.lower_node_id(id))
2966                           .unwrap_or_else(|| self.next_id());
2967
2968                         hir::Stmt {
2969                             hir_id,
2970                             kind: hir::StmtKind::Item(item_id),
2971                             span: s.span,
2972                         }
2973                     })
2974                     .collect();
2975             }
2976             StmtKind::Expr(ref e) => hir::StmtKind::Expr(P(self.lower_expr(e))),
2977             StmtKind::Semi(ref e) => hir::StmtKind::Semi(P(self.lower_expr(e))),
2978             StmtKind::Mac(..) => panic!("shouldn't exist here"),
2979         };
2980         smallvec![hir::Stmt {
2981             hir_id: self.lower_node_id(s.id),
2982             kind,
2983             span: s.span,
2984         }]
2985     }
2986
2987     fn lower_block_check_mode(&mut self, b: &BlockCheckMode) -> hir::BlockCheckMode {
2988         match *b {
2989             BlockCheckMode::Default => hir::DefaultBlock,
2990             BlockCheckMode::Unsafe(u) => hir::UnsafeBlock(self.lower_unsafe_source(u)),
2991         }
2992     }
2993
2994     fn lower_binding_mode(&mut self, b: &BindingMode) -> hir::BindingAnnotation {
2995         match *b {
2996             BindingMode::ByValue(Mutability::Immutable) => hir::BindingAnnotation::Unannotated,
2997             BindingMode::ByRef(Mutability::Immutable) => hir::BindingAnnotation::Ref,
2998             BindingMode::ByValue(Mutability::Mutable) => hir::BindingAnnotation::Mutable,
2999             BindingMode::ByRef(Mutability::Mutable) => hir::BindingAnnotation::RefMut,
3000         }
3001     }
3002
3003     fn lower_unsafe_source(&mut self, u: UnsafeSource) -> hir::UnsafeSource {
3004         match u {
3005             CompilerGenerated => hir::CompilerGenerated,
3006             UserProvided => hir::UserProvided,
3007         }
3008     }
3009
3010     fn lower_trait_bound_modifier(&mut self, f: TraitBoundModifier) -> hir::TraitBoundModifier {
3011         match f {
3012             TraitBoundModifier::None => hir::TraitBoundModifier::None,
3013             TraitBoundModifier::Maybe => hir::TraitBoundModifier::Maybe,
3014         }
3015     }
3016
3017     // Helper methods for building HIR.
3018
3019     fn stmt(&mut self, span: Span, kind: hir::StmtKind) -> hir::Stmt {
3020         hir::Stmt { span, kind, hir_id: self.next_id() }
3021     }
3022
3023     fn stmt_expr(&mut self, span: Span, expr: hir::Expr) -> hir::Stmt {
3024         self.stmt(span, hir::StmtKind::Expr(P(expr)))
3025     }
3026
3027     fn stmt_let_pat(
3028         &mut self,
3029         attrs: ThinVec<Attribute>,
3030         span: Span,
3031         init: Option<P<hir::Expr>>,
3032         pat: P<hir::Pat>,
3033         source: hir::LocalSource,
3034     ) -> hir::Stmt {
3035         let local = hir::Local {
3036             attrs,
3037             hir_id: self.next_id(),
3038             init,
3039             pat,
3040             source,
3041             span,
3042             ty: None,
3043         };
3044         self.stmt(span, hir::StmtKind::Local(P(local)))
3045     }
3046
3047     fn block_expr(&mut self, expr: P<hir::Expr>) -> hir::Block {
3048         self.block_all(expr.span, hir::HirVec::new(), Some(expr))
3049     }
3050
3051     fn block_all(
3052         &mut self,
3053         span: Span,
3054         stmts: hir::HirVec<hir::Stmt>,
3055         expr: Option<P<hir::Expr>>,
3056     ) -> hir::Block {
3057         hir::Block {
3058             stmts,
3059             expr,
3060             hir_id: self.next_id(),
3061             rules: hir::DefaultBlock,
3062             span,
3063             targeted_by_break: false,
3064         }
3065     }
3066
3067     /// Constructs a `true` or `false` literal pattern.
3068     fn pat_bool(&mut self, span: Span, val: bool) -> P<hir::Pat> {
3069         let expr = self.expr_bool(span, val);
3070         self.pat(span, hir::PatKind::Lit(P(expr)))
3071     }
3072
3073     fn pat_ok(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3074         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Ok], hir_vec![pat])
3075     }
3076
3077     fn pat_err(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3078         self.pat_std_enum(span, &[sym::result, sym::Result, sym::Err], hir_vec![pat])
3079     }
3080
3081     fn pat_some(&mut self, span: Span, pat: P<hir::Pat>) -> P<hir::Pat> {
3082         self.pat_std_enum(span, &[sym::option, sym::Option, sym::Some], hir_vec![pat])
3083     }
3084
3085     fn pat_none(&mut self, span: Span) -> P<hir::Pat> {
3086         self.pat_std_enum(span, &[sym::option, sym::Option, sym::None], hir_vec![])
3087     }
3088
3089     fn pat_std_enum(
3090         &mut self,
3091         span: Span,
3092         components: &[Symbol],
3093         subpats: hir::HirVec<P<hir::Pat>>,
3094     ) -> P<hir::Pat> {
3095         let path = self.std_path(span, components, None, true);
3096         let qpath = hir::QPath::Resolved(None, P(path));
3097         let pt = if subpats.is_empty() {
3098             hir::PatKind::Path(qpath)
3099         } else {
3100             hir::PatKind::TupleStruct(qpath, subpats, None)
3101         };
3102         self.pat(span, pt)
3103     }
3104
3105     fn pat_ident(&mut self, span: Span, ident: Ident) -> (P<hir::Pat>, hir::HirId) {
3106         self.pat_ident_binding_mode(span, ident, hir::BindingAnnotation::Unannotated)
3107     }
3108
3109     fn pat_ident_binding_mode(
3110         &mut self,
3111         span: Span,
3112         ident: Ident,
3113         bm: hir::BindingAnnotation,
3114     ) -> (P<hir::Pat>, hir::HirId) {
3115         let hir_id = self.next_id();
3116
3117         (
3118             P(hir::Pat {
3119                 hir_id,
3120                 kind: hir::PatKind::Binding(bm, hir_id, ident.with_span_pos(span), None),
3121                 span,
3122             }),
3123             hir_id
3124         )
3125     }
3126
3127     fn pat_wild(&mut self, span: Span) -> P<hir::Pat> {
3128         self.pat(span, hir::PatKind::Wild)
3129     }
3130
3131     fn pat(&mut self, span: Span, kind: hir::PatKind) -> P<hir::Pat> {
3132         P(hir::Pat {
3133             hir_id: self.next_id(),
3134             kind,
3135             span,
3136         })
3137     }
3138
3139     /// Given a suffix `["b", "c", "d"]`, returns path `::std::b::c::d` when
3140     /// `fld.cx.use_std`, and `::core::b::c::d` otherwise.
3141     /// The path is also resolved according to `is_value`.
3142     fn std_path(
3143         &mut self,
3144         span: Span,
3145         components: &[Symbol],
3146         params: Option<P<hir::GenericArgs>>,
3147         is_value: bool,
3148     ) -> hir::Path {
3149         let ns = if is_value { Namespace::ValueNS } else { Namespace::TypeNS };
3150         let (path, res) = self.resolver.resolve_str_path(span, self.crate_root, components, ns);
3151
3152         let mut segments: Vec<_> = path.segments.iter().map(|segment| {
3153             let res = self.expect_full_res(segment.id);
3154             hir::PathSegment {
3155                 ident: segment.ident,
3156                 hir_id: Some(self.lower_node_id(segment.id)),
3157                 res: Some(self.lower_res(res)),
3158                 infer_args: true,
3159                 args: None,
3160             }
3161         }).collect();
3162         segments.last_mut().unwrap().args = params;
3163
3164         hir::Path {
3165             span,
3166             res: res.map_id(|_| panic!("unexpected `NodeId`")),
3167             segments: segments.into(),
3168         }
3169     }
3170
3171     fn ty_path(&mut self, mut hir_id: hir::HirId, span: Span, qpath: hir::QPath) -> hir::Ty {
3172         let kind = match qpath {
3173             hir::QPath::Resolved(None, path) => {
3174                 // Turn trait object paths into `TyKind::TraitObject` instead.
3175                 match path.res {
3176                     Res::Def(DefKind::Trait, _) | Res::Def(DefKind::TraitAlias, _) => {
3177                         let principal = hir::PolyTraitRef {
3178                             bound_generic_params: hir::HirVec::new(),
3179                             trait_ref: hir::TraitRef {
3180                                 path,
3181                                 hir_ref_id: hir_id,
3182                             },
3183                             span,
3184                         };
3185
3186                         // The original ID is taken by the `PolyTraitRef`,
3187                         // so the `Ty` itself needs a different one.
3188                         hir_id = self.next_id();
3189                         hir::TyKind::TraitObject(hir_vec![principal], self.elided_dyn_bound(span))
3190                     }
3191                     _ => hir::TyKind::Path(hir::QPath::Resolved(None, path)),
3192                 }
3193             }
3194             _ => hir::TyKind::Path(qpath),
3195         };
3196
3197         hir::Ty {
3198             hir_id,
3199             kind,
3200             span,
3201         }
3202     }
3203
3204     /// Invoked to create the lifetime argument for a type `&T`
3205     /// with no explicit lifetime.
3206     fn elided_ref_lifetime(&mut self, span: Span) -> hir::Lifetime {
3207         match self.anonymous_lifetime_mode {
3208             // Intercept when we are in an impl header or async fn and introduce an in-band
3209             // lifetime.
3210             // Hence `impl Foo for &u32` becomes `impl<'f> Foo for &'f u32` for some fresh
3211             // `'f`.
3212             AnonymousLifetimeMode::CreateParameter => {
3213                 let fresh_name = self.collect_fresh_in_band_lifetime(span);
3214                 hir::Lifetime {
3215                     hir_id: self.next_id(),
3216                     span,
3217                     name: hir::LifetimeName::Param(fresh_name),
3218                 }
3219             }
3220
3221             AnonymousLifetimeMode::ReportError => self.new_error_lifetime(None, span),
3222
3223             AnonymousLifetimeMode::PassThrough => self.new_implicit_lifetime(span),
3224         }
3225     }
3226
3227     /// Report an error on illegal use of `'_` or a `&T` with no explicit lifetime;
3228     /// return a "error lifetime".
3229     fn new_error_lifetime(&mut self, id: Option<NodeId>, span: Span) -> hir::Lifetime {
3230         let (id, msg, label) = match id {
3231             Some(id) => (id, "`'_` cannot be used here", "`'_` is a reserved lifetime name"),
3232
3233             None => (
3234                 self.resolver.next_node_id(),
3235                 "`&` without an explicit lifetime name cannot be used here",
3236                 "explicit lifetime name needed here",
3237             ),
3238         };
3239
3240         let mut err = struct_span_err!(
3241             self.sess,
3242             span,
3243             E0637,
3244             "{}",
3245             msg,
3246         );
3247         err.span_label(span, label);
3248         err.emit();
3249
3250         self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3251     }
3252
3253     /// Invoked to create the lifetime argument(s) for a path like
3254     /// `std::cell::Ref<T>`; note that implicit lifetimes in these
3255     /// sorts of cases are deprecated. This may therefore report a warning or an
3256     /// error, depending on the mode.
3257     fn elided_path_lifetimes(&mut self, span: Span, count: usize) -> P<[hir::Lifetime]> {
3258         (0..count)
3259             .map(|_| self.elided_path_lifetime(span))
3260             .collect()
3261     }
3262
3263     fn elided_path_lifetime(&mut self, span: Span) -> hir::Lifetime {
3264         match self.anonymous_lifetime_mode {
3265             AnonymousLifetimeMode::CreateParameter => {
3266                 // We should have emitted E0726 when processing this path above
3267                 self.sess.delay_span_bug(
3268                     span,
3269                     "expected 'implicit elided lifetime not allowed' error",
3270                 );
3271                 let id = self.resolver.next_node_id();
3272                 self.new_named_lifetime(id, span, hir::LifetimeName::Error)
3273             }
3274             // `PassThrough` is the normal case.
3275             // `new_error_lifetime`, which would usually be used in the case of `ReportError`,
3276             // is unsuitable here, as these can occur from missing lifetime parameters in a
3277             // `PathSegment`, for which there is no associated `'_` or `&T` with no explicit
3278             // lifetime. Instead, we simply create an implicit lifetime, which will be checked
3279             // later, at which point a suitable error will be emitted.
3280           | AnonymousLifetimeMode::PassThrough
3281           | AnonymousLifetimeMode::ReportError => self.new_implicit_lifetime(span),
3282         }
3283     }
3284
3285     /// Invoked to create the lifetime argument(s) for an elided trait object
3286     /// bound, like the bound in `Box<dyn Debug>`. This method is not invoked
3287     /// when the bound is written, even if it is written with `'_` like in
3288     /// `Box<dyn Debug + '_>`. In those cases, `lower_lifetime` is invoked.
3289     fn elided_dyn_bound(&mut self, span: Span) -> hir::Lifetime {
3290         match self.anonymous_lifetime_mode {
3291             // NB. We intentionally ignore the create-parameter mode here.
3292             // and instead "pass through" to resolve-lifetimes, which will apply
3293             // the object-lifetime-defaulting rules. Elided object lifetime defaults
3294             // do not act like other elided lifetimes. In other words, given this:
3295             //
3296             //     impl Foo for Box<dyn Debug>
3297             //
3298             // we do not introduce a fresh `'_` to serve as the bound, but instead
3299             // ultimately translate to the equivalent of:
3300             //
3301             //     impl Foo for Box<dyn Debug + 'static>
3302             //
3303             // `resolve_lifetime` has the code to make that happen.
3304             AnonymousLifetimeMode::CreateParameter => {}
3305
3306             AnonymousLifetimeMode::ReportError => {
3307                 // ReportError applies to explicit use of `'_`.
3308             }
3309
3310             // This is the normal case.
3311             AnonymousLifetimeMode::PassThrough => {}
3312         }
3313
3314         let r = hir::Lifetime {
3315             hir_id: self.next_id(),
3316             span,
3317             name: hir::LifetimeName::ImplicitObjectLifetimeDefault,
3318         };
3319         debug!("elided_dyn_bound: r={:?}", r);
3320         r
3321     }
3322
3323     fn new_implicit_lifetime(&mut self, span: Span) -> hir::Lifetime {
3324         hir::Lifetime {
3325             hir_id: self.next_id(),
3326             span,
3327             name: hir::LifetimeName::Implicit,
3328         }
3329     }
3330
3331     fn maybe_lint_bare_trait(&mut self, span: Span, id: NodeId, is_global: bool) {
3332         // FIXME(davidtwco): This is a hack to detect macros which produce spans of the
3333         // call site which do not have a macro backtrace. See #61963.
3334         let is_macro_callsite = self.sess.source_map()
3335             .span_to_snippet(span)
3336             .map(|snippet| snippet.starts_with("#["))
3337             .unwrap_or(true);
3338         if !is_macro_callsite {
3339             self.resolver.lint_buffer().buffer_lint_with_diagnostic(
3340                 builtin::BARE_TRAIT_OBJECTS,
3341                 id,
3342                 span,
3343                 "trait objects without an explicit `dyn` are deprecated",
3344                 builtin::BuiltinLintDiagnostics::BareTraitObject(span, is_global),
3345             )
3346         }
3347     }
3348 }
3349
3350 fn body_ids(bodies: &BTreeMap<hir::BodyId, hir::Body>) -> Vec<hir::BodyId> {
3351     // Sorting by span ensures that we get things in order within a
3352     // file, and also puts the files in a sensible order.
3353     let mut body_ids: Vec<_> = bodies.keys().cloned().collect();
3354     body_ids.sort_by_key(|b| bodies[b].value.span);
3355     body_ids
3356 }
3357
3358 /// Checks if the specified expression is a built-in range literal.
3359 /// (See: `LoweringContext::lower_expr()`).
3360 pub fn is_range_literal(sess: &Session, expr: &hir::Expr) -> bool {
3361     use hir::{Path, QPath, ExprKind, TyKind};
3362
3363     // Returns whether the given path represents a (desugared) range,
3364     // either in std or core, i.e. has either a `::std::ops::Range` or
3365     // `::core::ops::Range` prefix.
3366     fn is_range_path(path: &Path) -> bool {
3367         let segs: Vec<_> = path.segments.iter().map(|seg| seg.ident.to_string()).collect();
3368         let segs: Vec<_> = segs.iter().map(|seg| &**seg).collect();
3369
3370         // "{{root}}" is the equivalent of `::` prefix in `Path`.
3371         if let ["{{root}}", std_core, "ops", range] = segs.as_slice() {
3372             (*std_core == "std" || *std_core == "core") && range.starts_with("Range")
3373         } else {
3374             false
3375         }
3376     };
3377
3378     // Check whether a span corresponding to a range expression is a
3379     // range literal, rather than an explicit struct or `new()` call.
3380     fn is_lit(sess: &Session, span: &Span) -> bool {
3381         let source_map = sess.source_map();
3382         let end_point = source_map.end_point(*span);
3383
3384         if let Ok(end_string) = source_map.span_to_snippet(end_point) {
3385             !(end_string.ends_with("}") || end_string.ends_with(")"))
3386         } else {
3387             false
3388         }
3389     };
3390
3391     match expr.kind {
3392         // All built-in range literals but `..=` and `..` desugar to `Struct`s.
3393         ExprKind::Struct(ref qpath, _, _) => {
3394             if let QPath::Resolved(None, ref path) = **qpath {
3395                 return is_range_path(&path) && is_lit(sess, &expr.span);
3396             }
3397         }
3398
3399         // `..` desugars to its struct path.
3400         ExprKind::Path(QPath::Resolved(None, ref path)) => {
3401             return is_range_path(&path) && is_lit(sess, &expr.span);
3402         }
3403
3404         // `..=` desugars into `::std::ops::RangeInclusive::new(...)`.
3405         ExprKind::Call(ref func, _) => {
3406             if let ExprKind::Path(QPath::TypeRelative(ref ty, ref segment)) = func.kind {
3407                 if let TyKind::Path(QPath::Resolved(None, ref path)) = ty.kind {
3408                     let new_call = segment.ident.name == sym::new;
3409                     return is_range_path(&path) && is_lit(sess, &expr.span) && new_call;
3410                 }
3411             }
3412         }
3413
3414         _ => {}
3415     }
3416
3417     false
3418 }